* config/iq2000: New port.
* config.gcc (iq2000-*-elf): Added.
* doc/install.texi (Specific): Add iq2000 description.
From-SVN: r70245
+2003-08-08 Stan Cox <scox@redhat.com>
+
+ * config/iq2000: New port.
+ * config.gcc (iq2000-*-elf): Added.
+ * doc/install.texi (Specific): Add iq2000 description.
+
2003-08-08 Andreas Schwab <schwab@suse.de>
* configure.in (gcc_cv_as_ia64_ltoffx_ldxmov_relocs): Fix quoting
ip2k-*-elf)
tm_file="elfos.h ${tm_file}"
;;
+iq2000*-*-elf*)
+ tm_file="iq2000/iq2000.h"
+ tmake_file=iq2000/t-iq2000
+ out_file=iq2000/iq2000.c
+ xm_file=iq2000/xm-iq2000.h
+ md_file=iq2000/iq2000.md
+ ;;
m32r-*-elf*)
tm_file="dbxelf.h elfos.h svr4.h ${tm_file}"
extra_parts="crtinit.o crtfini.o"
--- /dev/null
+ IQ2000 ABI
+ =========
+
+Sizes and alignments
+--------------------
+
+ Type Size (bytes) Alignment (bytes)
+
+ char 1 1
+ short 2 2
+ int 4 4
+ unsigned 4 4
+ long 4 4
+ long long 8 8
+ float 4 4
+ double 8 8
+ pointers 4 4
+
+* alignment within aggregates (structs and unions) is as above, with
+ padding added if needed
+* aggregates have alignment equal to that of their most aligned
+ member
+* aggregates have sizes which are a multiple of their alignment
+
+
+Floating point
+--------------
+
+All emulated using IEEE floating point conventions.
+
+Registers
+----------------
+
+%0 always zero
+%1 call clobbered
+%2 return value
+%3 return value
+%4 argument register 1
+%5 argument register 2
+%6 argument register 3
+%7 argument register 4
+%8 argument register 5
+%9 argument register 6
+%10 argument register 7
+%11 argument register 8
+%12 call clobbered
+%13 call clobbered
+%14 call clobbered
+%15 call clobbered
+%16 call saved
+%17 call saved
+%18 call saved
+%19 call saved
+%20 call saved
+%21 call saved
+%22 call saved
+%23 call saved
+%24 call clobbered
+%25 call clobbered
+%26 reserved
+%27 frame ptr
+%28 global ptr
+%29 stack ptr
+%30 reserved
+%31 return address
+
+Stack alignment 8 bytes
+
+Structures passed <= 32 bits as values, else as pointers
+
+The IQ2000 Stack
+---------------
+
+Space is allocated as needed in the stack frame for the following at compile
+time:
+
+* Outgoing parameters beyond the eighth
+
+* All automatic arrays, automatic data aggregates, automatic
+ scalars which must be addressable, and automatic scalars for
+ which there is no room in registers
+
+* Compiler-generated temporary values (typically when there are
+ too many for the compiler to keep them all in registers)
+
+Space can be allocated dynamically (at runtime) in the stack frame for the
+following:
+
+* Memory allocated using the alloca() function of the C library
+
+Addressable automatic variables on the stack are addressed with positive
+offsets relative to %27; dynamically allocated space is addressed with positive
+offsets from the pointer returned by alloca().
+
+Stack Frame
+-----------
+
+ +-----------------------+
+ | Caller memory args |
+ +-----------------------+ <-sp
+ | Return address |
+ +-----------------------+
+ | Previous FP |
+ +-----------------------+
+ | Saved Registers |
+ +-----------------------+
+ | ... |
+ +-----------------------+
+ | Local Variables |
+ +-----------------------+ <-fp
+ | Alloca |
+ +-----------------------+
+ | ... |
+ +-----------------------+
+ | Parameter Word 2 |
+ +-----------------------+
+ | Parameter Word 1 |
+ +-----------------------+ <-sp
+
+
+Parameter Assignment to Registers
+---------------------------------
+
+Consider the parameters in a function call as ordered from left (first
+parameter) to right. GR contains the number of the next available
+general-purpose register. STARG is the address of the next available stack
+parameter word.
+
+INITIALIZE:
+ Set GR=r4 and STARG to point to parameter word 1.
+
+SCAN:
+ If there are no more parameters, terminate.
+ Otherwise, select one of the following depending on the type
+ of the next parameter:
+
+ SIMPLE ARG:
+
+ A SIMPLE ARG is one of the following:
+
+ * One of the simple integer types which will fit into a
+ general-purpose register,
+ * A pointer to an object of any type,
+ * A struct or union small enough to fit in a register (<= 32 bits)
+ * A larger struct or union, which shall be treated as a
+ pointer to the object or to a copy of the object.
+ (See below for when copies are made.)
+
+ If GR > r11, go to STACK. Otherwise, load the parameter value into
+ general-purpose register GR and advance GR to the next general-purpose
+ register. Values shorter than the register size are sign-extended or
+ zero-extended depending on whether they are signed or unsigned. Then
+ go to SCAN.
+
+ DOUBLE or LONG LONG
+
+ If GR > r10, go to STACK. Otherwise, if GR is odd, advance GR to the
+ next register. Load the 64-bit long long or double value into register
+ pair GR and GR+1. Advance GR to GR+2 and go to SCAN.
+
+ STACK:
+
+ Parameters not otherwise handled above are passed in the parameter
+ words of the caller's stack frame. SIMPLE ARGs, as defined above, are
+ considered to have size and alignment equal to the size of a
+ general-purpose register, with simple argument types shorter than this
+ sign- or zero-extended to this width. Round STARG up to a multiple of
+ the alignment requirement of the parameter and copy the argument
+ byte-for-byte into STARG, STARG+1, ... STARG+size-1. Set STARG to
+ STARG+size and go to SCAN.
+
+
+Structure passing
+-----------------
+
+As noted above, code which passes structures and unions by value is implemented
+specially. (In this section, "struct" will refer to structs and unions
+inclusively.) Structs small enough to fit in a register are passed by value in
+a single register or in a stack frame slot the size of a register. Structs
+containing a single double or long long component are passed by value in two
+registers or in a stack frame slot the size of two registers. Other structs
+are handled by passing the address of the structure. In this case, a copy of
+the structure will be made if necessary in order to preserve the pass-by-value
+semantics.
+
+Copies of large structs are made under the following rules:
+
+ ANSI mode K&R Mode
+ --------- --------
+Normal param Callee copies if needed Caller copies
+Varargs (...) param Caller copies Caller copies
+
+In the case of normal (non-varargs) large-struct parameters in ANSI mode, the
+callee is responsible for producing the same effect as if a copy of the
+structure were passed, preserving the pass-by-value semantics. This may be
+accomplished by having the callee make a copy, but in some cases the callee may
+be able to determine that a copy is not necessary in order to produce the same
+results. In such cases, the callee may choose to avoid making a copy of the
+parameter.
+
+
+Varargs handling
+----------------
+
+No special changes are needed for handling varargs parameters other than the
+caller knowing that a copy is needed on struct parameters larger than a
+register (see above).
+
+The varargs macros set up a register save area for the general-purpose
+registers to be saved. Because the save area lies between the caller and
+callee stack frames, the saved register parameters are contiguous with
+parameters passed on the stack. A pointer advances from the register save area
+into the caller's stack frame.
+
+
+Function return values
+----------------------
+
+ Type Register
+ ---- --------
+ int r2
+ short r2
+ long r2
+ long long r2-r3
+ float r2
+ double r2-r3
+ struct/union see below
+
+Structs/unions which will fit into two general-purpose registers are returned
+in r2, or in r2-r3 if necessary. Larger structs/unions are handled by the
+caller passing as a "hidden" first argument a pointer to space allocated to
+receive the return value.
--- /dev/null
+/* Definitions of target machine for GNU compiler for iq2000.
+ Copyright (C) 2003 Free Software Foundation, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#ifndef GCC_IQ2000_PROTOS_H
+#define GCC_IQ2000_PROTOS_H
+
+extern int iq2000_check_split PARAMS ((rtx, enum machine_mode));
+extern int iq2000_reg_mode_ok_for_base_p PARAMS ((rtx, enum machine_mode, int));
+extern int iq2000_legitimate_address_p PARAMS ((enum machine_mode, rtx, int));
+extern const char* iq2000_fill_delay_slot PARAMS ((const char*, enum delay_type, rtx*, rtx));
+extern const char *iq2000_move_1word PARAMS ((rtx *, rtx, int));
+extern int iq2000_address_cost PARAMS ((rtx));
+extern void override_options PARAMS ((void));
+extern HOST_WIDE_INT iq2000_debugger_offset PARAMS ((rtx, HOST_WIDE_INT));
+extern void final_prescan_insn PARAMS ((rtx, rtx*, int));
+extern HOST_WIDE_INT compute_frame_size PARAMS ((HOST_WIDE_INT));
+extern int iq2000_initial_elimination_offset (int, int);
+extern void iq2000_expand_prologue PARAMS ((void));
+extern void iq2000_expand_epilogue PARAMS ((void));
+extern void iq2000_expand_eh_return PARAMS ((rtx));
+extern int iq2000_can_use_return_insn PARAMS ((void));
+int function_arg_pass_by_reference PARAMS ((CUMULATIVE_ARGS*, enum machine_mode, tree, int));
+int iq2000_adjust_insn_length PARAMS ((rtx, int));
+char *iq2000_output_conditional_branch PARAMS ((rtx, rtx*, int, int, int, int));
+extern void iq2000_init_builtins PARAMS ((void));
+extern void iq2000_setup_incoming_varargs PARAMS ((CUMULATIVE_ARGS, int, tree, int*, int));
+extern void print_operand_address PARAMS ((FILE*, rtx));
+extern void print_operand PARAMS ((FILE*, rtx, int));
+
+#ifdef RTX_CODE
+extern rtx gen_int_relational PARAMS ((enum rtx_code, rtx, rtx, rtx, int*));
+extern void gen_conditional_branch PARAMS ((rtx *, enum rtx_code));
+#endif
+
+#ifdef TREE_CODE
+extern void init_cumulative_args PARAMS ((CUMULATIVE_ARGS*, tree, rtx));
+extern void function_arg_advance PARAMS ((CUMULATIVE_ARGS*, enum machine_mode, tree, int));
+extern struct rtx_def* function_arg PARAMS ((CUMULATIVE_ARGS*, enum machine_mode, tree, int));
+extern int function_arg_partial_nregs PARAMS ((CUMULATIVE_ARGS*, enum machine_mode, tree, int));
+extern void iq2000_va_start PARAMS ((tree, rtx));
+extern rtx iq2000_va_arg PARAMS ((tree, tree));
+extern rtx iq2000_function_value PARAMS ((tree, tree));
+extern rtx iq2000_expand_builtin PARAMS ((tree, rtx, rtx,
+ enum machine_mode, int));
+#endif
+
+#endif /* ! GCC_IQ2000_PROTOS_H */
--- /dev/null
+/* Subroutines used for code generation on Vitesse IQ2000 processors
+ Copyright (C) 2003 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include <signal.h>
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "recog.h"
+#include "toplev.h"
+#include "reload.h"
+#include "ggc.h"
+#include "tm_p.h"
+#include "debug.h"
+#include "target.h"
+#include "target-def.h"
+
+/* Enumeration for all of the relational tests, so that we can build
+ arrays indexed by the test type, and not worry about the order
+ of EQ, NE, etc. */
+
+enum internal_test {
+ ITEST_EQ,
+ ITEST_NE,
+ ITEST_GT,
+ ITEST_GE,
+ ITEST_LT,
+ ITEST_LE,
+ ITEST_GTU,
+ ITEST_GEU,
+ ITEST_LTU,
+ ITEST_LEU,
+ ITEST_MAX
+ };
+
+struct constant;
+
+static void iq2000_count_memory_refs PARAMS ((rtx, int));
+static enum internal_test map_test_to_internal_test PARAMS ((enum rtx_code));
+static rtx iq2000_add_large_offset_to_sp PARAMS ((HOST_WIDE_INT));
+static void iq2000_annotate_frame_insn PARAMS ((rtx, rtx));
+static void iq2000_emit_frame_related_store PARAMS ((rtx, rtx,
+ HOST_WIDE_INT));
+static struct machine_function * iq2000_init_machine_status PARAMS ((void));
+static void save_restore_insns PARAMS ((int));
+static void abort_with_insn PARAMS ((rtx, const char *))
+ ATTRIBUTE_NORETURN;
+static int symbolic_expression_p PARAMS ((rtx));
+static enum processor_type iq2000_parse_cpu PARAMS ((const char *));
+static void iq2000_select_rtx_section PARAMS ((enum machine_mode, rtx,
+ unsigned HOST_WIDE_INT));
+static void iq2000_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT));
+static rtx expand_one_builtin PARAMS ((enum insn_code, rtx, tree, enum rtx_code*,
+ int));
+\f
+/* Structure to be filled in by compute_frame_size with register
+ save masks, and offsets for the current function. */
+
+struct iq2000_frame_info
+{
+ long total_size; /* # bytes that the entire frame takes up */
+ long var_size; /* # bytes that variables take up */
+ long args_size; /* # bytes that outgoing arguments take up */
+ long extra_size; /* # bytes of extra gunk */
+ int gp_reg_size; /* # bytes needed to store gp regs */
+ int fp_reg_size; /* # bytes needed to store fp regs */
+ long mask; /* mask of saved gp registers */
+ long gp_save_offset; /* offset from vfp to store gp registers */
+ long fp_save_offset; /* offset from vfp to store fp registers */
+ long gp_sp_offset; /* offset from new sp to store gp registers */
+ long fp_sp_offset; /* offset from new sp to store fp registers */
+ int initialized; /* != 0 if frame size already calculated */
+ int num_gp; /* number of gp registers saved */
+};
+
+struct machine_function
+{
+ /* Current frame information, calculated by compute_frame_size. */
+ struct iq2000_frame_info frame;
+};
+
+/* Global variables for machine-dependent things. */
+
+/* Count the number of .file directives, so that .loc is up to date. */
+int num_source_filenames = 0;
+
+/* Files to separate the text and the data output, so that all of the data
+ can be emitted before the text, which will mean that the assembler will
+ generate smaller code, based on the global pointer. */
+FILE *asm_out_data_file;
+FILE *asm_out_text_file;
+
+/* The next branch instruction is a branch likely, not branch normal. */
+int iq2000_branch_likely;
+
+/* Count of delay slots and how many are filled. */
+int dslots_load_total;
+int dslots_load_filled;
+int dslots_jump_total;
+int dslots_jump_filled;
+
+/* # of nops needed by previous insn */
+int dslots_number_nops;
+
+/* Number of 1/2/3 word references to data items (ie, not jal's). */
+int num_refs[3];
+
+/* registers to check for load delay */
+rtx iq2000_load_reg, iq2000_load_reg2, iq2000_load_reg3, iq2000_load_reg4;
+
+/* Cached operands, and operator to compare for use in set/branch/trap
+ on condition codes. */
+rtx branch_cmp[2];
+
+/* what type of branch to use */
+enum cmp_type branch_type;
+
+/* The target cpu for code generation. */
+enum processor_type iq2000_arch;
+
+/* The target cpu for optimization and scheduling. */
+enum processor_type iq2000_tune;
+
+/* which instruction set architecture to use. */
+int iq2000_isa;
+
+/* Strings to hold which cpu and instruction set architecture to use. */
+const char *iq2000_cpu_string; /* for -mcpu=<xxx> */
+const char *iq2000_arch_string; /* for -march=<xxx> */
+
+/* Mode used for saving/restoring general purpose registers. */
+static enum machine_mode gpr_mode;
+
+/* List of all IQ2000 punctuation characters used by print_operand. */
+char iq2000_print_operand_punct[256];
+\f
+/* Initialize the GCC target structure. */
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS iq2000_init_builtins
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN iq2000_expand_builtin
+
+#undef TARGET_ASM_SELECT_RTX_SECTION
+#define TARGET_ASM_SELECT_RTX_SECTION iq2000_select_rtx_section
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+\f
+/* Return 1 if OP can be used as an operand where a register or 16 bit unsigned
+ integer is needed. */
+
+int
+uns_arith_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op))
+ return 1;
+
+ return register_operand (op, mode);
+}
+
+/* Return 1 if OP can be used as an operand where a 16 bit integer is needed. */
+
+int
+arith_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT && SMALL_INT (op))
+ return 1;
+
+ return register_operand (op, mode);
+}
+
+/* Return 1 if OP is a integer which fits in 16 bits */
+
+int
+small_int (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
+}
+
+/* Return 1 if OP is a 32 bit integer which is too big to be loaded with one
+ instruction. */
+
+int
+large_int (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ HOST_WIDE_INT value;
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ value = INTVAL (op);
+
+ /* ior reg,$r0,value */
+ if ((value & ~ ((HOST_WIDE_INT) 0x0000ffff)) == 0)
+ return 0;
+
+ /* subu reg,$r0,value */
+ if (((unsigned HOST_WIDE_INT) (value + 32768)) <= 32767)
+ return 0;
+
+ /* lui reg,value>>16 */
+ if ((value & 0x0000ffff) == 0)
+ return 0;
+
+ return 1;
+}
+
+/* Return 1 if OP is a register or the constant 0. */
+
+int
+reg_or_0_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ switch (GET_CODE (op))
+ {
+ case CONST_INT:
+ return INTVAL (op) == 0;
+
+ case CONST_DOUBLE:
+ return op == CONST0_RTX (mode);
+
+ case REG:
+ case SUBREG:
+ return register_operand (op, mode);
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Return 1 if OP is a memory operand that fits in a single instruction
+ (ie, register + small offset). */
+
+int
+simple_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ rtx addr, plus0, plus1;
+
+ /* Eliminate non-memory operations */
+ if (GET_CODE (op) != MEM)
+ return 0;
+
+ /* dword operations really put out 2 instructions, so eliminate them. */
+ if (GET_MODE_SIZE (GET_MODE (op)) > (unsigned) UNITS_PER_WORD)
+ return 0;
+
+ /* Decode the address now. */
+ addr = XEXP (op, 0);
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ case LO_SUM:
+ return 1;
+
+ case CONST_INT:
+ return SMALL_INT (addr);
+
+ case PLUS:
+ plus0 = XEXP (addr, 0);
+ plus1 = XEXP (addr, 1);
+ if (GET_CODE (plus0) == REG
+ && GET_CODE (plus1) == CONST_INT && SMALL_INT (plus1)
+ && SMALL_INT_UNSIGNED (plus1) /* No negative offsets */)
+ return 1;
+
+ else if (GET_CODE (plus1) == REG
+ && GET_CODE (plus0) == CONST_INT && SMALL_INT (plus0)
+ && SMALL_INT_UNSIGNED (plus1) /* No negative offsets */)
+ return 1;
+
+ else
+ return 0;
+
+ case SYMBOL_REF:
+ return 0;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Return nonzero if the code of this rtx pattern is EQ or NE. */
+
+int
+equality_op (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (mode != GET_MODE (op))
+ return 0;
+
+ return GET_CODE (op) == EQ || GET_CODE (op) == NE;
+}
+
+/* Return nonzero if the code is a relational operations (EQ, LE, etc.) */
+
+int
+cmp_op (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (mode != GET_MODE (op))
+ return 0;
+
+ return GET_RTX_CLASS (GET_CODE (op)) == '<';
+}
+
+/* Return nonzero if the operand is either the PC or a label_ref. */
+
+int
+pc_or_label_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (op == pc_rtx)
+ return 1;
+
+ if (GET_CODE (op) == LABEL_REF)
+ return 1;
+
+ return 0;
+}
+
+/* Return nonzero if OP is a valid operand for a call instruction. */
+
+int
+call_insn_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return (CONSTANT_ADDRESS_P (op)
+ || (GET_CODE (op) == REG && op != arg_pointer_rtx
+ && ! (REGNO (op) >= FIRST_PSEUDO_REGISTER
+ && REGNO (op) <= LAST_VIRTUAL_REGISTER)));
+}
+
+/* Return nonzero if OP is valid as a source operand for a move instruction. */
+
+int
+move_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ /* Accept any general operand after reload has started; doing so
+ avoids losing if reload does an in-place replacement of a register
+ with a SYMBOL_REF or CONST. */
+ return (general_operand (op, mode)
+ && (! (iq2000_check_split (op, mode))
+ || reload_in_progress || reload_completed));
+}
+
+/* Return nonzero if OP is a constant power of 2. */
+
+int
+power_of_2_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ int intval;
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ else
+ intval = INTVAL (op);
+
+ return ((intval & ((unsigned)(intval) - 1)) == 0);
+}
+
+/* Return nonzero if we split the address into high and low parts. */
+
+int
+iq2000_check_split (address, mode)
+ rtx address;
+ enum machine_mode mode;
+{
+ /* This is the same check used in simple_memory_operand.
+ We use it here because LO_SUM is not offsettable. */
+ if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD)
+ return 0;
+
+ if ((GET_CODE (address) == SYMBOL_REF)
+ || (GET_CODE (address) == CONST
+ && GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF)
+ || GET_CODE (address) == LABEL_REF)
+ return 1;
+
+ return 0;
+}
+
+/* Return nonzero if REG is valid for MODE. */
+
+int
+iq2000_reg_mode_ok_for_base_p (reg, mode, strict)
+ rtx reg;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ int strict;
+{
+ return (strict
+ ? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode)
+ : GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode));
+}
+
+/* Return a nonzero value if XINSN is a legitimate address for a
+ memory operand of the indicated MODE. STRICT is non-zero if this
+ function is called during reload. */
+
+int
+iq2000_legitimate_address_p (mode, xinsn, strict)
+ enum machine_mode mode;
+ rtx xinsn;
+ int strict;
+{
+ if (TARGET_DEBUG_A_MODE)
+ {
+ GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n",
+ strict ? "" : "not ");
+ GO_DEBUG_RTX (xinsn);
+ }
+
+ /* Check for constant before stripping off SUBREG, so that we don't
+ accept (subreg (const_int)) which will fail to reload. */
+ if (CONSTANT_ADDRESS_P (xinsn)
+ && ! (iq2000_check_split (xinsn, mode))
+ && ! (GET_CODE (xinsn) == CONST_INT && ! SMALL_INT (xinsn)))
+ return 1;
+
+ while (GET_CODE (xinsn) == SUBREG)
+ xinsn = SUBREG_REG (xinsn);
+
+ if (GET_CODE (xinsn) == REG
+ && iq2000_reg_mode_ok_for_base_p (xinsn, mode, strict))
+ return 1;
+
+ if (GET_CODE (xinsn) == LO_SUM)
+ {
+ register rtx xlow0 = XEXP (xinsn, 0);
+ register rtx xlow1 = XEXP (xinsn, 1);
+
+ while (GET_CODE (xlow0) == SUBREG)
+ xlow0 = SUBREG_REG (xlow0);
+ if (GET_CODE (xlow0) == REG
+ && iq2000_reg_mode_ok_for_base_p (xlow0, mode, strict)
+ && iq2000_check_split (xlow1, mode))
+ return 1;
+ }
+
+ if (GET_CODE (xinsn) == PLUS)
+ {
+ register rtx xplus0 = XEXP (xinsn, 0);
+ register rtx xplus1 = XEXP (xinsn, 1);
+ register enum rtx_code code0;
+ register enum rtx_code code1;
+
+ while (GET_CODE (xplus0) == SUBREG)
+ xplus0 = SUBREG_REG (xplus0);
+ code0 = GET_CODE (xplus0);
+
+ while (GET_CODE (xplus1) == SUBREG)
+ xplus1 = SUBREG_REG (xplus1);
+ code1 = GET_CODE (xplus1);
+
+ if (code0 == REG
+ && iq2000_reg_mode_ok_for_base_p (xplus0, mode, strict))
+ {
+ if (code1 == CONST_INT && SMALL_INT (xplus1)
+ && SMALL_INT_UNSIGNED (xplus1) /* No negative offsets */)
+ return 1;
+ }
+ }
+
+ if (TARGET_DEBUG_A_MODE)
+ GO_PRINTF ("Not a legitimate address\n");
+
+ /* The address was not legitimate. */
+ return 0;
+}
+\f
+/* Returns an operand string for the given instruction's delay slot,
+ after updating filled delay slot statistics.
