*/
#include "atomic-ops.h"
+#ifdef _POSIX_PRIORITY_SCHEDULING
+#include <sched.h>
+#endif
/* 64 bit */
#define PLOCK64_RL_1 0x0000000000000004ULL
+#define PLOCK64_RL_2PL 0x00000000FFFFFFF8ULL
#define PLOCK64_RL_ANY 0x00000000FFFFFFFCULL
#define PLOCK64_SL_1 0x0000000100000000ULL
#define PLOCK64_SL_ANY 0x0000000300000000ULL
#define PLOCK64_WL_1 0x0000000400000000ULL
+#define PLOCK64_WL_2PL 0xFFFFFFF800000000ULL
#define PLOCK64_WL_ANY 0xFFFFFFFC00000000ULL
/* 32 bit */
#define PLOCK32_RL_1 0x00000004
+#define PLOCK32_RL_2PL 0x0000FFF8
#define PLOCK32_RL_ANY 0x0000FFFC
#define PLOCK32_SL_1 0x00010000
#define PLOCK32_SL_ANY 0x00030000
#define PLOCK32_WL_1 0x00040000
+#define PLOCK32_WL_2PL 0xFFF80000
#define PLOCK32_WL_ANY 0xFFFC0000
/* dereferences <*p> as unsigned long without causing aliasing issues */
-#define pl_deref_long(p) ({ volatile unsigned long *__pl_l = (void *)(p); *__pl_l; })
+#define pl_deref_long(p) ({ volatile unsigned long *__pl_l = (unsigned long *)(p); *__pl_l; })
/* dereferences <*p> as unsigned int without causing aliasing issues */
-#define pl_deref_int(p) ({ volatile unsigned int *__pl_i = (void *)(p); *__pl_i; })
+#define pl_deref_int(p) ({ volatile unsigned int *__pl_i = (unsigned int *)(p); *__pl_i; })
+
+/* This function waits for <lock> to release all bits covered by <mask>, and
+ * enforces an exponential backoff using CPU pauses to limit the pollution to
+ * the other threads' caches. The progression follows (1.5^N)-1, limited to
+ * 16384 iterations, which is way sufficient even for very large numbers of
+ * threads.
+ */
+__attribute__((unused,noinline,no_instrument_function))
+static unsigned long pl_wait_unlock_long(const unsigned long *lock, const unsigned long mask)
+{
+ unsigned long ret;
+ unsigned int m = 0;
+
+ do {
+ unsigned int loops = m;
+
+#ifdef _POSIX_PRIORITY_SCHEDULING
+ if (loops >= 65536) {
+ sched_yield();
+ loops -= 32768;
+ }
+#endif
+ for (; loops >= 200; loops -= 10)
+ pl_cpu_relax();
+
+ for (; loops >= 1; loops--)
+ pl_barrier();
+
+ ret = pl_deref_long(lock);
+ if (__builtin_expect(ret & mask, 0) == 0)
+ break;
+
+ /* the below produces an exponential growth with loops to lower
+ * values and still growing. This allows competing threads to
+ * wait different times once the threshold is reached.
+ */
+ m = ((m + (m >> 1)) + 2) & 0x3ffff;
+ } while (1);
+
+ return ret;
+}
+
+/* This function waits for <lock> to release all bits covered by <mask>, and
+ * enforces an exponential backoff using CPU pauses to limit the pollution to
+ * the other threads' caches. The progression follows (2^N)-1, limited to 255
+ * iterations, which is way sufficient even for very large numbers of threads.
+ * The function slightly benefits from size optimization under gcc, but Clang
+ * cannot do it, so it's not done here, as it doesn't make a big difference.
+ */
+__attribute__((unused,noinline,no_instrument_function))
+static unsigned int pl_wait_unlock_int(const unsigned int *lock, const unsigned int mask)
+{
+ unsigned int ret;
+ unsigned int m = 0;
+
+ do {
+ unsigned int loops = m;
+
+#ifdef _POSIX_PRIORITY_SCHEDULING
+ if (loops >= 65536) {
+ sched_yield();
+ loops -= 32768;
+ }
+#endif
+ for (; loops >= 200; loops -= 10)
+ pl_cpu_relax();
+
+ for (; loops >= 1; loops--)
+ pl_barrier();
+
+ ret = pl_deref_int(lock);
+ if (__builtin_expect(ret & mask, 0) == 0)
+ break;
+
+ /* the below produces an exponential growth with loops to lower
+ * values and still growing. This allows competing threads to
+ * wait different times once the threshold is reached.
