}
/* Find subprogram that contains instruction at 'off' */
-static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
+struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off)
{
struct bpf_subprog_info *vals = env->subprog_info;
int l, r, m;
{
struct bpf_subprog_info *p;
- p = find_containing_subprog(env, off);
+ p = bpf_find_containing_subprog(env, off);
if (!p || p->start != off)
return -ENOENT;
return p - env->subprog_info;
}
}
/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
-static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
+void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
{
DECLARE_BITMAP(mask, 64);
bool first = true;
}
}
-static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
-
/* For given verifier state backtrack_insn() is called from the last insn to
* the first insn. Its purpose is to compute a bitmask of registers and
* stack slots that needs precision in the parent verifier state.
fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
verbose(env, "mark_precise: frame%d: regs=%s ",
bt->frame, env->tmp_str_buf);
- fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
+ bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
verbose(env, "stack=%s before ", env->tmp_str_buf);
verbose(env, "%d: ", idx);
verbose_insn(env, insn);
* backtracking, as these registers are set by the function
* invoking callback.
*/
- if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
+ if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx))
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
bt_clear_reg(bt, i);
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
bt_frame_reg_mask(bt, fr));
verbose(env, "mark_precise: frame%d: parent state regs=%s ",
fr, env->tmp_str_buf);
- fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
+ bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
bt_frame_stack_mask(bt, fr));
verbose(env, "stack=%s: ", env->tmp_str_buf);
print_verifier_state(env, st, fr, true);
"At callback return", "R0");
return -EINVAL;
}
- if (!calls_callback(env, callee->callsite)) {
+ if (!bpf_calls_callback(env, callee->callsite)) {
verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
*insn_idx, callee->callsite);
return -EFAULT;
{
struct bpf_subprog_info *subprog;
- subprog = find_containing_subprog(env, off);
+ subprog = bpf_find_containing_subprog(env, off);
subprog->changes_pkt_data = true;
}
{
struct bpf_subprog_info *subprog;
- subprog = find_containing_subprog(env, off);
+ subprog = bpf_find_containing_subprog(env, off);
subprog->might_sleep = true;
}
{
struct bpf_subprog_info *caller, *callee;
- caller = find_containing_subprog(env, t);
- callee = find_containing_subprog(env, w);
+ caller = bpf_find_containing_subprog(env, t);
+ callee = bpf_find_containing_subprog(env, w);
caller->changes_pkt_data |= callee->changes_pkt_data;
caller->might_sleep |= callee->might_sleep;
}
env->insn_aux_data[idx].calls_callback = true;
}
-static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
+bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx)
{
return env->insn_aux_data[insn_idx].calls_callback;
}
goto hit;
}
}
- if (calls_callback(env, insn_idx)) {
+ if (bpf_calls_callback(env, insn_idx)) {
if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
goto hit;
goto skip_inf_loop_check;
return false;
}
-static int insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
+int bpf_insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
{
struct bpf_insn *insn = &prog->insnsi[idx];
int i = 0, insn_sz;
u16 new_out = 0;
u16 new_in = 0;
- succ_num = insn_successors(env->prog, insn_idx, succ);
+ succ_num = bpf_insn_successors(env->prog, insn_idx, succ);
for (int s = 0; s < succ_num; ++s)
new_out |= state[succ[s]].in;
new_in = (new_out & ~live->def) | live->use;
stack[stack_sz++] = w;
}
/* Visit 'w' successors */
- succ_cnt = insn_successors(env->prog, w, succ);
+ succ_cnt = bpf_insn_successors(env->prog, w, succ);
for (j = 0; j < succ_cnt; ++j) {
if (pre[succ[j]]) {
low[w] = min(low[w], low[succ[j]]);