+
+ We assume that operands[0] is the target register that is set.
+
+ In order to check the next insn, most of this functionality is moved
+ to FINAL_PRESCAN_INSN, and we just set the global variables that
+ it needs. */
+
+const char *
+iq2000_fill_delay_slot (ret, type, operands, cur_insn)
+ const char *ret; /* normal string to return */
+ enum delay_type type; /* type of delay */
+ rtx operands[]; /* operands to use */
+ rtx cur_insn; /* current insn */
+{
+ register rtx set_reg;
+ register enum machine_mode mode;
+ register rtx next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL_RTX;
+ register int num_nops;
+
+ if (type == DELAY_LOAD || type == DELAY_FCMP)
+ num_nops = 1;
+
+ else
+ num_nops = 0;
+
+ /* Make sure that we don't put nop's after labels. */
+ next_insn = NEXT_INSN (cur_insn);
+ while (next_insn != 0
+ && (GET_CODE (next_insn) == NOTE
+ || GET_CODE (next_insn) == CODE_LABEL))
+ next_insn = NEXT_INSN (next_insn);
+
+ dslots_load_total += num_nops;
+ if (TARGET_DEBUG_C_MODE
+ || type == DELAY_NONE
+ || operands == 0
+ || cur_insn == 0
+ || next_insn == 0
+ || GET_CODE (next_insn) == CODE_LABEL
+ || (set_reg = operands[0]) == 0)
+ {
+ dslots_number_nops = 0;
+ iq2000_load_reg = 0;
+ iq2000_load_reg2 = 0;
+ iq2000_load_reg3 = 0;
+ iq2000_load_reg4 = 0;
+ return ret;
+ }
+
+ set_reg = operands[0];
+ if (set_reg == 0)
+ return ret;
+
+ while (GET_CODE (set_reg) == SUBREG)
+ set_reg = SUBREG_REG (set_reg);
+
+ mode = GET_MODE (set_reg);
+ dslots_number_nops = num_nops;
+ iq2000_load_reg = set_reg;
+ if (GET_MODE_SIZE (mode)
+ > (unsigned) (UNITS_PER_WORD))
+ iq2000_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1);
+ else
+ iq2000_load_reg2 = 0;
+
+ return ret;
+}
+\f
+/* Determine whether a memory reference takes one (based off of the GP
+ pointer), two (normal), or three (label + reg) instructions, and bump the
+ appropriate counter for -mstats. */
+
+static void
+iq2000_count_memory_refs (op, num)
+ rtx op;
+ int num;
+{
+ int additional = 0;
+ int n_words = 0;
+ rtx addr, plus0, plus1;
+ enum rtx_code code0, code1;
+ int looping;
+
+ if (TARGET_DEBUG_B_MODE)
+ {
+ fprintf (stderr, "\n========== iq2000_count_memory_refs:\n");
+ debug_rtx (op);
+ }
+
+ /* Skip MEM if passed, otherwise handle movsi of address. */
+ addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
+
+ /* Loop, going through the address RTL. */
+ do
+ {
+ looping = FALSE;
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ case CONST_INT:
+ case LO_SUM:
+ break;
+
+ case PLUS:
+ plus0 = XEXP (addr, 0);
+ plus1 = XEXP (addr, 1);
+ code0 = GET_CODE (plus0);
+ code1 = GET_CODE (plus1);
+
+ if (code0 == REG)
+ {
+ additional++;
+ addr = plus1;
+ looping = 1;
+ continue;
+ }
+
+ if (code0 == CONST_INT)
+ {
+ addr = plus1;
+ looping = 1;
+ continue;
+ }
+
+ if (code1 == REG)
+ {
+ additional++;
+ addr = plus0;
+ looping = 1;
+ continue;
+ }
+
+ if (code1 == CONST_INT)
+ {
+ addr = plus0;
+ looping = 1;
+ continue;
+ }
+
+ if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
+ {
+ addr = plus0;
+ looping = 1;
+ continue;
+ }
+
+ if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
+ {
+ addr = plus1;
+ looping = 1;
+ continue;
+ }
+
+ break;
+
+ case LABEL_REF:
+ n_words = 2; /* always 2 words */
+ break;
+
+ case CONST:
+ addr = XEXP (addr, 0);
+ looping = 1;
+ continue;
+
+ case SYMBOL_REF:
+ n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
+ break;
+
+ default:
+ break;
+ }
+ }
+ while (looping);
+
+ if (n_words == 0)
+ return;
+
+ n_words += additional;
+ if (n_words > 3)
+ n_words = 3;
+
+ num_refs[n_words-1] += num;
+}
+\f
+/* Return the appropriate instructions to move one operand to another. */
+
+const char *
+iq2000_move_1word (operands, insn, unsignedp)
+ rtx operands[];
+ rtx insn;
+ int unsignedp;
+{
+ const char *ret = 0;
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ enum rtx_code code0 = GET_CODE (op0);
+ enum rtx_code code1 = GET_CODE (op1);
+ enum machine_mode mode = GET_MODE (op0);
+ int subreg_offset0 = 0;
+ int subreg_offset1 = 0;
+ enum delay_type delay = DELAY_NONE;
+
+ while (code0 == SUBREG)
+ {
+ subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
+ GET_MODE (SUBREG_REG (op0)),
+ SUBREG_BYTE (op0),
+ GET_MODE (op0));
+ op0 = SUBREG_REG (op0);
+ code0 = GET_CODE (op0);
+ }
+
+ while (code1 == SUBREG)
+ {
+ subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
+ GET_MODE (SUBREG_REG (op1)),
+ SUBREG_BYTE (op1),
+ GET_MODE (op1));
+ op1 = SUBREG_REG (op1);
+ code1 = GET_CODE (op1);
+ }
+
+ /* For our purposes, a condition code mode is the same as SImode. */
+ if (mode == CCmode)
+ mode = SImode;
+
+ if (code0 == REG)
+ {
+ int regno0 = REGNO (op0) + subreg_offset0;
+
+ if (code1 == REG)
+ {
+ int regno1 = REGNO (op1) + subreg_offset1;
+
+ /* Do not do anything for assigning a register to itself */
+ if (regno0 == regno1)
+ ret = "";
+
+ else if (GP_REG_P (regno0))
+ {
+ if (GP_REG_P (regno1))
+ ret = "or\t%0,%%0,%1";
+ }
+
+ }
+
+ else if (code1 == MEM)
+ {
+ delay = DELAY_LOAD;
+
+ if (TARGET_STATS)
+ iq2000_count_memory_refs (op1, 1);
+
+ if (GP_REG_P (regno0))
+ {
+ /* For loads, use the mode of the memory item, instead of the
+ target, so zero/sign extend can use this code as well. */
+ switch (GET_MODE (op1))
+ {
+ default:
+ break;
+ case SFmode:
+ ret = "lw\t%0,%1";
+ break;
+ case SImode:
+ case CCmode:
+ ret = "lw\t%0,%1";
+ break;
+ case HImode:
+ ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
+ break;
+ case QImode:
+ ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
+ break;
+ }
+ }
+ }
+
+ else if (code1 == CONST_INT
+ || (code1 == CONST_DOUBLE
+ && GET_MODE (op1) == VOIDmode))
+ {
+ if (code1 == CONST_DOUBLE)
+ {
+ /* This can happen when storing constants into long long
+ bitfields. Just store the least significant word of
+ the value. */
+ operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
+ }
+
+ if (INTVAL (op1) == 0)
+ {
+ if (GP_REG_P (regno0))
+ ret = "or\t%0,%%0,%z1";
+ }
+ else if (GP_REG_P (regno0))
+ {
+ if (SMALL_INT_UNSIGNED (op1))
+ ret = "ori\t%0,%%0,%x1\t\t\t# %1";
+ else if (SMALL_INT (op1))
+ ret = "addiu\t%0,%%0,%1\t\t\t# %1";
+ else
+ ret = "lui\t%0,%X1\t\t\t# %1\n\tori\t%0,%0,%x1";
+ }
+ }
+
+ else if (code1 == CONST_DOUBLE && mode == SFmode)
+ {
+ if (op1 == CONST0_RTX (SFmode))
+ {
+ if (GP_REG_P (regno0))
+ ret = "or\t%0,%%0,%.";
+ }
+
+ else
+ {
+ delay = DELAY_LOAD;
+ ret = "li.s\t%0,%1";
+ }
+ }
+
+ else if (code1 == LABEL_REF)
+ {
+ if (TARGET_STATS)
+ iq2000_count_memory_refs (op1, 1);
+
+ ret = "la\t%0,%a1";
+ }
+
+ else if (code1 == SYMBOL_REF || code1 == CONST)
+ {
+ if (TARGET_STATS)
+ iq2000_count_memory_refs (op1, 1);
+
+ ret = "la\t%0,%a1";
+ }
+
+ else if (code1 == PLUS)
+ {
+ rtx add_op0 = XEXP (op1, 0);
+ rtx add_op1 = XEXP (op1, 1);
+
+ if (GET_CODE (XEXP (op1, 1)) == REG
+ && GET_CODE (XEXP (op1, 0)) == CONST_INT)
+ add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0);
+
+ operands[2] = add_op0;
+ operands[3] = add_op1;
+ ret = "add%:\t%0,%2,%3";
+ }
+
+ else if (code1 == HIGH)
+ {
+ operands[1] = XEXP (op1, 0);
+ ret = "lui\t%0,%%hi(%1)";
+ }
+ }
+
+ else if (code0 == MEM)
+ {
+ if (TARGET_STATS)
+ iq2000_count_memory_refs (op0, 1);
+
+ if (code1 == REG)
+ {
+ int regno1 = REGNO (op1) + subreg_offset1;
+
+ if (GP_REG_P (regno1))
+ {
+ switch (mode)
+ {
+ case SFmode: ret = "sw\t%1,%0"; break;
+ case SImode: ret = "sw\t%1,%0"; break;
+ case HImode: ret = "sh\t%1,%0"; break;
+ case QImode: ret = "sb\t%1,%0"; break;
+ default: break;
+ }
+ }
+ }
+
+ else if (code1 == CONST_INT && INTVAL (op1) == 0)
+ {
+ switch (mode)
+ {
+ case SFmode: ret = "sw\t%z1,%0"; break;
+ case SImode: ret = "sw\t%z1,%0"; break;
+ case HImode: ret = "sh\t%z1,%0"; break;
+ case QImode: ret = "sb\t%z1,%0"; break;
+ default: break;
+ }
+ }
+
+ else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
+ {
+ switch (mode)
+ {
+ case SFmode: ret = "sw\t%.,%0"; break;
+ case SImode: ret = "sw\t%.,%0"; break;
+ case HImode: ret = "sh\t%.,%0"; break;
+ case QImode: ret = "sb\t%.,%0"; break;
+ default: break;
+ }
+ }
+ }
+
+ if (ret == 0)
+ {
+ abort_with_insn (insn, "Bad move");
+ return 0;
+ }
+
+ if (delay != DELAY_NONE)
+ return iq2000_fill_delay_slot (ret, delay, operands, insn);
+
+ return ret;
+}
+\f
+/* Provide the costs of an addressing mode that contains ADDR. */
+
+int
+iq2000_address_cost (addr)
+ rtx addr;
+{
+ switch (GET_CODE (addr))
+ {
+ case LO_SUM:
+ return 1;
+
+ case LABEL_REF:
+ return 2;
+
+ case CONST:
+ {
+ rtx offset = const0_rtx;
+ addr = eliminate_constant_term (XEXP (addr, 0), &offset);
+ if (GET_CODE (addr) == LABEL_REF)
+ return 2;
+
+ if (GET_CODE (addr) != SYMBOL_REF)
+ return 4;
+
+ if (! SMALL_INT (offset))
+ return 2;
+ }
+
+ /* ... fall through ... */
+
+ case SYMBOL_REF:
+ return SYMBOL_REF_FLAG (addr) ? 1 : 2;
+
+ case PLUS:
+ {
+ register rtx plus0 = XEXP (addr, 0);
+ register rtx plus1 = XEXP (addr, 1);
+
+ if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
+ plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0);
+
+ if (GET_CODE (plus0) != REG)
+ break;
+
+ switch (GET_CODE (plus1))
+ {
+ case CONST_INT:
+ return SMALL_INT (plus1) ? 1 : 2;
+
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case HIGH:
+ case LO_SUM:
+ return iq2000_address_cost (plus1) + 1;
+
+ default:
+ break;
+ }
+ }
+
+ default:
+ break;
+ }
+
+ return 4;
+}
+\f
+/* Make normal rtx_code into something we can index from an array. */
+
+static enum internal_test
+map_test_to_internal_test (test_code)
+ enum rtx_code test_code;
+{
+ enum internal_test test = ITEST_MAX;
+
+ switch (test_code)
+ {
+ case EQ: test = ITEST_EQ; break;
+ case NE: test = ITEST_NE; break;
+ case GT: test = ITEST_GT; break;
+ case GE: test = ITEST_GE; break;
+ case LT: test = ITEST_LT; break;
+ case LE: test = ITEST_LE; break;
+ case GTU: test = ITEST_GTU; break;
+ case GEU: test = ITEST_GEU; break;
+ case LTU: test = ITEST_LTU; break;
+ case LEU: test = ITEST_LEU; break;
+ default: break;
+ }
+
+ return test;
+}
+\f
+/* Generate the code to compare two integer values. The return value is:
+ (reg:SI xx) The pseudo register the comparison is in
+ 0 No register, generate a simple branch.
+*/
+
+rtx
+gen_int_relational (test_code, result, cmp0, cmp1, p_invert)
+ enum rtx_code test_code; /* relational test (EQ, etc) */
+ rtx result; /* result to store comp. or 0 if branch */
+ rtx cmp0; /* first operand to compare */
+ rtx cmp1; /* second operand to compare */
+ int *p_invert; /* NULL or ptr to hold whether branch needs */
+ /* to reverse its test */
+{
+ struct cmp_info
+ {
+ enum rtx_code test_code; /* code to use in instruction (LT vs. LTU) */
+ int const_low; /* low bound of constant we can accept */
+ int const_high; /* high bound of constant we can accept */
+ int const_add; /* constant to add (convert LE -> LT) */
+ int reverse_regs; /* reverse registers in test */
+ int invert_const; /* != 0 if invert value if cmp1 is constant */
+ int invert_reg; /* != 0 if invert value if cmp1 is register */
+ int unsignedp; /* != 0 for unsigned comparisons. */
+ };
+
+ static struct cmp_info info[ (int)ITEST_MAX ] = {
+
+ { XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
+ { XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
+ { LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
+ { LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
+ { LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
+ { LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
+ { LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
+ { LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
+ { LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
+ { LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
+ };
+
+ enum internal_test test;
+ enum machine_mode mode;
+ struct cmp_info *p_info;
+ int branch_p;
+ int eqne_p;
+ int invert;
+ rtx reg;
+ rtx reg2;
+
+ test = map_test_to_internal_test (test_code);
+ if (test == ITEST_MAX)
+ abort ();
+
+ p_info = &info[(int) test];
+ eqne_p = (p_info->test_code == XOR);
+
+ mode = GET_MODE (cmp0);
+ if (mode == VOIDmode)
+ mode = GET_MODE (cmp1);
+
+ /* Eliminate simple branches */
+ branch_p = (result == 0);
+ if (branch_p)
+ {
+ if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
+ {
+ /* Comparisons against zero are simple branches */
+ if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
+ return 0;
+
+ /* Test for beq/bne. */
+ if (eqne_p)
+ return 0;
+ }
+
+ /* allocate a pseudo to calculate the value in. */
+ result = gen_reg_rtx (mode);
+ }
+
+ /* Make sure we can handle any constants given to us. */
+ if (GET_CODE (cmp0) == CONST_INT)
+ cmp0 = force_reg (mode, cmp0);
+
+ if (GET_CODE (cmp1) == CONST_INT)
+ {
+ HOST_WIDE_INT value = INTVAL (cmp1);
+
+ if (value < p_info->const_low
+ || value > p_info->const_high)
+ cmp1 = force_reg (mode, cmp1);
+ }
+
+ /* See if we need to invert the result. */
+ invert = (GET_CODE (cmp1) == CONST_INT
+ ? p_info->invert_const : p_info->invert_reg);
+
+ if (p_invert != (int *)0)
+ {
+ *p_invert = invert;
+ invert = 0;
+ }
+
+ /* Comparison to constants, may involve adding 1 to change a LT into LE.
+ Comparison between two registers, may involve switching operands. */
+ if (GET_CODE (cmp1) == CONST_INT)
+ {
+ if (p_info->const_add != 0)
+ {
+ HOST_WIDE_INT new = INTVAL (cmp1) + p_info->const_add;
+
+ /* If modification of cmp1 caused overflow,
+ we would get the wrong answer if we follow the usual path;
+ thus, x > 0xffffffffU would turn into x > 0U. */
+ if ((p_info->unsignedp
+ ? (unsigned HOST_WIDE_INT) new >
+ (unsigned HOST_WIDE_INT) INTVAL (cmp1)
+ : new > INTVAL (cmp1))
+ != (p_info->const_add > 0))
+ {
+ /* This test is always true, but if INVERT is true then
+ the result of the test needs to be inverted so 0 should
+ be returned instead. */
+ emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
+ return result;
+ }
+ else
+ cmp1 = GEN_INT (new);
+ }
+ }
+
+ else if (p_info->reverse_regs)
+ {
+ rtx temp = cmp0;
+ cmp0 = cmp1;
+ cmp1 = temp;
+ }
+
+ if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
+ reg = cmp0;
+ else
+ {
+ reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
+ convert_move (reg, gen_rtx (p_info->test_code, mode, cmp0, cmp1), 0);
+ }
+
+ if (test == ITEST_NE)
+ {
+ convert_move (result, gen_rtx (GTU, mode, reg, const0_rtx), 0);
+ if (p_invert != NULL)
+ *p_invert = 0;
+ invert = 0;
+ }
+
+ else if (test == ITEST_EQ)
+ {
+ reg2 = invert ? gen_reg_rtx (mode) : result;
+ convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0);
+ reg = reg2;
+ }
+
+ if (invert)
+ {
+ rtx one;
+
+ one = const1_rtx;
+ convert_move (result, gen_rtx (XOR, mode, reg, one), 0);
+ }
+
+ return result;
+}
+\f
+/* Emit the common code for doing conditional branches.
+ operand[0] is the label to jump to.
