*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
+ struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
+ /* Today for MED update type we do not call update clocks. However, for FPO
+ * the assumption is that update clocks should be called to disable P-State
+ * switch before any HW programming since FPO in FW and driver are not
+ * synchronized. This causes an issue where on a MED update, an FPO P-State
+ * switch could be taking place, then driver forces P-State disallow in the below
+ * code and prevents FPO from completing the sequence. In this case we add a check
+ * to avoid re-programming (and thus re-setting) the P-State force register by
+ * only reprogramming if the pipe was not previously Subvp or FPO. The assumption
+ * is that the P-State force register should be programmed correctly the first
+ * time SubVP / FPO was enabled, so there's no need to update / reset it if the
+ * pipe config has never exited SubVP / FPO.
+ */
if (pipe->stream && (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN ||
- pipe->stream->fpo_in_use)) {
+ pipe->stream->fpo_in_use) &&
+ (!old_pipe->stream ||
+ (dc_state_get_pipe_subvp_type(context, old_pipe) != SUBVP_MAIN &&
+ !old_pipe->stream->fpo_in_use))) {
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow)