return vma->vm_flags & VM_MTE_ALLOWED;
}
+static bool kvm_vma_is_cacheable(struct vm_area_struct *vma)
+{
+ switch (FIELD_GET(PTE_ATTRINDX_MASK, pgprot_val(vma->vm_page_prot))) {
+ case MT_NORMAL_NC:
+ case MT_DEVICE_nGnRnE:
+ case MT_DEVICE_nGnRE:
+ return false;
+ default:
+ return true;
+ }
+}
+
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_s2_trans *nested,
struct kvm_memory_slot *memslot, unsigned long hva,
{
int ret = 0;
bool write_fault, writable, force_pte = false;
- bool exec_fault, mte_allowed;
+ bool exec_fault, mte_allowed, is_vma_cacheable;
bool s2_force_noncacheable = false, vfio_allow_any_uc = false;
unsigned long mmu_seq;
phys_addr_t ipa = fault_ipa;
vm_flags = vma->vm_flags;
+ is_vma_cacheable = kvm_vma_is_cacheable(vma);
+
/* Don't use the VMA after the unlock -- it may have vanished */
vma = NULL;
writable = false;
}
+ /*
+ * Prevent non-cacheable mappings in the stage-2 if a region of memory
+ * is cacheable in the primary MMU and the kernel lacks a cacheable
+ * alias. KVM cannot guarantee coherency between the guest/host aliases
+ * without the ability to perform CMOs.
+ */
+ if (is_vma_cacheable && s2_force_noncacheable)
+ return -EINVAL;
+
if (exec_fault && s2_force_noncacheable)
return -ENOEXEC;
ret = -EINVAL;
break;
}
+
+ /* Cacheable PFNMAP is not allowed */
+ if (kvm_vma_is_cacheable(vma)) {
+ ret = -EINVAL;
+ break;
+ }
}
hva = min(reg_end, vma->vm_end);
} while (hva < reg_end);