]> git.ipfire.org Git - thirdparty/postgresql.git/commitdiff
Add levenshtein_less_equal, optimized version for small distances.
authorRobert Haas <rhaas@postgresql.org>
Tue, 19 Oct 2010 13:51:06 +0000 (09:51 -0400)
committerRobert Haas <rhaas@postgresql.org>
Tue, 19 Oct 2010 13:51:06 +0000 (09:51 -0400)
Alexander Korotkov, heavily revised by me.

contrib/fuzzystrmatch/fuzzystrmatch.c
contrib/fuzzystrmatch/fuzzystrmatch.sql.in
contrib/fuzzystrmatch/levenshtein.c [new file with mode: 0644]
contrib/fuzzystrmatch/uninstall_fuzzystrmatch.sql
doc/src/sgml/fuzzystrmatch.sgml

index 01084da4072c1513192b12099a286e3b794abc48..7265841dc5d60e785bee042eeed300d090f76407 100644 (file)
@@ -9,15 +9,6 @@
  * Copyright (c) 2001-2010, PostgreSQL Global Development Group
  * ALL RIGHTS RESERVED;
  *
- * levenshtein()
- * -------------
- * Written based on a description of the algorithm by Michael Gilleland
- * found at http://www.merriampark.com/ld.htm
- * Also looked at levenshtein.c in the PHP 4.0.6 distribution for
- * inspiration.
- * Configurable penalty costs extension is introduced by Volkan
- * YAZICI <volkan.yazici@gmail.com>.
- *
  * metaphone()
  * -----------
  * Modified for PostgreSQL by Joe Conway.
@@ -61,6 +52,8 @@ PG_MODULE_MAGIC;
  */
 extern Datum levenshtein_with_costs(PG_FUNCTION_ARGS);
 extern Datum levenshtein(PG_FUNCTION_ARGS);
+extern Datum levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS);
+extern Datum levenshtein_less_equal(PG_FUNCTION_ARGS);
 extern Datum metaphone(PG_FUNCTION_ARGS);
 extern Datum soundex(PG_FUNCTION_ARGS);
 extern Datum difference(PG_FUNCTION_ARGS);
@@ -85,16 +78,6 @@ soundex_code(char letter)
        return letter;
 }
 
-
-/*
- * Levenshtein
- */
-#define MAX_LEVENSHTEIN_STRLEN         255
-
-static int levenshtein_internal(text *s, text *t,
-                                        int ins_c, int del_c, int sub_c);
-
-
 /*
  * Metaphone
  */
@@ -197,224 +180,59 @@ rest_of_char_same(const char *s1, const char *s2, int len)
        return true;
 }
 
