+++ /dev/null
-/*
- * Copyright (C) 1996-2022 The Squid Software Foundation and contributors
- *
- * Squid software is distributed under GPLv2+ license and includes
- * contributions from numerous individuals and organizations.
- * Please see the COPYING and CONTRIBUTORS files for details.
- */
-
-/* Extended regular expression matching and search library,
- * version 0.12.
- * (Implements POSIX draft P10003.2/D11.2, except for
- * internationalization features.)
- *
- * Copyright (C) 1993 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2, or (at your option)
- * any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */
-
-/* AIX requires this to be the first thing in the file. */
-#if defined (_AIX) && !defined(REGEX_MALLOC)
-#pragma alloca
-#endif
-
-#ifndef _GNU_SOURCE
-#define _GNU_SOURCE 1
-#endif
-
-#include "squid.h"
-
-#if USE_GNUREGEX /* only if squid needs it. Usually not */
-
-/* Starting with v12.1, GCC warns of various problems with this ancient code. */
-/* GCC versions prior to v12.1 do not support these pragmas. */
-#if (__GNUC__ == 12 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 12)
-#pragma GCC diagnostic ignored "-Warray-bounds"
-#pragma GCC diagnostic ignored "-Wuse-after-free"
-#endif
-
-#if !HAVE_ALLOCA
-#define REGEX_MALLOC 1
-#endif
-
-/* We used to test for `BSTRING' here, but only GCC and Emacs define
- * `BSTRING', as far as I know, and neither of them use this code. */
-#if HAVE_STRING_H || STDC_HEADERS
-#include <string.h>
-#else
-#include <strings.h>
-#endif
-
-/* Define the syntax stuff for \<, \>, etc. */
-
-/* This must be nonzero for the wordchar and notwordchar pattern
- * commands in re_match_2. */
-#ifndef Sword
-#define Sword 1
-#endif
-
-#ifdef SYNTAX_TABLE
-
-extern char *re_syntax_table;
-
-#else /* not SYNTAX_TABLE */
-
-/* How many characters in the character set. */
-#define CHAR_SET_SIZE 256
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void
-init_syntax_once(void)
-{
- register int c;
- static int done = 0;
-
- if (done)
- return;
-
- memset(re_syntax_table, 0, sizeof re_syntax_table);
-
- for (c = 'a'; c <= 'z'; c++)
- re_syntax_table[c] = Sword;
-
- for (c = 'A'; c <= 'Z'; c++)
- re_syntax_table[c] = Sword;
-
- for (c = '0'; c <= '9'; c++)
- re_syntax_table[c] = Sword;
-
- re_syntax_table['_'] = Sword;
-
- done = 1;
-}
-
-#endif /* not SYNTAX_TABLE */
-
-/* Get the interface, including the syntax bits. */
-#include "compat/GnuRegex.h"
-
-/* Compile a fastmap for the compiled pattern in BUFFER; used to
- * accelerate searches. Return 0 if successful and -2 if was an
- * internal error. */
-static int re_compile_fastmap(struct re_pattern_buffer * buffer);
-
-/* Search in the string STRING (with length LENGTH) for the pattern
- * compiled into BUFFER. Start searching at position START, for RANGE
- * characters. Return the starting position of the match, -1 for no
- * match, or -2 for an internal error. Also return register
- * information in REGS (if REGS and BUFFER->no_sub are nonzero). */
-static int re_search(struct re_pattern_buffer * buffer, const char *string,
- int length, int start, int range, struct re_registers * regs);
-
-/* Like `re_search', but search in the concatenation of STRING1 and
- * STRING2. Also, stop searching at index START + STOP. */
-static int re_search_2(struct re_pattern_buffer * buffer, const char *string1,
- int length1, const char *string2, int length2,
- int start, int range, struct re_registers * regs, int stop);
-
-/* Like `re_search_2', but return how many characters in STRING the regexp
- * in BUFFER matched, starting at position START. */
-static int re_match_2(struct re_pattern_buffer * buffer, const char *string1,
- int length1, const char *string2, int length2,
- int start, struct re_registers * regs, int stop);
-
-/* isalpha etc. are used for the character classes. */
-#include <ctype.h>
-
-#ifndef isascii
-#define isascii(c) 1
-#endif
-
-#ifdef isblank
-#define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c))
-#else
-#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-#endif
-#ifdef isgraph
-#define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c))
-#else
-#define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c))
-#endif
-
-#define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c))
-#define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c))
-#define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c))
-#define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c))
-#define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c))
-#define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c))
-#define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c))
-#define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c))
-#define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c))
-#define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c))
-
-/* We remove any previous definition of `SIGN_EXTEND_CHAR',
- * since ours (we hope) works properly with all combinations of
- * machines, compilers, `char' and `unsigned char' argument types.
- * (Per Bothner suggested the basic approach.) */
-#undef SIGN_EXTEND_CHAR
-#ifdef __STDC__
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-#else /* not __STDC__ */
-/* As in Harbison and Steele. */
-#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
-#endif
-
-/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
- * use `alloca' instead of `malloc'. This is because using malloc in
- * re_search* or re_match* could cause memory leaks when C-g is used in
- * Emacs; also, malloc is slower and causes storage fragmentation. On
- * the other hand, malloc is more portable, and easier to debug.
- *
- * Because we sometimes use alloca, some routines have to be macros,
- * not functions -- `alloca'-allocated space disappears at the end of the
- * function it is called in. */
-
-#ifdef REGEX_MALLOC
-
-#define REGEX_ALLOCATE malloc
-#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
-
-#else /* not REGEX_MALLOC */
-
-/* Emacs already defines alloca, sometimes. */
-#ifndef alloca
-
-/* Make alloca work the best possible way. */
-#ifdef __GNUC__
-#define alloca __builtin_alloca
-#else /* not __GNUC__ */
-#if HAVE_ALLOCA_H
-#include <alloca.h>
-#else /* not __GNUC__ or HAVE_ALLOCA_H */
-#ifndef _AIX /* Already did AIX, up at the top. */
-char *alloca();
-#endif /* not _AIX */
-#endif /* not HAVE_ALLOCA_H */
-#endif /* not __GNUC__ */
-
-#endif /* not alloca */
-
-#define REGEX_ALLOCATE alloca
-
-/* Assumes a `char *destination' variable. */
-#define REGEX_REALLOCATE(source, osize, nsize) \
- (destination = (char *) alloca (nsize), \
- memcpy (destination, source, osize), \
- destination)
-
-#endif /* not REGEX_MALLOC */
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
- * `string1' or just past its end. This works if PTR is NULL, which is
- * a good thing. */
-#define FIRST_STRING_P(ptr) \
- (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail. */
-#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8 /* In bits. */
-
-#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
-#if !defined(__MINGW32__) /* MinGW defines boolean */
-typedef char boolean;
-#endif
-#define false 0
-#define true 1
-
-/* These are the command codes that appear in compiled regular
- * expressions. Some opcodes are followed by argument bytes. A
- * command code can specify any interpretation whatsoever for its
- * arguments. Zero bytes may appear in the compiled regular expression.
- *
- * The value of `exactn' is needed in search.c (search_buffer) in Emacs.
- * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
- * `exactn' we use here must also be 1. */
-
-typedef enum {
- no_op = 0,
-
- /* Followed by one byte giving n, then by n literal bytes. */
- exactn = 1,
-
- /* Matches any (more or less) character. */
- anychar,
-
- /* Matches any one char belonging to specified set. First
- * following byte is number of bitmap bytes. Then come bytes
- * for a bitmap saying which chars are in. Bits in each byte
- * are ordered low-bit-first. A character is in the set if its
- * bit is 1. A character too large to have a bit in the map is
- * automatically not in the set. */
- charset,
-
- /* Same parameters as charset, but match any character that is
- * not one of those specified. */
- charset_not,
-
- /* Start remembering the text that is matched, for storing in a
- * register. Followed by one byte with the register number, in
- * the range 0 to one less than the pattern buffer's re_nsub
- * field. Then followed by one byte with the number of groups
- * inner to this one. (This last has to be part of the
- * start_memory only because we need it in the on_failure_jump
- * of re_match_2.) */
- start_memory,
-
- /* Stop remembering the text that is matched and store it in a
- * memory register. Followed by one byte with the register
- * number, in the range 0 to one less than `re_nsub' in the
- * pattern buffer, and one byte with the number of inner groups,
- * just like `start_memory'. (We need the number of inner
- * groups here because we don't have any easy way of finding the
- * corresponding start_memory when we're at a stop_memory.) */
- stop_memory,
-
- /* Match a duplicate of something remembered. Followed by one
- * byte containing the register number. */
- duplicate,
-
- /* Fail unless at beginning of line. */
- begline,
-
- /* Fail unless at end of line. */
- endline,
-
- /* Succeeds if or at beginning of string to be matched. */
- begbuf,
-
- /* Analogously, for end of buffer/string. */
- endbuf,
-
- /* Followed by two byte relative address to which to jump. */
- jump,
-
- /* Same as jump, but marks the end of an alternative. */
- jump_past_alt,
-
- /* Followed by two-byte relative address of place to resume at
- * in case of failure. */
- on_failure_jump,
-
- /* Like on_failure_jump, but pushes a placeholder instead of the
- * current string position when executed. */
- on_failure_keep_string_jump,
-
- /* Throw away latest failure point and then jump to following
- * two-byte relative address. */
- pop_failure_jump,
-
- /* Change to pop_failure_jump if know won't have to backtrack to
- * match; otherwise change to jump. This is used to jump
- * back to the beginning of a repeat. If what follows this jump
- * clearly won't match what the repeat does, such that we can be
- * sure that there is no use backtracking out of repetitions
- * already matched, then we change it to a pop_failure_jump.
- * Followed by two-byte address. */
- maybe_pop_jump,
-
- /* Jump to following two-byte address, and push a dummy failure
- * point. This failure point will be thrown away if an attempt
- * is made to use it for a failure. A `+' construct makes this
- * before the first repeat. Also used as an intermediary kind
- * of jump when compiling an alternative. */
- dummy_failure_jump,
-
- /* Push a dummy failure point and continue. Used at the end of
- * alternatives. */
- push_dummy_failure,
-
- /* Followed by two-byte relative address and two-byte number n.
- * After matching N times, jump to the address upon failure. */
- succeed_n,
-
- /* Followed by two-byte relative address, and two-byte number n.
- * Jump to the address N times, then fail. */
- jump_n,
-
- /* Set the following two-byte relative address to the
- * subsequent two-byte number. The address *includes* the two
- * bytes of number. */
- set_number_at,
-
- wordchar, /* Matches any word-constituent character. */
- notwordchar, /* Matches any char that is not a word-constituent. */
-
- wordbeg, /* Succeeds if at word beginning. */
- wordend, /* Succeeds if at word end. */
-
- wordbound, /* Succeeds if at a word boundary. */
- notwordbound /* Succeeds if not at a word boundary. */
-
-} re_opcode_t;
-
-/* Common operations on the compiled pattern. */
-
-/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
-
-#define STORE_NUMBER(destination, number) \
- do { \
- (destination)[0] = (number) & 0377; \
- (destination)[1] = (number) >> 8; \
- } while (0)
-
-/* Same as STORE_NUMBER, except increment DESTINATION to
- * the byte after where the number is stored. Therefore, DESTINATION
- * must be an lvalue. */
-
-#define STORE_NUMBER_AND_INCR(destination, number) \
- do { \
- STORE_NUMBER (destination, number); \
- (destination) += 2; \
- } while (0)
-
-/* Put into DESTINATION a number stored in two contiguous bytes starting
- * at SOURCE. */
-
-#define EXTRACT_NUMBER(destination, source) \
- do { \
- (destination) = *(source) & 0377; \
- (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
- } while (0)
-
-#ifdef DEBUG
-static void
-extract_number(dest, source)
-int *dest;
-unsigned char *source;
-{
- int temp = SIGN_EXTEND_CHAR(*(source + 1));
- *dest = *source & 0377;
- *dest += temp << 8;
-}
-
-#ifndef EXTRACT_MACROS /* To debug the macros. */
-#undef EXTRACT_NUMBER
-#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-
-/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
- * SOURCE must be an lvalue. */
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source) \
- do { \
- EXTRACT_NUMBER (destination, source); \
- (source) += 2; \
- } while (0)
-
-#ifdef DEBUG
-static void
-extract_number_and_incr(destination, source)
-int *destination;
-unsigned char **source;
-{
- extract_number(destination, *source);
- *source += 2;
-}
-
-#ifndef EXTRACT_MACROS
-#undef EXTRACT_NUMBER_AND_INCR
-#define EXTRACT_NUMBER_AND_INCR(dest, src) \
- extract_number_and_incr (&dest, &src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-
-/* If DEBUG is defined, Regex prints many voluminous messages about what
- * it is doing (if the variable `debug' is nonzero). If linked with the
- * main program in `iregex.c', you can enter patterns and strings
- * interactively. And if linked with the main program in `main.c' and
- * the other test files, you can run the already-written tests. */
-
-#ifdef DEBUG
-
-static int debug = 0;
-
-#define DEBUG_STATEMENT(e) e
-#define DEBUG_PRINT1(x) if (debug) printf (x)
-#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
- if (debug) print_partial_compiled_pattern (s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
- if (debug) print_double_string (w, s1, sz1, s2, sz2)
-
-extern void printchar();
-