+ The comparison operands are saved away by cmp{si,di,sf,df}. */
+
+void
+gen_conditional_branch (operands, test_code)
+ rtx operands[];
+ enum rtx_code test_code;
+{
+ enum cmp_type type = branch_type;
+ rtx cmp0 = branch_cmp[0];
+ rtx cmp1 = branch_cmp[1];
+ enum machine_mode mode;
+ rtx reg;
+ int invert;
+ rtx label1, label2;
+
+ switch (type)
+ {
+ case CMP_SI:
+ case CMP_DI:
+ mode = type == CMP_SI ? SImode : DImode;
+ invert = 0;
+ reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);
+
+ if (reg)
+ {
+ cmp0 = reg;
+ cmp1 = const0_rtx;
+ test_code = NE;
+ }
+ else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
+ /* We don't want to build a comparison against a non-zero
+ constant. */
+ cmp1 = force_reg (mode, cmp1);
+
+ break;
+
+ case CMP_SF:
+ case CMP_DF:
+ reg = gen_reg_rtx (CCmode);
+
+ /* For cmp0 != cmp1, build cmp0 == cmp1, and test for result == 0 */
+ emit_insn (gen_rtx_SET (VOIDmode, reg,
+ gen_rtx (test_code == NE ? EQ : test_code,
+ CCmode, cmp0, cmp1)));
+
+ test_code = test_code == NE ? EQ : NE;
+ mode = CCmode;
+ cmp0 = reg;
+ cmp1 = const0_rtx;
+ invert = 0;
+ break;
+
+ default:
+ abort_with_insn (gen_rtx (test_code, VOIDmode, cmp0, cmp1), "bad test");
+ }
+
+ /* Generate the branch. */
+
+ label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]);
+ label2 = pc_rtx;
+
+ if (invert)
+ {
+ label2 = label1;
+ label1 = pc_rtx;
+ }
+
+ emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx (test_code, mode,
+ cmp0, cmp1),
+ label1, label2)));
+}
+\f
+/* Initialize CUMULATIVE_ARGS for a function. */
+
+void
+init_cumulative_args (cum, fntype, libname)
+ CUMULATIVE_ARGS *cum; /* argument info to initialize */
+ tree fntype; /* tree ptr for function decl */
+ rtx libname ATTRIBUTE_UNUSED; /* SYMBOL_REF of library name or 0 */
+{
+ static CUMULATIVE_ARGS zero_cum;
+ tree param, next_param;
+
+ if (TARGET_DEBUG_D_MODE)
+ {
+ fprintf (stderr,
+ "\ninit_cumulative_args, fntype = 0x%.8lx", (long)fntype);
+
+ if (!fntype)
+ fputc ('\n', stderr);
+
+ else
+ {
+ tree ret_type = TREE_TYPE (fntype);
+ fprintf (stderr, ", fntype code = %s, ret code = %s\n",
+ tree_code_name[(int)TREE_CODE (fntype)],
+ tree_code_name[(int)TREE_CODE (ret_type)]);
+ }
+ }
+
+ *cum = zero_cum;
+
+ /* Determine if this function has variable arguments. This is
+ indicated by the last argument being 'void_type_mode' if there
+ are no variable arguments. The standard IQ2000 calling sequence
+ passes all arguments in the general purpose registers in this case. */
+
+ for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
+ param != 0; param = next_param)
+ {
+ next_param = TREE_CHAIN (param);
+ if (next_param == 0 && TREE_VALUE (param) != void_type_node)
+ cum->gp_reg_found = 1;
+ }
+}
+
+/* Advance the argument to the next argument position. */
+
+void
+function_arg_advance (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum; /* current arg information */
+ enum machine_mode mode; /* current arg mode */
+ tree type; /* type of the argument or 0 if lib support */
+ int named; /* whether or not the argument was named */
+{
+ if (TARGET_DEBUG_D_MODE)
+ {
+ fprintf (stderr,
+ "function_adv({gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
+ cum->gp_reg_found, cum->arg_number, cum->arg_words,
+ GET_MODE_NAME (mode));
+ fprintf (stderr, HOST_PTR_PRINTF, (const PTR) type);
+ fprintf (stderr, ", %d )\n\n", named);
+ }
+
+ cum->arg_number++;
+ switch (mode)
+ {
+ case VOIDmode:
+ break;
+
+ default:
+ if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+ abort ();
+
+ cum->gp_reg_found = 1;
+ cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1)
+ / UNITS_PER_WORD);
+ break;
+
+ case BLKmode:
+ cum->gp_reg_found = 1;
+ cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
+ / UNITS_PER_WORD);
+ break;
+
+ case SFmode:
+ cum->arg_words++;
+ if (! cum->gp_reg_found && cum->arg_number <= 2)
+ cum->fp_code += 1 << ((cum->arg_number - 1) * 2);
+ break;
+
+ case DFmode:
+ cum->arg_words += 2;
+ if (! cum->gp_reg_found && cum->arg_number <= 2)
+ cum->fp_code += 2 << ((cum->arg_number - 1) * 2);
+ break;
+
+ case DImode:
+ cum->gp_reg_found = 1;
+ cum->arg_words += 2;
+ break;
+
+ case QImode:
+ case HImode:
+ case SImode:
+ cum->gp_reg_found = 1;
+ cum->arg_words++;
+ break;
+ }
+}
+
+/* Return an RTL expression containing the register for the given mode,
+ or 0 if the argument is to be passed on the stack. */
+
+struct rtx_def *
+function_arg (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum; /* current arg information */
+ enum machine_mode mode; /* current arg mode */
+ tree type; /* type of the argument or 0 if lib support */
+ int named; /* != 0 for normal args, == 0 for ... args */
+{
+ rtx ret;
+ int regbase = -1;
+ int bias = 0;
+ unsigned int *arg_words = &cum->arg_words;
+ int struct_p = (type != 0
+ && (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE));
+
+ if (TARGET_DEBUG_D_MODE)
+ {
+ fprintf (stderr,
+ "function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
+ cum->gp_reg_found, cum->arg_number, cum->arg_words,
+ GET_MODE_NAME (mode));
+ fprintf (stderr, HOST_PTR_PRINTF, (const PTR) type);
+ fprintf (stderr, ", %d ) = ", named);
+ }
+
+
+ cum->last_arg_fp = 0;
+ switch (mode)
+ {
+ case SFmode:
+ regbase = GP_ARG_FIRST;
+ break;
+
+ case DFmode:
+ cum->arg_words += cum->arg_words & 1;
+
+ regbase = GP_ARG_FIRST;
+ break;
+
+ default:
+ if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
+ abort ();
+
+ /* Drops through. */
+ case BLKmode:
+ if (type != NULL_TREE && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
+ cum->arg_words += (cum->arg_words & 1);
+ regbase = GP_ARG_FIRST;
+ break;
+
+ case VOIDmode:
+ case QImode:
+ case HImode:
+ case SImode:
+ regbase = GP_ARG_FIRST;
+ break;
+
+ case DImode:
+ cum->arg_words += (cum->arg_words & 1);
+ regbase = GP_ARG_FIRST;
+ }
+
+ if (*arg_words >= (unsigned) MAX_ARGS_IN_REGISTERS)
+ {
+ if (TARGET_DEBUG_D_MODE)
+ fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");
+
+ ret = 0;
+ }
+ else
+ {
+ if (regbase == -1)
+ abort ();
+
+ if (! type || TREE_CODE (type) != RECORD_TYPE
+ || ! named || ! TYPE_SIZE_UNIT (type)
+ || ! host_integerp (TYPE_SIZE_UNIT (type), 1))
+ ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
+ else
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
+ && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
+ && host_integerp (bit_position (field), 0)
+ && int_bit_position (field) % BITS_PER_WORD == 0)
+ break;
+
+ /* If the whole struct fits a DFmode register,
+ we don't need the PARALLEL. */
+ if (! field || mode == DFmode)
+ ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
+ else
+ {
+ unsigned int chunks;
+ HOST_WIDE_INT bitpos;
+ unsigned int regno;
+ unsigned int i;
+
+ /* ??? If this is a packed structure, then the last hunk won't
+ be 64 bits. */
+
+ chunks
+ = tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD;
+ if (chunks + *arg_words + bias > (unsigned) MAX_ARGS_IN_REGISTERS)
+ chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;
+
+ /* assign_parms checks the mode of ENTRY_PARM, so we must
+ use the actual mode here. */
+ ret = gen_rtx_PARALLEL (mode, rtvec_alloc (chunks));
+
+ bitpos = 0;
+ regno = regbase + *arg_words + bias;
+ field = TYPE_FIELDS (type);
+ for (i = 0; i < chunks; i++)
+ {
+ rtx reg;
+
+ for (; field; field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && int_bit_position (field) >= bitpos)
+ break;
+
+ if (field
+ && int_bit_position (field) == bitpos
+ && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
+ && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
+ reg = gen_rtx_REG (DFmode, regno++);
+ else
+ reg = gen_rtx_REG (word_mode, regno);
+
+ XVECEXP (ret, 0, i)
+ = gen_rtx_EXPR_LIST (VOIDmode, reg,
+ GEN_INT (bitpos / BITS_PER_UNIT));
+
+ bitpos += 64;
+ regno++;
+ }
+ }
+ }
+
+ if (TARGET_DEBUG_D_MODE)
+ fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias],
+ struct_p ? ", [struct]" : "");
+ }
+
+ /* We will be called with a mode of VOIDmode after the last argument
+ has been seen. Whatever we return will be passed to the call
+ insn. If we need any shifts for small structures, return them in
+ a PARALLEL. */
+ if (mode == VOIDmode)
+ {
+ if (cum->num_adjusts > 0)
+ ret = gen_rtx (PARALLEL, (enum machine_mode) cum->fp_code,
+ gen_rtvec_v (cum->num_adjusts, cum->adjust));
+ }
+
+ return ret;
+}
+
+int
+function_arg_partial_nregs (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum; /* current arg information */
+ enum machine_mode mode; /* current arg mode */
+ tree type ATTRIBUTE_UNUSED;/* type of the argument or 0 if lib support */
+ int named ATTRIBUTE_UNUSED;/* != 0 for normal args, == 0 for ... args */
+{
+ if (mode == DImode
+ && cum->arg_words == MAX_ARGS_IN_REGISTERS - (unsigned)1)
+ {
+ if (TARGET_DEBUG_D_MODE)
+ fprintf (stderr, "function_arg_partial_nregs = 1\n");
+
+ return 1;
+ }
+
+ return 0;
+}
+\f
+/* Implement va_start. */
+
+void
+iq2000_va_start (valist, nextarg)
+ tree valist;
+ rtx nextarg;
+{
+ int int_arg_words;
+
+ /* Find out how many non-float named formals */
+ int gpr_save_area_size;
+ /* Note UNITS_PER_WORD is 4 bytes */
+ int_arg_words = current_function_args_info.arg_words;
+ if (int_arg_words < 8 )
+ /* Adjust for the prologue's economy measure */
+ gpr_save_area_size = (8 - int_arg_words) * UNITS_PER_WORD;
+ else
+ gpr_save_area_size = 0;
+
+ /* Everything is in the GPR save area, or in the overflow
+ area which is contiguous with it. */
+
+ nextarg = plus_constant (nextarg, -gpr_save_area_size);
+ std_expand_builtin_va_start (valist, nextarg);
+}
+
+/* Implement va_arg. */
+
+rtx
+iq2000_va_arg (valist, type)
+ tree valist, type;
+{
+ HOST_WIDE_INT size, rsize;
+ rtx addr_rtx;
+ tree t;
+
+ int indirect;
+ rtx r, lab_over = NULL_RTX, lab_false;
+ tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
+ tree ovfl, gtop, ftop, goff, foff;
+
+ size = int_size_in_bytes (type);
+ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
+ indirect
+ = function_arg_pass_by_reference (NULL, TYPE_MODE (type), type, 0);
+ if (indirect)
+ {
+ size = POINTER_SIZE / BITS_PER_UNIT;
+ rsize = UNITS_PER_WORD;
+ }
+
+ addr_rtx = gen_reg_rtx (Pmode);
+
+ {
+ /* Case of all args in a merged stack. No need to check bounds,
+ just advance valist along the stack. */
+
+ tree gpr = valist;
+ if (! indirect
+ && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
+ {
+ t = build (PLUS_EXPR, TREE_TYPE (gpr), gpr,
+ build_int_2 (2*UNITS_PER_WORD - 1, 0));
+ t = build (BIT_AND_EXPR, TREE_TYPE (t), t,
+ build_int_2 (-2*UNITS_PER_WORD, -1));
+ t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, t);
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ t = build (POSTINCREMENT_EXPR, TREE_TYPE (gpr), gpr,
+ size_int (rsize));
+ r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
+ if (r != addr_rtx)
+ emit_move_insn (addr_rtx, r);
+
+ /* flush the POSTINCREMENT */
+ emit_queue();
+
+ if (indirect)
+ {
+ r = gen_rtx_MEM (Pmode, addr_rtx);
+ set_mem_alias_set (r, get_varargs_alias_set ());
+ emit_move_insn (addr_rtx, r);
+ }
+ else
+ {
+ if (BYTES_BIG_ENDIAN && rsize != size)
+ addr_rtx = plus_constant (addr_rtx, rsize - size);
+ }
+ return addr_rtx;
+ }
+
+ /* Not a simple merged stack. Need ptrs and indexes left by va_start. */
+
+ f_ovfl = TYPE_FIELDS (va_list_type_node);
+ f_gtop = TREE_CHAIN (f_ovfl);
+ f_ftop = TREE_CHAIN (f_gtop);
+ f_goff = TREE_CHAIN (f_ftop);
+ f_foff = TREE_CHAIN (f_goff);
+
+ ovfl = build (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl);
+ gtop = build (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop);
+ ftop = build (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop);
+ goff = build (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff);
+ foff = build (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff);
+
+ lab_false = gen_label_rtx ();
+ lab_over = gen_label_rtx ();
+
+ if (TREE_CODE (type) == REAL_TYPE)
+ {
+
+ /* Emit code to branch if foff == 0. */
+ r = expand_expr (foff, NULL_RTX, TYPE_MODE (TREE_TYPE (foff)),
+ EXPAND_NORMAL);
+ emit_cmp_and_jump_insns (r, const0_rtx, EQ,
+ const1_rtx, GET_MODE (r), 1, lab_false);
+
+ /* Emit code for addr_rtx = ftop - foff */
+ t = build (MINUS_EXPR, TREE_TYPE (ftop), ftop, foff );
+ r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
+ if (r != addr_rtx)
+ emit_move_insn (addr_rtx, r);
+
+ /* Emit code for foff-=8.
+ Advances the offset up FPR save area by one double */
+ t = build (MINUS_EXPR, TREE_TYPE (foff), foff, build_int_2 (8, 0));
+ t = build (MODIFY_EXPR, TREE_TYPE (foff), foff, t);
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ emit_queue();
+ emit_jump (lab_over);
+ emit_barrier ();
+ emit_label (lab_false);
+
+ /* If a 4-byte int is followed by an 8-byte float, then
+ natural alignment causes a 4 byte gap.
+ So, dynamically adjust ovfl up to a multiple of 8. */
+ t = build (BIT_AND_EXPR, TREE_TYPE (ovfl), ovfl,
+ build_int_2 (7, 0));
+ t = build (PLUS_EXPR, TREE_TYPE (ovfl), ovfl, t);
+ t = build (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ /* Emit code for addr_rtx = the ovfl pointer into overflow area.
+ Postincrement the ovfl pointer by 8. */
+ t = build (POSTINCREMENT_EXPR, TREE_TYPE(ovfl), ovfl,
+ size_int (8));
+ r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
+ if (r != addr_rtx)
+ emit_move_insn (addr_rtx, r);
+
+ emit_queue();
+ emit_label (lab_over);
+ return addr_rtx;
+ }
+ else
+ {
+ /* not REAL_TYPE */
+ int step_size;
+
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_PRECISION (type) == 64)
+ {
+ /* int takes 32 bits of the GPR save area, but
+ longlong takes an aligned 64 bits. So, emit code
+ to zero the low order bits of goff, thus aligning
+ the later calculation of (gtop-goff) upwards. */
+ t = build (BIT_AND_EXPR, TREE_TYPE (goff), goff,
+ build_int_2 (-8, -1));
+ t = build (MODIFY_EXPR, TREE_TYPE (goff), goff, t);
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ /* Emit code to branch if goff == 0. */
+ r = expand_expr (goff, NULL_RTX, TYPE_MODE (TREE_TYPE (goff)),
+ EXPAND_NORMAL);
+ emit_cmp_and_jump_insns (r, const0_rtx, EQ,
+ const1_rtx, GET_MODE (r), 1, lab_false);
+
+ /* Emit code for addr_rtx = gtop - goff. */
+ t = build (MINUS_EXPR, TREE_TYPE (gtop), gtop, goff);
+ r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
+ if (r != addr_rtx)
+ emit_move_insn (addr_rtx, r);
+
+ if (TYPE_PRECISION (type) == 64)
+ step_size = 8;
+ else
+ step_size = UNITS_PER_WORD;
+
+ /* Emit code for goff = goff - step_size.
+ Advances the offset up GPR save area over the item. */
+ t = build (MINUS_EXPR, TREE_TYPE (goff), goff,
+ build_int_2 (step_size, 0));
+ t = build (MODIFY_EXPR, TREE_TYPE (goff), goff, t);
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ emit_queue();
+ emit_jump (lab_over);
+ emit_barrier ();
+ emit_label (lab_false);
+
+ /* Emit code for addr_rtx -> overflow area, postinc by step_size */
+ t = build (POSTINCREMENT_EXPR, TREE_TYPE(ovfl), ovfl,
+ size_int (step_size));
+ r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
+ if (r != addr_rtx)
+ emit_move_insn (addr_rtx, r);
+
+ emit_queue();
+ emit_label (lab_over);
+
+ if (indirect)
+ {
+ r = gen_rtx_MEM (Pmode, addr_rtx);
+ set_mem_alias_set (r, get_varargs_alias_set ());
+ emit_move_insn (addr_rtx, r);
+ }
+ else
+ {
+ if (BYTES_BIG_ENDIAN && rsize != size)
+ addr_rtx = plus_constant (addr_rtx, rsize - size);
+ }
+ return addr_rtx;
+ }
+}
+\f
+/* Abort after printing out a specific insn. */
+
+static void
+abort_with_insn (insn, reason)
+ rtx insn;
+ const char *reason;
+{
+ error (reason);
+ debug_rtx (insn);
+ abort ();
+}
+\f
+/* Detect any conflicts in the switches. */
+
+void
+override_options ()
+{
+ register enum processor_type iq2000_cpu;
+
+ target_flags &= ~MASK_GPOPT;
+
+ iq2000_isa = IQ2000_ISA_DEFAULT;
+
+ /* Identify the processor type. */
+
+ if (iq2000_cpu_string != 0)
+ {
+ iq2000_cpu = iq2000_parse_cpu (iq2000_cpu_string);
+ if (iq2000_cpu == PROCESSOR_DEFAULT)
+ {
+ error ("bad value (%s) for -mcpu= switch", iq2000_arch_string);
+ iq2000_cpu_string = "default";
+ }
+ iq2000_arch = iq2000_cpu;
+ iq2000_tune = iq2000_cpu;
+ }
+
+ if (iq2000_arch_string == 0
+ || ! strcmp (iq2000_arch_string, "default")
+ || ! strcmp (iq2000_arch_string, "DEFAULT"))
+ {
+ switch (iq2000_isa)
+ {
+ default:
+ iq2000_arch_string = "iq2000";
+ iq2000_arch = PROCESSOR_IQ2000;
+ break;
+ }
+ }
+ else
+ {
+ iq2000_arch = iq2000_parse_cpu (iq2000_arch_string);
+ if (iq2000_arch == PROCESSOR_DEFAULT)
+ {
+ error ("bad value (%s) for -march= switch", iq2000_arch_string);
+ iq2000_arch_string = "default";
+ }
+ if (iq2000_arch == PROCESSOR_IQ10)
+ {
+ error ("The compiler does not support -march=%s.", iq2000_arch_string);
+ iq2000_arch_string = "default";
+ }
+ }
+
+ iq2000_print_operand_punct['?'] = 1;
+ iq2000_print_operand_punct['#'] = 1;
+ iq2000_print_operand_punct['&'] = 1;
+ iq2000_print_operand_punct['!'] = 1;
+ iq2000_print_operand_punct['*'] = 1;
+ iq2000_print_operand_punct['@'] = 1;
+ iq2000_print_operand_punct['.'] = 1;
+ iq2000_print_operand_punct['('] = 1;
+ iq2000_print_operand_punct[')'] = 1;
+ iq2000_print_operand_punct['['] = 1;
+ iq2000_print_operand_punct[']'] = 1;
+ iq2000_print_operand_punct['<'] = 1;
+ iq2000_print_operand_punct['>'] = 1;
+ iq2000_print_operand_punct['{'] = 1;
+ iq2000_print_operand_punct['}'] = 1;
+ iq2000_print_operand_punct['^'] = 1;
+ iq2000_print_operand_punct['$'] = 1;
+ iq2000_print_operand_punct['+'] = 1;
+ iq2000_print_operand_punct['~'] = 1;
+
+ /* Save GPR registers in word_mode sized hunks. word_mode hasn't been
+ initialized yet, so we can't use that here. */
+ gpr_mode = SImode;
+
+ /* Function to allocate machine-dependent function status. */
+ init_machine_status = &iq2000_init_machine_status;
+}
+
+/* Allocate a chunk of memory for per-function machine-dependent data. */
+
+static struct machine_function *
+iq2000_init_machine_status ()
+{
+ return ((struct machine_function *)
+ ggc_alloc_cleared (sizeof (struct machine_function)));
+}
+\f
+/* The arg pointer (which is eliminated) points to the virtual frame pointer,
+ while the frame pointer (which may be eliminated) points to the stack
+ pointer after the initial adjustments. */
+
+HOST_WIDE_INT
+iq2000_debugger_offset (addr, offset)
+ rtx addr;
+ HOST_WIDE_INT offset;
+{
+ rtx offset2 = const0_rtx;
+ rtx reg = eliminate_constant_term (addr, &offset2);
+
+ if (offset == 0)
+ offset = INTVAL (offset2);
+
+ if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
+ || reg == hard_frame_pointer_rtx)
+ {
+ HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
+ ? compute_frame_size (get_frame_size ())
+ : cfun->machine->frame.total_size;
+
+ offset = offset - frame_size;
+ }
+
+ return offset;
+}
+\f
+/* If defined, a C statement to be executed just prior to the output of
+ assembler code for INSN, to modify the extracted operands so they will be
+ output differently.
+
+ Here the argument OPVEC is the vector containing the operands extracted
+ from INSN, and NOPERANDS is the number of elements of the vector which
+ contain meaningful data for this insn. The contents of this vector are
+ what will be used to convert the insn template into assembler code, so you
+ can change the assembler output by changing the contents of the vector.
+
+ We use it to check if the current insn needs a nop in front of it because
+ of load delays, and also to update the delay slot statistics. */
+
+void
+final_prescan_insn (insn, opvec, noperands)
+ rtx insn;
+ rtx opvec[] ATTRIBUTE_UNUSED;
+ int noperands ATTRIBUTE_UNUSED;
+{
+ if (dslots_number_nops > 0)
+ {
+ rtx pattern = PATTERN (insn);
+ int length = get_attr_length (insn);
+
+ /* Do we need to emit a NOP? */
+ if (length == 0
+ || (iq2000_load_reg != 0 && reg_mentioned_p (iq2000_load_reg, pattern))
+ || (iq2000_load_reg2 != 0 && reg_mentioned_p (iq2000_load_reg2, pattern))
+ || (iq2000_load_reg3 != 0 && reg_mentioned_p (iq2000_load_reg3, pattern))
+ || (iq2000_load_reg4 != 0
+ && reg_mentioned_p (iq2000_load_reg4, pattern)))
+ fputs ("\tnop\n", asm_out_file);
+
+ else
+ dslots_load_filled++;
+
+ while (--dslots_number_nops > 0)
+ fputs ("\tnop\n", asm_out_file);
+
+ iq2000_load_reg = 0;
+ iq2000_load_reg2 = 0;
+ iq2000_load_reg3 = 0;
+ iq2000_load_reg4 = 0;
+ }
+
+ if ((GET_CODE (insn) == JUMP_INSN
+ || GET_CODE (insn) == CALL_INSN
+ || (GET_CODE (PATTERN (insn)) == RETURN))
+ && NEXT_INSN (PREV_INSN (insn)) == insn)
+ {
+ rtx nop_insn = emit_insn_after (gen_nop (), insn);
+ INSN_ADDRESSES_NEW (nop_insn, -1);
+ }
+
+ if (TARGET_STATS
+ && (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN))
+ dslots_jump_total++;
+}
+\f
+/* Return the bytes needed to compute the frame pointer from the current
+ stack pointer.
+
+ IQ2000 stack frames look like:
+
+ Before call After call
+ +-----------------------+ +-----------------------+
+ high | | | |
+ mem. | | | |
+ | caller's temps. | | caller's temps. |
+ | | | |
+ +-----------------------+ +-----------------------+
+ | | | |
+ | arguments on stack. | | arguments on stack. |
+ | | | |
+ +-----------------------+ +-----------------------+
+ | 4 words to save | | 4 words to save |
+ | arguments passed | | arguments passed |
+ | in registers, even | | in registers, even |
+ SP->| if not passed. | VFP->| if not passed. |
+ +-----------------------+ +-----------------------+
+ | |
+ | fp register save |
+ | |
+ +-----------------------+
+ | |
+ | gp register save |
+ | |
+ +-----------------------+
+ | |
+ | local variables |
+ | |
+ +-----------------------+
+ | |
+ | alloca allocations |
+ | |
+ +-----------------------+
+ | |
+ | GP save for V.4 abi |
+ | |
+ +-----------------------+
+ | |
+ | arguments on stack |
+ | |
+ +-----------------------+
+ | 4 words to save |
+ | arguments passed |
+ | in registers, even |
+ low SP->| if not passed. |
+ memory +-----------------------+
+
+*/
+
+HOST_WIDE_INT
+compute_frame_size (size)
+ HOST_WIDE_INT size; /* # of var. bytes allocated */
+{
+ int regno;
+ HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
+ HOST_WIDE_INT var_size; /* # bytes that variables take up */
+ HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
+ HOST_WIDE_INT extra_size; /* # extra bytes */
+ HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
+ HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
+ HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
+ long mask; /* mask of saved gp registers */
+ int fp_inc; /* 1 or 2 depending on the size of fp regs */
+ long fp_bits; /* bitmask to use for each fp register */
+
+ gp_reg_size = 0;
+ fp_reg_size = 0;
+ mask = 0;
+ extra_size = IQ2000_STACK_ALIGN ((0));
+ var_size = IQ2000_STACK_ALIGN (size);
+ args_size = IQ2000_STACK_ALIGN (current_function_outgoing_args_size);
+
+ /* If a function dynamically allocates the stack and
+ has 0 for STACK_DYNAMIC_OFFSET then allocate some stack space */
+
+ if (args_size == 0 && current_function_calls_alloca)
+ args_size = 4 * UNITS_PER_WORD;
+
+ total_size = var_size + args_size + extra_size;
+
+ /* Calculate space needed for gp registers. */
+ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
+ {
+ if (MUST_SAVE_REGISTER (regno))
+ {
+ gp_reg_size += GET_MODE_SIZE (gpr_mode);
+ mask |= 1L << (regno - GP_REG_FIRST);
+ }
+ }
+
+ /* We need to restore these for the handler. */
+ if (current_function_calls_eh_return)
+ {
+ int i;
+ for (i = 0; ; ++i)
+ {
+ regno = EH_RETURN_DATA_REGNO (i);
+ if (regno == (signed int) INVALID_REGNUM)
+ break;
+ gp_reg_size += GET_MODE_SIZE (gpr_mode);
+ mask |= 1L << (regno - GP_REG_FIRST);
+ }
+ }
+
+ fp_inc = 2;
+ fp_bits = 3;
+ gp_reg_rounded = IQ2000_STACK_ALIGN (gp_reg_size);
+ total_size += gp_reg_rounded + IQ2000_STACK_ALIGN (fp_reg_size);
+
+ /* The gp reg is caller saved, so there is no need for leaf routines
+ (total_size == extra_size) to save the gp reg. */
+ if (total_size == extra_size
+ && ! profile_flag)
+ total_size = extra_size = 0;
+
+ total_size += IQ2000_STACK_ALIGN (current_function_pretend_args_size);
+
+ /* Save other computed information. */
+ cfun->machine->frame.total_size = total_size;
+ cfun->machine->frame.var_size = var_size;
+ cfun->machine->frame.args_size = args_size;
+ cfun->machine->frame.extra_size = extra_size;
+ cfun->machine->frame.gp_reg_size = gp_reg_size;
+ cfun->machine->frame.fp_reg_size = fp_reg_size;
+ cfun->machine->frame.mask = mask;
+ cfun->machine->frame.initialized = reload_completed;
+ cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
+
+ if (mask)
+ {
+ unsigned long offset;
+
+ offset = (args_size + extra_size + var_size
+ + gp_reg_size - GET_MODE_SIZE (gpr_mode));
+
+ cfun->machine->frame.gp_sp_offset = offset;
+ cfun->machine->frame.gp_save_offset = offset - total_size;
+ }
+ else
+ {
+ cfun->machine->frame.gp_sp_offset = 0;
+ cfun->machine->frame.gp_save_offset = 0;
+ }
+
+ cfun->machine->frame.fp_sp_offset = 0;
+ cfun->machine->frame.fp_save_offset = 0;
+
+ /* Ok, we're done. */
+ return total_size;
+}
+\f
+/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
+ pointer, argument pointer, or return address pointer. TO is either
+ the stack pointer or hard frame pointer. */
+
+int
+iq2000_initial_elimination_offset (from, to)
+ int from;
+ int to ATTRIBUTE_UNUSED;
+{
+ int offset;
+
+ compute_frame_size (get_frame_size ());
+ if ((from) == FRAME_POINTER_REGNUM)
+ (offset) = 0;
+ else if ((from) == ARG_POINTER_REGNUM)
+ (offset) = (cfun->machine->frame.total_size);
+ else if ((from) == RETURN_ADDRESS_POINTER_REGNUM)
+ {
+ if (leaf_function_p ())
+ (offset) = 0;
+ else (offset) = cfun->machine->frame.gp_sp_offset
+ + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT))
+ * (BYTES_BIG_ENDIAN != 0));
+ }
+
+ return offset;
+}
+\f
+/* Common code to emit the insns (or to write the instructions to a file)
+ to save/restore registers.