-/*
- * levenshtein_internal - Calculates Levenshtein distance metric
- *                                               between supplied strings. Generally
- *                                               (1, 1, 1) penalty costs suffices common
- *                                               cases, but your mileage may vary.
- */
-static int
-levenshtein_internal(text *s, text *t,
-                                        int ins_c, int del_c, int sub_c)
-{
-       int                     m,
-                               n,
-                               s_bytes,
-                               t_bytes;
-       int                *prev;
-       int                *curr;
-       int                *s_char_len = NULL;
-       int                     i,
-                               j;
-       const char *s_data;
-       const char *t_data;
-       const char *y;
-
-       /* Extract a pointer to the actual character data. */
-       s_data = VARDATA_ANY(s);
-       t_data = VARDATA_ANY(t);
-
-       /* Determine length of each string in bytes and characters. */
-       s_bytes = VARSIZE_ANY_EXHDR(s);
-       t_bytes = VARSIZE_ANY_EXHDR(t);
-       m = pg_mbstrlen_with_len(s_data, s_bytes);
-       n = pg_mbstrlen_with_len(t_data, t_bytes);
-
-       /*
-        * We can transform an empty s into t with n insertions, or a non-empty t
-        * into an empty s with m deletions.
-        */
-       if (!m)
-               return n * ins_c;
-       if (!n)
-               return m * del_c;
-
-       /*
-        * For security concerns, restrict excessive CPU+RAM usage. (This
-        * implementation uses O(m) memory and has O(mn) complexity.)
-        */
-       if (m > MAX_LEVENSHTEIN_STRLEN ||
-               n > MAX_LEVENSHTEIN_STRLEN)
-               ereport(ERROR,
-                               (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
-                                errmsg("argument exceeds the maximum length of %d bytes",
-                                               MAX_LEVENSHTEIN_STRLEN)));
-
-       /*
-        * In order to avoid calling pg_mblen() repeatedly on each character in s,
-        * we cache all the lengths before starting the main loop -- but if all the
-        * characters in both strings are single byte, then we skip this and use
-        * a fast-path in the main loop.  If only one string contains multi-byte
-        * characters, we still build the array, so that the fast-path needn't
-        * deal with the case where the array hasn't been initialized.
-        */
-       if (m != s_bytes || n != t_bytes)
-       {
-               int             i;
-               const char *cp = s_data;
-
-               s_char_len = (int *) palloc((m + 1) * sizeof(int));
-               for (i = 0; i < m; ++i)
-               {
-                       s_char_len[i] = pg_mblen(cp);
-                       cp += s_char_len[i];
-               }
-               s_char_len[i] = 0;
-       }
-
-       /* One more cell for initialization column and row. */
-       ++m;
-       ++n;
-
-       /*
-        * One way to compute Levenshtein distance is to incrementally construct
-        * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
-        * of operations required to transform the first i characters of s into
-        * the first j characters of t.  The last column of the final row is the
-        * answer.
-        *
-        * We use that algorithm here with some modification.  In lieu of holding
-        * the entire array in memory at once, we'll just use two arrays of size
-        * m+1 for storing accumulated values. At each step one array represents
-        * the "previous" row and one is the "current" row of the notional large
-        * array.
-        */
-       prev = (int *) palloc(2 * m * sizeof(int));
-       curr = prev + m;
-
-       /*
-        * To transform the first i characters of s into the first 0 characters
-        * of t, we must perform i deletions.
-        */
-       for (i = 0; i < m; i++)
-               prev[i] = i * del_c;
-
-       /* Loop through rows of the notional array */
-       for (y = t_data, j = 1; j < n; j++)
-       {
-               int                *temp;
-               const char *x = s_data;
-               int                     y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
-
-               /*
-                * To transform the first 0 characters of s into the first j
-                * characters of t, we must perform j insertions.
-                */
-               curr[0] = j * ins_c;
-
-               /*
-                * This inner loop is critical to performance, so we include a
-                * fast-path to handle the (fairly common) case where no multibyte
-                * characters are in the mix.  The fast-path is entitled to assume
-                * that if s_char_len is not initialized then BOTH strings contain
-                * only single-byte characters.
-                */
-               if (s_char_len != NULL)
-               {
-                       for (i = 1; i < m; i++)
-                       {
-                               int                     ins;
-                               int                     del;
-                               int                     sub;
-                               int                     x_char_len = s_char_len[i - 1];
-
-                               /*
-                                * Calculate costs for insertion, deletion, and substitution.
-                                *
-                                * When calculating cost for substitution, we compare the last
-                                * character of each possibly-multibyte character first,
-                                * because that's enough to rule out most mis-matches.  If we
-                                * get past that test, then we compare the lengths and the
-                                * remaining bytes.
-                                */
-                               ins = prev[i] + ins_c;
-                               del = curr[i - 1] + del_c;
-                               if (x[x_char_len-1] == y[y_char_len-1]
-                                       && x_char_len == y_char_len &&
-                                       (x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
-                                       sub = prev[i - 1];
-                               else
-                                       sub = prev[i - 1] + sub_c;
-
-                               /* Take the one with minimum cost. */
-                               curr[i] = Min(ins, del);
-                               curr[i] = Min(curr[i], sub);
-
-                               /* Point to next character. */
-                               x += x_char_len;
-                       }
-               }
-               else
-               {
-                       for (i = 1; i < m; i++)
-                       {
-                               int                     ins;
-                               int                     del;
-                               int                     sub;
+#include "levenshtein.c"
+#define LEVENSHTEIN_LESS_EQUAL
+#include "levenshtein.c"
 
