--- /dev/null
+/* sha1-compress.c
+ *
+ * The compression function of the sha1 hash function.
+ */
+
+/* nettle, low-level cryptographics library
+ *
+ * Copyright (C) 2001, 2004 Peter Gutmann, Andrew Kuchling, Niels Möller
+ *
+ * The nettle library is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or (at your
+ * option) any later version.
+ *
+ * The nettle library is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+ * License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with the nettle library; see the file COPYING.LIB. If not, write to
+ * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ */
+
+/* Here's the first paragraph of Peter Gutmann's posting,
+ * <30ajo5$oe8@ccu2.auckland.ac.nz>:
+ *
+ * The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
+ * SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
+ * what's changed in the new version. The fix is a simple change which involves
+ * adding a single rotate in the initial expansion function. It is unknown
+ * whether this is an optimal solution to the problem which was discovered in the
+ * SHA or whether it's simply a bandaid which fixes the problem with a minimum of
+ * effort (for example the reengineering of a great many Capstone chips).
+ */
+
+#if HAVE_CONFIG_H
+# include "config.h"
+#endif
+
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "sha.h"
+
+#include "macros.h"
+
+/* A block, treated as a sequence of 32-bit words. */
+#define SHA1_DATA_LENGTH 16
+
+/* The SHA f()-functions. The f1 and f3 functions can be optimized to
+ save one boolean operation each - thanks to Rich Schroeppel,
+ rcs@cs.arizona.edu for discovering this */
+
+/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */
+#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
+#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
+/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
+#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
+#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
+
+/* The SHA Mysterious Constants */
+
+#define K1 0x5A827999L /* Rounds 0-19 */
+#define K2 0x6ED9EBA1L /* Rounds 20-39 */
+#define K3 0x8F1BBCDCL /* Rounds 40-59 */
+#define K4 0xCA62C1D6L /* Rounds 60-79 */
+
+/* 32-bit rotate left - kludged with shifts */
+
+#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
+
+/* The initial expanding function. The hash function is defined over an
+ 80-word expanded input array W, where the first 16 are copies of the input
+ data, and the remaining 64 are defined by
+
+ W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
+
+ This implementation generates these values on the fly in a circular
+ buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
+ optimization.
+
+ The updated SHA changes the expanding function by adding a rotate of 1
+ bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
+ for this information */
+
+#define expand(W,i) ( W[ i & 15 ] = \
+ ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
+ W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
+
+
+/* The prototype SHA sub-round. The fundamental sub-round is:
+
+ a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
+ b' = a;
+ c' = ROTL( 30, b );
+ d' = c;
+ e' = d;
+
+ but this is implemented by unrolling the loop 5 times and renaming the
+ variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
+ This code is then replicated 20 times for each of the 4 functions, using
+ the next 20 values from the W[] array each time */
+
+#define subRound(a, b, c, d, e, f, k, data) \
+ ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
+
+/* Perform the SHA transformation. Note that this code, like MD5, seems to
+ break some optimizing compilers due to the complexity of the expressions
+ and the size of the basic block. It may be necessary to split it into
+ sections, e.g. based on the four subrounds
+
+ Note that this function destroys the data area */
+
+void
+_nettle_sha1_compress(uint32_t *state, uint32_t *data)
+{
+ uint32_t A, B, C, D, E; /* Local vars */
+
+ /* Set up first buffer and local data buffer */
+ A = state[0];
+ B = state[1];
+ C = state[2];
+ D = state[3];
+ E = state[4];
+
+ /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
+ subRound( A, B, C, D, E, f1, K1, data[ 0] );
+ subRound( E, A, B, C, D, f1, K1, data[ 1] );
+ subRound( D, E, A, B, C, f1, K1, data[ 2] );
+ subRound( C, D, E, A, B, f1, K1, data[ 3] );
+ subRound( B, C, D, E, A, f1, K1, data[ 4] );
+ subRound( A, B, C, D, E, f1, K1, data[ 5] );
+ subRound( E, A, B, C, D, f1, K1, data[ 6] );
+ subRound( D, E, A, B, C, f1, K1, data[ 7] );
+ subRound( C, D, E, A, B, f1, K1, data[ 8] );
+ subRound( B, C, D, E, A, f1, K1, data[ 9] );
+ subRound( A, B, C, D, E, f1, K1, data[10] );
+ subRound( E, A, B, C, D, f1, K1, data[11] );
+ subRound( D, E, A, B, C, f1, K1, data[12] );
+ subRound( C, D, E, A, B, f1, K1, data[13] );
+ subRound( B, C, D, E, A, f1, K1, data[14] );
+ subRound( A, B, C, D, E, f1, K1, data[15] );
+ subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
+ subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
+ subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
+ subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
+
+ subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
+
+ subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
+
+ subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
+
+ /* Build message digest */
+ state[0] += A;
+ state[1] += B;
+ state[2] += C;
+ state[3] += D;
+ state[4] += E;
+}
/* A block, treated as a sequence of 32-bit words. */
#define SHA1_DATA_LENGTH 16
-/* The SHA f()-functions. The f1 and f3 functions can be optimized to
- save one boolean operation each - thanks to Rich Schroeppel,
- rcs@cs.arizona.edu for discovering this */
-
-/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */
-#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
-#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
-/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
-#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
-#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
-
-/* The SHA Mysterious Constants */
-
-#define K1 0x5A827999L /* Rounds 0-19 */
-#define K2 0x6ED9EBA1L /* Rounds 20-39 */
-#define K3 0x8F1BBCDCL /* Rounds 40-59 */
-#define K4 0xCA62C1D6L /* Rounds 60-79 */
-
/* SHA initial values */
#define h0init 0x67452301L
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
-/* 32-bit rotate left - kludged with shifts */
-
-#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
-
-/* The initial expanding function. The hash function is defined over an
- 80-word expanded input array W, where the first 16 are copies of the input
- data, and the remaining 64 are defined by
-
- W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
-
- This implementation generates these values on the fly in a circular
- buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
- optimization.