+ Other parts of the code assume that IQ2000_TEMP1_REGNUM (aka large_reg)
+ is not modified within save_restore_insns. */
+
+#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)
+
+/* Emit instructions to load the value (SP + OFFSET) into IQ2000_TEMP2_REGNUM
+ and return an rtl expression for the register. Write the assembly
+ instructions directly to FILE if it is not null, otherwise emit them as
+ rtl.
+
+ This function is a subroutine of save_restore_insns. It is used when
+ OFFSET is too large to add in a single instruction. */
+
+static rtx
+iq2000_add_large_offset_to_sp (offset)
+ HOST_WIDE_INT offset;
+{
+ rtx reg = gen_rtx_REG (Pmode, IQ2000_TEMP2_REGNUM);
+ rtx offset_rtx = GEN_INT (offset);
+
+ emit_move_insn (reg, offset_rtx);
+ emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx));
+ return reg;
+}
+
+/* Make INSN frame related and note that it performs the frame-related
+ operation DWARF_PATTERN. */
+
+static void
+iq2000_annotate_frame_insn (insn, dwarf_pattern)
+ rtx insn, dwarf_pattern;
+{
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
+ dwarf_pattern,
+ REG_NOTES (insn));
+}
+
+/* Emit a move instruction that stores REG in MEM. Make the instruction
+ frame related and note that it stores REG at (SP + OFFSET). */
+
+static void
+iq2000_emit_frame_related_store (mem, reg, offset)
+ rtx mem;
+ rtx reg;
+ HOST_WIDE_INT offset;
+{
+ rtx dwarf_address = plus_constant (stack_pointer_rtx, offset);
+ rtx dwarf_mem = gen_rtx_MEM (GET_MODE (reg), dwarf_address);
+
+ iq2000_annotate_frame_insn (emit_move_insn (mem, reg),
+ gen_rtx_SET (GET_MODE (reg), dwarf_mem, reg));
+}
+
+static void
+save_restore_insns (store_p)
+ int store_p; /* true if this is prologue */
+{
+ long mask = cfun->machine->frame.mask;
+ int regno;
+ rtx base_reg_rtx;
+ HOST_WIDE_INT base_offset;
+ HOST_WIDE_INT gp_offset;
+ HOST_WIDE_INT end_offset;
+
+ if (frame_pointer_needed
+ && ! BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST))
+ abort ();
+
+ if (mask == 0)
+ {
+ base_reg_rtx = 0, base_offset = 0;
+ return;
+ }
+
+ /* Save registers starting from high to low. The debuggers prefer at least
+ the return register be stored at func+4, and also it allows us not to
+ need a nop in the epilog if at least one register is reloaded in
+ addition to return address. */
+
+ /* Save GP registers if needed. */
+ /* Pick which pointer to use as a base register. For small frames, just
+ use the stack pointer. Otherwise, use a temporary register. Save 2
+ cycles if the save area is near the end of a large frame, by reusing
+ the constant created in the prologue/epilogue to adjust the stack
+ frame. */
+
+ gp_offset = cfun->machine->frame.gp_sp_offset;
+ end_offset
+ = gp_offset - (cfun->machine->frame.gp_reg_size
+ - GET_MODE_SIZE (gpr_mode));
+
+ if (gp_offset < 0 || end_offset < 0)
+ internal_error
+ ("gp_offset (%ld) or end_offset (%ld) is less than zero.",
+ (long) gp_offset, (long) end_offset);
+
+ else if (gp_offset < 32768)
+ base_reg_rtx = stack_pointer_rtx, base_offset = 0;
+ else
+ {
+ int regno;
+ int reg_save_count = 0;
+ for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
+ if (BITSET_P (mask, regno - GP_REG_FIRST)) reg_save_count += 1;
+ base_offset = gp_offset - ((reg_save_count - 1) * 4);
+ base_reg_rtx = iq2000_add_large_offset_to_sp (base_offset);
+ }
+
+ for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
+ {
+ if (BITSET_P (mask, regno - GP_REG_FIRST))
+ {
+ rtx reg_rtx;
+ rtx mem_rtx
+ = gen_rtx (MEM, gpr_mode,
+ gen_rtx (PLUS, Pmode, base_reg_rtx,
+ GEN_INT (gp_offset - base_offset)));
+
+ if (! current_function_calls_eh_return)
+ RTX_UNCHANGING_P (mem_rtx) = 1;
+
+ reg_rtx = gen_rtx (REG, gpr_mode, regno);
+
+ if (store_p)
+ iq2000_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset);
+ else
+ {
+ emit_move_insn (reg_rtx, mem_rtx);
+ }
+ gp_offset -= GET_MODE_SIZE (gpr_mode);
+ }
+ }
+}
+\f
+/* Expand the prologue into a bunch of separate insns. */
+
+void
+iq2000_expand_prologue ()
+{
+ int regno;
+ HOST_WIDE_INT tsize;
+ int last_arg_is_vararg_marker = 0;
+ tree fndecl = current_function_decl;
+ tree fntype = TREE_TYPE (fndecl);
+ tree fnargs = DECL_ARGUMENTS (fndecl);
+ rtx next_arg_reg;
+ int i;
+ tree next_arg;
+ tree cur_arg;
+ CUMULATIVE_ARGS args_so_far;
+ int store_args_on_stack = (iq2000_can_use_return_insn ());
+
+ /* If struct value address is treated as the first argument. */
+ if (aggregate_value_p (DECL_RESULT (fndecl))
+ && ! current_function_returns_pcc_struct
+ && struct_value_incoming_rtx == 0)
+ {
+ tree type = build_pointer_type (fntype);
+ tree function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
+
+ DECL_ARG_TYPE (function_result_decl) = type;
+ TREE_CHAIN (function_result_decl) = fnargs;
+ fnargs = function_result_decl;
+ }
+
+ /* For arguments passed in registers, find the register number
+ of the first argument in the variable part of the argument list,
+ otherwise GP_ARG_LAST+1. Note also if the last argument is
+ the varargs special argument, and treat it as part of the
+ variable arguments.
+
+ This is only needed if store_args_on_stack is true. */
+
+ INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
+ regno = GP_ARG_FIRST;
+
+ for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
+ {
+ tree passed_type = DECL_ARG_TYPE (cur_arg);
+ enum machine_mode passed_mode = TYPE_MODE (passed_type);
+ rtx entry_parm;
+
+ if (TREE_ADDRESSABLE (passed_type))
+ {
+ passed_type = build_pointer_type (passed_type);
+ passed_mode = Pmode;
+ }
+
+ entry_parm = FUNCTION_ARG (args_so_far, passed_mode, passed_type, 1);
+
+ FUNCTION_ARG_ADVANCE (args_so_far, passed_mode, passed_type, 1);
+ next_arg = TREE_CHAIN (cur_arg);
+
+ if (entry_parm && store_args_on_stack)
+ {
+ if (next_arg == 0
+ && DECL_NAME (cur_arg)
+ && ((0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
+ "__builtin_va_alist"))
+ || (0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
+ "va_alist"))))
+ {
+ last_arg_is_vararg_marker = 1;
+ break;
+ }
+ else
+ {
+ int words;
+
+ if (GET_CODE (entry_parm) != REG)
+ abort ();
+
+ /* passed in a register, so will get homed automatically */
+ if (GET_MODE (entry_parm) == BLKmode)
+ words = (int_size_in_bytes (passed_type) + 3) / 4;
+ else
+ words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;
+
+ regno = REGNO (entry_parm) + words - 1;
+ }
+ }
+ else
+ {
+ regno = GP_ARG_LAST+1;
+ break;
+ }
+ }
+
+ /* In order to pass small structures by value in registers we need to
+ shift the value into the high part of the register.
+ Function_arg has encoded a PARALLEL rtx, holding a vector of
+ adjustments to be made as the next_arg_reg variable, so we split up the
+ insns, and emit them separately. */
+
+ next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1);
+ if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
+ {
+ rtvec adjust = XVEC (next_arg_reg, 0);
+ int num = GET_NUM_ELEM (adjust);
+
+ for (i = 0; i < num; i++)
+ {
+ rtx insn, pattern;
+
+ pattern = RTVEC_ELT (adjust, i);
+ if (GET_CODE (pattern) != SET
+ || GET_CODE (SET_SRC (pattern)) != ASHIFT)
+ abort_with_insn (pattern, "Insn is not a shift");
+ PUT_CODE (SET_SRC (pattern), ASHIFTRT);
+
+ insn = emit_insn (pattern);
+
+ /* Global life information isn't valid at this point, so we
+ can't check whether these shifts are actually used. Mark
+ them MAYBE_DEAD so that flow2 will remove them, and not
+ complain about dead code in the prologue. */
+ REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
+ REG_NOTES (insn));
+ }
+ }
+
+ tsize = compute_frame_size (get_frame_size ());
+
+ /* If this function is a varargs function, store any registers that
+ would normally hold arguments ($4 - $7) on the stack. */
+ if (store_args_on_stack
+ && ((TYPE_ARG_TYPES (fntype) != 0
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+ != void_type_node))
+ || last_arg_is_vararg_marker))
+ {
+ int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
+ rtx ptr = stack_pointer_rtx;
+
+ for (; regno <= GP_ARG_LAST; regno++)
+ {
+ if (offset != 0)
+ ptr = gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (offset));
+ emit_move_insn (gen_rtx (MEM, gpr_mode, ptr),
+ gen_rtx (REG, gpr_mode, regno));
+
+ offset += GET_MODE_SIZE (gpr_mode);
+ }
+ }
+
+ if (tsize > 0)
+ {
+ rtx tsize_rtx = GEN_INT (tsize);
+ rtx adjustment_rtx, insn, dwarf_pattern;
+
+ if (tsize > 32767)
+ {
+ adjustment_rtx = gen_rtx (REG, Pmode, IQ2000_TEMP1_REGNUM);
+ emit_move_insn (adjustment_rtx, tsize_rtx);
+ }
+ else
+ adjustment_rtx = tsize_rtx;
+
+ insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ adjustment_rtx));
+
+ dwarf_pattern = gen_rtx_SET (Pmode, stack_pointer_rtx,
+ plus_constant (stack_pointer_rtx, -tsize));
+
+ iq2000_annotate_frame_insn (insn, dwarf_pattern);
+
+ save_restore_insns (1);
+
+ if (frame_pointer_needed)
+ {
+ rtx insn = 0;
+
+ insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
+ stack_pointer_rtx));
+
+ if (insn)
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+
+ emit_insn (gen_blockage ());
+}
+\f
+/* Expand the epilogue into a bunch of separate insns. */
+
+void
+iq2000_expand_epilogue ()
+{
+ HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
+ rtx tsize_rtx = GEN_INT (tsize);
+ rtx tmp_rtx = (rtx)0;
+
+ if (iq2000_can_use_return_insn ())
+ {
+ emit_insn (gen_return ());
+ return;
+ }
+
+ if (tsize > 32767)
+ {
+ tmp_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
+ emit_move_insn (tmp_rtx, tsize_rtx);
+ tsize_rtx = tmp_rtx;
+ }
+
+ if (tsize > 0)
+ {
+ if (frame_pointer_needed)
+ {
+ emit_insn (gen_blockage ());
+
+ emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
+ }
+
+ save_restore_insns (0);
+
+ if (current_function_calls_eh_return)
+ {
+ rtx eh_ofs = EH_RETURN_STACKADJ_RTX;
+ emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx));
+ tsize_rtx = eh_ofs;
+ }
+
+ emit_insn (gen_blockage ());
+
+ if (tsize != 0 || current_function_calls_eh_return)
+ {
+ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ tsize_rtx));
+ }
+ }
+
+ if (current_function_calls_eh_return)
+ {
+ /* Perform the additional bump for __throw. */
+ emit_move_insn (gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM),
+ stack_pointer_rtx);
+ emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, Pmode,
+ HARD_FRAME_POINTER_REGNUM)));
+ emit_jump_insn (gen_eh_return_internal ());
+ }
+ else
+ emit_jump_insn (gen_return_internal (gen_rtx (REG, Pmode,
+ GP_REG_FIRST + 31)));
+}
+
+void
+iq2000_expand_eh_return (address)
+ rtx address;
+{
+ HOST_WIDE_INT gp_offset = cfun->machine->frame.gp_sp_offset;
+ rtx scratch;
+
+ scratch = plus_constant (stack_pointer_rtx, gp_offset);
+ emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address);
+}
+\f
+/* Return nonzero if this function is known to have a null epilogue.
+ This allows the optimizer to omit jumps to jumps if no stack
+ was created. */
+
+int
+iq2000_can_use_return_insn ()
+{
+ if (! reload_completed)
+ return 0;
+
+ if (regs_ever_live[31] || profile_flag)
+ return 0;
+
+ if (cfun->machine->frame.initialized)
+ return cfun->machine->frame.total_size == 0;
+
+ return compute_frame_size (get_frame_size ()) == 0;
+}
+\f
+/* Returns non-zero if X contains a SYMBOL_REF. */
+
+static int
+symbolic_expression_p (x)
+ rtx x;
+{
+ if (GET_CODE (x) == SYMBOL_REF)
+ return 1;
+
+ if (GET_CODE (x) == CONST)
+ return symbolic_expression_p (XEXP (x, 0));
+
+ if (GET_RTX_CLASS (GET_CODE (x)) == '1')
+ return symbolic_expression_p (XEXP (x, 0));
+
+ if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
+ || GET_RTX_CLASS (GET_CODE (x)) == '2')
+ return (symbolic_expression_p (XEXP (x, 0))
+ || symbolic_expression_p (XEXP (x, 1)));
+
+ return 0;
+}
+
+/* Choose the section to use for the constant rtx expression X that has
+ mode MODE. */
+
+static void
+iq2000_select_rtx_section (mode, x, align)
+ enum machine_mode mode;
+ rtx x ATTRIBUTE_UNUSED;
+ unsigned HOST_WIDE_INT align;
+{
+ /* For embedded applications, always put constants in read-only data,
+ in order to reduce RAM usage. */
+ /* For embedded applications, always put constants in read-only data,
+ in order to reduce RAM usage. */
+ mergeable_constant_section (mode, align, 0);
+}
+
+/* Choose the section to use for DECL. RELOC is true if its value contains
+ any relocatable expression.
+
+ Some of the logic used here needs to be replicated in
+ ENCODE_SECTION_INFO in iq2000.h so that references to these symbols
+ are done correctly. */
+
+static void
+iq2000_select_section (decl, reloc, align)
+ tree decl;
+ int reloc ATTRIBUTE_UNUSED;
+ unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED;
+{
+ if (TARGET_EMBEDDED_DATA)
+ {
+ /* For embedded applications, always put an object in read-only data
+ if possible, in order to reduce RAM usage. */
+
+ if (((TREE_CODE (decl) == VAR_DECL
+ && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
+ && DECL_INITIAL (decl)
+ && (DECL_INITIAL (decl) == error_mark_node
+ || TREE_CONSTANT (DECL_INITIAL (decl))))
+ /* Deal with calls from output_constant_def_contents. */
+ || (TREE_CODE (decl) != VAR_DECL
+ && (TREE_CODE (decl) != STRING_CST
+ || !flag_writable_strings))))
+ readonly_data_section ();
+ else
+ data_section ();
+ }
+ else
+ {
+ /* For hosted applications, always put an object in small data if
+ possible, as this gives the best performance. */
+
+ if (((TREE_CODE (decl) == VAR_DECL
+ && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
+ && DECL_INITIAL (decl)
+ && (DECL_INITIAL (decl) == error_mark_node
+ || TREE_CONSTANT (DECL_INITIAL (decl))))
+ /* Deal with calls from output_constant_def_contents. */
+ || (TREE_CODE (decl) != VAR_DECL
+ && (TREE_CODE (decl) != STRING_CST
+ || !flag_writable_strings))))
+ readonly_data_section ();
+ else
+ data_section ();
+ }
+}
+/* Return register to use for a function return value with VALTYPE for function
+ FUNC. */
+
+rtx
+iq2000_function_value (valtype, func)
+ tree valtype;
+ tree func ATTRIBUTE_UNUSED;
+{
+ int reg = GP_RETURN;
+ enum machine_mode mode = TYPE_MODE (valtype);
+ int unsignedp = TREE_UNSIGNED (valtype);
+
+ /* Since we define PROMOTE_FUNCTION_RETURN, we must promote the mode
+ just as PROMOTE_MODE does. */
+ mode = promote_mode (valtype, mode, &unsignedp, 1);
+
+ return gen_rtx_REG (mode, reg);
+}
+\f
+/* The implementation of FUNCTION_ARG_PASS_BY_REFERENCE. Return
+ nonzero when an argument must be passed by reference. */
+
+int
+function_arg_pass_by_reference (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode;
+ tree type;
+ int named ATTRIBUTE_UNUSED;
+{
+ int size;
+
+ /* We must pass by reference if we would be both passing in registers
+ and the stack. This is because any subsequent partial arg would be
+ handled incorrectly in this case. */
+
+ if (cum && MUST_PASS_IN_STACK (mode, type))
+ {
+ /* Don't pass the actual CUM to FUNCTION_ARG, because we would
+ get double copies of any offsets generated for small structs
+ passed in registers. */
+ CUMULATIVE_ARGS temp;
+ temp = *cum;
+ if (FUNCTION_ARG (temp, mode, type, named) != 0)
+ return 1;
+ }
+
+ if (type == NULL_TREE || mode == DImode || mode == DFmode)
+ return 0;
+
+ size = int_size_in_bytes (type);
+ return size == -1 || size > UNITS_PER_WORD;
+}
+
+/* Return the length of INSN. LENGTH is the initial length computed by
+ attributes in the machine-description file. */
+
+int
+iq2000_adjust_insn_length (insn, length)
+ rtx insn;
+ int length;
+{
+ /* A unconditional jump has an unfilled delay slot if it is not part
+ of a sequence. A conditional jump normally has a delay slot */
+ if (simplejump_p (insn)
+ || ((GET_CODE (insn) == JUMP_INSN
+ || GET_CODE (insn) == CALL_INSN)))
+ length += 4;
+
+ return length;
+}
+
+/* Output assembly instructions to perform a conditional branch.
+
+ INSN is the branch instruction. OPERANDS[0] is the condition.
+ OPERANDS[1] is the target of the branch. OPERANDS[2] is the target
+ of the first operand to the condition. If TWO_OPERANDS_P is
+ non-zero the comparison takes two operands; OPERANDS[3] will be the
+ second operand.
+
+ If INVERTED_P is non-zero we are to branch if the condition does
+ not hold. If FLOAT_P is non-zero this is a floating-point comparison.
+
+ LENGTH is the length (in bytes) of the sequence we are to generate.
+ That tells us whether to generate a simple conditional branch, or a
+ reversed conditional branch around a `jr' instruction. */
+
+char *
+iq2000_output_conditional_branch (insn,
+ operands,
+ two_operands_p,
+ float_p,
+ inverted_p,
+ length)
+ rtx insn;
+ rtx *operands;
+ int two_operands_p;
+ int float_p;
+ int inverted_p;
+ int length;
+{
+ static char buffer[200];
+ /* The kind of comparison we are doing. */
+ enum rtx_code code = GET_CODE (operands[0]);
+ /* Non-zero if the opcode for the comparison needs a `z' indicating
+ that it is a comparision against zero. */
+ int need_z_p;
+ /* A string to use in the assembly output to represent the first
+ operand. */
+ const char *op1 = "%z2";
+ /* A string to use in the assembly output to represent the second
+ operand. Use the hard-wired zero register if there's no second
+ operand. */
+ const char *op2 = (two_operands_p ? ",%z3" : ",%.");
+ /* The operand-printing string for the comparison. */
+ const char *comp = (float_p ? "%F0" : "%C0");
+ /* The operand-printing string for the inverted comparison. */
+ const char *inverted_comp = (float_p ? "%W0" : "%N0");
+
+ /* likely variants of each branch instruction annul the instruction
+ in the delay slot if the branch is not taken. */
+ iq2000_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
+
+ if (!two_operands_p)
+ {
+ /* To compute whether than A > B, for example, we normally
+ subtract B from A and then look at the sign bit. But, if we
+ are doing an unsigned comparison, and B is zero, we don't
+ have to do the subtraction. Instead, we can just check to
+ see if A is non-zero. Thus, we change the CODE here to
+ reflect the simpler comparison operation. */
+ switch (code)
+ {
+ case GTU:
+ code = NE;
+ break;
+
+ case LEU:
+ code = EQ;
+ break;
+
+ case GEU:
+ /* A condition which will always be true. */
+ code = EQ;
+ op1 = "%.";
+ break;
+
+ case LTU:
+ /* A condition which will always be false. */
+ code = NE;
+ op1 = "%.";
+ break;
+
+ default:
+ /* Not a special case. */
+ break;
+ }
+ }
+
+ /* Relative comparisons are always done against zero. But
+ equality comparisons are done between two operands, and therefore
+ do not require a `z' in the assembly language output. */
+ need_z_p = (!float_p && code != EQ && code != NE);
+ /* For comparisons against zero, the zero is not provided
+ explicitly. */
+ if (need_z_p)
+ op2 = "";
+
+ /* Begin by terminating the buffer. That way we can always use
+ strcat to add to it. */
+ buffer[0] = '\0';
+
+ switch (length)
+ {
+ case 4:
+ case 8:
+ /* Just a simple conditional branch. */
+ if (float_p)
+ sprintf (buffer, "b%s%%?\t%%Z2%%1",
+ inverted_p ? inverted_comp : comp);
+ else
+ sprintf (buffer, "b%s%s%%?\t%s%s,%%1",
+ inverted_p ? inverted_comp : comp,
+ need_z_p ? "z" : "",
+ op1,
+ op2);
+ return buffer;
+
+ case 12:
+ case 16:
+ {
+ /* Generate a reversed conditional branch around ` j'
+ instruction:
+
+ .set noreorder
+ .set nomacro
+ bc l
+ nop
+ j target
+ .set macro
+ .set reorder
+ l:
+
+ Because we have to jump four bytes *past* the following
+ instruction if this branch was annulled, we can't just use
+ a label, as in the picture above; there's no way to put the
+ label after the next instruction, as the assembler does not
+ accept `.L+4' as the target of a branch. (We can't just
+ wait until the next instruction is output; it might be a
+ macro and take up more than four bytes. Once again, we see
+ why we want to eliminate macros.)