-/* Print the fastmap in human-readable form. */
-
-void
-print_fastmap(fastmap)
-char *fastmap;
-{
- unsigned was_a_range = 0;
- unsigned i = 0;
-
- while (i < (1 << BYTEWIDTH)) {
- if (fastmap[i++]) {
- was_a_range = 0;
- printchar(i - 1);
- while (i < (1 << BYTEWIDTH) && fastmap[i]) {
- was_a_range = 1;
- i++;
- }
- if (was_a_range) {
- printf("-");
- printchar(i - 1);
- }
- }
- }
- putchar('\n');
-}
-
-/* Print a compiled pattern string in human-readable form, starting at
- * the START pointer into it and ending just before the pointer END. */
-
-void
-print_partial_compiled_pattern(start, end)
-unsigned char *start;
-unsigned char *end;
-{
- int mcnt, mcnt2;
- unsigned char *p = start;
- unsigned char *pend = end;
-
- if (start == NULL) {
- printf("(null)\n");
- return;
- }
- /* Loop over pattern commands. */
- while (p < pend) {
- switch ((re_opcode_t) * p++) {
- case no_op:
- printf("/no_op");
- break;
-
- case exactn:
- mcnt = *p++;
- printf("/exactn/%d", mcnt);
- do {
- putchar('/');
- printchar(*p++);
- } while (--mcnt);
- break;
-
- case start_memory:
- mcnt = *p++;
- printf("/start_memory/%d/%d", mcnt, *p++);
- break;
-
- case stop_memory:
- mcnt = *p++;
- printf("/stop_memory/%d/%d", mcnt, *p++);
- break;
-
- case duplicate:
- printf("/duplicate/%d", *p++);
- break;
-
- case anychar:
- printf("/anychar");
- break;
-
- case charset:
- case charset_not: {
- register int c;
-
- printf("/charset%s",
- (re_opcode_t) * (p - 1) == charset_not ? "_not" : "");
-
- assert(p + *p < pend);
-
- for (c = 0; c < *p; c++) {
- unsigned bit;
- unsigned char map_byte = p[1 + c];
-
- putchar('/');
-
- for (bit = 0; bit < BYTEWIDTH; bit++)
- if (map_byte & (1 << bit))
- printchar(c * BYTEWIDTH + bit);
- }
- p += 1 + *p;
- break;
- }
-
- case begline:
- printf("/begline");
- break;
-
- case endline:
- printf("/endline");
- break;
-
- case on_failure_jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/on_failure_jump/0/%d", mcnt);
- break;
-
- case on_failure_keep_string_jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/on_failure_keep_string_jump/0/%d", mcnt);
- break;
-
- case dummy_failure_jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/dummy_failure_jump/0/%d", mcnt);
- break;
-
- case push_dummy_failure:
- printf("/push_dummy_failure");
- break;
-
- case maybe_pop_jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/maybe_pop_jump/0/%d", mcnt);
- break;
-
- case pop_failure_jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/pop_failure_jump/0/%d", mcnt);
- break;
-
- case jump_past_alt:
- extract_number_and_incr(&mcnt, &p);
- printf("/jump_past_alt/0/%d", mcnt);
- break;
-
- case jump:
- extract_number_and_incr(&mcnt, &p);
- printf("/jump/0/%d", mcnt);
- break;
-
- case succeed_n:
- extract_number_and_incr(&mcnt, &p);
- extract_number_and_incr(&mcnt2, &p);
- printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case jump_n:
- extract_number_and_incr(&mcnt, &p);
- extract_number_and_incr(&mcnt2, &p);
- printf("/jump_n/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case set_number_at:
- extract_number_and_incr(&mcnt, &p);
- extract_number_and_incr(&mcnt2, &p);
- printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case wordbound:
- printf("/wordbound");
- break;
-
- case notwordbound:
- printf("/notwordbound");
- break;
-
- case wordbeg:
- printf("/wordbeg");
- break;
-
- case wordend:
- printf("/wordend");
-
- case wordchar:
- printf("/wordchar");
- break;
-
- case notwordchar:
- printf("/notwordchar");
- break;
-
- case begbuf:
- printf("/begbuf");
- break;
-
- case endbuf:
- printf("/endbuf");
- break;
-
- default:
- printf("?%d", *(p - 1));
- }
- }
- printf("/\n");
-}
-
-void
-print_compiled_pattern(bufp)
-struct re_pattern_buffer *bufp;
-{
- unsigned char *buffer = bufp->buffer;
-
- print_partial_compiled_pattern(buffer, buffer + bufp->used);
- printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
-
- if (bufp->fastmap_accurate && bufp->fastmap) {
- printf("fastmap: ");
- print_fastmap(bufp->fastmap);
- }
- printf("re_nsub: %d\t", bufp->re_nsub);
- printf("regs_alloc: %d\t", bufp->regs_allocated);
- printf("can_be_null: %d\t", bufp->can_be_null);
- printf("newline_anchor: %d\n", bufp->newline_anchor);
- printf("no_sub: %d\t", bufp->no_sub);
- printf("not_bol: %d\t", bufp->not_bol);
- printf("not_eol: %d\t", bufp->not_eol);
- printf("syntax: %d\n", bufp->syntax);
- /* Perhaps we should print the translate table? */
-}
-
-void
-print_double_string(where, string1, size1, string2, size2)
-const char *where;
-const char *string1;
-const char *string2;
-int size1;
-int size2;
-{
- unsigned this_char;
-
- if (where == NULL)
- printf("(null)");
- else {
- if (FIRST_STRING_P(where)) {
- for (this_char = where - string1; this_char < size1; this_char++)
- printchar(string1[this_char]);
-
- where = string2;
- }
- for (this_char = where - string2; this_char < size2; this_char++)
- printchar(string2[this_char]);
- }
-}
-
-#else /* not DEBUG */
-
-#undef assert
-#define assert(e)
-
-#define DEBUG_STATEMENT(e)
-#define DEBUG_PRINT1(x)
-#define DEBUG_PRINT2(x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-#endif /* not DEBUG */
-
-/* This table gives an error message for each of the error codes listed
- * in regex.h. Obviously the order here has to be same as there. */
-
-static const char *re_error_msg[] = {NULL, /* REG_NOERROR */
- "No match", /* REG_NOMATCH */
- "Invalid regular expression", /* REG_BADPAT */
- "Invalid collation character", /* REG_ECOLLATE */
- "Invalid character class name", /* REG_ECTYPE */
- "Trailing backslash", /* REG_EESCAPE */
- "Invalid back reference", /* REG_ESUBREG */
- "Unmatched [ or [^", /* REG_EBRACK */
- "Unmatched ( or \\(", /* REG_EPAREN */
- "Unmatched \\{", /* REG_EBRACE */
- "Invalid content of \\{\\}", /* REG_BADBR */
- "Invalid range end", /* REG_ERANGE */
- "Memory exhausted", /* REG_ESPACE */
- "Invalid preceding regular expression", /* REG_BADRPT */
- "Premature end of regular expression", /* REG_EEND */
- "Regular expression too big", /* REG_ESIZE */
- "Unmatched ) or \\)", /* REG_ERPAREN */
- };
-
-/* Subroutine declarations and macros for regex_compile. */
-
-/* Fetch the next character in the uncompiled pattern---translating it
- * if necessary. Also cast from a signed character in the constant
- * string passed to us by the user to an unsigned char that we can use
- * as an array index (in, e.g., `translate'). */
-#define PATFETCH(c) \
- do {if (p == pend) return REG_EEND; \
- c = (unsigned char) *p++; \
- if (translate) c = translate[c]; \
- } while (0)
-
-/* Fetch the next character in the uncompiled pattern, with no
- * translation. */
-#define PATFETCH_RAW(c) \
- do {if (p == pend) return REG_EEND; \
- c = (unsigned char) *p++; \
- } while (0)
-
-/* Go backwards one character in the pattern. */
-#define PATUNFETCH p--
-
-/* If `translate' is non-null, return translate[D], else just D. We
- * cast the subscript to translate because some data is declared as
- * `char *', to avoid warnings when a string constant is passed. But
- * when we use a character as a subscript we must make it unsigned. */
-#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
-
-/* Macros for outputting the compiled pattern into `buffer'. */
-
-/* If the buffer isn't allocated when it comes in, use this. */
-#define INIT_BUF_SIZE 32
-
-/* Make sure we have at least N more bytes of space in buffer. */
-#define GET_BUFFER_SPACE(n) \
- while (b - bufp->buffer + (n) > bufp->allocated) \
- EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it. */
-#define BUF_PUSH(c) \
- do { \
- GET_BUFFER_SPACE (1); \
- *b++ = (unsigned char) (c); \
- } while (0)
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
-#define BUF_PUSH_2(c1, c2) \
- do { \
- GET_BUFFER_SPACE (2); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- } while (0)
-
-/* As with BUF_PUSH_2, except for three bytes. */
-#define BUF_PUSH_3(c1, c2, c3) \
- do { \
- GET_BUFFER_SPACE (3); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- *b++ = (unsigned char) (c3); \
- } while (0)
-
-/* Store a jump with opcode OP at LOC to location TO. We store a
- * relative address offset by the three bytes the jump itself occupies. */
-#define STORE_JUMP(op, loc, to) \
- store_op1 (op, loc, (to) - (loc) - 3)
-
-/* Likewise, for a two-argument jump. */
-#define STORE_JUMP2(op, loc, to, arg) \
- store_op2 (op, loc, (to) - (loc) - 3, arg)
-
-/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP(op, loc, to) \
- insert_op1 (op, loc, (to) - (loc) - 3, b)
-
-/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP2(op, loc, to, arg) \
- insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
-
-/* This is not an arbitrary limit: the arguments which represent offsets
- * into the pattern are two bytes long. So if 2^16 bytes turns out to
- * be too small, many things would have to change. */
-#define MAX_BUF_SIZE (1L << 16)
-
-/* Extend the buffer by twice its current size via realloc and
- * reset the pointers that pointed into the old block to point to the
- * correct places in the new one. If extending the buffer results in it
- * being larger than MAX_BUF_SIZE, then flag memory exhausted. */
-#define EXTEND_BUFFER() \
- do { \
- unsigned char *old_buffer = bufp->buffer; \
- if (bufp->allocated == MAX_BUF_SIZE) \
- return REG_ESIZE; \
- bufp->allocated <<= 1; \
- if (bufp->allocated > MAX_BUF_SIZE) \
- bufp->allocated = MAX_BUF_SIZE; \
- bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
- if (bufp->buffer == NULL) \
- return REG_ESPACE; \
- /* If the buffer moved, move all the pointers into it. */ \
- if (old_buffer != bufp->buffer) \
- { \
- b = (b - old_buffer) + bufp->buffer; \
- begalt = (begalt - old_buffer) + bufp->buffer; \
- if (fixup_alt_jump) \
- fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
- if (laststart) \
- laststart = (laststart - old_buffer) + bufp->buffer; \
- if (pending_exact) \
- pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
- } \
- } while (0)
-
-/* Since we have one byte reserved for the register number argument to
- * {start,stop}_memory, the maximum number of groups we can report
- * things about is what fits in that byte. */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers. We just
- * ignore the excess. */
-typedef unsigned regnum_t;
-
-/* Macros for the compile stack. */
-
-/* Since offsets can go either forwards or backwards, this type needs to
- * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
-typedef int pattern_offset_t;
-
-typedef struct {
- pattern_offset_t begalt_offset;
- pattern_offset_t fixup_alt_jump;
- pattern_offset_t inner_group_offset;
- pattern_offset_t laststart_offset;
- regnum_t regnum;
-} compile_stack_elt_t;
-
-typedef struct {
- compile_stack_elt_t *stack;
- unsigned size;
- unsigned avail; /* Offset of next open position. */
-} compile_stack_type;
-
-static void store_op1(re_opcode_t op, unsigned char *loc, int arg);
-static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2);
-static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end);
-static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end);
-static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax);
-static boolean at_endline_loc_p(const char *p, const char *pend, int syntax);
-static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum);
-static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b);
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-/* The next available element. */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-/* Set the bit for character C in a list. */
-#define SET_LIST_BIT(c) \
- (b[((unsigned char) (c)) / BYTEWIDTH] \
- |= 1 << (((unsigned char) c) % BYTEWIDTH))
-
-/* Get the next unsigned number in the uncompiled pattern. */
-#define GET_UNSIGNED_NUMBER(num) \
- { if (p != pend) \
- { \
- PATFETCH (c); \
- while (ISDIGIT (c)) \
- { \
- if (num < 0) \
- num = 0; \
- num = num * 10 + c - '0'; \
- if (p == pend) \
- break; \
- PATFETCH (c); \
- } \
- } \
- }
-
-#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
-
-#define IS_CHAR_CLASS(string) \
- (STREQ (string, "alpha") || STREQ (string, "upper") \
- || STREQ (string, "lower") || STREQ (string, "digit") \
- || STREQ (string, "alnum") || STREQ (string, "xdigit") \
- || STREQ (string, "space") || STREQ (string, "print") \
- || STREQ (string, "punct") || STREQ (string, "graph") \
- || STREQ (string, "cntrl") || STREQ (string, "blank"))
-
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
- * Returns one of error codes defined in `regex.h', or zero for success.
- *
- * Assumes the `allocated' (and perhaps `buffer') and `translate'
- * fields are set in BUFP on entry.
- *
- * If it succeeds, results are put in BUFP (if it returns an error, the
- * contents of BUFP are undefined):
- * `buffer' is the compiled pattern;
- * `syntax' is set to SYNTAX;
- * `used' is set to the length of the compiled pattern;
- * `fastmap_accurate' is zero;
- * `re_nsub' is the number of subexpressions in PATTERN;
- * `not_bol' and `not_eol' are zero;
- *
- * The `fastmap' and `newline_anchor' fields are neither
- * examined nor set. */
-
-static reg_errcode_t
-regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
-{
- /* We fetch characters from PATTERN here. Even though PATTERN is
- * `char *' (i.e., signed), we declare these variables as unsigned, so
- * they can be reliably used as array indices. */
- register unsigned char c, c1;
-
- /* A random temporary spot in PATTERN. */
- const char *p1;
-
- /* Points to the end of the buffer, where we should append. */
- register unsigned char *b;
-
- /* Keeps track of unclosed groups. */
- compile_stack_type compile_stack;
-
- /* Points to the current (ending) position in the pattern. */
- const char *p = pattern;
- const char *pend = pattern + size;
-
- /* How to translate the characters in the pattern. */
- char *translate = bufp->translate;
-
- /* Address of the count-byte of the most recently inserted `exactn'
- * command. This makes it possible to tell if a new exact-match
- * character can be added to that command or if the character requires
- * a new `exactn' command. */
- unsigned char *pending_exact = 0;
-
- /* Address of start of the most recently finished expression.