-                               /* Calculate costs for insertion, deletion, and substitution. */
-                               ins = prev[i] + ins_c;
-                               del = curr[i - 1] + del_c;
-                               sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
-
-                               /* Take the one with minimum cost. */
-                               curr[i] = Min(ins, del);
-                               curr[i] = Min(curr[i], sub);
+PG_FUNCTION_INFO_V1(levenshtein_with_costs);
+Datum
+levenshtein_with_costs(PG_FUNCTION_ARGS)
+{
+       text       *src = PG_GETARG_TEXT_PP(0);
+       text       *dst = PG_GETARG_TEXT_PP(1);
+       int                     ins_c = PG_GETARG_INT32(2);
+       int                     del_c = PG_GETARG_INT32(3);
+       int                     sub_c = PG_GETARG_INT32(4);
 
-                               /* Point to next character. */
-                               x++;
-                       }
-               }
+       PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c));
+}
 
-               /* Swap current row with previous row. */
-               temp = curr;
-               curr = prev;
-               prev = temp;
 
-               /* Point to next character. */
-               y += y_char_len;
-       }
+PG_FUNCTION_INFO_V1(levenshtein);
+Datum
+levenshtein(PG_FUNCTION_ARGS)
+{
+       text       *src = PG_GETARG_TEXT_PP(0);
+       text       *dst = PG_GETARG_TEXT_PP(1);
 
-       /*
-        * Because the final value was swapped from the previous row to the
-        * current row, that's where we'll find it.
-        */
-       return prev[m - 1];
+       PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1));
 }
 
 
-PG_FUNCTION_INFO_V1(levenshtein_with_costs);
+PG_FUNCTION_INFO_V1(levenshtein_less_equal_with_costs);
 Datum
-levenshtein_with_costs(PG_FUNCTION_ARGS)
+levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS)
 {
        text       *src = PG_GETARG_TEXT_PP(0);
        text       *dst = PG_GETARG_TEXT_PP(1);
        int                     ins_c = PG_GETARG_INT32(2);
        int                     del_c = PG_GETARG_INT32(3);
        int                     sub_c = PG_GETARG_INT32(4);
+       int                     max_d = PG_GETARG_INT32(5);
 
-       PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c));
+       PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, ins_c, del_c, sub_c, max_d));
 }
 
 
-PG_FUNCTION_INFO_V1(levenshtein);
+PG_FUNCTION_INFO_V1(levenshtein_less_equal);
 Datum
-levenshtein(PG_FUNCTION_ARGS)
+levenshtein_less_equal(PG_FUNCTION_ARGS)
 {
        text       *src = PG_GETARG_TEXT_PP(0);
        text       *dst = PG_GETARG_TEXT_PP(1);
+       int                     max_d = PG_GETARG_INT32(2);
 
-       PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1));
+       PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, 1, 1, 1, max_d));
 }
 
 
index 05a347d6b8d5eee27ee028c4940072ab18b578e2..0e75491cbe380f58218edb726a5fdbf711d1189b 100644 (file)
@@ -11,6 +11,14 @@ CREATE OR REPLACE FUNCTION levenshtein (text,text,int,int,int) RETURNS int
 AS 'MODULE_PATHNAME','levenshtein_with_costs'
 LANGUAGE C IMMUTABLE STRICT;
 
+CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int) RETURNS int
+AS 'MODULE_PATHNAME','levenshtein_less_equal'
+LANGUAGE C IMMUTABLE STRICT;
+
+CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int,int,int,int) RETURNS int
+AS 'MODULE_PATHNAME','levenshtein_less_equal_with_costs'
+LANGUAGE C IMMUTABLE STRICT;
+
 CREATE OR REPLACE FUNCTION metaphone (text,int) RETURNS text
 AS 'MODULE_PATHNAME','metaphone'
 LANGUAGE C IMMUTABLE STRICT;
diff --git a/contrib/fuzzystrmatch/levenshtein.c b/contrib/fuzzystrmatch/levenshtein.c
new file mode 100644 (file)
index 0000000..178d0e4
--- /dev/null
@@ -0,0 +1,397 @@
+/*
+ * levenshtein.c
+ *
+ * Functions for "fuzzy" comparison of strings
+ *
+ * Joe Conway <mail@joeconway.com>
+ *
+ * contrib/fuzzystrmatch/fuzzystrmatch.c
+ * Copyright (c) 2001-2010, PostgreSQL Global Development Group
+ * ALL RIGHTS RESERVED;
+ *
+ * levenshtein()
+ * -------------
+ * Written based on a description of the algorithm by Michael Gilleland
+ * found at http://www.merriampark.com/ld.htm
+ * Also looked at levenshtein.c in the PHP 4.0.6 distribution for
+ * inspiration.
+ * Configurable penalty costs extension is introduced by Volkan
+ * YAZICI <volkan.yazici@gmail.com>.
+ */
+
+/*
+ * External declarations for exported functions
+ */
+#ifdef LEVENSHTEIN_LESS_EQUAL
+static int levenshtein_less_equal_internal(text *s, text *t,
+                                        int ins_c, int del_c, int sub_c, int max_d);
+#else
+static int levenshtein_internal(text *s, text *t,
+                                        int ins_c, int del_c, int sub_c);
+#endif
+
+#define MAX_LEVENSHTEIN_STRLEN         255
+
+
+/*
+ * Calculates Levenshtein distance metric between supplied strings. Generally
+ * (1, 1, 1) penalty costs suffices for common cases, but your mileage may
+ * vary.
+ *
+ * One way to compute Levenshtein distance is to incrementally construct
+ * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
+ * of operations required to transform the first i characters of s into
+ * the first j characters of t.  The last column of the final row is the
+ * answer.
+ *
+ * We use that algorithm here with some modification.  In lieu of holding
+ * the entire array in memory at once, we'll just use two arrays of size
+ * m+1 for storing accumulated values. At each step one array represents
+ * the "previous" row and one is the "current" row of the notional large
+ * array.
+ *
+ * If max_d >= 0, we only need to provide an accurate answer when that answer
+ * is less than or equal to the bound.  From any cell in the matrix, there is
+ * theoretical "minimum residual distance" from that cell to the last column
+ * of the final row.  This minimum residual distance is zero when the
+ * untransformed portions of the strings are of equal length (because we might
+ * get lucky and find all the remaining characters matching) and is otherwise
+ * based on the minimum number of insertions or deletions needed to make them
+ * equal length.  The residual distance grows as we move toward the upper
+ * right or lower left corners of the matrix.  When the max_d bound is
+ * usefully tight, we can use this property to avoid computing the entirety
+ * of each row; instead, we maintain a start_column and stop_column that
+ * identify the portion of the matrix close to the diagonal which can still
+ * affect the final answer.
+ */
+static int
+#ifdef LEVENSHTEIN_LESS_EQUAL
+levenshtein_less_equal_internal(text *s, text *t,
+                                                               int ins_c, int del_c, int sub_c, int max_d)
+#else
+levenshtein_internal(text *s, text *t,
+                                        int ins_c, int del_c, int sub_c)
+#endif
+{
+       int                     m,
+                               n,
+                               s_bytes,
+                               t_bytes;
+       int                *prev;
+       int                *curr;
+       int                *s_char_len = NULL;
+       int                     i,
+                               j;
+       const char *s_data;
+       const char *t_data;
+       const char *y;
+
+       /*
+        * For levenshtein_less_equal_internal, we have real variables called
+        * start_column and stop_column; otherwise it's just short-hand for 0
+        * and m.
+        */
+#ifdef LEVENSHTEIN_LESS_EQUAL
+       int        start_column, stop_column;
+#undef START_COLUMN
+#undef STOP_COLUMN
+#define START_COLUMN start_column
+#define STOP_COLUMN stop_column
+#else
+#undef START_COLUMN
+#undef STOP_COLUMN
+#define START_COLUMN 0
+#define STOP_COLUMN m
+#endif
+
+       /* Extract a pointer to the actual character data. */
+       s_data = VARDATA_ANY(s);
+       t_data = VARDATA_ANY(t);
+
+       /* Determine length of each string in bytes and characters. */
+       s_bytes = VARSIZE_ANY_EXHDR(s);
+       t_bytes = VARSIZE_ANY_EXHDR(t);
+       m = pg_mbstrlen_with_len(s_data, s_bytes);
+       n = pg_mbstrlen_with_len(t_data, t_bytes);
+
+       /*
+        * We can transform an empty s into t with n insertions, or a non-empty t
+        * into an empty s with m deletions.
+        */
+       if (!m)
+               return n * ins_c;
+       if (!n)
+               return m * del_c;
+
+       /*
+        * For security concerns, restrict excessive CPU+RAM usage. (This
+        * implementation uses O(m) memory and has O(mn) complexity.)
+        */
+       if (m > MAX_LEVENSHTEIN_STRLEN ||
+               n > MAX_LEVENSHTEIN_STRLEN)
+               ereport(ERROR,
+                               (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
+                                errmsg("argument exceeds the maximum length of %d bytes",
+                                               MAX_LEVENSHTEIN_STRLEN)));
+
+#ifdef LEVENSHTEIN_LESS_EQUAL
+       /* Initialize start and stop columns. */
+       start_column = 0;
+       stop_column = m + 1;
+
+       /*
+        * If max_d >= 0, determine whether the bound is impossibly tight.  If so,