+
+ If the branch is annulled, we jump four more bytes that we
+ would otherwise; that way we skip the annulled instruction
+ in the delay slot. */
+
+ const char *target
+ = ((iq2000_branch_likely || length == 16) ? ".+16" : ".+12");
+ char *c;
+
+ c = strchr (buffer, '\0');
+ /* Generate the reversed comparision. This takes four
+ bytes. */
+ if (float_p)
+ sprintf (c, "b%s\t%%Z2%s",
+ inverted_p ? comp : inverted_comp,
+ target);
+ else
+ sprintf (c, "b%s%s\t%s%s,%s",
+ inverted_p ? comp : inverted_comp,
+ need_z_p ? "z" : "",
+ op1,
+ op2,
+ target);
+ strcat (c, "\n\tnop\n\tj\t%1");
+ if (length == 16)
+ /* The delay slot was unfilled. Since we're inside
+ .noreorder, the assembler will not fill in the NOP for
+ us, so we must do it ourselves. */
+ strcat (buffer, "\n\tnop");
+ return buffer;
+ }
+
+ default:
+ abort ();
+ }
+
+ /* NOTREACHED */
+ return 0;
+}
+
+static enum processor_type
+iq2000_parse_cpu (cpu_string)
+ const char *cpu_string;
+{
+ const char *p = cpu_string;
+ enum processor_type cpu;
+
+ cpu = PROCESSOR_DEFAULT;
+ switch (p[2])
+ {
+ case '1':
+ if (!strcmp (p, "iq10"))
+ cpu = PROCESSOR_IQ10;
+ break;
+ case '2':
+ if (!strcmp (p, "iq2000"))
+ cpu = PROCESSOR_IQ2000;
+ break;
+ }
+
+ return cpu;
+}
+
+#define def_builtin(NAME, TYPE, CODE) \
+ builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, NULL, NULL_TREE)
+
+void
+iq2000_init_builtins ()
+{
+ tree endlink = void_list_node;
+ tree void_ftype, void_ftype_int, void_ftype_int_int;
+ tree void_ftype_int_int_int;
+ tree int_ftype_int, int_ftype_int_int, int_ftype_int_int_int;
+ tree int_ftype_int_int_int_int;
+
+ /* func () */
+ void_ftype
+ = build_function_type (void_type_node,
+ tree_cons (NULL_TREE, void_type_node, endlink));
+
+ /* func (int) */
+ void_ftype_int
+ = build_function_type (void_type_node,
+ tree_cons (NULL_TREE, integer_type_node, endlink));
+
+ /* void func (int, int) */
+ void_ftype_int_int
+ = build_function_type (void_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ endlink)));
+
+ /* int func (int) */
+ int_ftype_int
+ = build_function_type (integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node, endlink));
+
+ /* int func (int, int) */
+ int_ftype_int_int
+ = build_function_type (integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ endlink)));
+
+ /* void func (int, int, int) */
+void_ftype_int_int_int
+ = build_function_type
+ (void_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))));
+
+ /* int func (int, int, int, int) */
+ int_ftype_int_int_int_int
+ = build_function_type
+ (integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink)))));
+
+ /* int func (int, int, int) */
+ int_ftype_int_int_int
+ = build_function_type
+ (integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))));
+
+ /* int func (int, int, int, int) */
+ int_ftype_int_int_int_int
+ = build_function_type
+ (integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE, integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink)))));
+
+ def_builtin ("__builtin_ado16", int_ftype_int_int, IQ2000_BUILTIN_ADO16);
+ def_builtin ("__builtin_ram", int_ftype_int_int_int_int, IQ2000_BUILTIN_RAM);
+ def_builtin ("__builtin_chkhdr", void_ftype_int_int, IQ2000_BUILTIN_CHKHDR);
+ def_builtin ("__builtin_pkrl", void_ftype_int_int, IQ2000_BUILTIN_PKRL);
+ def_builtin ("__builtin_cfc0", int_ftype_int, IQ2000_BUILTIN_CFC0);
+ def_builtin ("__builtin_cfc1", int_ftype_int, IQ2000_BUILTIN_CFC1);
+ def_builtin ("__builtin_cfc2", int_ftype_int, IQ2000_BUILTIN_CFC2);
+ def_builtin ("__builtin_cfc3", int_ftype_int, IQ2000_BUILTIN_CFC3);
+ def_builtin ("__builtin_ctc0", void_ftype_int_int, IQ2000_BUILTIN_CTC0);
+ def_builtin ("__builtin_ctc1", void_ftype_int_int, IQ2000_BUILTIN_CTC1);
+ def_builtin ("__builtin_ctc2", void_ftype_int_int, IQ2000_BUILTIN_CTC2);
+ def_builtin ("__builtin_ctc3", void_ftype_int_int, IQ2000_BUILTIN_CTC3);
+ def_builtin ("__builtin_mfc0", int_ftype_int, IQ2000_BUILTIN_MFC0);
+ def_builtin ("__builtin_mfc1", int_ftype_int, IQ2000_BUILTIN_MFC1);
+ def_builtin ("__builtin_mfc2", int_ftype_int, IQ2000_BUILTIN_MFC2);
+ def_builtin ("__builtin_mfc3", int_ftype_int, IQ2000_BUILTIN_MFC3);
+ def_builtin ("__builtin_mtc0", void_ftype_int_int, IQ2000_BUILTIN_MTC0);
+ def_builtin ("__builtin_mtc1", void_ftype_int_int, IQ2000_BUILTIN_MTC1);
+ def_builtin ("__builtin_mtc2", void_ftype_int_int, IQ2000_BUILTIN_MTC2);
+ def_builtin ("__builtin_mtc3", void_ftype_int_int, IQ2000_BUILTIN_MTC3);
+ def_builtin ("__builtin_lur", void_ftype_int_int, IQ2000_BUILTIN_LUR);
+ def_builtin ("__builtin_rb", void_ftype_int_int, IQ2000_BUILTIN_RB);
+ def_builtin ("__builtin_rx", void_ftype_int_int, IQ2000_BUILTIN_RX);
+ def_builtin ("__builtin_srrd", void_ftype_int, IQ2000_BUILTIN_SRRD);
+ def_builtin ("__builtin_srwr", void_ftype_int_int, IQ2000_BUILTIN_SRWR);
+ def_builtin ("__builtin_wb", void_ftype_int_int, IQ2000_BUILTIN_WB);
+ def_builtin ("__builtin_wx", void_ftype_int_int, IQ2000_BUILTIN_WX);
+ def_builtin ("__builtin_luc32l", void_ftype_int_int, IQ2000_BUILTIN_LUC32L);
+ def_builtin ("__builtin_luc64", void_ftype_int_int, IQ2000_BUILTIN_LUC64);
+ def_builtin ("__builtin_luc64l", void_ftype_int_int, IQ2000_BUILTIN_LUC64L);
+ def_builtin ("__builtin_luk", void_ftype_int_int, IQ2000_BUILTIN_LUK);
+ def_builtin ("__builtin_lulck", void_ftype_int, IQ2000_BUILTIN_LULCK);
+ def_builtin ("__builtin_lum32", void_ftype_int_int, IQ2000_BUILTIN_LUM32);
+ def_builtin ("__builtin_lum32l", void_ftype_int_int, IQ2000_BUILTIN_LUM32L);
+ def_builtin ("__builtin_lum64", void_ftype_int_int, IQ2000_BUILTIN_LUM64);
+ def_builtin ("__builtin_lum64l", void_ftype_int_int, IQ2000_BUILTIN_LUM64L);
+ def_builtin ("__builtin_lurl", void_ftype_int_int, IQ2000_BUILTIN_LURL);
+ def_builtin ("__builtin_mrgb", int_ftype_int_int_int, IQ2000_BUILTIN_MRGB);
+ def_builtin ("__builtin_srrdl", void_ftype_int, IQ2000_BUILTIN_SRRDL);
+ def_builtin ("__builtin_srulck", void_ftype_int, IQ2000_BUILTIN_SRULCK);
+ def_builtin ("__builtin_srwru", void_ftype_int_int, IQ2000_BUILTIN_SRWRU);
+ def_builtin ("__builtin_trapqfl", void_ftype, IQ2000_BUILTIN_TRAPQFL);
+ def_builtin ("__builtin_trapqne", void_ftype, IQ2000_BUILTIN_TRAPQNE);
+ def_builtin ("__builtin_traprel", void_ftype_int, IQ2000_BUILTIN_TRAPREL);
+ def_builtin ("__builtin_wbu", void_ftype_int_int_int, IQ2000_BUILTIN_WBU);
+ def_builtin ("__builtin_syscall", void_ftype, IQ2000_BUILTIN_SYSCALL);
+}
+
+/* Builtin for ICODE having ARGCOUNT args in ARGLIST where each arg
+ has an rtx CODE */
+
+static rtx
+expand_one_builtin (icode, target, arglist, code, argcount)
+ enum insn_code icode;
+ rtx target;
+ tree arglist;
+ enum rtx_code *code;
+ int argcount;
+{
+ rtx pat;
+ tree arg [5];
+ rtx op [5];
+ enum machine_mode mode [5];
+ int i;
+
+ mode[0] = insn_data[icode].operand[0].mode;
+ for (i = 0; i < argcount; i++)
+ {
+ arg[i] = TREE_VALUE (arglist);
+ arglist = TREE_CHAIN (arglist);
+ op[i] = expand_expr (arg[i], NULL_RTX, VOIDmode, 0);
+ mode[i] = insn_data[icode].operand[i].mode;
+ if (code[i] == CONST_INT && GET_CODE (op[i]) != CONST_INT)
+ error ("argument `%d' is not a constant", i + 1);
+ if (code[i] == REG
+ && ! (*insn_data[icode].operand[i].predicate) (op[i], mode[i]))
+ op[i] = copy_to_mode_reg (mode[i], op[i]);
+ }
+
+ if (insn_data[icode].operand[0].constraint[0] == '=')
+ {
+ if (target == 0
+ || GET_MODE (target) != mode[0]
+ || ! (*insn_data[icode].operand[0].predicate) (target, mode[0]))
+ target = gen_reg_rtx (mode[0]);
+ }
+ else
+ target = 0;
+
+ switch (argcount)
+ {
+ case 0:
+ pat = GEN_FCN (icode) (target);
+ case 1:
+ if (target)
+ pat = GEN_FCN (icode) (target, op[0]);
+ else
+ pat = GEN_FCN (icode) (op[0]);
+ break;
+ case 2:
+ if (target)
+ pat = GEN_FCN (icode) (target, op[0], op[1]);
+ else
+ pat = GEN_FCN (icode) (op[0], op[1]);
+ break;
+ case 3:
+ if (target)
+ pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
+ else
+ pat = GEN_FCN (icode) (op[0], op[1], op[2]);
+ break;
+ case 4:
+ if (target)
+ pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
+ else
+ pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
+ break;
+ default:
+ abort ();
+ }
+
+ if (! pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+
+rtx
+iq2000_expand_builtin (exp, target, subtarget, mode, ignore)
+ tree exp;
+ rtx target;
+ rtx subtarget ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ int ignore ATTRIBUTE_UNUSED;
+{
+ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+ tree arglist = TREE_OPERAND (exp, 1);
+ int fcode = DECL_FUNCTION_CODE (fndecl);
+ enum rtx_code code [5];
+
+ code[0] = REG;
+ code[1] = REG;
+ code[2] = REG;
+ code[3] = REG;
+ code[4] = REG;
+ switch (fcode)
+ {
+ default:
+ break;
+
+ case IQ2000_BUILTIN_ADO16:
+ return expand_one_builtin (CODE_FOR_ado16, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_RAM:
+ code[1] = CONST_INT;
+ code[2] = CONST_INT;
+ code[3] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_ram, target, arglist, code, 4);
+
+ case IQ2000_BUILTIN_CHKHDR:
+ return expand_one_builtin (CODE_FOR_chkhdr, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_PKRL:
+ return expand_one_builtin (CODE_FOR_pkrl, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_CFC0:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_cfc0, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_CFC1:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_cfc1, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_CFC2:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_cfc2, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_CFC3:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_cfc3, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_CTC0:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_ctc0, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_CTC1:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_ctc1, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_CTC2:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_ctc2, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_CTC3:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_ctc3, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_MFC0:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mfc0, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_MFC1:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mfc1, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_MFC2:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mfc2, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_MFC3:
+ code[0] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mfc3, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_MTC0:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mtc0, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_MTC1:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mtc1, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_MTC2:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mtc2, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_MTC3:
+ code[1] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mtc3, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUR:
+ return expand_one_builtin (CODE_FOR_lur, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_RB:
+ return expand_one_builtin (CODE_FOR_rb, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_RX:
+ return expand_one_builtin (CODE_FOR_rx, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_SRRD:
+ return expand_one_builtin (CODE_FOR_srrd, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_SRWR:
+ return expand_one_builtin (CODE_FOR_srwr, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_WB:
+ return expand_one_builtin (CODE_FOR_wb, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_WX:
+ return expand_one_builtin (CODE_FOR_wx, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUC32L:
+ return expand_one_builtin (CODE_FOR_luc32l, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUC64:
+ return expand_one_builtin (CODE_FOR_luc64, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUC64L:
+ return expand_one_builtin (CODE_FOR_luc64l, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUK:
+ return expand_one_builtin (CODE_FOR_luk, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LULCK:
+ return expand_one_builtin (CODE_FOR_lulck, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_LUM32:
+ return expand_one_builtin (CODE_FOR_lum32, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUM32L:
+ return expand_one_builtin (CODE_FOR_lum32l, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUM64:
+ return expand_one_builtin (CODE_FOR_lum64, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LUM64L:
+ return expand_one_builtin (CODE_FOR_lum64l, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_LURL:
+ return expand_one_builtin (CODE_FOR_lurl, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_MRGB:
+ code[2] = CONST_INT;
+ return expand_one_builtin (CODE_FOR_mrgb, target, arglist, code, 3);
+
+ case IQ2000_BUILTIN_SRRDL:
+ return expand_one_builtin (CODE_FOR_srrdl, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_SRULCK:
+ return expand_one_builtin (CODE_FOR_srulck, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_SRWRU:
+ return expand_one_builtin (CODE_FOR_srwru, target, arglist, code, 2);
+
+ case IQ2000_BUILTIN_TRAPQFL:
+ return expand_one_builtin (CODE_FOR_trapqfl, target, arglist, code, 0);
+
+ case IQ2000_BUILTIN_TRAPQNE:
+ return expand_one_builtin (CODE_FOR_trapqne, target, arglist, code, 0);
+
+ case IQ2000_BUILTIN_TRAPREL:
+ return expand_one_builtin (CODE_FOR_traprel, target, arglist, code, 1);
+
+ case IQ2000_BUILTIN_WBU:
+ return expand_one_builtin (CODE_FOR_wbu, target, arglist, code, 3);
+
+ case IQ2000_BUILTIN_SYSCALL:
+ return expand_one_builtin (CODE_FOR_syscall, target, arglist, code, 0);
+ }
+
+ return NULL_RTX;
+}
+\f
+void
+iq2000_setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
+ CUMULATIVE_ARGS cum;
+ int mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+ int * pretend_size;
+ int no_rtl;
+{
+ unsigned int iq2000_off = (! (cum).last_arg_fp);
+ unsigned int iq2000_fp_off = ((cum).last_arg_fp);
+ if (((cum).arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off))
+ {
+ int iq2000_save_gp_regs
+ = MAX_ARGS_IN_REGISTERS - (cum).arg_words - iq2000_off;
+ int iq2000_save_fp_regs
+ = (MAX_ARGS_IN_REGISTERS - (cum).fp_arg_words - iq2000_fp_off);
+
+ if (iq2000_save_gp_regs < 0)
+ iq2000_save_gp_regs = 0;
+ if (iq2000_save_fp_regs < 0)
+ iq2000_save_fp_regs = 0;
+
+ *pretend_size = ((iq2000_save_gp_regs * UNITS_PER_WORD)
+ + (iq2000_save_fp_regs * UNITS_PER_FPREG));
+
+ if (! (no_rtl))
+ {
+ if ((cum).arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off)
+ {
+ rtx ptr, mem;
+ ptr = plus_constant (virtual_incoming_args_rtx,
+ - (iq2000_save_gp_regs
+ * UNITS_PER_WORD));
+ mem = gen_rtx_MEM (BLKmode, ptr);
+ move_block_from_reg
+ ((cum).arg_words + GP_ARG_FIRST + iq2000_off,
+ mem,
+ iq2000_save_gp_regs);
+ }
+ }
+ }
+}
+\f
+/* A C compound statement to output to stdio stream STREAM the
+ assembler syntax for an instruction operand that is a memory
+ reference whose address is ADDR. ADDR is an RTL expression.
+*/
+
+void
+print_operand_address (file, addr)
+ FILE *file;
+ rtx addr;
+{
+ if (!addr)
+ error ("PRINT_OPERAND_ADDRESS, null pointer");
+
+ else
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ if (REGNO (addr) == ARG_POINTER_REGNUM)
+ abort_with_insn (addr, "Arg pointer not eliminated.");
+
+ fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
+ break;
+
+ case LO_SUM:
+ {
+ register rtx arg0 = XEXP (addr, 0);
+ register rtx arg1 = XEXP (addr, 1);
+
+ if (GET_CODE (arg0) != REG)
+ abort_with_insn (addr,
+ "PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG.");
+
+ fprintf (file, "%%lo(");
+ print_operand_address (file, arg1);
+ fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
+ }
+ break;
+
+ case PLUS:
+ {
+ register rtx reg = 0;
+ register rtx offset = 0;
+ register rtx arg0 = XEXP (addr, 0);
+ register rtx arg1 = XEXP (addr, 1);
+
+ if (GET_CODE (arg0) == REG)
+ {
+ reg = arg0;
+ offset = arg1;
+ if (GET_CODE (offset) == REG)
+ abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
+ }
+
+ else if (GET_CODE (arg1) == REG)
+ reg = arg1, offset = arg0;
+ else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
+ {
+ output_addr_const (file, addr);
+ break;
+ }
+ else
+ abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
+
+ if (! CONSTANT_P (offset))
+ abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");
+
+ if (REGNO (reg) == ARG_POINTER_REGNUM)
+ abort_with_insn (addr, "Arg pointer not eliminated.");
+
+ output_addr_const (file, offset);
+ fprintf (file, "(%s)", reg_names [REGNO (reg)]);
+ }
+ break;
+
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ case CONST:
+ output_addr_const (file, addr);
+ if (GET_CODE (addr) == CONST_INT)
+ fprintf (file, "(%s)", reg_names [0]);
+ break;
+
+ default:
+ abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
+ break;
+ }
+}
+\f
+/* A C compound statement to output to stdio stream STREAM the
+ assembler syntax for an instruction operand X. X is an RTL
+ expression.
+
+ CODE is a value that can be used to specify one of several ways
+ of printing the operand. It is used when identical operands
+ must be printed differently depending on the context. CODE
+ comes from the `%' specification that was used to request
+ printing of the operand. If the specification was just `%DIGIT'
+ then CODE is 0; if the specification was `%LTR DIGIT' then CODE
+ is the ASCII code for LTR.
+
+ If X is a register, this macro should print the register's name.
+ The names can be found in an array `reg_names' whose type is
+ `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
+
+ When the machine description has a specification `%PUNCT' (a `%'
+ followed by a punctuation character), this macro is called with
+ a null pointer for X and the punctuation character for CODE.
+
+ The IQ2000 specific codes are:
+
+ 'X' X is CONST_INT, prints upper 16 bits in hexadecimal format = "0x%04x",
+ 'x' X is CONST_INT, prints lower 16 bits in hexadecimal format = "0x%04x",
+ 'd' output integer constant in decimal,
+ 'z' if the operand is 0, use $0 instead of normal operand.
+ 'D' print second part of double-word register or memory operand.
+ 'L' print low-order register of double-word register operand.
+ 'M' print high-order register of double-word register operand.
+ 'C' print part of opcode for a branch condition.
+ 'F' print part of opcode for a floating-point branch condition.
+ 'N' print part of opcode for a branch condition, inverted.
+ 'W' print part of opcode for a floating-point branch condition, inverted.
+ 'A' Print part of opcode for a bit test condition.
+ 'P' Print label for a bit test.
+ 'p' Print log for a bit test.
+ 'B' print 'z' for EQ, 'n' for NE
+ 'b' print 'n' for EQ, 'z' for NE
+ 'T' print 'f' for EQ, 't' for NE
+ 't' print 't' for EQ, 'f' for NE
+ 'Z' print register and a comma, but print nothing for $fcc0
+ '?' Print 'l' if we are to use a branch likely instead of normal branch.
+ '@' Print the name of the assembler temporary register (at or $1).
+ '.' Print the name of the register with a hard-wired zero (zero or $0).
+ '$' Print the name of the stack pointer register (sp or $29).