+ */
+ m = ((m + (m >> 1)) + 2) & 0x3ffff;
+ } while (1);
+
+ return ret;
+}
+
+/* This function waits for <lock> to change from value <prev> and returns the
+ * new value. It enforces an exponential backoff using CPU pauses to limit the
+ * pollution to the other threads' caches. The progression follows (2^N)-1,
+ * limited to 255 iterations, which is way sufficient even for very large
+ * numbers of threads. It is designed to be called after a first test which
+ * retrieves the previous value, so it starts by waiting. The function slightly
+ * benefits from size optimization under gcc, but Clang cannot do it, so it's
+ * not done here, as it doesn't make a big difference.
+ */
+__attribute__((unused,noinline,no_instrument_function))
+static unsigned long pl_wait_new_long(const unsigned long *lock, const unsigned long prev)
+{
+ unsigned char m = 0;
+ unsigned long curr;
+
+ do {
+ unsigned char loops = m + 1;
+ m = (m << 1) + 1;
+ do {
+ pl_cpu_relax();
+ } while (__builtin_expect(--loops, 0));
+ curr = pl_deref_long(lock);
+ } while (__builtin_expect(curr == prev, 0));
+ return curr;
+}
+
+/* This function waits for <lock> to change from value <prev> and returns the
+ * new value. It enforces an exponential backoff using CPU pauses to limit the
+ * pollution to the other threads' caches. The progression follows (2^N)-1,
+ * limited to 255 iterations, which is way sufficient even for very large
+ * numbers of threads. It is designed to be called after a first test which
+ * retrieves the previous value, so it starts by waiting. The function slightly
+ * benefits from size optimization under gcc, but Clang cannot do it, so it's
+ * not done here, as it doesn't make a big difference.
+ */
+__attribute__((unused,noinline,no_instrument_function))
+static unsigned int pl_wait_new_int(const unsigned int *lock, const unsigned int prev)
+{
+ unsigned char m = 0;
+ unsigned int curr;
+
+ do {
+ unsigned char loops = m + 1;
+ m = (m << 1) + 1;
+ do {
+ pl_cpu_relax();
+ } while (__builtin_expect(--loops, 0));
+ curr = pl_deref_int(lock);
+ } while (__builtin_expect(curr == prev, 0));
+ return curr;
+}
/* request shared read access (R), return non-zero on success, otherwise 0 */
#define pl_try_r(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_WL_ANY; \
+ register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_WL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_RL_1) & PLOCK64_WL_ANY; \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_WL_ANY; \
+ register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_WL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_RL_1) & PLOCK32_WL_ANY; \
}) \
)
-/* request shared read access (R) and wait for it */
+/* request shared read access (R) and wait for it. In order not to disturb a W
+ * lock waiting for all readers to leave, we first check if a W lock is held
+ * before trying to claim the R lock.
+ */
#define pl_take_r(lock) \
- do { \
- while (__builtin_expect(pl_try_r(lock), 1) == 0) \
- pl_cpu_relax(); \
- } while (0)
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_RL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY; \
+ while (1) { \
+ if (__builtin_expect(pl_deref_long(__lk_r) & __msk_r, 0)) \
+ pl_wait_unlock_long(__lk_r, __msk_r); \
+ if (!__builtin_expect(pl_xadd(__lk_r, __set_r) & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_RL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY; \
+ while (1) { \
+ if (__builtin_expect(pl_deref_int(__lk_r) & __msk_r, 0)) \
+ pl_wait_unlock_int(__lk_r, __msk_r); \
+ if (!__builtin_expect(pl_xadd(__lk_r, __set_r) & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_take_r__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_take_r__(__FILE__,__LINE__); \
+ 0; \
+ })
/* release the read access (R) lock */
#define pl_drop_r(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_r__(char *,int); \
/* request a seek access (S), return non-zero on success, otherwise 0 */
#define pl_try_s(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock); \
+ register unsigned long __pl_r = pl_deref_long(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_SL_1 | PLOCK64_RL_1) & \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock); \
+ register unsigned int __pl_r = pl_deref_int(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_SL_1 | PLOCK32_RL_1) & \
}) \
)
-/* request a seek access (S) and wait for it */
+/* request a seek access (S) and wait for it. The lock is immediately claimed,
+ * and only upon failure an exponential backoff is used. S locks rarely compete
+ * with W locks so S will generally not disturb W. As the S lock may be used as
+ * a spinlock, it's important to grab it as fast as possible.