-
- The updated SHA changes the expanding function by adding a rotate of 1
- bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
- for this information */
-
-#define expand(W,i) ( W[ i & 15 ] = \
- ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
- W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
-
-
-/* The prototype SHA sub-round. The fundamental sub-round is:
-
- a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
- b' = a;
- c' = ROTL( 30, b );
- d' = c;
- e' = d;
-
- but this is implemented by unrolling the loop 5 times and renaming the
- variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
- This code is then replicated 20 times for each of the 4 functions, using
- the next 20 values from the W[] array each time */
-
-#define subRound(a, b, c, d, e, f, k, data) \
- ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
-
/* Initialize the SHA values */
void
ctx->index = 0;
}
-/* Perform the SHA transformation. Note that this code, like MD5, seems to
- break some optimizing compilers due to the complexity of the expressions
- and the size of the basic block. It may be necessary to split it into
- sections, e.g. based on the four subrounds
-
- Note that this function destroys the data area */
-
-static void
-sha1_transform(uint32_t *state, uint32_t *data)
-{
- uint32_t A, B, C, D, E; /* Local vars */
-
- /* Set up first buffer and local data buffer */
- A = state[0];
- B = state[1];
- C = state[2];
- D = state[3];
- E = state[4];
-
- /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
- subRound( A, B, C, D, E, f1, K1, data[ 0] );
- subRound( E, A, B, C, D, f1, K1, data[ 1] );
- subRound( D, E, A, B, C, f1, K1, data[ 2] );
- subRound( C, D, E, A, B, f1, K1, data[ 3] );
- subRound( B, C, D, E, A, f1, K1, data[ 4] );
- subRound( A, B, C, D, E, f1, K1, data[ 5] );
- subRound( E, A, B, C, D, f1, K1, data[ 6] );
- subRound( D, E, A, B, C, f1, K1, data[ 7] );
- subRound( C, D, E, A, B, f1, K1, data[ 8] );
- subRound( B, C, D, E, A, f1, K1, data[ 9] );
- subRound( A, B, C, D, E, f1, K1, data[10] );
- subRound( E, A, B, C, D, f1, K1, data[11] );
- subRound( D, E, A, B, C, f1, K1, data[12] );
- subRound( C, D, E, A, B, f1, K1, data[13] );
- subRound( B, C, D, E, A, f1, K1, data[14] );
- subRound( A, B, C, D, E, f1, K1, data[15] );
- subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
- subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
- subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
- subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
-
- subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
-
- subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
-
- subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
-
- /* Build message digest */
- state[0] += A;
- state[1] += B;
- state[2] += C;
- state[3] += D;
- state[4] += E;
-}
+/* Compression function, written in assembler on some systems.
+ Note that it destroys the data array. */
+#define sha1_compress _nettle_sha1_compress
static void
sha1_block(struct sha1_ctx *ctx, const uint8_t *block)
for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
data[i] = READ_UINT32(block);
- sha1_transform(ctx->digest, data);
+ sha1_compress(ctx->digest, data);
}
void
* pad with another one */
for (i = words ; i < SHA1_DATA_LENGTH; i++)
data[i] = 0;
- sha1_transform(ctx->digest, data);
+ sha1_compress(ctx->digest, data);
for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
data[i] = 0;
}
/* There are 512 = 2^9 bits in one block */
data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
- sha1_transform(ctx->digest, data);
+ sha1_compress(ctx->digest, data);
}
void