+ '+' Print the name of the gp register (gp or $28). */
+
+void
+print_operand (file, op, letter)
+ FILE *file; /* file to write to */
+ rtx op; /* operand to print */
+ int letter; /* %<letter> or 0 */
+{
+ register enum rtx_code code;
+
+ if (PRINT_OPERAND_PUNCT_VALID_P (letter))
+ {
+ switch (letter)
+ {
+ case '?':
+ if (iq2000_branch_likely)
+ putc ('l', file);
+ break;
+
+ case '@':
+ fputs (reg_names [GP_REG_FIRST + 1], file);
+ break;
+
+ case '.':
+ fputs (reg_names [GP_REG_FIRST + 0], file);
+ break;
+
+ case '$':
+ fputs (reg_names[STACK_POINTER_REGNUM], file);
+ break;
+
+ case '+':
+ fputs (reg_names[GP_REG_FIRST + 28], file);
+ break;
+
+ default:
+ error ("PRINT_OPERAND: Unknown punctuation '%c'", letter);
+ break;
+ }
+
+ return;
+ }
+
+ if (! op)
+ {
+ error ("PRINT_OPERAND null pointer");
+ return;
+ }
+
+ code = GET_CODE (op);
+
+ if (code == SIGN_EXTEND)
+ op = XEXP (op, 0), code = GET_CODE (op);
+
+ if (letter == 'C')
+ switch (code)
+ {
+ case EQ: fputs ("eq", file); break;
+ case NE: fputs ("ne", file); break;
+ case GT: fputs ("gt", file); break;
+ case GE: fputs ("ge", file); break;
+ case LT: fputs ("lt", file); break;
+ case LE: fputs ("le", file); break;
+ case GTU: fputs ("ne", file); break;
+ case GEU: fputs ("geu", file); break;
+ case LTU: fputs ("ltu", file); break;
+ case LEU: fputs ("eq", file); break;
+ default:
+ abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
+ }
+
+ else if (letter == 'N')
+ switch (code)
+ {
+ case EQ: fputs ("ne", file); break;
+ case NE: fputs ("eq", file); break;
+ case GT: fputs ("le", file); break;
+ case GE: fputs ("lt", file); break;
+ case LT: fputs ("ge", file); break;
+ case LE: fputs ("gt", file); break;
+ case GTU: fputs ("leu", file); break;
+ case GEU: fputs ("ltu", file); break;
+ case LTU: fputs ("geu", file); break;
+ case LEU: fputs ("gtu", file); break;
+ default:
+ abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
+ }
+
+ else if (letter == 'F')
+ switch (code)
+ {
+ case EQ: fputs ("c1f", file); break;
+ case NE: fputs ("c1t", file); break;
+ default:
+ abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F");
+ }
+
+ else if (letter == 'W')
+ switch (code)
+ {
+ case EQ: fputs ("c1t", file); break;
+ case NE: fputs ("c1f", file); break;
+ default:
+ abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W");
+ }
+
+ else if (letter == 'A')
+ fputs (code == LABEL_REF ? "i" : "in", file);
+
+ else if (letter == 'P')
+ {
+ if (code == LABEL_REF)
+ output_addr_const (file, op);
+ else if (code != PC)
+ output_operand_lossage ("invalid %%P operand");
+ }
+
+ else if (letter == 'p')
+ {
+ int value;
+ if (code != CONST_INT
+ || (value = exact_log2 (INTVAL (op))) < 0)
+ output_operand_lossage ("invalid %%p value");
+ fprintf (file, "%d", value);
+ }
+
+ else if (letter == 'Z')
+ {
+ register int regnum;
+
+ if (code != REG)
+ abort ();
+
+ regnum = REGNO (op);
+ abort ();
+
+ fprintf (file, "%s,", reg_names[regnum]);
+ }
+
+ else if (code == REG || code == SUBREG)
+ {
+ register int regnum;
+
+ if (code == REG)
+ regnum = REGNO (op);
+ else
+ regnum = true_regnum (op);
+
+ if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
+ || (letter == 'L' && WORDS_BIG_ENDIAN)
+ || letter == 'D')
+ regnum++;
+
+ fprintf (file, "%s", reg_names[regnum]);
+ }
+
+ else if (code == MEM)
+ {
+ if (letter == 'D')
+ output_address (plus_constant (XEXP (op, 0), 4));
+ else
+ output_address (XEXP (op, 0));
+ }
+
+ else if (code == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
+ {
+ char s[60];
+
+ real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
+ fputs (s, file);
+ }
+
+ else if (letter == 'x' && GET_CODE (op) == CONST_INT)
+ fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
+
+ else if (letter == 'X' && GET_CODE(op) == CONST_INT)
+ fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & (INTVAL (op) >> 16));
+
+ else if (letter == 'd' && GET_CODE(op) == CONST_INT)
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
+
+ else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
+ fputs (reg_names[GP_REG_FIRST], file);
+
+ else if (letter == 'd' || letter == 'x' || letter == 'X')
+ output_operand_lossage ("invalid use of %%d, %%x, or %%X");
+
+ else if (letter == 'B')
+ fputs (code == EQ ? "z" : "n", file);
+ else if (letter == 'b')
+ fputs (code == EQ ? "n" : "z", file);
+ else if (letter == 'T')
+ fputs (code == EQ ? "f" : "t", file);
+ else if (letter == 't')
+ fputs (code == EQ ? "t" : "f", file);
+
+ else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
+ {
+ print_operand (file, XEXP (op, 0), letter);
+ }
+
+ else
+ output_addr_const (file, op);
+}
--- /dev/null
+/* Definitions of target machine for GNU compiler.
+ Vitesse IQ2000 processors
+ Copyright (C) 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 2, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+/* Set up System V.4 (aka ELF) defaults. */
+#include "svr4.h"
+#include "elfos.h"
+
+\f
+/* Driver configuration. */
+
+#undef SWITCH_TAKES_ARG
+#define SWITCH_TAKES_ARG(CHAR) \
+ (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
+
+/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
+#undef LIB_SPEC
+#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
+
+#undef STARTFILE_SPEC
+#undef ENDFILE_SPEC
+
+\f
+/* Run-time target specifications. */
+
+#define TARGET_CPU_CPP_BUILTINS() \
+ do \
+ { \
+ builtin_define ("__iq2000__"); \
+ builtin_assert ("cpu=iq2000"); \
+ builtin_assert ("machine=iq2000"); \
+ } \
+ while (0)
+
+
+extern int target_flags;
+
+#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
+#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
+#define MASK_UNINIT_CONST_IN_RODATA \
+ 0x00800000 /* Store uninitialized
+ consts in rodata */
+
+/* Macros used in the machine description to test the flags. */
+
+#define TARGET_STATS 0
+
+ /* for embedded systems, optimize for
+ reduced RAM space instead of for
+ fastest code. */
+#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
+
+#define TARGET_DEBUG_MODE (target_flags & 0)
+#define TARGET_DEBUG_A_MODE (target_flags & 0)
+#define TARGET_DEBUG_B_MODE (target_flags & 0)
+#define TARGET_DEBUG_C_MODE (target_flags & 0)
+#define TARGET_DEBUG_D_MODE (target_flags & 0)
+
+#define TARGET_SWITCHES \
+{ \
+ {"no-crt0", 0, \
+ N_("No default crt0.o") }, \
+ {"gpopt", MASK_GPOPT, \
+ N_("Use GP relative sdata/sbss sections")}, \
+ {"no-gpopt", -MASK_GPOPT, \
+ N_("Don't use GP relative sdata/sbss sections")}, \
+ {"embedded-data", MASK_EMBEDDED_DATA, \
+ N_("Use ROM instead of RAM")}, \
+ {"no-embedded-data", -MASK_EMBEDDED_DATA, \
+ N_("Don't use ROM instead of RAM")}, \
+ {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
+ N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
+ {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
+ N_("Don't put uninitialized constants in ROM")}, \
+ {"", (TARGET_DEFAULT \
+ | TARGET_CPU_DEFAULT), \
+ NULL}, \
+}
+
+/* Default target_flags if no switches are specified. */
+
+#define TARGET_DEFAULT 0
+
+#ifndef TARGET_CPU_DEFAULT
+#define TARGET_CPU_DEFAULT 0
+#endif
+
+#ifndef IQ2000_ISA_DEFAULT
+#define IQ2000_ISA_DEFAULT 1
+#endif
+
+#define TARGET_OPTIONS \
+{ \
+ SUBTARGET_TARGET_OPTIONS \
+ { "cpu=", & iq2000_cpu_string, \
+ N_("Specify CPU for scheduling purposes")}, \
+ { "arch=", & iq2000_arch_string, \
+ N_("Specify CPU for code generation purposes")}, \
+}
+
+/* This is meant to be redefined in the host dependent files. */
+#define SUBTARGET_TARGET_OPTIONS
+
+#define IQ2000_VERSION "[1.0]"
+
+#ifndef MACHINE_TYPE
+#define MACHINE_TYPE "IQ2000"
+#endif
+
+#ifndef TARGET_VERSION_INTERNAL
+#define TARGET_VERSION_INTERNAL(STREAM) \
+ fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
+#endif
+
+#ifndef TARGET_VERSION
+#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
+#endif
+
+#define OVERRIDE_OPTIONS override_options ()
+
+#define CAN_DEBUG_WITHOUT_FP
+\f
+/* Storage Layout. */
+
+#define BITS_BIG_ENDIAN 0
+
+#define BYTES_BIG_ENDIAN 1
+
+#define WORDS_BIG_ENDIAN 1
+
+#define LIBGCC2_WORDS_BIG_ENDIAN 1
+
+#define BITS_PER_UNIT 8
+
+#define BITS_PER_WORD 32
+
+#define MAX_BITS_PER_WORD 64
+
+#define UNITS_PER_WORD 4
+
+#define MIN_UNITS_PER_WORD 4
+
+#define POINTER_SIZE 32
+
+/* Define this macro if it is advisable to hold scalars in registers
+ in a wider mode than that declared by the program. In such cases,
+ the value is constrained to be within the bounds of the declared
+ type, but kept valid in the wider mode. The signedness of the
+ extension may differ from that of the type.
+
+ We promote any value smaller than SImode up to SImode. */
+
+#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && GET_MODE_SIZE (MODE) < 4) \
+ (MODE) = SImode;
+
+#define PROMOTE_FUNCTION_ARGS
+
+#define PROMOTE_FUNCTION_RETURN
+
+#define PARM_BOUNDARY 32
+
+#define STACK_BOUNDARY 64
+
+#define FUNCTION_BOUNDARY 32
+
+#define BIGGEST_ALIGNMENT 64
+
+#undef DATA_ALIGNMENT
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ ((((ALIGN) < BITS_PER_WORD) \
+ && (TREE_CODE (TYPE) == ARRAY_TYPE \
+ || TREE_CODE (TYPE) == UNION_TYPE \
+ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
+
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+#define EMPTY_FIELD_BOUNDARY 32
+
+#define STRUCTURE_SIZE_BOUNDARY 8
+
+#define STRICT_ALIGNMENT 1
+
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
+
+\f
+/* Layout of Source Language Data Types. */
+
+#define INT_TYPE_SIZE 32
+
+#define MAX_INT_TYPE_SIZE 32
+
+#define SHORT_TYPE_SIZE 16
+
+#define LONG_TYPE_SIZE 32
+
+#define LONG_LONG_TYPE_SIZE 64
+
+#define CHAR_TYPE_SIZE BITS_PER_UNIT
+
+#define FLOAT_TYPE_SIZE 32
+
+#define DOUBLE_TYPE_SIZE 64
+
+#define LONG_DOUBLE_TYPE_SIZE 64
+
+#define DEFAULT_SIGNED_CHAR 1
+
+#define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
+
+\f
+/* Register Basics. */
+
+/* On the IQ2000, we have 32 integer registers. */
+#define FIRST_PSEUDO_REGISTER 33
+
+#define FIXED_REGISTERS \
+{ \
+ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
+}
+
+#define CALL_USED_REGISTERS \
+{ \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
+}
+
+\f
+/* Order of allocation of registers. */
+
+#define REG_ALLOC_ORDER \
+{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
+}
+
+\f
+/* How Values Fit in Registers. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ((REGNO_REG_CLASS (REGNO) == GR_REGS) \
+ ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
+ : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
+
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
+ GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
+ == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
+ GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
+
+#define AVOID_CCMODE_COPIES
+
+\f
+/* Register Classes. */
+
+enum reg_class
+{
+ NO_REGS, /* no registers in set */
+ GR_REGS, /* integer registers */
+ ALL_REGS, /* all registers */
+ LIM_REG_CLASSES /* max value + 1 */
+};
+
+#define GENERAL_REGS GR_REGS
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+#define REG_CLASS_NAMES \
+{ \
+ "NO_REGS", \
+ "GR_REGS", \
+ "ALL_REGS" \
+}
+
+#define REG_CLASS_CONTENTS \
+{ \
+ { 0x00000000, 0x00000000 }, /* no registers */ \
+ { 0xffffffff, 0x00000000 }, /* integer registers */ \
+ { 0xffffffff, 0x00000001 } /* all registers */ \
+}
+
+#define REGNO_REG_CLASS(REGNO) \
+((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
+
+#define BASE_REG_CLASS (GR_REGS)
+
+#define INDEX_REG_CLASS NO_REGS
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'd' ? GR_REGS : \
+ (C) == 'b' ? ALL_REGS : \
+ (C) == 'y' ? GR_REGS : \
+ NO_REGS)
+
+#define REGNO_OK_FOR_INDEX_P(regno) 0
+
+#define PREFERRED_RELOAD_CLASS(X,CLASS) \
+ ((CLASS) != ALL_REGS \
+ ? (CLASS) \
+ : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
+ || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
+ ? (GR_REGS) \
+ : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
+ || GET_MODE (X) == VOIDmode) \
+ ? (GR_REGS) \
+ : (CLASS))))
+
+#define SMALL_REGISTER_CLASSES 0
+
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* For IQ2000:
+
+ `I' is used for the range of constants an arithmetic insn can
+ actually contain (16 bits signed integers).
+
+ `J' is used for the range which is just zero (ie, $r0).
+
+ `K' is used for the range of constants a logical insn can actually
+ contain (16 bit zero-extended integers).
+
+ `L' is used for the range of constants that be loaded with lui
+ (ie, the bottom 16 bits are zero).
+
+ `M' is used for the range of constants that take two words to load
+ (ie, not matched by `I', `K', and `L').
+
+ `N' is used for constants 0xffffnnnn or 0xnnnnffff
+
+ `O' is a 5 bit zero-extended integer.
+*/
+
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
+ : (C) == 'J' ? ((VALUE) == 0) \
+ : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
+ : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
+ && (((VALUE) & ~2147483647) == 0 \
+ || ((VALUE) & ~2147483647) == ~2147483647)) \
+ : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
+ && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
+ && (((VALUE) & 0x0000ffff) != 0 \
+ || (((VALUE) & ~2147483647) != 0 \
+ && ((VALUE) & ~2147483647) != ~2147483647))) \
+ : (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff) \
+ || (((VALUE) & 0xffff0000) == 0xffff0000)) \
+ : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40) \
+ : 0)
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'G' \
+ && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
+
+/* `R' is for memory references which take 1 word for the instruction. */
+
+#define EXTRA_CONSTRAINT(OP,CODE) \
+ (((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
+ : FALSE)
+
+\f
+/* Basic Stack Layout. */
+
+#define STACK_GROWS_DOWNWARD
+
+/* #define FRAME_GROWS_DOWNWARD */
+
+#define STARTING_FRAME_OFFSET \
+ (current_function_outgoing_args_size)
+
+/* Use the default value zero. */
+/* #define STACK_POINTER_OFFSET 0 */
+
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* The return address for the current frame is in r31 if this is a leaf
+ function. Otherwise, it is on the stack. It is at a variable offset
+ from sp/fp/ap, so we define a fake hard register rap which is a
+ pointer to the return address on the stack. This always gets eliminated
+ during reload to be either the frame pointer or the stack pointer plus
+ an offset. */
+
+#define RETURN_ADDR_RTX(count, frame) \
+ (((count) == 0) \
+ ? (leaf_function_p () \
+ ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
+ : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
+ RETURN_ADDRESS_POINTER_REGNUM))) \
+ : (rtx) 0)
+
+/* Before the prologue, RA lives in r31. */
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
+
+\f
+/* Register That Address the Stack Frame. */
+
+#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
+
+#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
+
+#define HARD_FRAME_POINTER_REGNUM \
+ (GP_REG_FIRST + 27)
+
+#define ARG_POINTER_REGNUM GP_REG_FIRST
+
+#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
+
+#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
+
+\f
+/* Eliminating the Frame Pointer and the Arg Pointer. */
+
+#define FRAME_POINTER_REQUIRED 0
+
+#define ELIMINABLE_REGS \
+{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
+
+
+/* We can always eliminate to the frame pointer. We can eliminate to the
+ stack pointer unless a frame pointer is needed. */
+
+#define CAN_ELIMINATE(FROM, TO) \
+ (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
+ || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
+ || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
+ && ((TO) == HARD_FRAME_POINTER_REGNUM \
+ || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed))))
+
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
+\f
+/* Passing Function Arguments on the Stack. */
+
+#define PROMOTE_PROTOTYPES 1
+
+/* #define PUSH_ROUNDING(BYTES) 0 */
+
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+#define REG_PARM_STACK_SPACE(FNDECL) 0
+
+#define OUTGOING_REG_PARM_STACK_SPACE
+
+#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
+
+\f
+/* Function Arguments in Registers. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+ function_arg( &CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
+ function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
+ ((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
+
+#define MAX_ARGS_IN_REGISTERS 8
+
+typedef struct iq2000_args {
+ int gp_reg_found; /* whether a gp register was found yet */
+ unsigned int arg_number; /* argument number */
+ unsigned int arg_words; /* # total words the arguments take */
+ unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only) */
+ int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
+ int fp_code; /* Mode of FP arguments */
+ unsigned int num_adjusts; /* number of adjustments made */
+ /* Adjustments made to args pass in regs. */
+ struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
+} CUMULATIVE_ARGS;
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
+ init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ function_arg_advance (&CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_ARG_PADDING(MODE, TYPE) \
+ (! BYTES_BIG_ENDIAN \
+ ? upward \
+ : (((MODE) == BLKmode \
+ ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
+ && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
+ : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
+ && (GET_MODE_CLASS (MODE) == MODE_INT))) \
+ ? downward : upward))
+
+#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
+ (((TYPE) != 0) \
+ ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
+ ? PARM_BOUNDARY \
+ : TYPE_ALIGN(TYPE)) \
+ : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
+ ? PARM_BOUNDARY \
+ : GET_MODE_ALIGNMENT(MODE)))
+
+#define FUNCTION_ARG_REGNO_P(N) \
+ (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
+
+\f
+/* How Scalar Function Values are Returned. */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) iq2000_function_value (VALTYPE, FUNC)
+
+#define LIBCALL_VALUE(MODE) \
+ gen_rtx (REG, \
+ ((GET_MODE_CLASS (MODE) != MODE_INT \
+ || GET_MODE_SIZE (MODE) >= 4) \
+ ? (MODE) \
+ : SImode), \
+ GP_RETURN)
+
+/* On the IQ2000, R2 and R3 are the only register thus used. */
+
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN)
+
+\f
+/* How Large Values are Returned. */
+
+#define RETURN_IN_MEMORY(TYPE) \
+ (((int_size_in_bytes (TYPE) \
+ > (2 * UNITS_PER_WORD)) \
+ || (int_size_in_bytes (TYPE) == -1)))
+
+#define DEFAULT_PCC_STRUCT_RETURN 0
+
+#define STRUCT_VALUE 0
+
+\f
+/* Function Entry and Exit. */
+
+#define EXIT_IGNORE_STACK 1
+
+\f
+/* Generating Code for Profiling. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+{ \
+ fprintf (FILE, "\t.set\tnoreorder\n"); \
+ fprintf (FILE, "\t.set\tnoat\n"); \
+ fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
+ reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
+ fprintf (FILE, "\tjal\t_mcount\n"); \
+ fprintf (FILE, \
+ "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
+ "subu", \
+ reg_names[STACK_POINTER_REGNUM], \
+ reg_names[STACK_POINTER_REGNUM], \
+ Pmode == DImode ? 16 : 8); \
+ fprintf (FILE, "\t.set\treorder\n"); \
+ fprintf (FILE, "\t.set\tat\n"); \
+}
+
+\f
+/* Implementing the Varargs Macros. */
+
+#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
+ iq2000_setup_incoming_varargs (CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL);
+
+#define STRICT_ARGUMENT_NAMING 1
+
+#define BUILD_VA_LIST_TYPE(VALIST) \
+ (VALIST) = ptr_type_node
+
+#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
+ iq2000_va_start (valist, nextarg)
+
+/* Implement `va_arg'. */
+#define EXPAND_BUILTIN_VA_ARG(valist, type) \
+ iq2000_va_arg (valist, type)
+
+\f
+/* Trampolines for Nested Functions. */
+
+/* A C statement to output, on the stream FILE, assembler code for a
+ block of data that contains the constant parts of a trampoline.