+ */
#define pl_take_s(lock) \
- do { \
- while (__builtin_expect(pl_try_s(lock), 0) == 0) \
- pl_cpu_relax(); \
- } while (0)
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_SL_1 | PLOCK64_RL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
+ while (1) { \
+ if (!__builtin_expect(pl_xadd(__lk_r, __set_r) & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ pl_wait_unlock_long(__lk_r, __msk_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_SL_1 | PLOCK32_RL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
+ while (1) { \
+ if (!__builtin_expect(pl_xadd(__lk_r, __set_r) & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ pl_wait_unlock_int(__lk_r, __msk_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_take_s__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_take_s__(__FILE__,__LINE__); \
+ 0; \
+ })
/* release the seek access (S) lock */
#define pl_drop_s(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_SL_1 + PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_SL_1 + PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_s__(char *,int); \
/* drop the S lock and go back to the R lock */
#define pl_stor(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_SL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_SL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_stor__(char *,int); \
/* take the W lock under the S lock */
#define pl_stow(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_xadd((lock), PLOCK64_WL_1); \
- pl_barrier(); \
+ register unsigned long __pl_r = pl_xadd((lock), PLOCK64_WL_1); \
while ((__pl_r & PLOCK64_RL_ANY) != PLOCK64_RL_1) \
__pl_r = pl_deref_long(lock); \
- }) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_xadd((lock), PLOCK32_WL_1); \
pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int __pl_r = pl_xadd((lock), PLOCK32_WL_1); \
while ((__pl_r & PLOCK32_RL_ANY) != PLOCK32_RL_1) \
__pl_r = pl_deref_int(lock); \
+ pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_stow__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
/* drop the W lock and go back to the S lock */
#define pl_wtos(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_WL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_WL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_wtos__(char *,int); \
/* drop the W lock and go back to the R lock */
#define pl_wtor(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_WL_1 | PLOCK64_SL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_WL_1 | PLOCK32_SL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_wtor__(char *,int); \
*/
#define pl_try_w(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock); \
+ register unsigned long __pl_r = pl_deref_long(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1); \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock); \
+ register unsigned int __pl_r = pl_deref_int(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1); \
}) \
)
-/* request a seek access (W) and wait for it */
+/* request a write access (W) and wait for it. The lock is immediately claimed,
+ * and only upon failure an exponential backoff is used.
+ */
#define pl_take_w(lock) \
- do { \
- while (__builtin_expect(pl_try_w(lock), 0) == 0) \
- pl_cpu_relax(); \
- } while (0)
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
+ register unsigned long __pl_r; \
+ while (1) { \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ if (!__builtin_expect(__pl_r & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ __pl_r = pl_wait_unlock_long(__lk_r, __msk_r); \
+ } \
+ /* wait for all other readers to leave */ \
+ while (__builtin_expect(__pl_r, 0)) \
+ __pl_r = pl_deref_long(__lk_r) - __set_r; \
+ pl_barrier(); \
+ 0; \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
+ register unsigned int __pl_r; \
+ while (1) { \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ if (!__builtin_expect(__pl_r & __msk_r, 0)) \
+ break; \
+ pl_sub(__lk_r, __set_r); \
+ __pl_r = pl_wait_unlock_int(__lk_r, __msk_r); \
+ } \
+ /* wait for all other readers to leave */ \
+ while (__builtin_expect(__pl_r, 0)) \
+ __pl_r = pl_deref_int(__lk_r) - __set_r; \
+ pl_barrier(); \
+ 0; \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_take_w__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_take_w__(__FILE__,__LINE__); \
+ 0; \
+ })
/* drop the write (W) lock entirely */
#define pl_drop_w(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_w__(char *,int); \
*/
#define pl_try_rtos(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock); \
+ register unsigned long __pl_r = pl_deref_long(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_SL_1) & \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock); \
+ register unsigned int __pl_r = pl_deref_int(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_SL_1) & \
)
+/* Try to upgrade from R to W, return non-zero on success, otherwise 0.
+ * This lock will fail if S or W are already held. In case of failure to grab
+ * the lock, it MUST NOT be retried without first dropping R, or it may never
+ * complete due to S waiting for R to leave before upgrading to W. It waits for
+ * the last readers to leave.