+        * return max_d + 1 immediately.  Otherwise, determine whether it's tight
+        * enough to limit the computation we must perform.  If so, figure out
+        * initial stop column.
+        */
+       if (max_d >= 0)
+       {
+               int             min_theo_d;             /* Theoretical minimum distance. */
+               int             max_theo_d;             /* Theoretical maximum distance. */
+               int             net_inserts = n - m;
+
+               min_theo_d = net_inserts < 0 ?
+                       -net_inserts * del_c : net_inserts * ins_c;
+               if (min_theo_d > max_d)
+                       return max_d + 1;
+               if (ins_c + del_c < sub_c)
+                       sub_c = ins_c + del_c;
+               max_theo_d = min_theo_d + sub_c * Min(m, n);
+               if (max_d >= max_theo_d)
+                       max_d = -1;
+               else if (ins_c + del_c > 0)
+               {
+                       /*
+                        * Figure out how much of the first row of the notional matrix
+                        * we need to fill in.  If the string is growing, the theoretical
+                        * minimum distance already incorporates the cost of deleting the
+                        * number of characters necessary to make the two strings equal
+                        * in length.  Each additional deletion forces another insertion,
+                        * so the best-case total cost increases by ins_c + del_c.
+                        * If the string is shrinking, the minimum theoretical cost
+                        * assumes no excess deletions; that is, we're starting no futher
+                        * right than column n - m.  If we do start further right, the
+                        * best-case total cost increases by ins_c + del_c for each move
+                        * right.
+                        */
+                       int slack_d = max_d - min_theo_d;
+                       int best_column = net_inserts < 0 ? -net_inserts : 0;
+                       stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
+                       if (stop_column > m)
+                               stop_column = m + 1;
+               }
+       }
+#endif
+
+       /*
+        * In order to avoid calling pg_mblen() repeatedly on each character in s,
+        * we cache all the lengths before starting the main loop -- but if all the
+        * characters in both strings are single byte, then we skip this and use
+        * a fast-path in the main loop.  If only one string contains multi-byte
+        * characters, we still build the array, so that the fast-path needn't
+        * deal with the case where the array hasn't been initialized.
+        */
+       if (m != s_bytes || n != t_bytes)
+       {
+               int             i;
+               const char *cp = s_data;
+
+               s_char_len = (int *) palloc((m + 1) * sizeof(int));
+               for (i = 0; i < m; ++i)
+               {
+                       s_char_len[i] = pg_mblen(cp);
+                       cp += s_char_len[i];
+               }
+               s_char_len[i] = 0;
+       }
+
+       /* One more cell for initialization column and row. */
+       ++m;
+       ++n;
+
+       /* Previous and current rows of notional array. */
+       prev = (int *) palloc(2 * m * sizeof(int));
+       curr = prev + m;
+
+       /*
+        * To transform the first i characters of s into the first 0 characters
+        * of t, we must perform i deletions.
+        */
+       for (i = START_COLUMN; i < STOP_COLUMN; i++)
+               prev[i] = i * del_c;
+
+       /* Loop through rows of the notional array */
+       for (y = t_data, j = 1; j < n; j++)
+       {
+               int                *temp;
+               const char *x = s_data;
+               int                     y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
+
+#ifdef LEVENSHTEIN_LESS_EQUAL
+               /*
+                * In the best case, values percolate down the diagonal unchanged, so
+                * we must increment stop_column unless it's already on the right end
+                * of the array.  The inner loop will read prev[stop_column], so we
+                * have to initialize it even though it shouldn't affect the result.
+                */
+               if (stop_column < m)
+               {
+                       prev[stop_column] = max_d + 1;
+                       ++stop_column;
+               }
+
+               /*
+                * The main loop fills in curr, but curr[0] needs a special case:
+                * to transform the first 0 characters of s into the first j
+                * characters of t, we must perform j insertions.  However, if
+                * start_column > 0, this special case does not apply.
+                */
+               if (start_column == 0)
+               {
+                       curr[0] = j * ins_c;
+                       i = 1;
+               }
+               else
+                       i = start_column;
+#else
+               curr[0] = j * ins_c;
+               i = 1;
+#endif
+
+               /*
+                * This inner loop is critical to performance, so we include a
+                * fast-path to handle the (fairly common) case where no multibyte
+                * characters are in the mix.  The fast-path is entitled to assume
+                * that if s_char_len is not initialized then BOTH strings contain
+                * only single-byte characters.
+                */
+               if (s_char_len != NULL)
+               {
+                       for (; i < STOP_COLUMN; i++)
+                       {
+                               int                     ins;
+                               int                     del;
+                               int                     sub;
+                               int                     x_char_len = s_char_len[i - 1];
+
+                               /*