+ This code should not include a label--the label is taken care of
+ automatically. */
+
+#define TRAMPOLINE_TEMPLATE(STREAM) \
+{ \
+ fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
+ fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
+ fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
+ if (Pmode == DImode) \
+ { \
+ fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
+ fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
+ } \
+ else \
+ { \
+ fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
+ fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
+ } \
+ fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
+ fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
+ fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
+ fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
+ fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
+}
+
+#define TRAMPOLINE_SIZE (40)
+
+#define TRAMPOLINE_ALIGNMENT 32
+
+#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
+{ \
+ rtx addr = ADDR; \
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
+}
+
+\f
+/* Implicit Calls to Library Routines. */
+
+#define INIT_TARGET_OPTABS \
+do \
+ { \
+ INIT_SUBTARGET_OPTABS; \
+ } \
+while (0)
+
+\f
+/* Addressing Modes. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
+ || (GET_CODE (X) == CONST)))
+
+#define MAX_REGS_PER_ADDRESS 1
+
+#ifdef REG_OK_STRICT
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ \
+ if (iq2000_legitimate_address_p (MODE, X, 1)) \
+ goto ADDR; \
+}
+#else
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ \
+ if (iq2000_legitimate_address_p (MODE, X, 0)) \
+ goto ADDR; \
+}
+#endif
+
+#define REG_OK_FOR_INDEX_P(X) 0
+
+
+/* For the IQ2000, transform:
+
+ memory(X + <large int>)
+ into:
+ Y = <large int> & ~0x7fff;
+ Z = X + Y
+ memory (Z + (<large int> & 0x7fff));
+*/
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+{ \
+ register rtx xinsn = (X); \
+ \
+ if (TARGET_DEBUG_B_MODE) \
+ { \
+ GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
+ GO_DEBUG_RTX (xinsn); \
+ } \
+ \
+ if (iq2000_check_split (X, MODE)) \
+ { \
+ X = gen_rtx_LO_SUM (Pmode, \
+ copy_to_mode_reg (Pmode, \
+ gen_rtx (HIGH, Pmode, X)), \
+ X); \
+ goto WIN; \
+ } \
+ \
+ if (GET_CODE (xinsn) == PLUS) \
+ { \
+ register rtx xplus0 = XEXP (xinsn, 0); \
+ register rtx xplus1 = XEXP (xinsn, 1); \
+ register enum rtx_code code0 = GET_CODE (xplus0); \
+ register enum rtx_code code1 = GET_CODE (xplus1); \
+ \
+ if (code0 != REG && code1 == REG) \
+ { \
+ xplus0 = XEXP (xinsn, 1); \
+ xplus1 = XEXP (xinsn, 0); \
+ code0 = GET_CODE (xplus0); \
+ code1 = GET_CODE (xplus1); \
+ } \
+ \
+ if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
+ && code1 == CONST_INT && !SMALL_INT (xplus1)) \
+ { \
+ rtx int_reg = gen_reg_rtx (Pmode); \
+ rtx ptr_reg = gen_reg_rtx (Pmode); \
+ \
+ emit_move_insn (int_reg, \
+ GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
+ \
+ emit_insn (gen_rtx_SET (VOIDmode, \
+ ptr_reg, \
+ gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
+ \
+ X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
+ goto WIN; \
+ } \
+ } \
+ \
+ if (TARGET_DEBUG_B_MODE) \
+ GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
+}
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
+
+#define LEGITIMATE_CONSTANT_P(X) (1)
+
+\f
+/* Describing Relative Costs of Operations. */
+
+#define CONST_COSTS(X,CODE,OUTER_CODE) \
+ case CONST_INT: \
+ return 0; \
+ \
+ case LABEL_REF: \
+ return COSTS_N_INSNS (2); \
+ \
+ case CONST: \
+ { \
+ rtx offset = const0_rtx; \
+ rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
+ \
+ if (GET_CODE (symref) == LABEL_REF) \
+ return COSTS_N_INSNS (2); \
+ \
+ if (GET_CODE (symref) != SYMBOL_REF) \
+ return COSTS_N_INSNS (4); \
+ \
+ /* let's be paranoid.... */ \
+ if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
+ return COSTS_N_INSNS (2); \
+ \
+ return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
+ } \
+ \
+ case SYMBOL_REF: \
+ return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
+ \
+ case CONST_DOUBLE: \
+ { \
+ rtx high, low; \
+ split_double (X, &high, &low); \
+ return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
+ || low == CONST0_RTX (GET_MODE (low))) \
+ ? 2 : 4); \
+ }
+
+#define RTX_COSTS(X,CODE,OUTER_CODE) \
+ case MEM: \
+ { \
+ int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
+ if (simple_memory_operand (X, GET_MODE (X))) \
+ return COSTS_N_INSNS (num_words); \
+ \
+ return COSTS_N_INSNS (2*num_words); \
+ } \
+ \
+ case FFS: \
+ return COSTS_N_INSNS (6); \
+ \
+ case NOT: \
+ return COSTS_N_INSNS (GET_MODE (X) == DImode && 2); \
+ \
+ case AND: \
+ case IOR: \
+ case XOR: \
+ if (GET_MODE (X) == DImode) \
+ return COSTS_N_INSNS (2); \
+ \
+ break; \
+ \
+ case ASHIFT: \
+ case ASHIFTRT: \
+ case LSHIFTRT: \
+ if (GET_MODE (X) == DImode) \
+ return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
+ \
+ break; \
+ \
+ case ABS: \
+ { \
+ enum machine_mode xmode = GET_MODE (X); \
+ if (xmode == SFmode || xmode == DFmode) \
+ return COSTS_N_INSNS (1); \
+ \
+ return COSTS_N_INSNS (4); \
+ } \
+ \
+ case PLUS: \
+ case MINUS: \
+ { \
+ enum machine_mode xmode = GET_MODE (X); \
+ if (xmode == SFmode || xmode == DFmode) \
+ { \
+ return COSTS_N_INSNS (6); \
+ } \
+ \
+ if (xmode == DImode) \
+ return COSTS_N_INSNS (4); \
+ \
+ break; \
+ } \
+ \
+ case NEG: \
+ if (GET_MODE (X) == DImode) \
+ return 4; \
+ \
+ break; \
+ \
+ case MULT: \
+ { \
+ enum machine_mode xmode = GET_MODE (X); \
+ if (xmode == SFmode) \
+ { \
+ return COSTS_N_INSNS (7); \
+ } \
+ \
+ if (xmode == DFmode) \
+ { \
+ return COSTS_N_INSNS (8); \
+ } \
+ \
+ return COSTS_N_INSNS (10); \
+ } \
+ \
+ case DIV: \
+ case MOD: \
+ { \
+ enum machine_mode xmode = GET_MODE (X); \
+ if (xmode == SFmode) \
+ { \
+ return COSTS_N_INSNS (23); \
+ } \
+ \
+ if (xmode == DFmode) \
+ { \
+ return COSTS_N_INSNS (36); \
+ } \
+ } \
+ /* fall through */ \
+ \
+ case UDIV: \
+ case UMOD: \
+ return COSTS_N_INSNS (69); \
+ \
+ case SIGN_EXTEND: \
+ return COSTS_N_INSNS (2); \
+ \
+ case ZERO_EXTEND: \
+ return COSTS_N_INSNS (1);
+
+#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : iq2000_address_cost (ADDR))
+
+#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
+
+#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
+ (TO_P ? 2 : 16)
+
+#define BRANCH_COST 2
+
+#define SLOW_BYTE_ACCESS 1
+
+#define NO_FUNCTION_CSE 1
+
+#define NO_RECURSIVE_FUNCTION_CSE 1
+
+#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
+ if (REG_NOTE_KIND (LINK) != 0) \
+ (COST) = 0; /* Anti or output dependence. */
+
+\f
+/* Dividing the output into sections. */
+
+#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
+
+#define DATA_SECTION_ASM_OP "\t.data" /* large data */
+
+\f
+/* The Overall Framework of an Assembler File. */
+
+#define ASM_COMMENT_START " #"
+
+#define ASM_APP_ON "#APP\n"
+
+#define ASM_APP_OFF "#NO_APP\n"
+
+\f
+/* Output and Generation of Labels. */
+
+#undef ASM_OUTPUT_INTERNAL_LABEL
+#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
+ fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
+
+#undef ASM_GENERATE_INTERNAL_LABEL
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
+
+#define GLOBAL_ASM_OP "\t.globl\t"
+
+\f
+/* Output of Assembler Instructions. */
+
+#define REGISTER_NAMES \
+{ \
+ "%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
+ "%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
+ "%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
+ "%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
+};
+
+#define ADDITIONAL_REGISTER_NAMES \
+{ \
+ { "%0", 0 + GP_REG_FIRST }, \
+ { "%1", 1 + GP_REG_FIRST }, \
+ { "%2", 2 + GP_REG_FIRST }, \
+ { "%3", 3 + GP_REG_FIRST }, \
+ { "%4", 4 + GP_REG_FIRST }, \
+ { "%5", 5 + GP_REG_FIRST }, \
+ { "%6", 6 + GP_REG_FIRST }, \
+ { "%7", 7 + GP_REG_FIRST }, \
+ { "%8", 8 + GP_REG_FIRST }, \
+ { "%9", 9 + GP_REG_FIRST }, \
+ { "%10", 10 + GP_REG_FIRST }, \
+ { "%11", 11 + GP_REG_FIRST }, \
+ { "%12", 12 + GP_REG_FIRST }, \
+ { "%13", 13 + GP_REG_FIRST }, \
+ { "%14", 14 + GP_REG_FIRST }, \
+ { "%15", 15 + GP_REG_FIRST }, \
+ { "%16", 16 + GP_REG_FIRST }, \
+ { "%17", 17 + GP_REG_FIRST }, \
+ { "%18", 18 + GP_REG_FIRST }, \
+ { "%19", 19 + GP_REG_FIRST }, \
+ { "%20", 20 + GP_REG_FIRST }, \
+ { "%21", 21 + GP_REG_FIRST }, \
+ { "%22", 22 + GP_REG_FIRST }, \
+ { "%23", 23 + GP_REG_FIRST }, \
+ { "%24", 24 + GP_REG_FIRST }, \
+ { "%25", 25 + GP_REG_FIRST }, \
+ { "%26", 26 + GP_REG_FIRST }, \
+ { "%27", 27 + GP_REG_FIRST }, \
+ { "%28", 28 + GP_REG_FIRST }, \
+ { "%29", 29 + GP_REG_FIRST }, \
+ { "%30", 27 + GP_REG_FIRST }, \
+ { "%31", 31 + GP_REG_FIRST }, \
+ { "%rap", 32 + GP_REG_FIRST }, \
+}
+
+/* Check if the current insn needs a nop in front of it
+ because of load delays, and also update the delay slot statistics. */
+
+#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
+ final_prescan_insn (INSN, OPVEC, NOPERANDS)
+
+/* See iq2000.c for the IQ2000 specific codes. */
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
+
+#define DBR_OUTPUT_SEQEND(STREAM) \
+do \
+ { \
+ dslots_jump_filled++; \
+ fputs ("\n", STREAM); \
+ } \
+while (0)
+
+#define LOCAL_LABEL_PREFIX "$"
+
+#define USER_LABEL_PREFIX ""
+
+\f
+/* Output of dispatch tables. */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
+do { \
+ fprintf (STREAM, "\t%s\t%sL%d\n", \
+ Pmode == DImode ? ".dword" : ".word", \
+ LOCAL_LABEL_PREFIX, VALUE); \
+} while (0)
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
+ fprintf (STREAM, "\t%s\t%sL%d\n", \
+ Pmode == DImode ? ".dword" : ".word", \
+ LOCAL_LABEL_PREFIX, \
+ VALUE)
+
+\f
+/* Assembler Commands for Alignment. */
+
+#undef ASM_OUTPUT_SKIP
+#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
+ fprintf (STREAM, "\t.space\t%u\n", (SIZE))
+
+#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
+ if ((LOG) != 0) \
+ fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
+
+\f
+/* Macros Affecting all Debug Formats. */
+
+#define DEBUGGER_AUTO_OFFSET(X) \
+ iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
+
+#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
+ iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
+
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
+
+#define DWARF2_DEBUGGING_INFO 1
+
+\f
+/* Miscellaneous Parameters. */
+
+#define PREDICATE_CODES \
+ {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
+ {"arith_operand", { REG, CONST_INT, SUBREG }}, \
+ {"small_int", { CONST_INT }}, \
+ {"large_int", { CONST_INT }}, \
+ {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
+ {"simple_memory_operand", { MEM, SUBREG }}, \
+ {"equality_op", { EQ, NE }}, \
+ {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
+ LTU, LEU }}, \
+ {"pc_or_label_operand", { PC, LABEL_REF }}, \
+ {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
+ {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
+ SYMBOL_REF, LABEL_REF, SUBREG, \
+ REG, MEM}}, \
+ {"power_of_2_operand", { CONST_INT }},
+
+#define CASE_VECTOR_MODE SImode
+
+#define CASE_VECTOR_PC_RELATIVE 0
+
+#define WORD_REGISTER_OPERATIONS
+
+#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
+
+#define MOVE_MAX 4
+
+#define MAX_MOVE_MAX 8
+
+#define SHIFT_COUNT_TRUNCATED 1
+
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+#define STORE_FLAG_VALUE 1
+
+#define Pmode SImode
+
+#define FUNCTION_MODE SImode
+
+/* Standard GCC variables that we reference. */
+
+extern char call_used_regs[];
+
+/* IQ2000 external variables defined in iq2000.c. */
+
+/* Comparison type. */
+enum cmp_type
+{
+ CMP_SI, /* compare four byte integers */
+ CMP_DI, /* compare eight byte integers */
+ CMP_SF, /* compare single precision floats */
+ CMP_DF, /* compare double precision floats */
+ CMP_MAX /* max comparison type */
+};
+
+/* Types of delay slot. */
+enum delay_type
+{
+ DELAY_NONE, /* no delay slot */
+ DELAY_LOAD, /* load from memory delay */
+ DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
+};
+
+/* Which processor to schedule for. */
+
+enum processor_type
+{
+ PROCESSOR_DEFAULT,
+ PROCESSOR_IQ2000,
+ PROCESSOR_IQ10
+};
+
+/* Recast the cpu class to be the cpu attribute. */
+#define iq2000_cpu_attr ((enum attr_cpu)iq2000_tune)
+
+extern char iq2000_print_operand_punct[]; /* print_operand punctuation chars */
+extern int num_source_filenames; /* current .file # */
+extern int iq2000_branch_likely; /* emit 'l' after br (branch likely) */
+extern struct rtx_def *branch_cmp[2]; /* operands for compare */
+extern enum cmp_type branch_type; /* what type of branch to use */
+extern enum processor_type iq2000_arch; /* which cpu to codegen for */
+extern enum processor_type iq2000_tune; /* which cpu to schedule for */
+extern int iq2000_isa; /* architectural level */
+extern const char *iq2000_cpu_string; /* for -mcpu=<xxx> */
+extern const char *iq2000_arch_string; /* for -march=<xxx> */
+extern int dslots_load_total; /* total # load related delay slots */
+extern int dslots_load_filled; /* # filled load delay slots */
+extern int dslots_jump_total; /* total # jump related delay slots */
+extern int dslots_jump_filled; /* # filled jump delay slots */
+extern int dslots_number_nops; /* # of nops needed by previous insn */
+extern int num_refs[3]; /* # 1/2/3 word references */
+extern struct rtx_def *iq2000_load_reg; /* register to check for load delay */
+extern struct rtx_def *iq2000_load_reg2; /* 2nd reg to check for load delay */
+extern struct rtx_def *iq2000_load_reg3; /* 3rd reg to check for load delay */
+extern struct rtx_def *iq2000_load_reg4; /* 4th reg to check for load delay */
+
+/* Functions to change what output section we are using. */
+extern void rdata_section PARAMS ((void));
+extern void sdata_section PARAMS ((void));
+extern void sbss_section PARAMS ((void));
+
+#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
+#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
+
+\f
+#define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
+
+/* Macros to decide whether certain features are available or not,
+ depending on the instruction set architecture level. */
+
+#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
+
+/* ISA has branch likely instructions. */
+#define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
+
+\f
+#undef ASM_SPEC
+#define ASM_SPEC "%{march=iq2000: -m2000} %{march=iq10: -m10} %{!march=*: -m2000}"
+
+\f
+/* The mapping from gcc register number to DWARF 2 CFA column number.
+ This mapping does not allow for tracking register 0, since
+ register 0 is fixed. */
+#define DWARF_FRAME_REGNUM(REG) \
+ (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
+
+/* The DWARF 2 CFA column which tracks the return address. */
+#define DWARF_FRAME_RETURN_COLUMN ( GP_REG_FIRST + 26)
+
+/* Describe how we implement __builtin_eh_return. */
+#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
+
+/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
+ location used to store the amount to adjust the stack. This is
+ usually a register that is available from end of the function's body
+ to the end of the epilogue. Thus, this cannot be a register used as a
+ temporary by the epilogue.
+
+ This must be an integer register. */
+#define EH_RETURN_STACKADJ_REGNO 3
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
+
+/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
+ location used to store the address the processor should jump to
+ catch exception. This is usually a registers that is available from
+ end of the function's body to the end of the epilogue. Thus, this
+ cannot be a register used as a temporary by the epilogue.
+
+ This must be an address register. */
+#define EH_RETURN_HANDLER_REGNO 26
+#define EH_RETURN_HANDLER_RTX \
+ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
+
+/* Offsets recorded in opcodes are a multiple of this alignment factor. */
+#define DWARF_CIE_DATA_ALIGNMENT 4
+
+/* For IQ2000, width of a floating point register. */
+#define UNITS_PER_FPREG 4
+
+/* Force right-alignment for small varargs in 32 bit little_endian mode */
+
+#define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
+
+/* Internal macros to classify a register number as to whether it's a
+ general purpose register, a floating point register, a
+ multiply/divide register, or a status register. */
+
+#define GP_REG_FIRST 0
+#define GP_REG_LAST 31
+#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
+
+#define RAP_REG_NUM 32
+#define AT_REGNUM (GP_REG_FIRST + 1)
+
+#define GP_REG_P(REGNO) \
+ ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
+
+/* IQ2000 registers used in prologue/epilogue code when the stack frame
+ is larger than 32K bytes. These registers must come from the
+ scratch register set, and not used for passing and returning
+ arguments and any other information used in the calling sequence. */
+
+#define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
+#define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
+
+/* This macro is used later on in the file. */
+#define GR_REG_CLASS_P(CLASS) \
+ ((CLASS) == GR_REGS)
+
+#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
+#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
+
+/* Certain machines have the property that some registers cannot be
+ copied to some other registers without using memory. Define this
+ macro on those machines to be a C expression that is non-zero if
+ objects of mode MODE in registers of CLASS1 can only be copied to
+ registers of class CLASS2 by storing a register of CLASS1 into
+ memory and loading that memory location into a register of CLASS2.
+
+ Do not define this macro if its value would always be zero. */
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+
+#define CLASS_UNITS(mode, size) \
+ ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
+
+/* If defined, gives a class of registers that cannot be used as the
+ operand of a SUBREG that changes the mode of the object illegally. */
+
+#define CLASS_CANNOT_CHANGE_MODE 0
+
+/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
+
+#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
+ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
+
+/* Make sure 4 words are always allocated on the stack. */
+
+#ifndef STACK_ARGS_ADJUST
+#define STACK_ARGS_ADJUST(SIZE) \
+{ \
+ if (SIZE.constant < 4 * UNITS_PER_WORD) \
+ SIZE.constant = 4 * UNITS_PER_WORD; \
+}
+#endif
+
+\f
+/* Symbolic macros for the registers used to return integer and floating
+ point values. */
+
+#define GP_RETURN (GP_REG_FIRST + 2)
+
+/* Symbolic macros for the first/last argument registers. */
+
+#define GP_ARG_FIRST (GP_REG_FIRST + 4)
+#define GP_ARG_LAST (GP_REG_FIRST + 11)
+
+#define MAX_ARGS_IN_REGISTERS 8
+
+\f
+/* Tell prologue and epilogue if register REGNO should be saved / restored. */
+
+#define MUST_SAVE_REGISTER(regno) \
+ ((regs_ever_live[regno] && !call_used_regs[regno]) \
+ || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
+ || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
+
+/* ALIGN FRAMES on double word boundaries */
+#ifndef IQ2000_STACK_ALIGN
+#define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
+#endif
+
+\f
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ These definitions are NOT overridden anywhere. */
+
+#define BASE_REG_P(regno, mode) \
+ (GP_REG_P (regno))
+
+#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
+ BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
+ (mode))
+
+#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
+ (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
+
+#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
+ GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects them all.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Some source files that are used after register allocation
+ need to be strict. */
+
+#ifndef REG_OK_STRICT
+#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
+ iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
+#else
+#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
+ iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
+#endif
+
+#if 1
+#define GO_PRINTF(x) fprintf(stderr, (x))
+#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
+#define GO_DEBUG_RTX(x) debug_rtx(x)
+
+#else
+#define GO_PRINTF(x)
+#define GO_PRINTF2(x,y)
+#define GO_DEBUG_RTX(x)
+#endif
+
+/* Specify the tree operation to be used to convert reals to integers. */
+#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
+
+/* This is the kind of divide that is easiest to do in the general case. */
+#define EASY_DIV_EXPR TRUNC_DIV_EXPR
+
+/* Define this if zero-extension is slow (more than one real instruction). */
+#define SLOW_ZERO_EXTEND
+
+/* If defined, modifies the length assigned to instruction INSN as a
+ function of the context in which it is used. LENGTH is an lvalue
+ that contains the initially computed length of the insn and should
+ be updated with the correct length of the insn. */
+#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
+ ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
+
+\f
+/* A list of predicates that do special things with modes, and so
+ should not elicit warnings for VOIDmode match_operand. */
+
+#define SPECIAL_MODE_PREDICATES \
+ "pc_or_label_operand",
+
+\f
+
+
+/* How to tell the debugger about changes of source files. */
+
+#ifndef SET_FILE_NUMBER
+#define SET_FILE_NUMBER() ++num_source_filenames
+#endif
+
+/* This is how to output a note the debugger telling it the line number
+ to which the following sequence of instructions corresponds. */
+
+#ifndef LABEL_AFTER_LOC
+#define LABEL_AFTER_LOC(STREAM)
+#endif
+
+/* Handle certain cpp directives used in header files on sysV. */
+#define SCCS_DIRECTIVE
+
+\f
+/* Default to -G 8 */
+#ifndef IQ2000_DEFAULT_GVALUE
+#define IQ2000_DEFAULT_GVALUE 8
+#endif
+
+#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
+
+/* Given a decl node or constant node, choose the section to output it in
+ and select that section. */
+
+#undef TARGET_ASM_SELECT_SECTION
+#define TARGET_ASM_SELECT_SECTION iq2000_select_section
+\f
+/* See iq2000_expand_prologue's use of loadgp for when this should be
+ true. */
+
+#define DONT_ACCESS_GBLS_AFTER_EPILOGUE 0
+\f
+
+#ifndef INIT_SUBTARGET_OPTABS
+#define INIT_SUBTARGET_OPTABS
+#endif
+
+enum iq2000_builtins
+{
+ IQ2000_BUILTIN_ADO16,
+ IQ2000_BUILTIN_CFC0,
+ IQ2000_BUILTIN_CFC1,
+ IQ2000_BUILTIN_CFC2,
+ IQ2000_BUILTIN_CFC3,
+ IQ2000_BUILTIN_CHKHDR,
+ IQ2000_BUILTIN_CTC0,
+ IQ2000_BUILTIN_CTC1,
+ IQ2000_BUILTIN_CTC2,
+ IQ2000_BUILTIN_CTC3,
+ IQ2000_BUILTIN_LU,
+ IQ2000_BUILTIN_LUC32L,
+ IQ2000_BUILTIN_LUC64,
+ IQ2000_BUILTIN_LUC64L,
+ IQ2000_BUILTIN_LUK,
+ IQ2000_BUILTIN_LULCK,
+ IQ2000_BUILTIN_LUM32,
+ IQ2000_BUILTIN_LUM32L,
+ IQ2000_BUILTIN_LUM64,
+ IQ2000_BUILTIN_LUM64L,
+ IQ2000_BUILTIN_LUR,
+ IQ2000_BUILTIN_LURL,
+ IQ2000_BUILTIN_MFC0,
+ IQ2000_BUILTIN_MFC1,
+ IQ2000_BUILTIN_MFC2,
+ IQ2000_BUILTIN_MFC3,
+ IQ2000_BUILTIN_MRGB,
+ IQ2000_BUILTIN_MTC0,
+ IQ2000_BUILTIN_MTC1,
+ IQ2000_BUILTIN_MTC2,
+ IQ2000_BUILTIN_MTC3,
+ IQ2000_BUILTIN_PKRL,
+ IQ2000_BUILTIN_RAM,
+ IQ2000_BUILTIN_RB,
+ IQ2000_BUILTIN_RX,
+ IQ2000_BUILTIN_SRRD,
+ IQ2000_BUILTIN_SRRDL,
+ IQ2000_BUILTIN_SRULC,
+ IQ2000_BUILTIN_SRULCK,
+ IQ2000_BUILTIN_SRWR,
+ IQ2000_BUILTIN_SRWRU,
+ IQ2000_BUILTIN_TRAPQF,
+ IQ2000_BUILTIN_TRAPQFL,
+ IQ2000_BUILTIN_TRAPQN,
+ IQ2000_BUILTIN_TRAPQNE,
+ IQ2000_BUILTIN_TRAPRE,
+ IQ2000_BUILTIN_TRAPREL,
+ IQ2000_BUILTIN_WB,
+ IQ2000_BUILTIN_WBR,
+ IQ2000_BUILTIN_WBU,
+ IQ2000_BUILTIN_WX,
+ IQ2000_BUILTIN_SYSCALL
+};
--- /dev/null
+;; iq2000.md Machine Description for Vitesse IQ2000 processors
+;; Copyright (C) 2003 Free Software Foundation, Inc.
+
+;; This file is part of GNU CC.
+
+;; GNU CC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; GNU CC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU CC; see the file COPYING. If not, write to
+;; the Free Software Foundation, 59 Temple Place - Suite 330,
+;; Boston, MA 02111-1307, USA.
+
+;; ??? Currently does not have define_function_unit support for the R8000.
+;; Must include new entries for fmadd in addition to existing entries.
+
+(define_constants
+ [(UNSPEC_ADO16 0)
+ (UNSPEC_RAM 1)
+ (UNSPEC_CHKHDR 2)
+ (UNSPEC_PKRL 3)
+ (UNSPEC_CFC0 4)
+ (UNSPEC_CFC1 5)
+ (UNSPEC_CFC2 6)
+ (UNSPEC_CFC3 7)
+ (UNSPEC_CTC0 8)
+ (UNSPEC_CTC1 9)
+ (UNSPEC_CTC2 10)
+ (UNSPEC_CTC3 11)
+ (UNSPEC_MFC0 12)
+ (UNSPEC_MFC1 13)
+ (UNSPEC_MFC2 14)
+ (UNSPEC_MFC3 15)
+ (UNSPEC_MTC0 16)
+ (UNSPEC_MTC1 17)
+ (UNSPEC_MTC2 18)
+ (UNSPEC_MTC3 19)
+ (UNSPEC_LUR 20)
+ (UNSPEC_RB 21)
+ (UNSPEC_RX 22)
+ (UNSPEC_SRRD 23)
+ (UNSPEC_SRWR 24)
+ (UNSPEC_WB 25)
+ (UNSPEC_WX 26)
+ (UNSPEC_LUC32 49)
+ (UNSPEC_LUC32L 27)
+ (UNSPEC_LUC64 28)
+ (UNSPEC_LUC64L 29)
+ (UNSPEC_LUK 30)
+ (UNSPEC_LULCK 31)
+ (UNSPEC_LUM32 32)
+ (UNSPEC_LUM32L 33)
+ (UNSPEC_LUM64 34)
+ (UNSPEC_LUM64L 35)
+ (UNSPEC_LURL 36)
+ (UNSPEC_MRGB 37)
+ (UNSPEC_SRRDL 38)
+ (UNSPEC_SRULCK 39)
+ (UNSPEC_SRWRU 40)
+ (UNSPEC_TRAPQFL 41)
+ (UNSPEC_TRAPQNE 42)
+ (UNSPEC_TRAPREL 43)
+ (UNSPEC_WBU 44)
+ (UNSPEC_SYSCALL 45)]
+)
+;; UNSPEC values used in iq2000.md
+;; Number USE
+;; 0 movsi_ul
+;; 1 movsi_us, get_fnaddr
+;; 3 eh_set_return
+;; 20 builtin_setjmp_setup
+;;
+;; UNSPEC_VOLATILE values
+;; 0 blockage
+;; 2 loadgp
+;; 3 builtin_longjmp
+;; 4 exception_receiver
+;; 10 consttable_qi
+;; 11 consttable_hi
+;; 12 consttable_si
+;; 13 consttable_di
+;; 14 consttable_sf
+;; 15 consttable_df
+;; 16 align_2
+;; 17 align_4
+;; 18 align_8
+\f
+
+;; ....................