+ */
+#define pl_try_rtow(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_SL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
+ register unsigned long __pl_r; \
+ pl_barrier(); \
+ while (1) { \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ if (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ if (pl_xadd(__lk_r, - __set_r)) \
+ break; /* the caller needs to drop the lock now */ \
+ continue; /* lock was released, try again */ \
+ } \
+ /* ok we're the only writer, wait for readers to leave */ \
+ while (__builtin_expect(__pl_r, 0)) \
+ __pl_r = pl_deref_long(__lk_r) - (PLOCK64_WL_1|PLOCK64_SL_1|PLOCK64_RL_1); \
+ /* now return with __pl_r = 0 */ \
+ break; \
+ } \
+ !__pl_r; /* return value */ \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_SL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
+ register unsigned int __pl_r; \
+ pl_barrier(); \
+ while (1) { \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ if (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ if (pl_xadd(__lk_r, - __set_r)) \
+ break; /* the caller needs to drop the lock now */ \
+ continue; /* lock was released, try again */ \
+ } \
+ /* ok we're the only writer, wait for readers to leave */ \
+ while (__builtin_expect(__pl_r, 0)) \
+ __pl_r = pl_deref_int(__lk_r) - (PLOCK32_WL_1|PLOCK32_SL_1|PLOCK32_RL_1); \
+ /* now return with __pl_r = 0 */ \
+ break; \
+ } \
+ !__pl_r; /* return value */ \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_try_rtow__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_try_rtow__(__FILE__,__LINE__); \
+ 0; \
+ }) \
+)
+
+
/* request atomic write access (A), return non-zero on success, otherwise 0.
* It's a bit tricky as we only use the W bits for this and want to distinguish
* between other atomic users and regular lock users. We have to give up if an
*/
#define pl_try_a(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
+ register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_WL_1); \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
+ register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_WL_1); \
}) \
)
-/* request atomic write access (A) and wait for it */
+/* request atomic write access (A) and wait for it. See comments in pl_try_a() for
+ * explanations.
+ */
#define pl_take_a(lock) \
- do { \
- while (__builtin_expect(pl_try_a(lock), 1) == 0) \
- pl_cpu_relax(); \
- } while (0)
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_WL_1; \
+ register unsigned long __msk_r = PLOCK64_SL_ANY; \
+ register unsigned long __pl_r; \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ while (__builtin_expect(__pl_r & PLOCK64_RL_ANY, 0)) { \
+ if (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ pl_wait_unlock_long(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ continue; \
+ } \
+ /* wait for all readers to leave or upgrade */ \
+ pl_cpu_relax(); pl_cpu_relax(); pl_cpu_relax(); \
+ __pl_r = pl_deref_long(lock); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_WL_1; \
+ register unsigned int __msk_r = PLOCK32_SL_ANY; \
+ register unsigned int __pl_r; \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ while (__builtin_expect(__pl_r & PLOCK32_RL_ANY, 0)) { \
+ if (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ pl_wait_unlock_int(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r); \
+ continue; \
+ } \
+ /* wait for all readers to leave or upgrade */ \
+ pl_cpu_relax(); pl_cpu_relax(); pl_cpu_relax(); \
+ __pl_r = pl_deref_int(lock); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_take_a__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_take_a__(__FILE__,__LINE__); \
+ 0; \
+ })
/* release atomic write access (A) lock */
#define pl_drop_a(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK64_WL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
pl_sub(lock, PLOCK32_WL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_a__(char *,int); \
}) \
)
+/* Downgrade A to R. Inc(R), dec(W) then wait for W==0 */
+#define pl_ator(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_RL_1 - PLOCK64_WL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY; \
+ register unsigned long __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ while (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ __pl_r = pl_wait_unlock_long(__lk_r, __msk_r); \
+ } \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_RL_1 - PLOCK32_WL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY; \
+ register unsigned int __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ while (__builtin_expect(__pl_r & __msk_r, 0)) { \
+ __pl_r = pl_wait_unlock_int(__lk_r, __msk_r); \
+ } \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_ator__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_ator__(__FILE__,__LINE__); \
+ }) \
+)
+
/* Try to upgrade from R to A, return non-zero on success, otherwise 0.