- * This tells, e.g., postfix * where to find the start of its
- * operand. Reset at the beginning of groups and alternatives. */
- unsigned char *laststart = 0;
-
- /* Address of beginning of regexp, or inside of last group. */
- unsigned char *begalt;
-
- /* Place in the uncompiled pattern (i.e., the {) to
- * which to go back if the interval is invalid. */
- const char *beg_interval;
-
- /* Address of the place where a forward jump should go to the end of
- * the containing expression. Each alternative of an `or' -- except the
- * last -- ends with a forward jump of this sort. */
- unsigned char *fixup_alt_jump = 0;
-
- /* Counts open-groups as they are encountered. Remembered for the
- * matching close-group on the compile stack, so the same register
- * number is put in the stop_memory as the start_memory. */
- regnum_t regnum = 0;
-
-#ifdef DEBUG
- DEBUG_PRINT1("\nCompiling pattern: ");
- if (debug) {
- unsigned debug_count;
-
- for (debug_count = 0; debug_count < size; debug_count++)
- printchar(pattern[debug_count]);
- putchar('\n');
- }
-#endif /* DEBUG */
-
- /* Initialize the compile stack. */
- compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
- if (compile_stack.stack == NULL)
- return REG_ESPACE;
-
- compile_stack.size = INIT_COMPILE_STACK_SIZE;
- compile_stack.avail = 0;
-
- /* Initialize the pattern buffer. */
- bufp->syntax = syntax;
- bufp->fastmap_accurate = 0;
- bufp->not_bol = bufp->not_eol = 0;
-
- /* Set `used' to zero, so that if we return an error, the pattern
- * printer (for debugging) will think there's no pattern. We reset it
- * at the end. */
- bufp->used = 0;
-
- /* Always count groups, whether or not bufp->no_sub is set. */
- bufp->re_nsub = 0;
-
-#if !defined (SYNTAX_TABLE)
- /* Initialize the syntax table. */
- init_syntax_once();
-#endif
-
- if (bufp->allocated == 0) {
- if (bufp->buffer) {
- /* If zero allocated, but buffer is non-null, try to realloc
- * enough space. This loses if buffer's address is bogus, but
- * that is the user's responsibility. */
- RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
- } else { /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
- }
- if (!bufp->buffer)
- return REG_ESPACE;
-
- bufp->allocated = INIT_BUF_SIZE;
- }
- begalt = b = bufp->buffer;
-
- /* Loop through the uncompiled pattern until we're at the end. */
- while (p != pend) {
- PATFETCH(c);
-
- switch (c) {
- case '^': {
- if ( /* If at start of pattern, it's an operator. */
- p == pattern + 1
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's come before. */
- || at_begline_loc_p(pattern, p, syntax))
- BUF_PUSH(begline);
- else
- goto normal_char;
- }
- break;
-
- case '$': {
- if ( /* If at end of pattern, it's an operator. */
- p == pend
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's next. */
- || at_endline_loc_p(p, pend, syntax))
- BUF_PUSH(endline);
- else
- goto normal_char;
- }
- break;
-
- case '+':
- case '?':
- if ((syntax & RE_BK_PLUS_QM)
- || (syntax & RE_LIMITED_OPS))
- goto normal_char;
-handle_plus:
- case '*':
- /* If there is no previous pattern... */
- if (!laststart) {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- return REG_BADRPT;
- else if (!(syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- } {
- /* Are we optimizing this jump? */
- boolean keep_string_p = false;
-
- /* 1 means zero (many) matches is allowed. */
- char zero_times_ok = 0, many_times_ok = 0;
-
- /* If there is a sequence of repetition chars, collapse it
- * down to just one (the right one). We can't combine
- * interval operators with these because of, e.g., `a{2}*',
- * which should only match an even number of `a's. */
-
- for (;;) {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
-
- if (p == pend)
- break;
-
- PATFETCH(c);
-
- if (c == '*'
- || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')));
-
- else if (syntax & RE_BK_PLUS_QM && c == '\\') {
- if (p == pend)
- return REG_EESCAPE;
-
- PATFETCH(c1);
- if (!(c1 == '+' || c1 == '?')) {
- PATUNFETCH;
- PATUNFETCH;
- break;
- }
- c = c1;
- } else {
- PATUNFETCH;
- break;
- }
-
- /* If we get here, we found another repeat character. */
- }
-
- /* Star, etc. applied to an empty pattern is equivalent
- * to an empty pattern. */
- if (!laststart)
- break;
-
- /* Now we know whether or not zero matches is allowed
- * and also whether or not two or more matches is allowed. */
- if (many_times_ok) {
- /* More than one repetition is allowed, so put in at the
- * end a backward relative jump from `b' to before the next
- * jump we're going to put in below (which jumps from
- * laststart to after this jump).
- *
- * But if we are at the `*' in the exact sequence `.*\n',
- * insert an unconditional jump backwards to the .,
- * instead of the beginning of the loop. This way we only
- * push a failure point once, instead of every time
- * through the loop. */
- assert(p - 1 > pattern);
-
- /* Allocate the space for the jump. */
- GET_BUFFER_SPACE(3);
-
- /* We know we are not at the first character of the pattern,
- * because laststart was nonzero. And we've already
- * incremented `p', by the way, to be the character after
- * the `*'. Do we have to do something analogous here
- * for null bytes, because of RE_DOT_NOT_NULL? */
- if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
- && zero_times_ok
- && p < pend && TRANSLATE(*p) == TRANSLATE('\n')
- && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */
- STORE_JUMP(jump, b, laststart);
- keep_string_p = true;
- } else
- /* Anything else. */
- STORE_JUMP(maybe_pop_jump, b, laststart - 3);
-
- /* We've added more stuff to the buffer. */
- b += 3;
- }
- /* On failure, jump from laststart to b + 3, which will be the
- * end of the buffer after this jump is inserted. */
- GET_BUFFER_SPACE(3);
- INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
- : on_failure_jump,
- laststart, b + 3);
- pending_exact = 0;
- b += 3;
-
- if (!zero_times_ok) {
- /* At least one repetition is required, so insert a
- * `dummy_failure_jump' before the initial
- * `on_failure_jump' instruction of the loop. This
- * effects a skip over that instruction the first time
- * we hit that loop. */
- GET_BUFFER_SPACE(3);
- INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
- b += 3;
- }
- }
- break;
-
- case '.':
- laststart = b;
- BUF_PUSH(anychar);
- break;
-
- case '[': {
- boolean had_char_class = false;
-
- if (p == pend)
- return REG_EBRACK;
-
- /* Ensure that we have enough space to push a charset: the
- * opcode, the length count, and the bitset; 34 bytes in all. */
- GET_BUFFER_SPACE(34);
-
- laststart = b;
-
- /* We test `*p == '^' twice, instead of using an if
- * statement, so we only need one BUF_PUSH. */
- BUF_PUSH(*p == '^' ? charset_not : charset);
- if (*p == '^')
- p++;
-
- /* Remember the first position in the bracket expression. */
- p1 = p;
-
- /* Push the number of bytes in the bitmap. */
- BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* Clear the whole map. */
- memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* charset_not matches newline according to a syntax bit. */
- if ((re_opcode_t) b[-2] == charset_not
- && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
- SET_LIST_BIT('\n');
-
- /* Read in characters and ranges, setting map bits. */
- for (;;) {
- if (p == pend)
- return REG_EBRACK;
-
- PATFETCH(c);
-
- /* \ might escape characters inside [...] and [^...]. */
- if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
- if (p == pend)
- return REG_EESCAPE;
-
- PATFETCH(c1);
- SET_LIST_BIT(c1);
- continue;
- }
- /* Could be the end of the bracket expression. If it's
- * not (i.e., when the bracket expression is `[]' so
- * far), the ']' character bit gets set way below. */
- if (c == ']' && p != p1 + 1)
- break;
-
- /* Look ahead to see if it's a range when the last thing
- * was a character class. */
- if (had_char_class && c == '-' && *p != ']')
- return REG_ERANGE;
-
- /* Look ahead to see if it's a range when the last thing
- * was a character: if this is a hyphen not at the
- * beginning or the end of a list, then it's the range
- * operator. */
- if (c == '-'
- && !(p - 2 >= pattern && p[-2] == '[')
- && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
- && *p != ']') {
- reg_errcode_t ret
- = compile_range(&p, pend, translate, syntax, b);
- if (ret != REG_NOERROR)
- return ret;
- } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */
- reg_errcode_t ret;
-
- /* Move past the `-'. */
- PATFETCH(c1);
-
- ret = compile_range(&p, pend, translate, syntax, b);
- if (ret != REG_NOERROR)
- return ret;
- }
- /* See if we're at the beginning of a possible character
- * class. */
-
- else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */
- char str[CHAR_CLASS_MAX_LENGTH + 1];
-
- PATFETCH(c);
- c1 = 0;
-
- /* If pattern is `[[:'. */
- if (p == pend)
- return REG_EBRACK;
-
- for (;;) {
- PATFETCH(c);
- if (c == ':' || c == ']' || p == pend
- || c1 == CHAR_CLASS_MAX_LENGTH)
- break;
- str[c1++] = c;
- }
- str[c1] = '\0';
-
- /* If isn't a word bracketed by `[:' and:`]':
- * undo the ending character, the letters, and leave
- * the leading `:' and `[' (but set bits for them). */
- if (c == ':' && *p == ']') {
- int ch;
- boolean is_alnum = STREQ(str, "alnum");
- boolean is_alpha = STREQ(str, "alpha");
- boolean is_blank = STREQ(str, "blank");
- boolean is_cntrl = STREQ(str, "cntrl");
- boolean is_digit = STREQ(str, "digit");
- boolean is_graph = STREQ(str, "graph");
- boolean is_lower = STREQ(str, "lower");
- boolean is_print = STREQ(str, "print");
- boolean is_punct = STREQ(str, "punct");
- boolean is_space = STREQ(str, "space");
- boolean is_upper = STREQ(str, "upper");
- boolean is_xdigit = STREQ(str, "xdigit");
-
- if (!IS_CHAR_CLASS(str))
- return REG_ECTYPE;
-
- /* Throw away the ] at the end of the character
- * class. */
- PATFETCH(c);
-
- if (p == pend)
- return REG_EBRACK;
-
- for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
- if ((is_alnum && ISALNUM(ch))
- || (is_alpha && ISALPHA(ch))
- || (is_blank && ISBLANK(ch))
- || (is_cntrl && ISCNTRL(ch))
- || (is_digit && ISDIGIT(ch))
- || (is_graph && ISGRAPH(ch))
- || (is_lower && ISLOWER(ch))
- || (is_print && ISPRINT(ch))
- || (is_punct && ISPUNCT(ch))
- || (is_space && ISSPACE(ch))
- || (is_upper && ISUPPER(ch))
- || (is_xdigit && ISXDIGIT(ch)))
- SET_LIST_BIT(ch);
- }
- had_char_class = true;
- } else {
- c1++;
- while (c1--)
- PATUNFETCH;
- SET_LIST_BIT('[');
- SET_LIST_BIT(':');
- had_char_class = false;
- }
- } else {
- had_char_class = false;
- SET_LIST_BIT(c);
- }
- }
-
- /* Discard any (non)matching list bytes that are all 0 at the
- * end of the map. Decrease the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
- }
- break;
-
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_open;
- else
- goto normal_char;
-
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_close;
- else
- goto normal_char;
-
- case '\n':
- if (syntax & RE_NEWLINE_ALT)
- goto handle_alt;
- else
- goto normal_char;
-
- case '|':
- if (syntax & RE_NO_BK_VBAR)
- goto handle_alt;
- else
- goto normal_char;
-
- case '{':
- if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
- goto handle_interval;
- else
- goto normal_char;
-
- case '\\':
- if (p == pend)
- return REG_EESCAPE;
-
- /* Do not translate the character after the \, so that we can
- * distinguish, e.g., \B from \b, even if we normally would
- * translate, e.g., B to b. */
- PATFETCH_RAW(c);
-
- switch (c) {
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
-
-handle_open:
- bufp->re_nsub++;
- regnum++;
-
- if (compile_stack.avail == compile_stack.size) {
- RETALLOC(compile_stack.stack, compile_stack.size << 1,
- compile_stack_elt_t);
- if (compile_stack.stack == NULL)
- return REG_ESPACE;
-
- compile_stack.size <<= 1;
- }
- /* These are the values to restore when we hit end of this
- * group. They are all relative offsets, so that if the
- * whole pattern moves because of realloc, they will still
- * be valid. */
- COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
- COMPILE_STACK_TOP.fixup_alt_jump
- = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
- COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
- COMPILE_STACK_TOP.regnum = regnum;
-
- /* We will eventually replace the 0 with the number of
- * groups inner to this one. But do not push a
- * start_memory for groups beyond the last one we can
- * represent in the compiled pattern. */
- if (regnum <= MAX_REGNUM) {
- COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
- BUF_PUSH_3(start_memory, regnum, 0);
- }
- compile_stack.avail++;
-
- fixup_alt_jump = 0;
- laststart = 0;
- begalt = b;
- /* If we've reached MAX_REGNUM groups, then this open
- * won't actually generate any code, so we'll have to
- * clear pending_exact explicitly. */
- pending_exact = 0;
- break;
-
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
-
- if (compile_stack.avail == 0) {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_backslash;
- else
- return REG_ERPAREN;
- }
-handle_close:
- if (fixup_alt_jump) {
- /* Push a dummy failure point at the end of the
- * alternative for a possible future
- * `pop_failure_jump' to pop. See comments at
- * `push_dummy_failure' in `re_match_2'. */
- BUF_PUSH(push_dummy_failure);
-
- /* We allocated space for this jump when we assigned
- * to `fixup_alt_jump', in the `handle_alt' case below. */
- STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
- }
- /* See similar code for backslashed left paren above. */
- if (compile_stack.avail == 0) {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_char;
- else
- return REG_ERPAREN;
- }
- /* Since we just checked for an empty stack above, this
- * ``can't happen''. */
- assert(compile_stack.avail != 0);
- {
- /* We don't just want to restore into `regnum', because
- * later groups should continue to be numbered higher,
- * as in `(ab)c(de)' -- the second group is #2. */
- regnum_t this_group_regnum;
-
- compile_stack.avail--;
- begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
- fixup_alt_jump
- = COMPILE_STACK_TOP.fixup_alt_jump
- ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
- : 0;
- laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
- this_group_regnum = COMPILE_STACK_TOP.regnum;
- /* If we've reached MAX_REGNUM groups, then this open
- * won't actually generate any code, so we'll have to
- * clear pending_exact explicitly. */
- pending_exact = 0;
-
- /* We're at the end of the group, so now we know how many
- * groups were inside this one. */
- if (this_group_regnum <= MAX_REGNUM) {
- unsigned char *inner_group_loc
- = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
-
- *inner_group_loc = regnum - this_group_regnum;
- BUF_PUSH_3(stop_memory, this_group_regnum,
- regnum - this_group_regnum);
- }
- }
- break;
-
- case '|': /* `\|'. */
- if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
- goto normal_backslash;
-handle_alt:
- if (syntax & RE_LIMITED_OPS)
- goto normal_char;
-
- /* Insert before the previous alternative a jump which
- * jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE(3);
- INSERT_JUMP(on_failure_jump, begalt, b + 6);
- pending_exact = 0;
- b += 3;
-
- /* The alternative before this one has a jump after it
- * which gets executed if it gets matched. Adjust that
- * jump so it will jump to this alternative's analogous
- * jump (put in below, which in turn will jump to the next
- * (if any) alternative's such jump, etc.). The last such
- * jump jumps to the correct final destination. A picture:
- * _____ _____
- * | | | |
- * | v | v
- * a | b | c
- *
- * If we are at `b', then fixup_alt_jump right now points to a
- * three-byte space after `a'. We'll put in the jump, set
- * fixup_alt_jump to right after `b', and leave behind three
- * bytes which we'll fill in when we get to after `c'. */
-
- if (fixup_alt_jump)
- STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
-
- /* Mark and leave space for a jump after this alternative,
- * to be filled in later either by next alternative or
- * when know we're at the end of a series of alternatives. */
- fixup_alt_jump = b;
- GET_BUFFER_SPACE(3);
- b += 3;
-
- laststart = 0;
- begalt = b;
- break;
-
- case '{':
- /* If \{ is a literal. */
- if (!(syntax & RE_INTERVALS)
- /* If we're at `\{' and it's not the open-interval
- * operator. */
- || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
- || (p - 2 == pattern && p == pend))
- goto normal_backslash;
-
-handle_interval: {
- /* If got here, then the syntax allows intervals. */
-
- /* At least (most) this many matches must be made. */
- int lower_bound = -1, upper_bound = -1;
-
- beg_interval = p - 1;
-
- if (p == pend) {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_EBRACE;
- }
- GET_UNSIGNED_NUMBER(lower_bound);
-
- if (c == ',') {
- GET_UNSIGNED_NUMBER(upper_bound);
- if (upper_bound < 0)
- upper_bound = RE_DUP_MAX;
- } else
- /* Interval such as `{1}' => match exactly once. */
- upper_bound = lower_bound;
-
- if (lower_bound < 0 || upper_bound > RE_DUP_MAX
- || lower_bound > upper_bound) {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_BADBR;
- }
- if (!(syntax & RE_NO_BK_BRACES)) {
- if (c != '\\')
- return REG_EBRACE;
-
- PATFETCH(c);
- }
- if (c != '}') {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_BADBR;
- }
- /* We just parsed a valid interval. */
-
- /* If it's invalid to have no preceding re. */
- if (!laststart) {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- return REG_BADRPT;
- else if (syntax & RE_CONTEXT_INDEP_OPS)
- laststart = b;
- else
- goto unfetch_interval;
- }
- /* If the upper bound is zero, don't want to succeed at
- * all; jump from `laststart' to `b + 3', which will be
- * the end of the buffer after we insert the jump. */
- if (upper_bound == 0) {
- GET_BUFFER_SPACE(3);
- INSERT_JUMP(jump, laststart, b + 3);
- b += 3;
- }
- /* Otherwise, we have a nontrivial interval. When
- * we're all done, the pattern will look like:
- * set_number_at <jump count> <upper bound>
- * set_number_at <succeed_n count> <lower bound>
- * succeed_n <after jump addr> <succed_n count>
- * <body of loop>
- * jump_n <succeed_n addr> <jump count>
- * (The upper bound and `jump_n' are omitted if
- * `upper_bound' is 1, though.) */
- else {
- /* If the upper bound is > 1, we need to insert
- * more at the end of the loop. */
- unsigned nbytes = 10 + (upper_bound > 1) * 10;
-
- GET_BUFFER_SPACE(nbytes);
-
- /* Initialize lower bound of the `succeed_n', even
- * though it will be set during matching by its
- * attendant `set_number_at' (inserted next),
- * because `re_compile_fastmap' needs to know.
