import contextlib
+import itertools
import sys
import textwrap
import unittest
with self.assertRaises(TypeError):
{item for item in items}
+ def test_power_type_depends_on_input_values(self):
+ template = textwrap.dedent("""
+ import _testinternalcapi
+
+ L, R, X, Y = {l}, {r}, {x}, {y}
+
+ def check(actual: complex, expected: complex) -> None:
+ assert actual == expected, (actual, expected)
+ assert type(actual) is type(expected), (actual, expected)
+
+ def f(l: complex, r: complex) -> None:
+ expected_local_local = pow(l, r) + pow(l, r)
+ expected_const_local = pow(L, r) + pow(L, r)
+ expected_local_const = pow(l, R) + pow(l, R)
+ expected_const_const = pow(L, R) + pow(L, R)
+ for _ in range(_testinternalcapi.TIER2_THRESHOLD):
+ # Narrow types:
+ l + l, r + r
+ # The powers produce results, and the addition is unguarded:
+ check(l ** r + l ** r, expected_local_local)
+ check(L ** r + L ** r, expected_const_local)
+ check(l ** R + l ** R, expected_local_const)
+ check(L ** R + L ** R, expected_const_const)
+
+ # JIT for one pair of values...
+ f(L, R)
+ # ...then run with another:
+ f(X, Y)
+ """)
+ interesting = [
+ (1, 1), # int ** int -> int
+ (1, -1), # int ** int -> float
+ (1.0, 1), # float ** int -> float
+ (1, 1.0), # int ** float -> float
+ (-1, 0.5), # int ** float -> complex
+ (1.0, 1.0), # float ** float -> float
+ (-1.0, 0.5), # float ** float -> complex
+ ]
+ for (l, r), (x, y) in itertools.product(interesting, repeat=2):
+ s = template.format(l=l, r=r, x=x, y=y)
+ with self.subTest(l=l, r=r, x=x, y=y):
+ script_helper.assert_python_ok("-c", s)
+
def global_identity(x):
return x
--- /dev/null
+Fix an issue where the experimental JIT may infer an incorrect result type
+for exponentiation (``**`` and ``**=``), leading to bugs or crashes.
pure op(_BINARY_OP_MULTIPLY_INT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Multiply((PyLongObject *)left_o, (PyLongObject *)right_o);
pure op(_BINARY_OP_ADD_INT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Add((PyLongObject *)left_o, (PyLongObject *)right_o);
pure op(_BINARY_OP_SUBTRACT_INT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Subtract((PyLongObject *)left_o, (PyLongObject *)right_o);
pure op(_BINARY_OP_MULTIPLY_FLOAT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
pure op(_BINARY_OP_ADD_FLOAT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
pure op(_BINARY_OP_SUBTRACT_FLOAT, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
pure op(_BINARY_OP_ADD_UNICODE, (left, right -- res)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = PyUnicode_Concat(left_o, right_o);
op(_BINARY_OP_INPLACE_ADD_UNICODE, (left, right --)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
int next_oparg;
#if TIER_ONE
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Multiply((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Add((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Subtract((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval *
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval +
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval -
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = PyUnicode_Concat(left_o, right_o);
PyStackRef_CLOSE_SPECIALIZED(left, _PyUnicode_ExactDealloc);
left = stack_pointer[-2];
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
int next_oparg;
#if TIER_ONE
assert(next_instr->op.code == STORE_FAST);
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval +
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Add((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = PyUnicode_Concat(left_o, right_o);
PyStackRef_CLOSE_SPECIALIZED(left, _PyUnicode_ExactDealloc);
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyUnicode_CheckExact(left_o));
+ assert(PyUnicode_CheckExact(right_o));
int next_oparg;
#if TIER_ONE
assert(next_instr->op.code == STORE_FAST);
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval *
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Multiply((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyFloat_CheckExact(left_o));
+ assert(PyFloat_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left_o)->ob_fval -
{
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
+ assert(PyLong_CheckExact(left_o));
+ assert(PyLong_CheckExact(right_o));
STAT_INC(BINARY_OP, hit);
PyObject *res_o = _PyLong_Subtract((PyLongObject *)left_o, (PyLongObject *)right_o);
PyStackRef_CLOSE_SPECIALIZED(right, _PyLong_ExactDealloc);
}
op(_BINARY_OP, (left, right -- res)) {
- PyTypeObject *ltype = sym_get_type(left);
- PyTypeObject *rtype = sym_get_type(right);
- if (ltype != NULL && (ltype == &PyLong_Type || ltype == &PyFloat_Type) &&
- rtype != NULL && (rtype == &PyLong_Type || rtype == &PyFloat_Type))
- {
- if (oparg != NB_TRUE_DIVIDE && oparg != NB_INPLACE_TRUE_DIVIDE &&
- ltype == &PyLong_Type && rtype == &PyLong_Type) {
- /* If both inputs are ints and the op is not division the result is an int */
- res = sym_new_type(ctx, &PyLong_Type);
+ bool lhs_int = sym_matches_type(left, &PyLong_Type);
+ bool rhs_int = sym_matches_type(right, &PyLong_Type);
+ bool lhs_float = sym_matches_type(left, &PyFloat_Type);
+ bool rhs_float = sym_matches_type(right, &PyFloat_Type);
+ if (!((lhs_int || lhs_float) && (rhs_int || rhs_float))) {
+ // There's something other than an int or float involved:
+ res = sym_new_unknown(ctx);
+ }
+ else if (oparg == NB_POWER || oparg == NB_INPLACE_POWER) {
+ // This one's fun... the *type* of the result depends on the
+ // *values* being exponentiated. However, exponents with one
+ // constant part are reasonably common, so it's probably worth
+ // trying to infer some simple cases:
+ // - A: 1 ** 1 -> 1 (int ** int -> int)
+ // - B: 1 ** -1 -> 1.0 (int ** int -> float)
+ // - C: 1.0 ** 1 -> 1.0 (float ** int -> float)
+ // - D: 1 ** 1.0 -> 1.0 (int ** float -> float)
+ // - E: -1 ** 0.5 ~> 1j (int ** float -> complex)
+ // - F: 1.0 ** 1.0 -> 1.0 (float ** float -> float)
+ // - G: -1.0 ** 0.5 ~> 1j (float ** float -> complex)
+ if (rhs_float) {
+ // Case D, E, F, or G... can't know without the sign of the LHS
+ // or whether the RHS is whole, which isn't worth the effort:
+ res = sym_new_unknown(ctx);
}
- else {
- /* For any other op combining ints/floats the result is a float */
+ else if (lhs_float) {
+ // Case C:
res = sym_new_type(ctx, &PyFloat_Type);
}
+ else if (!sym_is_const(right)) {
+ // Case A or B... can't know without the sign of the RHS:
+ res = sym_new_unknown(ctx);
+ }
+ else if (_PyLong_IsNegative((PyLongObject *)sym_get_const(right))) {
+ // Case B:
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ else {
+ // Case A:
+ res = sym_new_type(ctx, &PyLong_Type);
+ }
+ }
+ else if (oparg == NB_TRUE_DIVIDE || oparg == NB_INPLACE_TRUE_DIVIDE) {
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ else if (lhs_int && rhs_int) {
+ res = sym_new_type(ctx, &PyLong_Type);
}
else {
- res = sym_new_unknown(ctx);
+ res = sym_new_type(ctx, &PyFloat_Type);
}
}
_Py_UopsSymbol *res;
right = stack_pointer[-1];
left = stack_pointer[-2];
- PyTypeObject *ltype = sym_get_type(left);
- PyTypeObject *rtype = sym_get_type(right);
- if (ltype != NULL && (ltype == &PyLong_Type || ltype == &PyFloat_Type) &&
- rtype != NULL && (rtype == &PyLong_Type || rtype == &PyFloat_Type))
- {
- if (oparg != NB_TRUE_DIVIDE && oparg != NB_INPLACE_TRUE_DIVIDE &&
- ltype == &PyLong_Type && rtype == &PyLong_Type) {
- /* If both inputs are ints and the op is not division the result is an int */
- res = sym_new_type(ctx, &PyLong_Type);
+ bool lhs_int = sym_matches_type(left, &PyLong_Type);
+ bool rhs_int = sym_matches_type(right, &PyLong_Type);
+ bool lhs_float = sym_matches_type(left, &PyFloat_Type);
+ bool rhs_float = sym_matches_type(right, &PyFloat_Type);
+ if (!((lhs_int || lhs_float) && (rhs_int || rhs_float))) {
+ // There's something other than an int or float involved:
+ res = sym_new_unknown(ctx);
+ }
+ else {
+ if (oparg == NB_POWER || oparg == NB_INPLACE_POWER) {
+ // This one's fun... the *type* of the result depends on the
+ // *values* being exponentiated. However, exponents with one
+ // constant part are reasonably common, so it's probably worth
+ // trying to infer some simple cases:
+ // - A: 1 ** 1 -> 1 (int ** int -> int)
+ // - B: 1 ** -1 -> 1.0 (int ** int -> float)
+ // - C: 1.0 ** 1 -> 1.0 (float ** int -> float)
+ // - D: 1 ** 1.0 -> 1.0 (int ** float -> float)
+ // - E: -1 ** 0.5 ~> 1j (int ** float -> complex)
+ // - F: 1.0 ** 1.0 -> 1.0 (float ** float -> float)
+ // - G: -1.0 ** 0.5 ~> 1j (float ** float -> complex)
+ if (rhs_float) {
+ // Case D, E, F, or G... can't know without the sign of the LHS
+ // or whether the RHS is whole, which isn't worth the effort:
+ res = sym_new_unknown(ctx);
+ }
+ else {
+ if (lhs_float) {
+ // Case C:
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ else {
+ if (!sym_is_const(right)) {
+ // Case A or B... can't know without the sign of the RHS:
+ res = sym_new_unknown(ctx);
+ }
+ else {
+ if (_PyLong_IsNegative((PyLongObject *)sym_get_const(right))) {
+ // Case B:
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ else {
+ // Case A:
+ res = sym_new_type(ctx, &PyLong_Type);
+ }
+ }
+ }
+ }
}
else {
- /* For any other op combining ints/floats the result is a float */
- res = sym_new_type(ctx, &PyFloat_Type);
+ if (oparg == NB_TRUE_DIVIDE || oparg == NB_INPLACE_TRUE_DIVIDE) {
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ else {
+ if (lhs_int && rhs_int) {
+ res = sym_new_type(ctx, &PyLong_Type);
+ }
+ else {
+ res = sym_new_type(ctx, &PyFloat_Type);
+ }
+ }
}
}
- else {
- res = sym_new_unknown(ctx);
- }
stack_pointer[-2] = res;
stack_pointer += -1;
assert(WITHIN_STACK_BOUNDS());
"_PyLong_CompactValue",
"_PyLong_DigitCount",
"_PyLong_IsCompact",
+ "_PyLong_IsNegative",
"_PyLong_IsNonNegativeCompact",
"_PyLong_IsZero",
"_PyLong_Multiply",