* This lock will fail if S is held or appears while waiting (typically due to
* a previous grab that was disguised as a W due to an overflow). In case of
*/
#define pl_try_rtoa(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
- unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
+ register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK64_WL_1 - PLOCK64_RL_1); \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
- unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
+ register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_xadd((lock), PLOCK32_WL_1 - PLOCK32_RL_1); \
0; \
}) \
)
+
+
+/*
+ * The following operations cover the multiple writers model : U->R->J->C->A
+ */
+
+
+/* Upgrade R to J. Inc(W) then wait for R==W or S != 0 */
+#define pl_rtoj(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __pl_r = pl_xadd(__lk_r, PLOCK64_WL_1) + PLOCK64_WL_1; \
+ register unsigned char __m = 0; \
+ while (!(__pl_r & PLOCK64_SL_ANY) && \
+ (__pl_r / PLOCK64_WL_1 != (__pl_r & PLOCK64_RL_ANY) / PLOCK64_RL_1)) { \
+ unsigned char __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_long(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __pl_r = pl_xadd(__lk_r, PLOCK32_WL_1) + PLOCK32_WL_1; \
+ register unsigned char __m = 0; \
+ while (!(__pl_r & PLOCK32_SL_ANY) && \
+ (__pl_r / PLOCK32_WL_1 != (__pl_r & PLOCK32_RL_ANY) / PLOCK32_RL_1)) { \
+ unsigned char __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_int(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_rtoj__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_rtoj__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* Upgrade J to C. Set S. Only one thread needs to do it though it's idempotent */
+#define pl_jtoc(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __pl_r = pl_deref_long(__lk_r); \
+ if (!(__pl_r & PLOCK64_SL_ANY)) \
+ pl_or(__lk_r, PLOCK64_SL_1); \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __pl_r = pl_deref_int(__lk_r); \
+ if (!(__pl_r & PLOCK32_SL_ANY)) \
+ pl_or(__lk_r, PLOCK32_SL_1); \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_jtoc__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_jtoc__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* Upgrade R to C. Inc(W) then wait for R==W or S != 0 */
+#define pl_rtoc(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __pl_r = pl_xadd(__lk_r, PLOCK64_WL_1) + PLOCK64_WL_1; \
+ register unsigned char __m = 0; \
+ while (__builtin_expect(!(__pl_r & PLOCK64_SL_ANY), 0)) { \
+ unsigned char __loops; \
+ if (__pl_r / PLOCK64_WL_1 == (__pl_r & PLOCK64_RL_ANY) / PLOCK64_RL_1) { \
+ pl_or(__lk_r, PLOCK64_SL_1); \
+ break; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_long(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __pl_r = pl_xadd(__lk_r, PLOCK32_WL_1) + PLOCK32_WL_1; \
+ register unsigned char __m = 0; \
+ while (__builtin_expect(!(__pl_r & PLOCK32_SL_ANY), 0)) { \
+ unsigned char __loops; \
+ if (__pl_r / PLOCK32_WL_1 == (__pl_r & PLOCK32_RL_ANY) / PLOCK32_RL_1) { \
+ pl_or(__lk_r, PLOCK32_SL_1); \
+ break; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_int(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_rtoj__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_rtoj__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* Drop the claim (C) lock : R--,W-- then clear S if !R */
+#define pl_drop_c(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = - PLOCK64_RL_1 - PLOCK64_WL_1; \
+ register unsigned long __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ if (!(__pl_r & PLOCK64_RL_ANY)) \
+ pl_and(__lk_r, ~PLOCK64_SL_1); \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = - PLOCK32_RL_1 - PLOCK32_WL_1; \
+ register unsigned int __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ if (!(__pl_r & PLOCK32_RL_ANY)) \
+ pl_and(__lk_r, ~PLOCK32_SL_1); \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_drop_c__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_drop_c__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* Upgrade C to A. R-- then wait for !S or clear S if !R */
+#define pl_ctoa(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __pl_r = pl_xadd(__lk_r, -PLOCK64_RL_1) - PLOCK64_RL_1; \
+ while (__pl_r & PLOCK64_SL_ANY) { \
+ if (!(__pl_r & PLOCK64_RL_ANY)) { \
+ pl_and(__lk_r, ~PLOCK64_SL_1); \
+ break; \
+ } \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ __pl_r = pl_deref_long(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __pl_r = pl_xadd(__lk_r, -PLOCK32_RL_1) - PLOCK32_RL_1; \
+ while (__pl_r & PLOCK32_SL_ANY) { \
+ if (!(__pl_r & PLOCK32_RL_ANY)) { \
+ pl_and(__lk_r, ~PLOCK32_SL_1); \
+ break; \
+ } \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ __pl_r = pl_deref_int(__lk_r); \
+ } \
+ pl_barrier(); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_ctoa__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_ctoa__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* downgrade the atomic write access lock (A) to join (J) */
+#define pl_atoj(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
+ pl_add(lock, PLOCK64_RL_1); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
+ pl_add(lock, PLOCK32_RL_1); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_atoj__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_atoj__(__FILE__,__LINE__); \
+ }) \
+)
+
+/* Returns non-zero if the thread calling it is the last writer, otherwise zero. It is
+ * designed to be called before pl_drop_j(), pl_drop_c() or pl_drop_a() for operations
+ * which need to be called only once.