- * Jump to the `jump_n' we might insert below. */
- INSERT_JUMP2(succeed_n, laststart,
- b + 5 + (upper_bound > 1) * 5,
- lower_bound);
- b += 5;
-
- /* Code to initialize the lower bound. Insert
- * before the `succeed_n'. The `5' is the last two
- * bytes of this `set_number_at', plus 3 bytes of
- * the following `succeed_n'. */
- insert_op2(set_number_at, laststart, 5, lower_bound, b);
- b += 5;
-
- if (upper_bound > 1) {
- /* More than one repetition is allowed, so
- * append a backward jump to the `succeed_n'
- * that starts this interval.
- *
- * When we've reached this during matching,
- * we'll have matched the interval once, so
- * jump back only `upper_bound - 1' times. */
- STORE_JUMP2(jump_n, b, laststart + 5,
- upper_bound - 1);
- b += 5;
-
- /* The location we want to set is the second
- * parameter of the `jump_n'; that is `b-2' as
- * an absolute address. `laststart' will be
- * the `set_number_at' we're about to insert;
- * `laststart+3' the number to set, the source
- * for the relative address. But we are
- * inserting into the middle of the pattern --
- * so everything is getting moved up by 5.
- * Conclusion: (b - 2) - (laststart + 3) + 5,
- * i.e., b - laststart.
- *
- * We insert this at the beginning of the loop
- * so that if we fail during matching, we'll
- * reinitialize the bounds. */
- insert_op2(set_number_at, laststart, b - laststart,
- upper_bound - 1, b);
- b += 5;
- }
- }
- pending_exact = 0;
- beg_interval = NULL;
- }
- break;
-
-unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- assert(beg_interval);
- p = beg_interval;
- beg_interval = NULL;
-
- /* normal_char and normal_backslash need `c'. */
- PATFETCH(c);
-
- if (!(syntax & RE_NO_BK_BRACES)) {
- if (p > pattern && p[-1] == '\\')
- goto normal_backslash;
- }
- goto normal_char;
-
- case 'w':
- laststart = b;
- BUF_PUSH(wordchar);
- break;
-
- case 'W':
- laststart = b;
- BUF_PUSH(notwordchar);
- break;
-
- case '<':
- BUF_PUSH(wordbeg);
- break;
-
- case '>':
- BUF_PUSH(wordend);
- break;
-
- case 'b':
- BUF_PUSH(wordbound);
- break;
-
- case 'B':
- BUF_PUSH(notwordbound);
- break;
-
- case '`':
- BUF_PUSH(begbuf);
- break;
-
- case '\'':
- BUF_PUSH(endbuf);
- break;
-
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- if (syntax & RE_NO_BK_REFS)
- goto normal_char;
-
- c1 = c - '0';
-
- if (c1 > regnum)
- return REG_ESUBREG;
-
- /* Can't back reference to a subexpression if inside of it. */
- if (group_in_compile_stack(compile_stack, c1))
- goto normal_char;
-
- laststart = b;
- BUF_PUSH_2(duplicate, c1);
- break;
-
- case '+':
- case '?':
- if (syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backslash;
-
- default:
-normal_backslash:
- /* You might think it would be useful for \ to mean
- * not to translate; but if we don't translate it
- * it will never match anything. */
- c = TRANSLATE(c);
- goto normal_char;
- }
- break;
-
- default:
- /* Expects the character in `c'. */
-normal_char:
- /* If no exactn currently being built. */
- if (!pending_exact
-
- /* If last exactn not at current position. */
- || pending_exact + *pending_exact + 1 != b
-
- /* We have only one byte following the exactn for the count. */
- || *pending_exact == (1 << BYTEWIDTH) - 1
-
- /* If followed by a repetition operator. */
- || *p == '*' || *p == '^'
- || ((syntax & RE_BK_PLUS_QM)
- ? *p == '\\' && (p[1] == '+' || p[1] == '?')
- : (*p == '+' || *p == '?'))
- || ((syntax & RE_INTERVALS)
- && ((syntax & RE_NO_BK_BRACES)
- ? *p == '{'
- : (p[0] == '\\' && p[1] == '{')))) {
- /* Start building a new exactn. */
-
- laststart = b;
-
- BUF_PUSH_2(exactn, 0);
- pending_exact = b - 1;
- }
- BUF_PUSH(c);
- (*pending_exact)++;
- break;
- } /* switch (c) */
- } /* while p != pend */
-
- /* Through the pattern now. */
-
- if (fixup_alt_jump)
- STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
-
- if (compile_stack.avail != 0)
- return REG_EPAREN;
-
- free(compile_stack.stack);
-
- /* We have succeeded; set the length of the buffer. */
- bufp->used = b - bufp->buffer;
-
-#ifdef DEBUG
- if (debug) {
- DEBUG_PRINT1("\nCompiled pattern: ");
- print_compiled_pattern(bufp);
- }
-#endif /* DEBUG */
-
- return REG_NOERROR;
-} /* regex_compile */
-
-/* Subroutines for `regex_compile'. */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG. */
-
-void store_op1(re_opcode_t op, unsigned char *loc, int arg)
-{
- *loc = (unsigned char) op;
- STORE_NUMBER(loc + 1, arg);
-}
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-void
-store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2)
-{
- *loc = (unsigned char) op;
- STORE_NUMBER(loc + 1, arg1);
- STORE_NUMBER(loc + 3, arg2);
-}
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
- * for OP followed by two-byte integer parameter ARG. */
-
-void
-insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 3;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op1(op, loc, arg);
-}
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-void
-insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 5;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op2(op, loc, arg1, arg2);
-}
-
-/* P points to just after a ^ in PATTERN. Return true if that ^ comes
- * after an alternative or a begin-subexpression. We assume there is at
- * least one character before the ^. */
-
-boolean
-at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax)
-{
- const char *prev = p - 2;
- boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
-
- return
- /* After a subexpression? */
- (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
- /* After an alternative? */
- || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
-}
-
-/* The dual of at_begline_loc_p. This one is for $. We assume there is
- * at least one character after the $, i.e., `P < PEND'. */
-
-boolean
-at_endline_loc_p(const char *p, const char *pend, int syntax)
-{
- const char *next = p;
- boolean next_backslash = *next == '\\';
- const char *next_next = p + 1 < pend ? p + 1 : NULL;
-
- return
- /* Before a subexpression? */
- (syntax & RE_NO_BK_PARENS ? *next == ')'
- : next_backslash && next_next && *next_next == ')')
- /* Before an alternative? */
- || (syntax & RE_NO_BK_VBAR ? *next == '|'
- : next_backslash && next_next && *next_next == '|');
-}
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
- * false if it's not. */
-
-boolean
-group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum)
-{
- int this_element;
-
- for (this_element = compile_stack.avail - 1;
- this_element >= 0;
- this_element--)
- if (compile_stack.stack[this_element].regnum == regnum)
- return true;
-
- return false;
-}
-
-/* Read the ending character of a range (in a bracket expression) from the
- * uncompiled pattern *P_PTR (which ends at PEND). We assume the
- * starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
- * Then we set the translation of all bits between the starting and
- * ending characters (inclusive) in the compiled pattern B.
- *
- * Return an error code.
- *
- * We use these short variable names so we can use the same macros as
- * `regex_compile' itself. */
-
-reg_errcode_t
-compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b)
-{
- unsigned this_char;
-
- const char *p = *p_ptr;
- int range_start, range_end;
-
- if (p == pend)
- return REG_ERANGE;
-
- /* Even though the pattern is a signed `char *', we need to fetch
- * with unsigned char *'s; if the high bit of the pattern character
- * is set, the range endpoints will be negative if we fetch using a
- * signed char *.
- *
- * We also want to fetch the endpoints without translating them; the
- * appropriate translation is done in the bit-setting loop below. */
- range_start = ((unsigned char *) p)[-2];
- range_end = ((unsigned char *) p)[0];
-
- /* Have to increment the pointer into the pattern string, so the
- * caller isn't still at the ending character. */
- (*p_ptr)++;
-
- /* If the start is after the end, the range is empty. */
- if (range_start > range_end)
- return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
-
- /* Here we see why `this_char' has to be larger than an `unsigned
- * char' -- the range is inclusive, so if `range_end' == 0xff
- * (assuming 8-bit characters), we would otherwise go into an infinite
- * loop, since all characters <= 0xff. */
- for (this_char = range_start; this_char <= range_end; this_char++) {
- SET_LIST_BIT(TRANSLATE(this_char));
- }
-
- return REG_NOERROR;
-}
-
-/* Failure stack declarations and macros; both re_compile_fastmap and
- * re_match_2 use a failure stack. These have to be macros because of
- * REGEX_ALLOCATE. */
-
-/* Number of failure points for which to initially allocate space
- * when matching. If this number is exceeded, we allocate more
- * space, so it is not a hard limit. */
-#ifndef INIT_FAILURE_ALLOC
-#define INIT_FAILURE_ALLOC 5
-#endif
-
-/* Roughly the maximum number of failure points on the stack. Would be
- * exactly that if always used MAX_FAILURE_SPACE each time we failed.
- * This is a variable only so users of regex can assign to it; we never
- * change it ourselves. */
-int re_max_failures = 2000;
-
-typedef const unsigned char *fail_stack_elt_t;
-
-typedef struct {
- fail_stack_elt_t *stack;
- unsigned size;
- unsigned avail; /* Offset of next open position. */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
-#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
-#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
-#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
-
-/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
-
-#define INIT_FAIL_STACK() \
- do { \
- fail_stack.stack = (fail_stack_elt_t *) \
- REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
- \
- if (fail_stack.stack == NULL) \
- return -2; \
- \
- fail_stack.size = INIT_FAILURE_ALLOC; \
- fail_stack.avail = 0; \
- } while (0)
-
-/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
- *
- * Return 1 if succeeds, and 0 if either ran out of memory
- * allocating space for it or it was already too large.
- *
- * REGEX_REALLOCATE requires `destination' be declared. */
-
-#define DOUBLE_FAIL_STACK(fail_stack) \
- ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
- ? 0 \
- : ((fail_stack).stack = (fail_stack_elt_t *) \
- REGEX_REALLOCATE ((fail_stack).stack, \
- (fail_stack).size * sizeof (fail_stack_elt_t), \
- ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
- \
- (fail_stack).stack == NULL \
- ? 0 \
- : ((fail_stack).size <<= 1, \
- 1)))
-
-/* Push PATTERN_OP on FAIL_STACK.
- *
- * Return 1 if was able to do so and 0 if ran out of memory allocating
- * space to do so. */
-#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
- ((FAIL_STACK_FULL () \
- && !DOUBLE_FAIL_STACK (fail_stack)) \
- ? 0 \
- : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
- 1))
-
-/* This pushes an item onto the failure stack. Must be a four-byte
- * value. Assumes the variable `fail_stack'. Probably should only
- * be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_ITEM(item) \
- fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
-
-/* The complement operation. Assumes `fail_stack' is nonempty. */
-#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
-
-/* Used to omit pushing failure point id's when we're not debugging. */
-#ifdef DEBUG
-#define DEBUG_PUSH PUSH_FAILURE_ITEM
-#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
-#else
-#define DEBUG_PUSH(item)
-#define DEBUG_POP(item_addr)
-#endif
-
-/* Push the information about the state we will need
- * if we ever fail back to it.
- *
- * Requires variables fail_stack, regstart, regend, reg_info, and
- * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
- * declared.
- *
- * Does `return FAILURE_CODE' if runs out of memory. */
-
-#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
- do { \
- char *destination; \
- /* Must be int, so when we don't save any registers, the arithmetic \
- of 0 + -1 isn't done as unsigned. */ \
- int this_reg; \
- \
- DEBUG_STATEMENT (failure_id++); \
- DEBUG_STATEMENT (nfailure_points_pushed++); \
- DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
- DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
- DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
- \
- DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
- DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
- \
- /* Ensure we have enough space allocated for what we will push. */ \
- while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
- { \
- if (!DOUBLE_FAIL_STACK (fail_stack)) \
- return failure_code; \
- \
- DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
- (fail_stack).size); \
- DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
- } \
- \
- /* Push the info, starting with the registers. */ \
- DEBUG_PRINT1 ("\n"); \
- \
- for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
- this_reg++) \
- { \
- DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
- DEBUG_STATEMENT (num_regs_pushed++); \
- \
- DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
- PUSH_FAILURE_ITEM (regstart[this_reg]); \
- \
- DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
- PUSH_FAILURE_ITEM (regend[this_reg]); \
- \
- DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
- DEBUG_PRINT2 (" match_null=%d", \
- REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
- DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
- DEBUG_PRINT2 (" matched_something=%d", \
- MATCHED_SOMETHING (reg_info[this_reg])); \
- DEBUG_PRINT2 (" ever_matched=%d", \
- EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
- DEBUG_PRINT1 ("\n"); \
- PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
- } \
- \
- DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
- PUSH_FAILURE_ITEM (lowest_active_reg); \
- \
- DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
- PUSH_FAILURE_ITEM (highest_active_reg); \
- \
- DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
- PUSH_FAILURE_ITEM (pattern_place); \
- \
- DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
- DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
- size2); \
- DEBUG_PRINT1 ("'\n"); \
- PUSH_FAILURE_ITEM (string_place); \
- \
- DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
- DEBUG_PUSH (failure_id); \
- } while (0)
-
-/* This is the number of items that are pushed and popped on the stack
- * for each register. */
-#define NUM_REG_ITEMS 3
-
-/* Individual items aside from the registers. */
-#ifdef DEBUG
-#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
-#else
-#define NUM_NONREG_ITEMS 4
-#endif
-
-/* We push at most this many items on the stack. */
-#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
-
-/* We actually push this many items. */
-#define NUM_FAILURE_ITEMS \
- ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
- + NUM_NONREG_ITEMS)
-
-/* How many items can still be added to the stack without overflowing it. */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-/* Pops what PUSH_FAIL_STACK pushes.