+                                * Calculate costs for insertion, deletion, and substitution.
+                                *
+                                * When calculating cost for substitution, we compare the last
+                                * character of each possibly-multibyte character first,
+                                * because that's enough to rule out most mis-matches.  If we
+                                * get past that test, then we compare the lengths and the
+                                * remaining bytes.
+                                */
+                               ins = prev[i] + ins_c;
+                               del = curr[i - 1] + del_c;
+                               if (x[x_char_len-1] == y[y_char_len-1]
+                                       && x_char_len == y_char_len &&
+                                       (x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
+                                       sub = prev[i - 1];
+                               else
+                                       sub = prev[i - 1] + sub_c;
+
+                               /* Take the one with minimum cost. */
+                               curr[i] = Min(ins, del);
+                               curr[i] = Min(curr[i], sub);
+
+                               /* Point to next character. */
+                               x += x_char_len;
+                       }
+               }
+               else
+               {
+                       for (; i < STOP_COLUMN; i++)
+                       {
+                               int                     ins;
+                               int                     del;
+                               int                     sub;
+
+                               /* Calculate costs for insertion, deletion, and substitution. */
+                               ins = prev[i] + ins_c;
+                               del = curr[i - 1] + del_c;
+                               sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
+
+                               /* Take the one with minimum cost. */
+                               curr[i] = Min(ins, del);
+                               curr[i] = Min(curr[i], sub);
+
+                               /* Point to next character. */
+                               x++;
+                       }
+               }
+
+               /* Swap current row with previous row. */
+               temp = curr;
+               curr = prev;
+               prev = temp;
+
+               /* Point to next character. */
+               y += y_char_len;
+
+#ifdef LEVENSHTEIN_LESS_EQUAL
+               /*
+                * This chunk of code represents a significant performance hit if used
+                * in the case where there is no max_d bound.  This is probably not
+                * because the max_d >= 0 test itself is expensive, but rather because
+                * the possibility of needing to execute this code prevents tight
+                * optimization of the loop as a whole.
+                */
+               if (max_d >= 0)
+               {
+                       /*
+                        * The "zero point" is the column of the current row where the
+                        * remaining portions of the strings are of equal length.  There
+                        * are (n - 1) characters in the target string, of which j have
+                        * been transformed.  There are (m - 1) characters in the source
+                        * string, so we want to find the value for zp where where (n - 1)
+                        * - j = (m - 1) - zp.
+                        */
+                       int zp = j - (n - m);
+
+                       /* Check whether the stop column can slide left. */
+                       while (stop_column > 0)
+                       {
+                               int     ii = stop_column - 1;
+                               int     net_inserts = ii - zp;
+                               if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
+                                       -net_inserts * del_c) <= max_d)
+                                       break;
+                               stop_column--;
+                       }
+
+                       /* Check whether the start column can slide right. */
+                       while (start_column < stop_column)
+                       {
+                               int net_inserts = start_column - zp;
+                               if (prev[start_column] +
+                                       (net_inserts > 0 ? net_inserts * ins_c :
+                                       -net_inserts * del_c) <= max_d)
+                                       break;
+                               /*
+                                * We'll never again update these values, so we must make
+                                * sure there's nothing here that could confuse any future
+                                * iteration of the outer loop.
+                                */
+                               prev[start_column] = max_d + 1;
+                               curr[start_column] = max_d + 1;
+                               if (start_column != 0)
+                                       s_data += n != t_bytes + 1 ? pg_mblen(s_data) : 1;
+                               start_column++;
+                       }
+
+                       /* If they cross, we're going to exceed the bound. */
+                       if (start_column >= stop_column)
+                               return max_d + 1;
+               }
+#endif
+       }
+
+       /*
+        * Because the final value was swapped from the previous row to the
+        * current row, that's where we'll find it.
+        */
+       return prev[m - 1];
+}
index 99d2548569146070a7d19f9ee439aa7d042a51e7..a39c7bfc944690b091304b709fa84349a65d7aa2 100644 (file)
@@ -18,3 +18,7 @@ DROP FUNCTION metaphone (text,int);
 DROP FUNCTION levenshtein (text,text,int,int,int);
 
 DROP FUNCTION levenshtein (text,text);
+
+DROP FUNCTION levenshtein_less_equal (text,text,int);
+
+DROP FUNCTION levenshtein_less_equal (text,text,int,int,int,int);
index 69777e493589f241076fcdeba2365da0d5f836da..01b6e127ba61222b8724a1d2793e3c64fd19cb01 100644 (file)
@@ -84,6 +84,8 @@ SELECT * FROM s WHERE difference(s.nm, 'john') &gt; 2;
 <synopsis>
 levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int
 levenshtein(text source, text target) returns int
+levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int sub_cost, int max_d) returns int
+levenshtein_less_equal(text source, text target, int max_d) returns int
 </synopsis>
 
   <para>
@@ -92,6 +94,11 @@ levenshtein(text source, text target) returns int
    specify how much to charge for a character insertion, deletion, or
    substitution, respectively.  You can omit the cost parameters, as in
    the second version of the function; in that case they all default to 1.
+   <literal>levenshtein_less_equal</literal> is accelerated version of
+   levenshtein functon for low values of distance. If actual distance
+   is less or equal then max_d, then <literal>levenshtein_less_equal</literal>
+   returns accurate value of it. Otherwise this function returns value
+   which is greater than max_d.
   </para>
 
   <para>
@@ -110,6 +117,18 @@ test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2,1,1);
 -------------
            3
 (1 row)
+
+test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',2);
+ levenshtein_less_equal
+------------------------
+                      3
+(1 row)
+
+test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',4);
+ levenshtein_less_equal
+------------------------
+                      4
+(1 row)
 </screen>
  </sect2>