+ */
+#define pl_last_writer(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ !(pl_deref_long(lock) & PLOCK64_WL_2PL); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ !(pl_deref_int(lock) & PLOCK32_WL_2PL); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_last_j__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_last_j__(__FILE__,__LINE__); \
+ 0; \
+ }) \
+)
+
+/* attempt to get an exclusive write access via the J lock and wait for it.
+ * Only one thread may succeed in this operation. It will not conflict with
+ * other users and will first wait for all writers to leave, then for all
+ * readers to leave before starting. This offers a solution to obtain an
+ * exclusive access to a shared resource in the R/J/C/A model. A concurrent
+ * take_a() will wait for this one to finish first. Using a CAS instead of XADD
+ * should make the operation converge slightly faster. Returns non-zero on
+ * success otherwise 0.
+ */
+#define pl_try_j(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_RL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY; \
+ register unsigned long __pl_r; \
+ register unsigned char __m; \
+ pl_wait_unlock_long(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ /* wait for all other readers to leave */ \
+ __m = 0; \
+ while (__builtin_expect(__pl_r & PLOCK64_RL_2PL, 0)) { \
+ unsigned char __loops; \
+ /* give up on other writers */ \
+ if (__builtin_expect(__pl_r & PLOCK64_WL_2PL, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ __pl_r = 0; /* failed to get the lock */ \
+ break; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_long(__lk_r); \
+ } \
+ pl_barrier(); \
+ __pl_r; /* return value, cannot be null on success */ \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_RL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY; \
+ register unsigned int __pl_r; \
+ register unsigned char __m; \
+ pl_wait_unlock_int(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ /* wait for all other readers to leave */ \
+ __m = 0; \
+ while (__builtin_expect(__pl_r & PLOCK32_RL_2PL, 0)) { \
+ unsigned char __loops; \
+ /* but rollback on other writers */ \
+ if (__builtin_expect(__pl_r & PLOCK32_WL_2PL, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ __pl_r = 0; /* failed to get the lock */ \
+ break; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_int(__lk_r); \
+ } \
+ pl_barrier(); \
+ __pl_r; /* return value, cannot be null on success */ \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_try_j__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_try_j__(__FILE__,__LINE__); \
+ 0; \
+ }) \
+)
+
+/* request an exclusive write access via the J lock and wait for it. Only one
+ * thread may succeed in this operation. It will not conflict with other users
+ * and will first wait for all writers to leave, then for all readers to leave
+ * before starting. This offers a solution to obtain an exclusive access to a
+ * shared resource in the R/J/C/A model. A concurrent take_a() will wait for
+ * this one to finish first. Using a CAS instead of XADD should make the
+ * operation converge slightly faster.
+ */
+#define pl_take_j(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ __label__ __retry; \
+ register unsigned long *__lk_r = (unsigned long *)(lock); \
+ register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_RL_1; \
+ register unsigned long __msk_r = PLOCK64_WL_ANY; \
+ register unsigned long __pl_r; \
+ register unsigned char __m; \
+ __retry: \
+ pl_wait_unlock_long(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ /* wait for all other readers to leave */ \
+ __m = 0; \
+ while (__builtin_expect(__pl_r & PLOCK64_RL_2PL, 0)) { \
+ unsigned char __loops; \
+ /* but rollback on other writers */ \
+ if (__builtin_expect(__pl_r & PLOCK64_WL_2PL, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ goto __retry; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_long(__lk_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ __label__ __retry; \
+ register unsigned int *__lk_r = (unsigned int *)(lock); \
+ register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_RL_1; \
+ register unsigned int __msk_r = PLOCK32_WL_ANY; \
+ register unsigned int __pl_r; \
+ register unsigned char __m; \
+ __retry: \
+ pl_wait_unlock_int(__lk_r, __msk_r); \
+ __pl_r = pl_xadd(__lk_r, __set_r) + __set_r; \
+ /* wait for all other readers to leave */ \
+ __m = 0; \
+ while (__builtin_expect(__pl_r & PLOCK32_RL_2PL, 0)) { \
+ unsigned char __loops; \