- *
- * We restore into the parameters, all of which should be lvalues:
- * STR -- the saved data position.
- * PAT -- the saved pattern position.
- * LOW_REG, HIGH_REG -- the highest and lowest active registers.
- * REGSTART, REGEND -- arrays of string positions.
- * REG_INFO -- array of information about each subexpression.
- *
- * Also assumes the variables `fail_stack' and (if debugging), `bufp',
- * `pend', `string1', `size1', `string2', and `size2'. */
-
-#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
-{ \
- DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
- int this_reg; \
- const unsigned char *string_temp; \
- \
- assert (!FAIL_STACK_EMPTY ()); \
- \
- /* Remove failure points and point to how many regs pushed. */ \
- DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
- DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
- DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
- \
- assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
- \
- DEBUG_POP (&failure_id); \
- DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
- \
- /* If the saved string location is NULL, it came from an \
- on_failure_keep_string_jump opcode, and we want to throw away the \
- saved NULL, thus retaining our current position in the string. */ \
- string_temp = POP_FAILURE_ITEM (); \
- if (string_temp != NULL) \
- str = (const char *) string_temp; \
- \
- DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
- DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
- DEBUG_PRINT1 ("'\n"); \
- \
- pat = (unsigned char *) POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
- \
- /* Restore register info. */ \
- high_reg = (unsigned long) POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
- \
- low_reg = (unsigned long) POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
- \
- for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
- { \
- DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
- \
- reg_info[this_reg].word = POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
- \
- regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
- \
- regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
- DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
- } \
- \
- DEBUG_STATEMENT (nfailure_points_popped++); \
-} /* POP_FAILURE_POINT */
-
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
- * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
- * characters can start a string that matches the pattern. This fastmap
- * is used by re_search to skip quickly over impossible starting points.
- *
- * The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- * area as BUFP->fastmap.
- *
- * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
- * the pattern buffer.
- *
- * Returns 0 if we succeed, -2 if an internal error. */
-#ifdef STDC_HEADERS
-int
-re_compile_fastmap(struct re_pattern_buffer *bufp)
-#else
-int
-re_compile_fastmap(bufp)
-struct re_pattern_buffer *bufp;
-#endif
-{
- int j, k;
- fail_stack_type fail_stack;
-#ifndef REGEX_MALLOC
- char *destination;
-#endif
- /* We don't push any register information onto the failure stack. */
- unsigned num_regs = 0;
-
- register char *fastmap = bufp->fastmap;
- unsigned char *pattern = bufp->buffer;
- unsigned long size = bufp->used;
- const unsigned char *p = pattern;
- register unsigned char *pend = pattern + size;
-
- /* Assume that each path through the pattern can be null until
- * proven otherwise. We set this false at the bottom of switch
- * statement, to which we get only if a particular path doesn't
- * match the empty string. */
- boolean path_can_be_null = true;
-
- /* We aren't doing a `succeed_n' to begin with. */
- boolean succeed_n_p = false;
-
- assert(fastmap != NULL && p != NULL);
-
- INIT_FAIL_STACK();
- memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
- bufp->fastmap_accurate = 1; /* It will be when we're done. */
- bufp->can_be_null = 0;
-
- while (p != pend || !FAIL_STACK_EMPTY()) {
- if (p == pend) {
- bufp->can_be_null |= path_can_be_null;
-
- /* Reset for next path. */
- path_can_be_null = true;
-
- p = fail_stack.stack[--fail_stack.avail];
- }
- /* We should never be about to go beyond the end of the pattern. */
- assert(p < pend);
-
-#ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) * p++))
-#else
- switch ((re_opcode_t) * p++)
-#endif
- {
-
- /* I guess the idea here is to simply not bother with a fastmap
- * if a backreference is used, since it's too hard to figure out
- * the fastmap for the corresponding group. Setting
- * `can_be_null' stops `re_search_2' from using the fastmap, so
- * that is all we do. */
- case duplicate:
- bufp->can_be_null = 1;
- return 0;
-
- /* Following are the cases which match a character. These end
- * with `break'. */
-
- case exactn:
- fastmap[p[1]] = 1;
- break;
-
- case charset:
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
- fastmap[j] = 1;
- break;
-
- case charset_not:
- /* Chars beyond end of map must be allowed. */
- for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
-
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
- fastmap[j] = 1;
- break;
-
- case wordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (re_syntax_table[j] == Sword)
- fastmap[j] = 1;
- break;
-
- case notwordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (re_syntax_table[j] != Sword)
- fastmap[j] = 1;
- break;
-
- case anychar:
- /* `.' matches anything ... */
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
-
- /* ... except perhaps newline. */
- if (!(bufp->syntax & RE_DOT_NEWLINE))
- fastmap['\n'] = 0;
-
- /* Return if we have already set `can_be_null'; if we have,
- * then the fastmap is irrelevant. Something's wrong here. */
- else if (bufp->can_be_null)
- return 0;
-
- /* Otherwise, have to check alternative paths. */
- break;
-
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbound:
- case notwordbound:
- case wordbeg:
- case wordend:
- case push_dummy_failure:
- continue;
-
- case jump_n:
- case pop_failure_jump:
- case maybe_pop_jump:
- case jump:
- case jump_past_alt:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR(j, p);
- p += j;
- if (j > 0)
- continue;
-
- /* Jump backward implies we just went through the body of a
- * loop and matched nothing. Opcode jumped to should be
- * `on_failure_jump' or `succeed_n'. Just treat it like an
- * ordinary jump. For a * loop, it has pushed its failure
- * point already; if so, discard that as redundant. */
- if ((re_opcode_t) * p != on_failure_jump
- && (re_opcode_t) * p != succeed_n)
- continue;
-
- p++;
- EXTRACT_NUMBER_AND_INCR(j, p);
- p += j;
-
- /* If what's on the stack is where we are now, pop it. */
- if (!FAIL_STACK_EMPTY()
- && fail_stack.stack[fail_stack.avail - 1] == p)
- fail_stack.avail--;
-
- continue;
-
- case on_failure_jump:
- case on_failure_keep_string_jump:
-handle_on_failure_jump:
- EXTRACT_NUMBER_AND_INCR(j, p);
-
- /* For some patterns, e.g., `(a?)?', `p+j' here points to the
- * end of the pattern. We don't want to push such a point,
- * since when we restore it above, entering the switch will
- * increment `p' past the end of the pattern. We don't need
- * to push such a point since we obviously won't find any more
- * fastmap entries beyond `pend'. Such a pattern can match
- * the null string, though. */
- if (p + j < pend) {
- if (!PUSH_PATTERN_OP(p + j, fail_stack))
- return -2;
- } else
- bufp->can_be_null = 1;
-
- if (succeed_n_p) {
- EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
- succeed_n_p = false;
- }
- continue;
-
- case succeed_n:
- /* Get to the number of times to succeed. */
- p += 2;
-
- /* Increment p past the n for when k != 0. */
- EXTRACT_NUMBER_AND_INCR(k, p);
- if (k == 0) {
- p -= 4;
- succeed_n_p = true; /* Spaghetti code alert. */
- goto handle_on_failure_jump;
- }
- continue;
-
- case set_number_at:
- p += 4;
- continue;
-
- case start_memory:
- case stop_memory:
- p += 2;
- continue;
-
- default:
- abort(); /* We have listed all the cases. */
- } /* switch *p++ */
-
- /* Getting here means we have found the possible starting
- * characters for one path of the pattern -- and that the empty
- * string does not match. We need not follow this path further.
- * Instead, look at the next alternative (remembered on the
- * stack), or quit if no more. The test at the top of the loop
- * does these things. */
- path_can_be_null = false;
- p = pend;
- } /* while p */
-
- /* Set `can_be_null' for the last path (also the first path, if the
- * pattern is empty). */
- bufp->can_be_null |= path_can_be_null;
- return 0;
-} /* re_compile_fastmap */
-
-/* Searching routines. */
-
-/* Like re_search_2, below, but only one string is specified, and
- * doesn't let you say where to stop matching. */
-
-static int
-re_search(bufp, string, size, startpos, range, regs)
-struct re_pattern_buffer *bufp;
-const char *string;
-int size, startpos, range;
-struct re_registers *regs;
-{
- return re_search_2(bufp, NULL, 0, string, size, startpos, range,
- regs, size);
-}
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
- * virtual concatenation of STRING1 and STRING2, starting first at index
- * STARTPOS, then at STARTPOS + 1, and so on.
- *
- * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
- *
- * RANGE is how far to scan while trying to match. RANGE = 0 means try
- * only at STARTPOS; in general, the last start tried is STARTPOS +
- * RANGE.
- *
- * In REGS, return the indices of the virtual concatenation of STRING1
- * and STRING2 that matched the entire BUFP->buffer and its contained
- * subexpressions.
- *
- * Do not consider matching one past the index STOP in the virtual
- * concatenation of STRING1 and STRING2.
- *
- * We return either the position in the strings at which the match was
- * found, -1 if no match, or -2 if error (such as failure
- * stack overflow). */
-
-static int
-re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int startpos;
-int range;
-struct re_registers *regs;
-int stop;
-{
- int val;
- register char *fastmap = bufp->fastmap;
- register char *translate = bufp->translate;
- int total_size = size1 + size2;
- int endpos = startpos + range;
-
- /* Check for out-of-range STARTPOS. */
- if (startpos < 0 || startpos > total_size)
- return -1;
-
- /* Fix up RANGE if it might eventually take us outside
- * the virtual concatenation of STRING1 and STRING2. */
- if (endpos < -1)
- range = -1 - startpos;
- else if (endpos > total_size)
- range = total_size - startpos;
-
- /* If the search isn't to be a backwards one, don't waste time in a
- * search for a pattern that must be anchored. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
- if (startpos > 0)
- return -1;
- else
- range = 1;
- }
- /* Update the fastmap now if not correct already. */
- if (fastmap && !bufp->fastmap_accurate)
- if (re_compile_fastmap(bufp) == -2)
- return -2;
-
- /* Loop through the string, looking for a place to start matching. */
- for (;;) {
- /* If a fastmap is supplied, skip quickly over characters that
- * cannot be the start of a match. If the pattern can match the
- * null string, however, we don't need to skip characters; we want
- * the first null string. */
- if (fastmap && startpos < total_size && !bufp->can_be_null) {
- if (range > 0) { /* Searching forwards. */
- register const char *d;
- register int lim = 0;
- int irange = range;
-
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
-
- d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
-
- /* Written out as an if-else to avoid testing `translate'
- * inside the loop. */
- if (translate)
- while (range > lim
- && !fastmap[(unsigned char)
- translate[(unsigned char) *d++]])
- range--;
- else
- while (range > lim && !fastmap[(unsigned char) *d++])
- range--;
-
- startpos += irange - range;
- } else { /* Searching backwards. */
- register char c = (size1 == 0 || startpos >= size1
- ? string2[startpos - size1]
- : string1[startpos]);
-
- if (!fastmap[(unsigned char) TRANSLATE(c)])
- goto advance;
- }
- }
- /* If can't match the null string, and that's all we have left, fail. */
- if (range >= 0 && startpos == total_size && fastmap
- && !bufp->can_be_null)
- return -1;
-
- val = re_match_2(bufp, string1, size1, string2, size2,
- startpos, regs, stop);
- if (val >= 0)
- return startpos;
-
- if (val == -2)
- return -2;
-
-advance:
- if (!range)
- break;
- else if (range > 0) {
- range--;
- startpos++;
- } else {
- range++;
- startpos--;
- }
- }
- return -1;
-} /* re_search_2 */
-
-/* Declarations and macros for re_match_2. */
-
-/* Structure for per-register (a.k.a. per-group) information.
- * This must not be longer than one word, because we push this value
- * onto the failure stack. Other register information, such as the
- * starting and ending positions (which are addresses), and the list of
- * inner groups (which is a bits list) are maintained in separate
- * variables.
- *
- * We are making a (strictly speaking) nonportable assumption here: that
- * the compiler will pack our bit fields into something that fits into
- * the type of `word', i.e., is something that fits into one item on the
- * failure stack. */
-typedef union {
- fail_stack_elt_t word;
- struct {
- /* This field is one if this group can match the empty string,
- * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
-#define MATCH_NULL_UNSET_VALUE 3
- unsigned match_null_string_p:2;
- unsigned is_active:1;
- unsigned matched_something:1;
- unsigned ever_matched_something:1;
- } bits;
-} register_info_type;
-static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info);
-static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info);
-static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate);
-static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info);
-
-#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
-#define IS_ACTIVE(R) ((R).bits.is_active)
-#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
-#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
-
-/* Call this when have matched a real character; it sets `matched' flags
- * for the subexpressions which we are currently inside. Also records
- * that those subexprs have matched. */
-#define SET_REGS_MATCHED() \
- do \
- { \
- unsigned r; \
- for (r = lowest_active_reg; r <= highest_active_reg; r++) \
- { \
- MATCHED_SOMETHING (reg_info[r]) \
- = EVER_MATCHED_SOMETHING (reg_info[r]) \
- = 1; \
- } \
- } \
- while (0)
-
-/* This converts PTR, a pointer into one of the search strings `string1'
- * and `string2' into an offset from the beginning of that string. */
-#define POINTER_TO_OFFSET(ptr) \
- (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
-
-/* Registers are set to a sentinel when they haven't yet matched. */
-#define REG_UNSET_VALUE ((char *) -1)
-#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
-
-/* Macros for dealing with the split strings in re_match_2. */
-
-#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
-
-/* Call before fetching a character with *d. This switches over to
- * string2 if necessary. */
-#define PREFETCH() \
- while (d == dend) \
- { \
- /* End of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* End of string1 => advance to string2. */ \
- d = string2; \
- dend = end_match_2; \
- }
-
-/* Test if at very beginning or at very end of the virtual concatenation
- * of `string1' and `string2'. If only one string, it's `string2'. */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-static int at_strings_end(const char *d, const char *end2)
-{
- return d == end2;
-}
-
-/* Test if D points to a character which is word-constituent. We have
- * two special cases to check for: if past the end of string1, look at
- * the first character in string2; and if before the beginning of
- * string2, look at the last character in string1. */
-#define WORDCHAR_P(d) \
- (re_syntax_table[(d) == end1 ? *string2 \
- : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \
- == Sword)
-static int
-wordchar_p(const char *d, const char *end1, const char *string2)
-{
- return re_syntax_table[(d) == end1 ? *string2
- : (d) == string2 - 1 ? *(end1 - 1) : *(d)]
- == Sword;
-}
-
-/* Test if the character before D and the one at D differ with respect
- * to being word-constituent. */
-#define AT_WORD_BOUNDARY(d) \
- (AT_STRINGS_BEG (d) || at_strings_end(d,end2) \
- || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-
-/* Free everything we malloc. */
-#ifdef REGEX_MALLOC
-#define FREE_VAR(var) if (var) free (var); var = NULL
-#define FREE_VARIABLES() \
- do { \
- FREE_VAR (fail_stack.stack); \
- FREE_VAR (regstart); \
- FREE_VAR (regend); \
- FREE_VAR (old_regstart); \
- FREE_VAR (old_regend); \
- FREE_VAR (best_regstart); \
- FREE_VAR (best_regend); \
- FREE_VAR (reg_info); \
- FREE_VAR (reg_dummy); \
- FREE_VAR (reg_info_dummy); \
- } while (0)
-#else /* not REGEX_MALLOC */
-/* Some MIPS systems (at least) want this to free alloca'd storage. */
-#define FREE_VARIABLES() alloca (0)
-#endif /* not REGEX_MALLOC */
-
-/* These values must meet several constraints. They must not be valid
- * register values; since we have a limit of 255 registers (because
- * we use only one byte in the pattern for the register number), we can
- * use numbers larger than 255. They must differ by 1, because of
- * NUM_FAILURE_ITEMS above. And the value for the lowest register must
- * be larger than the value for the highest register, so we do not try
- * to actually save any registers when none are active. */
-#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
-#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-
-/* Matching routines. */
-
-/* re_match_2 matches the compiled pattern in BUFP against the
- * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
- * and SIZE2, respectively). We start matching at POS, and stop
- * matching at STOP.
- *
- * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- * store offsets for the substring each group matched in REGS. See the
- * documentation for exactly how many groups we fill.
- *
- * We return -1 if no match, -2 if an internal error (such as the
- * failure stack overflowing). Otherwise, we return the length of the
- * matched substring. */
-
-int
-re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
-struct re_pattern_buffer *bufp;
-const char *string1, *string2;
-int size1, size2;
-int pos;
-struct re_registers *regs;
-int stop;
-{
- /* General temporaries. */
- int mcnt;
- unsigned char *p1;
-
- /* Just past the end of the corresponding string. */
- const char *end1, *end2;
-
- /* Pointers into string1 and string2, just past the last characters in
- * each to consider matching. */
- const char *end_match_1, *end_match_2;
-
- /* Where we are in the data, and the end of the current string. */
- const char *d, *dend;
-
- /* Where we are in the pattern, and the end of the pattern. */
- unsigned char *p = bufp->buffer;
- register unsigned char *pend = p + bufp->used;
-
- /* We use this to map every character in the string. */
- char *translate = bufp->translate;
-
- /* Failure point stack. Each place that can handle a failure further
- * down the line pushes a failure point on this stack. It consists of
- * restart, regend, and reg_info for all registers corresponding to
- * the subexpressions we're currently inside, plus the number of such
- * registers, and, finally, two char *'s. The first char * is where
- * to resume scanning the pattern; the second one is where to resume
- * scanning the strings. If the latter is zero, the failure point is
- * a ``dummy''; if a failure happens and the failure point is a dummy,
- * it gets discarded and the next next one is tried. */
- fail_stack_type fail_stack;
-#ifdef DEBUG
- static unsigned failure_id = 0;
- unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
-
- /* We fill all the registers internally, independent of what we
- * return, for use in backreferences. The number here includes
- * an element for register zero. */
- unsigned num_regs = bufp->re_nsub + 1;
-
- /* The currently active registers. */
- unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-
- /* Information on the contents of registers. These are pointers into
- * the input strings; they record just what was matched (on this
- * attempt) by a subexpression part of the pattern, that is, the
- * regnum-th regstart pointer points to where in the pattern we began
- * matching and the regnum-th regend points to right after where we
- * stopped matching the regnum-th subexpression. (The zeroth register
- * keeps track of what the whole pattern matches.) */
- const char **regstart = NULL, **regend = NULL;
-
- /* If a group that's operated upon by a repetition operator fails to
- * match anything, then the register for its start will need to be
- * restored because it will have been set to wherever in the string we
- * are when we last see its open-group operator. Similarly for a
- * register's end. */
- const char **old_regstart = NULL, **old_regend = NULL;
-
- /* The is_active field of reg_info helps us keep track of which (possibly
- * nested) subexpressions we are currently in. The matched_something
- * field of reg_info[reg_num] helps us tell whether or not we have
- * matched any of the pattern so far this time through the reg_num-th
- * subexpression. These two fields get reset each time through any
- * loop their register is in. */
- register_info_type *reg_info = NULL;
-
- /* The following record the register info as found in the above
- * variables when we find a match better than any we've seen before.
- * This happens as we backtrack through the failure points, which in
- * turn happens only if we have not yet matched the entire string. */
- unsigned best_regs_set = false;
- const char **best_regstart = NULL, **best_regend = NULL;
-
- /* Logically, this is `best_regend[0]'. But we don't want to have to
- * allocate space for that if we're not allocating space for anything
- * else (see below). Also, we never need info about register 0 for
- * any of the other register vectors, and it seems rather a kludge to
- * treat `best_regend' differently than the rest. So we keep track of
- * the end of the best match so far in a separate variable. We
- * initialize this to NULL so that when we backtrack the first time
- * and need to test it, it's not garbage. */
- const char *match_end = NULL;
-
- /* Used when we pop values we don't care about. */
- const char **reg_dummy = NULL;
- register_info_type *reg_info_dummy = NULL;
-
-#ifdef DEBUG
- /* Counts the total number of registers pushed. */
- unsigned num_regs_pushed = 0;
-#endif
-
- DEBUG_PRINT1("\n\nEntering re_match_2.\n");
-
- INIT_FAIL_STACK();
-
- /* Do not bother to initialize all the register variables if there are
- * no groups in the pattern, as it takes a fair amount of time. If
- * there are groups, we include space for register 0 (the whole
- * pattern), even though we never use it, since it simplifies the
- * array indexing. We should fix this. */
- if (bufp->re_nsub) {
- regstart = REGEX_TALLOC(num_regs, const char *);
- regend = REGEX_TALLOC(num_regs, const char *);
- old_regstart = REGEX_TALLOC(num_regs, const char *);
- old_regend = REGEX_TALLOC(num_regs, const char *);
- best_regstart = REGEX_TALLOC(num_regs, const char *);
- best_regend = REGEX_TALLOC(num_regs, const char *);
- reg_info = REGEX_TALLOC(num_regs, register_info_type);
- reg_dummy = REGEX_TALLOC(num_regs, const char *);
- reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
-
- if (!(regstart && regend && old_regstart && old_regend && reg_info
- && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
- FREE_VARIABLES();
- return -2;
- }
- }
-#ifdef REGEX_MALLOC
- else {
- /* We must initialize all our variables to NULL, so that
- * `FREE_VARIABLES' doesn't try to free them. */
- regstart = regend = old_regstart = old_regend = best_regstart
- = best_regend = reg_dummy = NULL;
- reg_info = reg_info_dummy = (register_info_type *) NULL;
- }
-#endif /* REGEX_MALLOC */
-
- /* The starting position is bogus. */
- if (pos < 0 || pos > size1 + size2) {
- FREE_VARIABLES();
- return -1;
- }
- /* Initialize subexpression text positions to -1 to mark ones that no
- * start_memory/stop_memory has been seen for. Also initialize the
- * register information struct. */
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- regstart[mcnt] = regend[mcnt]
- = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
-
- REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
- IS_ACTIVE(reg_info[mcnt]) = 0;
- MATCHED_SOMETHING(reg_info[mcnt]) = 0;
- EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
- }
-
- /* We move `string1' into `string2' if the latter's empty -- but not if
- * `string1' is null. */
- if (size2 == 0 && string1 != NULL) {
- string2 = string1;
- size2 = size1;
- string1 = 0;
- size1 = 0;
- }
- end1 = string1 + size1;
- end2 = string2 + size2;
-
- /* Compute where to stop matching, within the two strings. */
- if (stop <= size1) {
- end_match_1 = string1 + stop;
- end_match_2 = string2;
- } else {
- end_match_1 = end1;
- end_match_2 = string2 + stop - size1;
- }
-
- /* `p' scans through the pattern as `d' scans through the data.
- * `dend' is the end of the input string that `d' points within. `d'
- * is advanced into the following input string whenever necessary, but
- * this happens before fetching; therefore, at the beginning of the
- * loop, `d' can be pointing at the end of a string, but it cannot
- * equal `string2'. */
- if (size1 > 0 && pos <= size1) {
- d = string1 + pos;
- dend = end_match_1;
- } else {
- d = string2 + pos - size1;
- dend = end_match_2;
- }
-
- DEBUG_PRINT1("The compiled pattern is: ");
- DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
- DEBUG_PRINT1("The string to match is: `");
- DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
- DEBUG_PRINT1("'\n");
-
- /* This loops over pattern commands. It exits by returning from the
- * function if the match is complete, or it drops through if the match
- * fails at this starting point in the input data. */
- for (;;) {
- DEBUG_PRINT2("\n0x%x: ", p);
-
- if (p == pend) { /* End of pattern means we might have succeeded. */
- DEBUG_PRINT1("end of pattern ... ");
-
- /* If we haven't matched the entire string, and we want the
- * longest match, try backtracking. */
- if (d != end_match_2) {
- DEBUG_PRINT1("backtracking.\n");
-
- if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
- boolean same_str_p = (FIRST_STRING_P(match_end)
- == MATCHING_IN_FIRST_STRING);
-
- /* If exceeds best match so far, save it. */
- if (!best_regs_set
- || (same_str_p && d > match_end)
- || (!same_str_p && !MATCHING_IN_FIRST_STRING)) {
- best_regs_set = true;
- match_end = d;
-
- DEBUG_PRINT1("\nSAVING match as best so far.\n");
-
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- best_regstart[mcnt] = regstart[mcnt];
- best_regend[mcnt] = regend[mcnt];
- }
- }
- goto fail;
- }
- /* If no failure points, don't restore garbage. */
- else if (best_regs_set) {
-restore_best_regs:
- /* Restore best match. It may happen that `dend ==
- * end_match_1' while the restored d is in string2.
- * For example, the pattern `x.*y.*z' against the
- * strings `x-' and `y-z-', if the two strings are
- * not consecutive in memory. */
- DEBUG_PRINT1("Restoring best registers.\n");
-
- d = match_end;
- dend = ((d >= string1 && d <= end1)
- ? end_match_1 : end_match_2);
-
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- regstart[mcnt] = best_regstart[mcnt];
- regend[mcnt] = best_regend[mcnt];
- }
- }
- } /* d != end_match_2 */
- DEBUG_PRINT1("Accepting match.\n");
-
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub) {
- /* Have the register data arrays been allocated? */
- if (bufp->regs_allocated == REGS_UNALLOCATED) {
- /* No. So allocate them with malloc. We need one
- * extra element beyond `num_regs' for the `-1' marker
- * GNU code uses. */
- regs->num_regs = max(RE_NREGS, num_regs + 1);
- regs->start = TALLOC(regs->num_regs, regoff_t);
- regs->end = TALLOC(regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- return -2;
- bufp->regs_allocated = REGS_REALLOCATE;
- } else if (bufp->regs_allocated == REGS_REALLOCATE) {
- /* Yes. If we need more elements than were already
- * allocated, reallocate them. If we need fewer, just
- * leave it alone. */
- if (regs->num_regs < num_regs + 1) {
- regs->num_regs = num_regs + 1;
- RETALLOC(regs->start, regs->num_regs, regoff_t);
- RETALLOC(regs->end, regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- return -2;
- }
- } else
- assert(bufp->regs_allocated == REGS_FIXED);
-
- /* Convert the pointer data in `regstart' and `regend' to
- * indices. Register zero has to be set differently,
- * since we haven't kept track of any info for it. */
- if (regs->num_regs > 0) {
- regs->start[0] = pos;
- regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
- : d - string2 + size1);
- }
- /* Go through the first `min (num_regs, regs->num_regs)'
- * registers, since that is all we initialized. */
- for (mcnt = 1; mcnt < min(num_regs, regs->num_regs); mcnt++) {
- if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
- regs->start[mcnt] = regs->end[mcnt] = -1;
- else {
- regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]);
- regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]);
- }
- }
-
- /* If the regs structure we return has more elements than
- * were in the pattern, set the extra elements to -1. If
- * we (re)allocated the registers, this is the case,
- * because we always allocate enough to have at least one
- * -1 at the end. */
- for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
- regs->start[mcnt] = regs->end[mcnt] = -1;
- } /* regs && !bufp->no_sub */
- FREE_VARIABLES();
- DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n",
- nfailure_points_pushed, nfailure_points_popped,
- nfailure_points_pushed - nfailure_points_popped);
- DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
-
- mcnt = d - pos - (MATCHING_IN_FIRST_STRING
- ? string1
- : string2 - size1);
-
- DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
-
- return mcnt;
- }
- /* Otherwise match next pattern command. */
-#ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) * p++))
-#else
- switch ((re_opcode_t) * p++)
-#endif
- {
- /* Ignore these. Used to ignore the n of succeed_n's which
- * currently have n == 0. */
- case no_op:
- DEBUG_PRINT1("EXECUTING no_op.\n");
- break;
-
- /* Match the next n pattern characters exactly. The following
- * byte in the pattern defines n, and the n bytes after that
- * are the characters to match. */
- case exactn:
- mcnt = *p++;
- DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
-
- /* This is written out as an if-else so we don't waste time
- * testing `translate' inside the loop. */
- if (translate) {
- do {
- PREFETCH();
- if (translate[(unsigned char) *d++] != (char) *p++)
- goto fail;
- } while (--mcnt);
- } else {
- do {
- PREFETCH();
- if (*d++ != (char) *p++)
- goto fail;
- } while (--mcnt);
- }
- SET_REGS_MATCHED();
- break;
-
- /* Match any character except possibly a newline or a null. */
- case anychar:
- DEBUG_PRINT1("EXECUTING anychar.\n");
-
- PREFETCH();
-
- if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
- || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000'))
- goto fail;
-
- SET_REGS_MATCHED();
- DEBUG_PRINT2(" Matched `%d'.\n", *d);
- d++;
- break;
-
- case charset:
- case charset_not: {
- register unsigned char c;
- boolean not = (re_opcode_t) * (p - 1) == charset_not;
-
- DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
-
- PREFETCH();
- c = TRANSLATE(*d); /* The character to match. */
-
- /* Cast to `unsigned' instead of `unsigned char' in case the
- * bit list is a full 32 bytes long. */
- if (c < (unsigned) (*p * BYTEWIDTH)
- && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
-
- p += 1 + *p;
-
- if (!not)
- goto fail;
-
- SET_REGS_MATCHED();
- d++;
- break;
- }
-
- /* The beginning of a group is represented by start_memory.