+ /* but rollback on other writers */ \
+ if (__builtin_expect(__pl_r & PLOCK32_WL_2PL, 0)) { \
+ pl_sub(__lk_r, __set_r); \
+ goto __retry; \
+ } \
+ __loops = __m + 1; \
+ __m = (__m << 1) + 1; \
+ do { \
+ pl_cpu_relax(); \
+ pl_cpu_relax(); \
+ } while (--__loops); \
+ __pl_r = pl_deref_int(__lk_r); \
+ } \
+ pl_barrier(); \
+ 0; \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_take_j__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_take_j__(__FILE__,__LINE__); \
+ 0; \
+ }) \
+)
+
+/* drop the join (J) lock entirely */
+#define pl_drop_j(lock) ( \
+ (sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
+ pl_barrier(); \
+ pl_sub(lock, PLOCK64_WL_1 | PLOCK64_RL_1); \
+ }) : (sizeof(*(lock)) == 4) ? ({ \
+ pl_barrier(); \
+ pl_sub(lock, PLOCK32_WL_1 | PLOCK32_RL_1); \
+ }) : ({ \
+ void __unsupported_argument_size_for_pl_drop_j__(char *,int); \
+ if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
+ __unsupported_argument_size_for_pl_drop_j__(__FILE__,__LINE__); \
+ }) \
+)
+
+/*
+ * The part below is for Low Overhead R/W locks (LORW). These ones are not
+ * upgradable and not necessarily fair but they try to be fast when uncontended
+ * and to limit the cost and perturbation during contention. Writers always
+ * have precedence over readers to preserve latency as much as possible.
+ *
+ * The principle is to offer a fast no-contention path and a limited total
+ * number of writes for the contended path. Since R/W locks are expected to be
+ * used in situations where there is a benefit in separating reads from writes,
+ * it is expected that reads are common (typ >= 50%) and that there is often at
+ * least one reader (otherwise a spinlock wouldn't be a problem). As such, a
+ * reader will try to pass instantly, detect contention and immediately retract
+ * and wait in the queue in case there is contention. A writer will first also
+ * try to pass instantly, and if it fails due to pending readers, it will mark
+ * that it's waiting so that readers stop entering. This will leave the writer
+ * waiting as close as possible to the point of being granted access. New
+ * writers will also notice this previous contention and will wait outside.
+ * This means that a successful access for a reader or a writer requires a
+ * single CAS, and a contended attempt will require one failed CAS and one
+ * successful XADD for a reader, or an optional OR and a N+1 CAS for the
+ * writer.
+ *
+ * A counter of shared users indicates the number of active readers, while a
+ * (single-bit) counter of exclusive writers indicates whether the lock is
+ * currently held for writes. This distinction also permits to use a single
+ * function to release the lock if desired, since the exclusive bit indicates
+ * the state of the caller of unlock(). The WRQ bit is cleared during the
+ * unlock.
+ *
+ * Layout: (32/64 bit):
+ * 31 2 1 0
+ * +-----------+--------------+-----+-----+
+ * | | SHR | WRQ | EXC |
+ * +-----------+--------------+-----+-----+
+ *
+ * In order to minimize operations, the WRQ bit is held during EXC so that the
+ * write waiter that had to fight for EXC doesn't have to release WRQ during
+ * its operations, and will just drop it along with EXC upon unlock.
+ *
+ * This means the following costs:
+ * reader:
+ * success: 1 CAS
+ * failure: 1 CAS + 1 XADD
+ * unlock: 1 SUB
+ * writer:
+ * success: 1 RD + 1 CAS
+ * failure: 1 RD + 1 CAS + 0/1 OR + N CAS
+ * unlock: 1 AND
+ */
+
+#define PLOCK_LORW_EXC_BIT ((sizeof(long) == 8) ? 0 : 0)
+#define PLOCK_LORW_EXC_SIZE ((sizeof(long) == 8) ? 1 : 1)
+#define PLOCK_LORW_EXC_BASE (1UL << PLOCK_LORW_EXC_BIT)
+#define PLOCK_LORW_EXC_MASK (((1UL << PLOCK_LORW_EXC_SIZE) - 1UL) << PLOCK_LORW_EXC_BIT)
+
+#define PLOCK_LORW_WRQ_BIT ((sizeof(long) == 8) ? 1 : 1)
+#define PLOCK_LORW_WRQ_SIZE ((sizeof(long) == 8) ? 1 : 1)
+#define PLOCK_LORW_WRQ_BASE (1UL << PLOCK_LORW_WRQ_BIT)
+#define PLOCK_LORW_WRQ_MASK (((1UL << PLOCK_LORW_WRQ_SIZE) - 1UL) << PLOCK_LORW_WRQ_BIT)
+
+#define PLOCK_LORW_SHR_BIT ((sizeof(long) == 8) ? 2 : 2)
+#define PLOCK_LORW_SHR_SIZE ((sizeof(long) == 8) ? 30 : 30)
+#define PLOCK_LORW_SHR_BASE (1UL << PLOCK_LORW_SHR_BIT)
+#define PLOCK_LORW_SHR_MASK (((1UL << PLOCK_LORW_SHR_SIZE) - 1UL) << PLOCK_LORW_SHR_BIT)
+
+__attribute__((unused,always_inline,no_instrument_function))
+static inline void pl_lorw_rdlock(unsigned long *lock)
+{
+ unsigned long lk = 0;
+
+ /* First, assume we're alone and try to get the read lock (fast path).