- * The arguments are the register number in the next byte, and the
- * number of groups inner to this one in the next. The text
- * matched within the group is recorded (in the internal
- * registers data structure) under the register number. */
- case start_memory:
- DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
-
- /* Find out if this group can match the empty string. */
- p1 = p; /* To send to group_match_null_string_p. */
-
- if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P(reg_info[*p])
- = group_match_null_string_p(&p1, pend, reg_info);
-
- /* Save the position in the string where we were the last time
- * we were at this open-group operator in case the group is
- * operated upon by a repetition operator, e.g., with `(a*)*b'
- * against `ab'; then we want to ignore where we are now in
- * the string in case this attempt to match fails. */
- old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
- ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
- : regstart[*p];
- DEBUG_PRINT2(" old_regstart: %d\n",
- POINTER_TO_OFFSET(old_regstart[*p]));
-
- regstart[*p] = d;
- DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p]));
-
- IS_ACTIVE(reg_info[*p]) = 1;
- MATCHED_SOMETHING(reg_info[*p]) = 0;
-
- /* This is the new highest active register. */
- highest_active_reg = *p;
-
- /* If nothing was active before, this is the new lowest active
- * register. */
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *p;
-
- /* Move past the register number and inner group count. */
- p += 2;
- break;
-
- /* The stop_memory opcode represents the end of a group. Its
- * arguments are the same as start_memory's: the register
- * number, and the number of inner groups. */
- case stop_memory:
- DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
-
- /* We need to save the string position the last time we were at
- * this close-group operator in case the group is operated
- * upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
- * against `aba'; then we want to ignore where we are now in
- * the string in case this attempt to match fails. */
- old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
- ? REG_UNSET(regend[*p]) ? d : regend[*p]
- : regend[*p];
- DEBUG_PRINT2(" old_regend: %d\n",
- POINTER_TO_OFFSET(old_regend[*p]));
-
- regend[*p] = d;
- DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p]));
-
- /* This register isn't active anymore. */
- IS_ACTIVE(reg_info[*p]) = 0;
-
- /* If this was the only register active, nothing is active
- * anymore. */
- if (lowest_active_reg == highest_active_reg) {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- } else {
- /* We must scan for the new highest active register, since
- * it isn't necessarily one less than now: consider
- * (a(b)c(d(e)f)g). When group 3 ends, after the f), the
- * new highest active register is 1. */
- unsigned char r = *p - 1;
- while (r > 0 && !IS_ACTIVE(reg_info[r]))
- r--;
-
- /* If we end up at register zero, that means that we saved
- * the registers as the result of an `on_failure_jump', not
- * a `start_memory', and we jumped to past the innermost
- * `stop_memory'. For example, in ((.)*) we save
- * registers 1 and 2 as a result of the *, but when we pop
- * back to the second ), we are at the stop_memory 1.
- * Thus, nothing is active. */
- if (r == 0) {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- } else
- highest_active_reg = r;
- }
-
- /* If just failed to match something this time around with a
- * group that's operated on by a repetition operator, try to
- * force exit from the ``loop'', and restore the register
- * information for this group that we had before trying this
- * last match. */
- if ((!MATCHED_SOMETHING(reg_info[*p])
- || (re_opcode_t) p[-3] == start_memory)
- && (p + 2) < pend) {
- boolean is_a_jump_n = false;
-
- p1 = p + 2;
- mcnt = 0;
- switch ((re_opcode_t) * p1++) {
- case jump_n:
- is_a_jump_n = true;
- case pop_failure_jump:
- case maybe_pop_jump:
- case jump:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if (is_a_jump_n)
- p1 += 2;
- break;
-
- default:
- /* do nothing */
- ;
- }
- p1 += mcnt;
-
- /* If the next operation is a jump backwards in the pattern
- * to an on_failure_jump right before the start_memory
- * corresponding to this stop_memory, exit from the loop
- * by forcing a failure after pushing on the stack the
- * on_failure_jump's jump in the pattern, and d. */
- if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
- && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
- /* If this group ever matched anything, then restore
- * what its registers were before trying this last
- * failed match, e.g., with `(a*)*b' against `ab' for
- * regstart[1], and, e.g., with `((a*)*(b*)*)*'
- * against `aba' for regend[3].
- *
- * Also restore the registers for inner groups for,
- * e.g., `((a*)(b*))*' against `aba' (register 3 would
- * otherwise get trashed). */
-
- if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
- unsigned r;
-
- EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
-
- /* Restore this and inner groups' (if any) registers. */
- for (r = *p; r < *p + *(p + 1); r++) {
- regstart[r] = old_regstart[r];
-
- /* xx why this test? */
- if ((long) old_regend[r] >= (long) regstart[r])
- regend[r] = old_regend[r];
- }
- }
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
-
- goto fail;
- }
- }
- /* Move past the register number and the inner group count. */
- p += 2;
- break;
-
- /* \<digit> has been turned into a `duplicate' command which is
- * followed by the numeric value of <digit> as the register number. */
- case duplicate: {
- register const char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
- DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
-
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
- goto fail;
-
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
-
- /* Where to stop matching; if both the place to start and
- * the place to stop matching are in the same string, then
- * set to the place to stop, otherwise, for now have to use
- * the end of the first string. */
-
- dend2 = ((FIRST_STRING_P(regstart[regno])
- == FIRST_STRING_P(regend[regno]))
- ? regend[regno] : end_match_1);
- for (;;) {
- /* If necessary, advance to next segment in register
- * contents. */
- while (d2 == dend2) {
- if (dend2 == end_match_2)
- break;
- if (dend2 == regend[regno])
- break;
-
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
- }
- /* At end of register contents => success */
- if (d2 == dend2)
- break;
-
- /* If necessary, advance to next segment in data. */
- PREFETCH();
-
- /* How many characters left in this segment to match. */
- mcnt = dend - d;
-
- /* Want how many consecutive characters we can match in
- * one shot, so, if necessary, adjust the count. */
- if (mcnt > dend2 - d2)
- mcnt = dend2 - d2;
-
- /* Compare that many; failure if mismatch, else move
- * past them. */
- if (translate
- ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate)
- : memcmp(d, d2, mcnt))
- goto fail;
- d += mcnt, d2 += mcnt;
- }
- }
- break;
-
- /* begline matches the empty string at the beginning of the string
- * (unless `not_bol' is set in `bufp'), and, if
- * `newline_anchor' is set, after newlines. */
- case begline:
- DEBUG_PRINT1("EXECUTING begline.\n");
-
- if (AT_STRINGS_BEG(d)) {
- if (!bufp->not_bol)
- break;
- } else if (d[-1] == '\n' && bufp->newline_anchor) {
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
-
- /* endline is the dual of begline. */
- case endline:
- DEBUG_PRINT1("EXECUTING endline.\n");
-
- if (at_strings_end(d,end2)) {
- if (!bufp->not_eol)
- break;
- }
- /* We have to ``prefetch'' the next character. */
- else if ((d == end1 ? *string2 : *d) == '\n'
- && bufp->newline_anchor) {
- break;
- }
- goto fail;
-
- /* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT1("EXECUTING begbuf.\n");
- if (AT_STRINGS_BEG(d))
- break;
- goto fail;
-
- /* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT1("EXECUTING endbuf.\n");
- if (at_strings_end(d,end2))
- break;
- goto fail;
-
- /* on_failure_keep_string_jump is used to optimize `.*\n'. It
- * pushes NULL as the value for the string on the stack. Then
- * `pop_failure_point' will keep the current value for the
- * string, instead of restoring it. To see why, consider
- * matching `foo\nbar' against `.*\n'. The .* matches the foo;
- * then the . fails against the \n. But the next thing we want
- * to do is match the \n against the \n; if we restored the
- * string value, we would be back at the foo.
- *
- * Because this is used only in specific cases, we don't need to
- * check all the things that `on_failure_jump' does, to make
- * sure the right things get saved on the stack. Hence we don't
- * share its code. The only reason to push anything on the
- * stack at all is that otherwise we would have to change
- * `anychar's code to do something besides goto fail in this
- * case; that seems worse than this. */
- case on_failure_keep_string_jump:
- DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
-
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
- break;
-
- /* Uses of on_failure_jump:
- *
- * Each alternative starts with an on_failure_jump that points
- * to the beginning of the next alternative. Each alternative
- * except the last ends with a jump that in effect jumps past
- * the rest of the alternatives. (They really jump to the
- * ending jump of the following alternative, because tensioning
- * these jumps is a hassle.)
- *
- * Repeats start with an on_failure_jump that points past both
- * the repetition text and either the following jump or
- * pop_failure_jump back to this on_failure_jump. */
- case on_failure_jump:
-on_failure:
- DEBUG_PRINT1("EXECUTING on_failure_jump");
-
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
-
- /* If this on_failure_jump comes right before a group (i.e.,
- * the original * applied to a group), save the information
- * for that group and all inner ones, so that if we fail back
- * to this point, the group's information will be correct.
- * For example, in \(a*\)*\1, we need the preceding group,
- * and in \(\(a*\)b*\)\2, we need the inner group. */
-
- /* We can't use `p' to check ahead because we push
- * a failure point to `p + mcnt' after we do this. */
- p1 = p;
-
- /* We need to skip no_op's before we look for the
- * start_memory in case this on_failure_jump is happening as
- * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
- * against aba. */
- while (p1 < pend && (re_opcode_t) * p1 == no_op)
- p1++;
-
- if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
- /* We have a new highest active register now. This will
- * get reset at the start_memory we are about to get to,
- * but we will have saved all the registers relevant to
- * this repetition op, as described above. */
- highest_active_reg = *(p1 + 1) + *(p1 + 2);
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *(p1 + 1);
- }
- DEBUG_PRINT1(":\n");
- PUSH_FAILURE_POINT(p + mcnt, d, -2);
- break;
-
- /* A smart repeat ends with `maybe_pop_jump'.
- * We change it to either `pop_failure_jump' or `jump'. */
- case maybe_pop_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
- {
- register unsigned char *p2 = p;
-
- /* Compare the beginning of the repeat with what in the
- * pattern follows its end. If we can establish that there
- * is nothing that they would both match, i.e., that we
- * would have to backtrack because of (as in, e.g., `a*a')
- * then we can change to pop_failure_jump, because we'll
- * never have to backtrack.
- *
- * This is not true in the case of alternatives: in
- * `(a|ab)*' we do need to backtrack to the `ab' alternative
- * (e.g., if the string was `ab'). But instead of trying to
- * detect that here, the alternative has put on a dummy
- * failure point which is what we will end up popping. */
-
- /* Skip over open/close-group commands. */
- while (p2 + 2 < pend
- && ((re_opcode_t) * p2 == stop_memory
- || (re_opcode_t) * p2 == start_memory))
- p2 += 3; /* Skip over args, too. */
-
- /* If we're at the end of the pattern, we can change. */
- if (p2 == pend) {
- /* Consider what happens when matching ":\(.*\)"
- * against ":/". I don't really understand this code
- * yet. */
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1
- (" End of pattern: change to `pop_failure_jump'.\n");
- } else if ((re_opcode_t) * p2 == exactn
- || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
- register unsigned char c
- = *p2 == (unsigned char) endline ? '\n' : p2[2];
- p1 = p + mcnt;
-
- /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
- * to the `maybe_finalize_jump' of this case. Examine what
- * follows. */
- if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n",
- c, p1[5]);
- } else if ((re_opcode_t) p1[3] == charset
- || (re_opcode_t) p1[3] == charset_not) {
- int not = (re_opcode_t) p1[3] == charset_not;
-
- if (c < (unsigned char) (p1[4] * BYTEWIDTH)
- && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
-
- /* `not' is equal to 1 if c would match, which means
- * that we can't change to pop_failure_jump. */
- if (!not) {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1(" No match => pop_failure_jump.\n");
- }
- }
- }
- }
- p -= 2; /* Point at relative address again. */
- if ((re_opcode_t) p[-1] != pop_failure_jump) {
- p[-1] = (unsigned char) jump;
- DEBUG_PRINT1(" Match => jump.\n");
- goto unconditional_jump;
- }
- /* Note fall through. */
-
- /* The end of a simple repeat has a pop_failure_jump back to
- * its matching on_failure_jump, where the latter will push a
- * failure point. The pop_failure_jump takes off failure
- * points put on by this pop_failure_jump's matching
- * on_failure_jump; we got through the pattern to here from the
- * matching on_failure_jump, so didn't fail. */
- case pop_failure_jump: {
- /* We need to pass separate storage for the lowest and
- * highest registers, even though we don't care about the
- * actual values. Otherwise, we will restore only one
- * register from the stack, since lowest will == highest in
- * `pop_failure_point'. */
- unsigned long dummy_low_reg, dummy_high_reg;
- unsigned char *pdummy;
- const char *sdummy;
-
- DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
- POP_FAILURE_POINT(sdummy, pdummy,
- dummy_low_reg, dummy_high_reg,
- reg_dummy, reg_dummy, reg_info_dummy);
- /* avoid GCC 4.6 set but unused variables warning. Does not matter here. */
- if (pdummy || sdummy)
- (void)0;
- }
- /* Note fall through. */
-
- /* Unconditionally jump (without popping any failure points). */
- case jump:
-unconditional_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT2("(to 0x%x).\n", p);
- break;
-
- /* We need this opcode so we can detect where alternatives end
- * in `group_match_null_string_p' et al. */
- case jump_past_alt:
- DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
- goto unconditional_jump;
-
- /* Normally, the on_failure_jump pushes a failure point, which
- * then gets popped at pop_failure_jump. We will end up at
- * pop_failure_jump, also, and with a pattern of, say, `a+', we
- * are skipping over the on_failure_jump, so we have to push
- * something meaningless for pop_failure_jump to pop. */
- case dummy_failure_jump:
- DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
- /* It doesn't matter what we push for the string here. What
- * the code at `fail' tests is the value for the pattern. */
- PUSH_FAILURE_POINT(0, 0, -2);
- goto unconditional_jump;
-
- /* At the end of an alternative, we need to push a dummy failure
- * point in case we are followed by a `pop_failure_jump', because
- * we don't want the failure point for the alternative to be
- * popped. For example, matching `(a|ab)*' against `aab'
- * requires that we match the `ab' alternative. */
- case push_dummy_failure:
- DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
- /* See comments just above at `dummy_failure_jump' about the
- * two zeroes. */
- PUSH_FAILURE_POINT(0, 0, -2);
- break;
-
- /* Have to succeed matching what follows at least n times.
- * After that, handle like `on_failure_jump'. */
- case succeed_n:
- EXTRACT_NUMBER(mcnt, p + 2);
- DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
-
- assert(mcnt >= 0);
- /* Originally, this is how many times we HAVE to succeed. */
- if (mcnt > 0) {
- mcnt--;
- p += 2;
- STORE_NUMBER_AND_INCR(p, mcnt);
- DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt);
- } else if (mcnt == 0) {
- DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2);
- p[2] = (unsigned char) no_op;
- p[3] = (unsigned char) no_op;
- goto on_failure;
- }
- break;
-
- case jump_n:
- EXTRACT_NUMBER(mcnt, p + 2);
- DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
-
- /* Originally, this is how many times we CAN jump. */
- if (mcnt) {
- mcnt--;
- STORE_NUMBER(p + 2, mcnt);
- goto unconditional_jump;
- }
- /* If don't have to jump any more, skip over the rest of command. */
- else
- p += 4;
- break;
-
- case set_number_at: {
- DEBUG_PRINT1("EXECUTING set_number_at.\n");
-
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- p1 = p + mcnt;
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt);
- STORE_NUMBER(p1, mcnt);
- break;
- }
-
- case wordbound:
- DEBUG_PRINT1("EXECUTING wordbound.\n");
- if (AT_WORD_BOUNDARY(d))
- break;
- goto fail;
-
- case notwordbound:
- DEBUG_PRINT1("EXECUTING notwordbound.\n");
- if (AT_WORD_BOUNDARY(d))
- goto fail;
- break;
-
- case wordbeg:
- DEBUG_PRINT1("EXECUTING wordbeg.\n");
- if (wordchar_p(d,end1,string2) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
- break;
- goto fail;
-
- case wordend:
- DEBUG_PRINT1("EXECUTING wordend.\n");
- if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
- && (!wordchar_p(d,end1,string2) || at_strings_end(d,end2)))
- break;
- goto fail;
-
- case wordchar:
- DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
- PREFETCH();
- if (!wordchar_p(d,end1,string2))
- goto fail;
- SET_REGS_MATCHED();
- d++;
- break;
-
- case notwordchar:
- DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
- PREFETCH();
- if (wordchar_p(d,end1,string2))
- goto fail;
- SET_REGS_MATCHED();
- d++;
- break;
-
- default:
- abort();
- }
- continue; /* Successfully executed one pattern command; keep going. */
-
- /* We goto here if a matching operation fails. */
-fail:
- if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
- DEBUG_PRINT1("\nFAIL:\n");
- POP_FAILURE_POINT(d, p,
- lowest_active_reg, highest_active_reg,
- regstart, regend, reg_info);
-
- /* If this failure point is a dummy, try the next one. */
- if (!p)
- goto fail;
-
- /* If we failed to the end of the pattern, don't examine *p. */
- assert(p <= pend);
- if (p < pend) {
- boolean is_a_jump_n = false;
-
- /* If failed to a backwards jump that's part of a repetition
- * loop, need to pop this failure point and use the next one. */
- switch ((re_opcode_t) * p) {
- case jump_n:
- is_a_jump_n = true;
- case maybe_pop_jump:
- case pop_failure_jump:
- case jump:
- p1 = p + 1;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
-
- if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
- || (!is_a_jump_n
- && (re_opcode_t) * p1 == on_failure_jump))
- goto fail;
- break;
- default:
- /* do nothing */
- ;
- }
- }
- if (d >= string1 && d <= end1)
- dend = end_match_1;
- } else
- break; /* Matching at this starting point really fails. */
- } /* for (;;) */
-
- if (best_regs_set)
- goto restore_best_regs;
-
- FREE_VARIABLES();
-
- return -1; /* Failure to match. */
-} /* re_match_2 */
-
-/* Subroutine definitions for re_match_2. */
-
-/* We are passed P pointing to a register number after a start_memory.
- *
- * Return true if the pattern up to the corresponding stop_memory can
- * match the empty string, and false otherwise.
- *
- * If we find the matching stop_memory, sets P to point to one past its number.
- * Otherwise, sets P to an undefined byte less than or equal to END.
- *
- * We don't handle duplicates properly (yet). */
-
-boolean
-group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info)
-{
- int mcnt;
- /* Point to after the args to the start_memory. */
- unsigned char *p1 = *p + 2;
-
- while (p1 < end) {
- /* Skip over opcodes that can match nothing, and return true or
- * false, as appropriate, when we get to one that can't, or to the
- * matching stop_memory. */
-
- switch ((re_opcode_t) * p1) {
- /* Could be either a loop or a series of alternatives. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-
- /* If the next operation is not a jump backwards in the
- * pattern. */
-
- if (mcnt >= 0) {
- /* Go through the on_failure_jumps of the alternatives,
- * seeing if any of the alternatives cannot match nothing.
- * The last alternative starts with only a jump,
- * whereas the rest start with on_failure_jump and end
- * with a jump, e.g., here is the pattern for `a|b|c':
- *
- * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
- * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
- * /exactn/1/c
- *
- * So, we have to first go through the first (n-1)
- * alternatives and then deal with the last one separately. */
-
- /* Deal with the first (n-1) alternatives, which start
- * with an on_failure_jump (see above) that jumps to right
- * past a jump_past_alt. */
-
- while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
- /* `mcnt' holds how many bytes long the alternative
- * is, including the ending `jump_past_alt' and
- * its number. */
-
- if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
- reg_info))
- return false;
-
- /* Move to right after this alternative, including the
- * jump_past_alt. */
- p1 += mcnt;
-
- /* Break if it's the beginning of an n-th alternative
- * that doesn't begin with an on_failure_jump. */
- if ((re_opcode_t) * p1 != on_failure_jump)
- break;
-
- /* Still have to check that it's not an n-th
- * alternative that starts with an on_failure_jump. */
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
- /* Get to the beginning of the n-th alternative. */
- p1 -= 3;
- break;
- }
- }
-
- /* Deal with the last alternative: go back and get number
- * of the `jump_past_alt' just before it. `mcnt' contains
- * the length of the alternative. */
- EXTRACT_NUMBER(mcnt, p1 - 2);
-
- if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
- return false;
-
- p1 += mcnt; /* Get past the n-th alternative. */
- } /* if mcnt > 0 */
- break;
-
- case stop_memory:
- assert(p1[1] == **p);
- *p = p1 + 2;
- return true;
-
- default:
- if (!common_op_match_null_string_p(&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
-
- return false;
-} /* group_match_null_string_p */
-
-/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
- * It expects P to be the first byte of a single alternative and END one
- * byte past the last. The alternative can contain groups. */
-
-boolean
-alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info)
-{
- int mcnt;
- unsigned char *p1 = p;
-
- while (p1 < end) {
- /* Skip over opcodes that can match nothing, and break when we get
- * to one that can't. */
-
- switch ((re_opcode_t) * p1) {
- /* It's a loop. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
- break;
-
- default:
- if (!common_op_match_null_string_p(&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
-
- return true;
-} /* alt_match_null_string_p */
-
-/* Deals with the ops common to group_match_null_string_p and
- * alt_match_null_string_p.
- *
- * Sets P to one after the op and its arguments, if any. */
-
-boolean
-common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info)
-{
- int mcnt;
- boolean ret;
- int reg_no;
- unsigned char *p1 = *p;
-
- switch ((re_opcode_t) * p1++) {
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbeg:
- case wordend:
- case wordbound:
- case notwordbound:
- break;
-
- case start_memory:
- reg_no = *p1;
- assert(reg_no > 0 && reg_no <= MAX_REGNUM);
- ret = group_match_null_string_p(&p1, end, reg_info);
-
- /* Have to set this here in case we're checking a group which
- * contains a group and a back reference to it. */
-
- if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
-
- if (!ret)
- return false;
- break;
-
- /* If this is an optimized succeed_n for zero times, make the jump. */
- case jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if (mcnt >= 0)
- p1 += mcnt;
- else
- return false;
- break;
-
- case succeed_n:
- /* Get to the number of times to succeed. */
- p1 += 2;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
-
- if (mcnt == 0) {
- p1 -= 4;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
- } else
- return false;
- break;
-
- case duplicate:
- if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
- return false;
- break;
-
- case set_number_at:
- p1 += 4;
-
- default:
- /* All other opcodes mean we cannot match the empty string. */
- return false;
- }
-
- *p = p1;
- return true;
-} /* common_op_match_null_string_p */
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
- * bytes; nonzero otherwise. */
-
-int
-bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate)
-{
- register unsigned char const *p1 = s1, *p2 = s2;
- while (len) {
- if (translate[*p1++] != translate[*p2++])
- return 1;
- len--;
- }
- return 0;
-}
-
-/* Entry points for GNU code. */
-
-/* POSIX.2 functions */
-
-/* regcomp takes a regular expression as a string and compiles it.
- *
- * PREG is a regex_t *. We do not expect any fields to be initialized,
- * since POSIX says we shouldn't. Thus, we set
- *
- * `buffer' to the compiled pattern;
- * `used' to the length of the compiled pattern;
- * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
- * REG_EXTENDED bit in CFLAGS is set; otherwise, to
- * RE_SYNTAX_POSIX_BASIC;
- * `newline_anchor' to REG_NEWLINE being set in CFLAGS;
- * `fastmap' and `fastmap_accurate' to zero;
- * `re_nsub' to the number of subexpressions in PATTERN.
- *
- * PATTERN is the address of the pattern string.
- *
- * CFLAGS is a series of bits which affect compilation.
- *
- * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
- * use POSIX basic syntax.
- *
- * If REG_NEWLINE is set, then . and [^...] don't match newline.
- * Also, regexec will try a match beginning after every newline.
- *
- * If REG_ICASE is set, then we considers upper- and lowercase
- * versions of letters to be equivalent when matching.
- *
- * If REG_NOSUB is set, then when PREG is passed to regexec, that
- * routine will report only success or failure, and nothing about the
- * registers.
- *
- * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
- * the return codes and their meanings.) */
-
-int
-regcomp(preg, pattern, cflags)
-regex_t *preg;
-const char *pattern;
-int cflags;
-{
- reg_errcode_t ret;
- unsigned syntax
- = (cflags & REG_EXTENDED) ?
- RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
- /* regex_compile will allocate the space for the compiled pattern. */
- preg->buffer = 0;
- preg->allocated = 0;
-
- /* Don't bother to use a fastmap when searching. This simplifies the
- * REG_NEWLINE case: if we used a fastmap, we'd have to put all the
- * characters after newlines into the fastmap. This way, we just try
- * every character. */
- preg->fastmap = 0;
-
- if (cflags & REG_ICASE) {
- unsigned i;
-
- preg->translate = (char *) malloc(CHAR_SET_SIZE);
- if (preg->translate == NULL)
- return (int) REG_ESPACE;
-
- /* Map uppercase characters to corresponding lowercase ones. */
- for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
- } else
- preg->translate = NULL;
-
- /* If REG_NEWLINE is set, newlines are treated differently. */
- if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
- syntax &= ~RE_DOT_NEWLINE;
- syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- /* It also changes the matching behavior. */
- preg->newline_anchor = 1;
- } else
- preg->newline_anchor = 0;
-
- preg->no_sub = !!(cflags & REG_NOSUB);
-
- /* POSIX says a null character in the pattern terminates it, so we
- * can use strlen here in compiling the pattern. */
- ret = regex_compile(pattern, strlen(pattern), syntax, preg);
-
- /* POSIX doesn't distinguish between an unmatched open-group and an
- * unmatched close-group: both are REG_EPAREN. */
- if (ret == REG_ERPAREN)
- ret = REG_EPAREN;
-
- return (int) ret;
-}
-
-/* regexec searches for a given pattern, specified by PREG, in the
- * string STRING.
- *
- * If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
- * least NMATCH elements, and we set them to the offsets of the
- * corresponding matched substrings.
- *
- * EFLAGS specifies `execution flags' which affect matching: if
- * REG_NOTBOL is set, then ^ does not match at the beginning of the
- * string; if REG_NOTEOL is set, then $ does not match at the end.
- *
- * We return 0 if we find a match and REG_NOMATCH if not. */
-
-int
-regexec(preg, string, nmatch, pmatch, eflags)
-const regex_t *preg;
-const char *string;
-size_t nmatch;
-regmatch_t pmatch[];
-int eflags;
-{
- int ret;
- struct re_registers regs;
- regex_t private_preg;
- int len = strlen(string);
- boolean want_reg_info = !preg->no_sub && nmatch > 0;
-
- private_preg = *preg;
-
- private_preg.not_bol = !!(eflags & REG_NOTBOL);
- private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
- /* The user has told us exactly how many registers to return
- * information about, via `nmatch'. We have to pass that on to the
- * matching routines. */
- private_preg.regs_allocated = REGS_FIXED;
-
- if (want_reg_info) {
- regs.num_regs = nmatch;
- regs.start = TALLOC(nmatch, regoff_t);
- regs.end = TALLOC(nmatch, regoff_t);
- if (regs.start == NULL || regs.end == NULL)
- return (int) REG_NOMATCH;
- }
- /* Perform the searching operation. */
- ret = re_search(&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : (struct re_registers *) 0);
-
- /* Copy the register information to the POSIX structure. */
- if (want_reg_info) {
- if (ret >= 0) {
- unsigned r;
-
- for (r = 0; r < nmatch; r++) {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
- /* If we needed the temporary register info, free the space now. */
- free(regs.start);
- free(regs.end);
- }
- /* We want zero return to mean success, unlike `re_search'. */
- return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
- * from either regcomp or regexec. We don't use PREG here. */
-
-size_t
-regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
-{
- const char *msg;
- size_t msg_size;
-
- if (errcode < 0
- || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
- /* Only error codes returned by the rest of the code should be passed
- * to this routine. If we are given anything else, or if other regex
- * code generates an invalid error code, then the program has a bug.
- * Dump core so we can fix it. */
- abort();
-
- msg = re_error_msg[errcode];
-
- /* POSIX doesn't require that we do anything in this case, but why
- * not be nice. */
- if (!msg)
- msg = "Success";
-
- msg_size = strlen(msg) + 1; /* Includes the null. */
-
- if (errbuf_size != 0) {
- if (msg_size > errbuf_size) {
- strncpy(errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- } else
- strcpy(errbuf, msg);
- }
- return msg_size;
-}
-
-/* Free dynamically allocated space used by PREG. */
-
-void
-regfree(preg)
-regex_t *preg;
-{
- if (preg->buffer != NULL)
- free(preg->buffer);
- preg->buffer = NULL;
-
- preg->allocated = 0;
- preg->used = 0;
-
- if (preg->fastmap != NULL)
- free(preg->fastmap);
- preg->fastmap = NULL;
- preg->fastmap_accurate = 0;
-
- if (preg->translate != NULL)
- free(preg->translate);
- preg->translate = NULL;
-}
-#endif /* USE_GNUREGEX */
-
-/*
- * Local variables:
- * make-backup-files: t
- * version-control: t
- * trim-versions-without-asking: nil
- * End:
- */
-