+ * It often works because read locks are often used on low-contention
+ * structs.
+ */
+ lk = pl_cmpxchg(lock, 0, PLOCK_LORW_SHR_BASE);
+ if (!lk)
+ return;
+
+ /* so we were not alone, make sure there's no writer waiting for the
+ * lock to be empty of visitors.
+ */
+ if (lk & PLOCK_LORW_WRQ_MASK)
+ lk = pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
+
+ /* count us as visitor among others */
+ lk = pl_xadd(lock, PLOCK_LORW_SHR_BASE);
+
+ /* wait for end of exclusive access if any */
+ if (lk & PLOCK_LORW_EXC_MASK)
+ lk = pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
+}
+
+
+__attribute__((unused,always_inline,no_instrument_function))
+static inline void pl_lorw_wrlock(unsigned long *lock)
+{
+ unsigned long lk = 0;
+ unsigned long old = 0;
+
+ /* first, make sure another writer is not already blocked waiting for
+ * readers to leave. Note that tests have shown that it can be even
+ * faster to avoid the first check and to unconditionally wait.
+ */
+ lk = pl_deref_long(lock);
+ if (__builtin_expect(lk & PLOCK_LORW_WRQ_MASK, 1))
+ lk = pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
+
+ do {
+ /* let's check for the two sources of contention at once */
+
+ if (__builtin_expect(lk & (PLOCK_LORW_SHR_MASK | PLOCK_LORW_EXC_MASK), 1)) {
+ /* check if there are still readers coming. If so, close the door and
+ * wait for them to leave.
+ */
+ if (lk & PLOCK_LORW_SHR_MASK) {
+ /* note below, an OR is significantly cheaper than BTS or XADD */
+ if (!(lk & PLOCK_LORW_WRQ_MASK))
+ pl_or(lock, PLOCK_LORW_WRQ_BASE);
+ lk = pl_wait_unlock_long(lock, PLOCK_LORW_SHR_MASK);
+ }
+
+ /* And also wait for a previous writer to finish. */
+ if (lk & PLOCK_LORW_EXC_MASK)
+ lk = pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
+ }
+
+ /* A fresh new reader may appear right now if there were none
+ * above and we didn't close the door.
+ */
+ old = lk & ~PLOCK_LORW_SHR_MASK & ~PLOCK_LORW_EXC_MASK;
+ lk = pl_cmpxchg(lock, old, old | PLOCK_LORW_EXC_BASE);
+ } while (lk != old);
+
+ /* done, not waiting anymore, the WRQ bit if any, will be dropped by the
+ * unlock
+ */
+}
+
+
+__attribute__((unused,always_inline,no_instrument_function))
+static inline void pl_lorw_rdunlock(unsigned long *lock)
+{
+ pl_sub(lock, PLOCK_LORW_SHR_BASE);
+}
+
+__attribute__((unused,always_inline,no_instrument_function))
+static inline void pl_lorw_wrunlock(unsigned long *lock)
+{
+ pl_and(lock, ~(PLOCK_LORW_WRQ_MASK | PLOCK_LORW_EXC_MASK));
+}
+
+__attribute__((unused,always_inline,no_instrument_function))
+static inline void pl_lorw_unlock(unsigned long *lock)
+{
+ if (pl_deref_long(lock) & PLOCK_LORW_EXC_MASK)
+ pl_lorw_wrunlock(lock);
+ else
+ pl_lorw_rdunlock(lock);
+}