+;;
+;; Attributes
+;;
+;; ....................
+
+;; Classification of each insn.
+;; branch conditional branch
+;; jump unconditional jump
+;; call unconditional call
+;; load load instruction(s)
+;; store store instruction(s)
+;; move data movement within same register set
+;; xfer transfer to/from coprocessor
+;; arith integer arithmetic instruction
+;; darith double precision integer arithmetic instructions
+;; imul integer multiply
+;; idiv integer divide
+;; icmp integer compare
+;; fadd floating point add/subtract
+;; fmul floating point multiply
+;; fmadd floating point multiply-add
+;; fdiv floating point divide
+;; fabs floating point absolute value
+;; fneg floating point negation
+;; fcmp floating point compare
+;; fcvt floating point convert
+;; fsqrt floating point square root
+;; multi multiword sequence (or user asm statements)
+;; nop no operation
+
+(define_attr "type"
+ "unknown,branch,jump,call,load,store,move,xfer,arith,darith,imul,idiv,icmp,fadd,fmul,fmadd,fdiv,fabs,fneg,fcmp,fcvt,fsqrt,multi,nop"
+ (const_string "unknown"))
+
+;; Main data type used by the insn
+(define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,FPSW" (const_string "unknown"))
+
+;; Length (in # of bytes). A conditional branch is allowed only to a
+;; location within a signed 18-bit offset of the delay slot. If that
+;; provides too small a range, we use the `j' instruction. This
+;; instruction takes a 28-bit value, but that value is not an offset.
+;; Instead, it's bitwise-ored with the high-order four bits of the
+;; instruction in the delay slot, which means it cannot be used to
+;; cross a 256MB boundary. We could fall back back on the jr,
+;; instruction which allows full access to the entire address space,
+;; but we do not do so at present.
+
+(define_attr "length" ""
+ (cond [(eq_attr "type" "branch")
+ (cond [(lt (abs (minus (match_dup 1) (plus (pc) (const_int 4))))
+ (const_int 131072))
+ (const_int 4)]
+ (const_int 12))]
+ (const_int 4)))
+
+(define_attr "cpu"
+ "default,iq2000"
+ (const (symbol_ref "iq2000_cpu_attr")))
+
+;; Does the instruction have a mandatory delay slot? has_dslot
+;; Can the instruction be in a delay slot? ok_in_dslot
+;; Can the instruction not be in a delay slot? not_in_dslot
+(define_attr "dslot" "has_dslot,ok_in_dslot,not_in_dslot"
+ (if_then_else (eq_attr "type" "branch,jump,call,xfer,fcmp")
+ (const_string "has_dslot")
+ (const_string "ok_in_dslot")))
+
+;; Attribute defining whether or not we can use the branch-likely instructions
+
+(define_attr "branch_likely" "no,yes"
+ (const
+ (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0))
+ (const_string "yes")
+ (const_string "no"))))
+
+
+;; Describe a user's asm statement.
+(define_asm_attributes
+ [(set_attr "type" "multi")])
+
+\f
+
+;; .........................
+;;
+;; Delay slots, can't describe load/fcmp/xfer delay slots here
+;;
+;; .........................
+
+(define_delay (eq_attr "type" "jump")
+ [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4"))
+ (nil)
+ (nil)])
+
+(define_delay (eq_attr "type" "branch")
+ [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4"))
+ (nil)
+ (and (eq_attr "branch_likely" "yes") (and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4")))])
+
+(define_delay (eq_attr "type" "call")
+ [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4"))
+ (nil)
+ (nil)])
+
+\f
+
+;; .........................
+;;
+;; Functional units
+;;
+;; .........................
+
+; (define_function_unit NAME MULTIPLICITY SIMULTANEITY
+; TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])
+
+;; Make the default case (PROCESSOR_DEFAULT) handle the worst case
+
+(define_function_unit "memory" 1 0
+ (and (eq_attr "type" "load")
+ (eq_attr "cpu" "iq2000"))
+ 3 0)
+
+(define_function_unit "memory" 1 0
+ (and (eq_attr "type" "move")
+ (eq_attr "cpu" "iq2000"))
+ 3 0)
+
+(define_function_unit "memory" 1 0
+ (and (eq_attr "type" "arith")
+ (eq_attr "cpu" "iq2000"))
+ 3 0)
+
+(define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0)
+
+(define_function_unit "memory" 1 0 (eq_attr "type" "xfer") 2 0)
+\f
+;;
+;; ....................
+;;
+;; CONDITIONAL TRAPS
+;;
+;; ....................
+;;
+
+(define_insn "trap"
+ [(trap_if (const_int 1) (const_int 0))]
+ ""
+ "*
+{
+ return \"break\";
+}")
+\f
+;;
+;; ....................
+;;
+;; ADDITION
+;;
+;; ....................
+;;
+
+(define_expand "addsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "")
+
+(define_insn "addsi3_internal"
+ [(set (match_operand:SI 0 "register_operand" "=d,=d")
+ (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")
+ (match_operand:SI 2 "arith_operand" "d,I")))]
+ ""
+ "@
+ addu\\t%0,%z1,%2
+ addiu\\t%0,%z1,%2"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+\f
+;;
+;; ....................
+;;
+;; SUBTRACTION
+;;
+;; ....................
+;;
+
+(define_expand "subsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "")
+
+(define_insn "subsi3_internal"
+ [(set (match_operand:SI 0 "register_operand" "=d,=d")
+ (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")
+ (match_operand:SI 2 "arith_operand" "d,I")))]
+ ""
+ "@
+ subu\\t%0,%z1,%2
+ addiu\\t%0,%z1,%n2"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+\f
+;;
+;; ....................
+;;
+;; NEGATION and ONE'S COMPLEMENT
+;;
+;; ....................
+
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (neg:SI (match_operand:SI 1 "register_operand" "d")))]
+ ""
+ "*
+{
+ operands[2] = const0_rtx;
+ return \"subu\\t%0,%z2,%1\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_insn "one_cmplsi2"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (not:SI (match_operand:SI 1 "register_operand" "d")))]
+ ""
+ "*
+{
+ operands[2] = const0_rtx;
+ return \"nor\\t%0,%z2,%1\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+\f
+;;
+;; ....................
+;;
+;; LOGICAL
+;;
+;; ....................
+;;
+
+(define_expand "andsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d,d,d")
+ (and:SI (match_operand:SI 1 "uns_arith_operand" "%d,d,d")
+ (match_operand:SI 2 "nonmemory_operand" "d,K,N")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=d,d,d")
+ (and:SI (match_operand:SI 1 "uns_arith_operand" "%d,d,d")
+ (match_operand:SI 2 "nonmemory_operand" "d,K,N")))]
+ ""
+ "*
+{
+ if (which_alternative == 0)
+ return \"and\\t%0,%1,%2\";
+ else if (which_alternative == 1)
+ return \"andi\\t%0,%1,%x2\";
+ else if (which_alternative == 2)
+ {
+ if ((INTVAL (operands[2]) & 0xffff) == 0xffff)
+ {
+ operands[2] = GEN_INT (INTVAL (operands[2]) >> 16);
+ return \"andoui\\t%0,%1,%x2\";
+ }
+ else
+ {
+ operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
+ return \"andoi\\t%0,%1,%x2\";
+ }
+ }
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "iorsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (ior:SI (match_operand:SI 1 "uns_arith_operand" "%d,d")
+ (match_operand:SI 2 "uns_arith_operand" "d,K")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (ior:SI (match_operand:SI 1 "uns_arith_operand" "%d,d")
+ (match_operand:SI 2 "uns_arith_operand" "d,K")))]
+ ""
+ "@
+ or\\t%0,%1,%2
+ ori\\t%0,%1,%x2"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "xorsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (xor:SI (match_operand:SI 1 "uns_arith_operand" "%d,d")
+ (match_operand:SI 2 "uns_arith_operand" "d,K")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (xor:SI (match_operand:SI 1 "uns_arith_operand" "%d,d")
+ (match_operand:SI 2 "uns_arith_operand" "d,K")))]
+ ""
+ "@
+ xor\\t%0,%1,%2
+ xori\\t%0,%1,%x2"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_insn "*norsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (and:SI (not:SI (match_operand:SI 1 "register_operand" "d"))
+ (not:SI (match_operand:SI 2 "register_operand" "d"))))]
+ ""
+ "nor\\t%0,%z1,%z2"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+\f
+;;
+;; ....................
+;;
+;; ZERO EXTENSION
+;;
+;; ....................
+
+;; Extension insns.
+;; Those for integer source operand are ordered widest source type first.
+
+(define_expand "zero_extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=d,d,d")
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "d,R,m")))]
+ ""
+ "*
+{
+ if (which_alternative == 0)
+ return \"andi\\t%0,%1,0xffff\";
+ else
+ return iq2000_move_1word (operands, insn, TRUE);
+}"
+ [(set_attr "type" "arith,load,load")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,4,8")])
+
+(define_expand "zero_extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:HI 0 "register_operand" "=d,d,d")
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))]
+ ""
+ "*
+{
+ if (which_alternative == 0)
+ return \"andi\\t%0,%1,0x00ff\";
+ else
+ return iq2000_move_1word (operands, insn, TRUE);
+}"
+ [(set_attr "type" "arith,load,load")
+ (set_attr "mode" "HI")
+ (set_attr "length" "4,4,8")])
+
+(define_expand "zero_extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "")))]
+ ""
+ "")
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=d,d,d")
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))]
+ ""
+ "*
+{
+ if (which_alternative == 0)
+ return \"andi\\t%0,%1,0x00ff\";
+ else
+ return iq2000_move_1word (operands, insn, TRUE);
+}"
+ [(set_attr "type" "arith,load,load")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,4,8")])
+
+;;
+;; ....................
+;;
+;; SIGN EXTENSION
+;;
+;; ....................
+
+;; Extension insns.
+;; Those for integer source operand are ordered widest source type first.
+
+;; These patterns originally accepted general_operands, however, slightly
+;; better code is generated by only accepting register_operands, and then
+;; letting combine generate the lh and lb insns.
+
+(define_expand "extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "")))]
+ ""
+ "
+{
+ if (optimize && GET_CODE (operands[1]) == MEM)
+ operands[1] = force_not_mem (operands[1]);
+
+ if (GET_CODE (operands[1]) != MEM)
+ {
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx temp = gen_reg_rtx (SImode);
+ rtx shift = GEN_INT (16);
+
+ emit_insn (gen_ashlsi3 (temp, op1, shift));
+ emit_insn (gen_ashrsi3 (operands[0], temp, shift));
+ DONE;
+ }
+}")
+
+(define_insn "extendhisi2_internal"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (sign_extend:SI (match_operand:HI 1 "memory_operand" "R,m")))]
+ ""
+ "* return iq2000_move_1word (operands, insn, FALSE);"
+ [(set_attr "type" "load")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,8")])
+
+(define_expand "extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "")))]
+ ""
+ "
+{
+ if (optimize && GET_CODE (operands[1]) == MEM)
+ operands[1] = force_not_mem (operands[1]);
+
+ if (GET_CODE (operands[1]) != MEM)
+ {
+ rtx op0 = gen_lowpart (SImode, operands[0]);
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx temp = gen_reg_rtx (SImode);
+ rtx shift = GEN_INT (24);
+
+ emit_insn (gen_ashlsi3 (temp, op1, shift));
+ emit_insn (gen_ashrsi3 (op0, temp, shift));
+ DONE;
+ }
+}")
+
+(define_insn "extendqihi2_internal"
+ [(set (match_operand:HI 0 "register_operand" "=d,d")
+ (sign_extend:HI (match_operand:QI 1 "memory_operand" "R,m")))]
+ ""
+ "* return iq2000_move_1word (operands, insn, FALSE);"
+ [(set_attr "type" "load")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,8")])
+
+
+(define_expand "extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "")
+ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "")))]
+ ""
+ "
+{
+ if (optimize && GET_CODE (operands[1]) == MEM)
+ operands[1] = force_not_mem (operands[1]);
+
+ if (GET_CODE (operands[1]) != MEM)
+ {
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx temp = gen_reg_rtx (SImode);
+ rtx shift = GEN_INT (24);
+
+ emit_insn (gen_ashlsi3 (temp, op1, shift));
+ emit_insn (gen_ashrsi3 (operands[0], temp, shift));
+ DONE;
+ }
+}")
+
+(define_insn "extendqisi2_insn"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (sign_extend:SI (match_operand:QI 1 "memory_operand" "R,m")))]
+ ""
+ "* return iq2000_move_1word (operands, insn, FALSE);"
+ [(set_attr "type" "load")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,8")])
+\f
+;;
+;; ........................
+;;
+;; BIT FIELD EXTRACTION
+;;
+;; ........................
+
+(define_insn "extzv"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "const_int_operand" "O")
+ (match_operand:SI 3 "const_int_operand" "O")))]
+ ""
+ "*
+{
+ int value[4];
+ value[2] = INTVAL (operands[2]);
+ value[3] = INTVAL (operands[3]);
+ operands[2] = GEN_INT ((value[3]));
+ operands[3] = GEN_INT ((32 - value[2]));
+ return \"ram\\t%0,%1,%2,%3,0x0\";
+}"
+ [(set_attr "type" "arith")])
+\f
+;;
+;; ....................
+;;
+;; DATA MOVEMENT
+;;
+;; ....................
+
+/* Take care of constants that don't fit in single instruction */
+(define_split
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "general_operand" ""))]
+ "(reload_in_progress || reload_completed)
+ && large_int (operands[1], SImode)"
+
+ [(set (match_dup 0 )
+ (high:SI (match_dup 1)))
+ (set (match_dup 0 )
+ (lo_sum:SI (match_dup 0)
+ (match_dup 1)))]
+)
+
+;; ??? iq2000_move_1word has support for HIGH, so this pattern may be
+;; unnecessary.
+
+(define_insn "high"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (high:SI (match_operand:SI 1 "immediate_operand" "")))]
+ ""
+ "lui\\t%0,%%hi(%1) # high"
+ [(set_attr "type" "move")])
+
+(define_insn "low"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (lo_sum:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "immediate_operand" "")))]
+ ""
+ "addiu\\t%0,%1,%%lo(%2) # low"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+;; 32-bit Integer moves
+
+(define_split
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "large_int" ""))]
+ "reload_in_progress | reload_completed"
+ [(set (match_dup 0)
+ (match_dup 2))
+ (set (match_dup 0)
+ (ior:SI (match_dup 0)
+ (match_dup 3)))]
+ "
+{
+ operands[2] = GEN_INT (trunc_int_for_mode (INTVAL (operands[1])
+ & BITMASK_UPPER16,
+ SImode));
+ operands[3] = GEN_INT (INTVAL (operands[1]) & BITMASK_LOWER16);
+}")
+
+;; Unlike most other insns, the move insns can't be split with
+;; different predicates, because register spilling and other parts of
+;; the compiler, have memoized the insn number already.
+
+(define_expand "movsi"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (iq2000_check_split (operands[1], SImode))
+ {
+ enum machine_mode mode = GET_MODE (operands[0]);
+ rtx tem = ((reload_in_progress | reload_completed)
+ ? operands[0] : gen_reg_rtx (mode));
+
+ emit_insn (gen_rtx_SET (VOIDmode, tem,
+ gen_rtx_HIGH (mode, operands[1])));
+
+ operands[1] = gen_rtx_LO_SUM (mode, tem, operands[1]);
+ }
+
+ if ((reload_in_progress | reload_completed) == 0
+ && !register_operand (operands[0], SImode)
+ && !register_operand (operands[1], SImode)
+ && (GET_CODE (operands[1]) != CONST_INT
+ || INTVAL (operands[1]) != 0))
+ {
+ rtx temp = force_reg (SImode, operands[1]);
+ emit_move_insn (operands[0], temp);
+ DONE;
+ }
+
+ /* Take care of constants that don't fit in single instruction */
+ if ((reload_in_progress || reload_completed)
+ && CONSTANT_P (operands[1])
+ && GET_CODE (operands[1]) != HIGH
+ && GET_CODE (operands[1]) != LO_SUM
+ && ! SMALL_INT_UNSIGNED (operands[1]))
+ {
+ rtx tem = ((reload_in_progress | reload_completed)
+ ? operands[0] : gen_reg_rtx (SImode));
+
+ emit_insn (gen_rtx_SET (VOIDmode, tem,
+ gen_rtx_HIGH (SImode, operands[1])));
+ operands[1] = gen_rtx_LO_SUM (SImode, tem, operands[1]);
+ }
+}")
+
+;; The difference between these two is whether or not ints are allowed
+;; in FP registers (off by default, use -mdebugh to enable).
+
+(define_insn "movsi_internal2"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,d,d,d,d,R,m,*d,*z,*x,*d,*x,*d")
+ (match_operand:SI 1 "move_operand" "d,S,IKL,Mnis,R,m,dJ,dJ,*z,*d,J,*x,*d,*a"))]
+ "(register_operand (operands[0], SImode)
+ || register_operand (operands[1], SImode)
+ || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))"
+ "* return iq2000_move_1word (operands, insn, FALSE);"
+ [(set_attr "type" "move,load,arith,arith,load,load,store,store,xfer,xfer,move,move,move,move")
+ (set_attr "mode" "SI")
+ (set_attr "length" "4,8,4,8,4,8,4,8,4,4,4,4,4,4")])
+
+;; 16-bit Integer moves
+
+;; Unlike most other insns, the move insns can't be split with
+;; different predicates, because register spilling and other parts of
+;; the compiler, have memoized the insn number already.
+;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined
+
+(define_expand "movhi"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
+ (match_operand:HI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if ((reload_in_progress | reload_completed) == 0
+ && !register_operand (operands[0], HImode)
+ && !register_operand (operands[1], HImode)
+ && ((GET_CODE (operands[1]) != CONST_INT
+ || INTVAL (operands[1]) != 0)))
+ {
+ rtx temp = force_reg (HImode, operands[1]);
+ emit_move_insn (operands[0], temp);
+ DONE;
+ }
+}")
+
+;; The difference between these two is whether or not ints are allowed
+;; in FP registers (off by default, use -mdebugh to enable).
+
+(define_insn "movhi_internal2"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d")
+ (match_operand:HI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,*x"))]
+ "(register_operand (operands[0], HImode)
+ || register_operand (operands[1], HImode)
+ || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))"
+ "* return iq2000_move_1word (operands, insn, TRUE);"
+ [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,move")
+ (set_attr "mode" "HI")
+ (set_attr "length" "4,4,4,8,4,8,4,4,4,4")])
+
+;; 8-bit Integer moves
+
+;; Unlike most other insns, the move insns can't be split with
+;; different predicates, because register spilling and other parts of
+;; the compiler, have memoized the insn number already.
+;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined
+
+(define_expand "movqi"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if ((reload_in_progress | reload_completed) == 0
+ && !register_operand (operands[0], QImode)
+ && !register_operand (operands[1], QImode)
+ && (GET_CODE (operands[1]) != CONST_INT
+ || INTVAL (operands[1]) != 0))
+ {
+ rtx temp = force_reg (QImode, operands[1]);
+ emit_move_insn (operands[0], temp);
+ DONE;
+ }
+}")
+
+;; The difference between these two is whether or not ints are allowed
+;; in FP registers (off by default, use -mdebugh to enable).
+
+(define_insn "movqi_internal2"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d")
+ (match_operand:QI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,*x"))]
+ "(register_operand (operands[0], QImode)
+ || register_operand (operands[1], QImode)
+ || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))"
+ "* return iq2000_move_1word (operands, insn, TRUE);"
+ [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,move")
+ (set_attr "mode" "QI")
+ (set_attr "length" "4,4,4,8,4,8,4,4,4,4")])
+
+;; 32-bit floating point moves
+
+(define_expand "movsf"
+ [(set (match_operand:SF 0 "general_operand" "")
+ (match_operand:SF 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && GET_CODE (operands[0]) == MEM
+ && (GET_CODE (operands[1]) == MEM
+ || GET_CODE (operands[1]) == CONST_DOUBLE))
+ operands[1] = copy_to_mode_reg (SFmode, operands[1]);
+
+ /* Take care of reg <- SF constant */
+ if ( const_double_operand (operands[1], GET_MODE (operands[1]) ) )
+ {
+ emit_insn (gen_movsf_high (operands[0], operands[1]));
+ emit_insn (gen_movsf_lo_sum (operands[0], operands[0], operands[1]));
+ DONE;
+ }
+}")
+
+(define_insn "movsf_lo_sum"
+ [(set (match_operand:SF 0 "register_operand" "=r")
+ (lo_sum:SF (match_operand:SF 1 "register_operand" "r")
+ (match_operand:SF 2 "const_double_operand" "")))]
+ ""
+ "*
+{
+ REAL_VALUE_TYPE r;
+ long i;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[2]);
+ REAL_VALUE_TO_TARGET_SINGLE (r, i);
+ operands[2] = GEN_INT (i);
+ return \"addiu\\t%0,%1,%%lo(%2) # low\";
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "arith")])
+
+(define_insn "movsf_high"
+ [(set (match_operand:SF 0 "register_operand" "=r")
+ (high:SF (match_operand:SF 1 "const_double_operand" "")))]
+ ""
+ "*
+{
+ REAL_VALUE_TYPE r;
+ long i;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
+ REAL_VALUE_TO_TARGET_SINGLE (r, i);
+ operands[1] = GEN_INT (i);
+ return \"lui\\t%0,%%hi(%1) # high\";
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "arith")])
+
+(define_insn "*movsf_internal"
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,m")
+ (match_operand:SF 1 "nonimmediate_operand" "r,m,r"))]
+ "!memory_operand (operands[0], SFmode) || !memory_operand (operands[1], SFmode)"
+ "*
+{
+ iq2000_fill_delay_slot (\"\", DELAY_LOAD, operands, insn);
+ if (which_alternative == 0)
+ return \"or\\t%0,%1,%1\";
+ else if (which_alternative == 1)
+ return \"lw\\t%0,%1\";
+ else if (which_alternative == 2)
+ return \"sw\\t%1,%0\";
+}"
+ [(set_attr "length" "4,4,4")
+ (set_attr "type" "arith,load,store")]
+)
+\f
+;;
+;; ....................
+;;
+;; SHIFTS
+;;
+;; ....................
+
+(define_expand "ashlsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ashift:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "")
+
+(define_insn "ashlsi3_internal1"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ashift:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
+ return \"sll\\t%0,%1,%2\";
+ }
+ else
+ return \"sllv\\t%0,%1,%2\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "ashrsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "")
+
+(define_insn "ashrsi3_internal1"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
+ return \"sra\\t%0,%1,%2\";
+ }
+ else
+ return \"srav\\t%0,%1,%2\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "lshrsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "")
+
+(define_insn "lshrsi3_internal1"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "arith_operand" "dI")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
+ return \"srl\\t%0,%1,%2\";
+ }
+ else
+ return \"srlv\\t%0,%1,%2\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+;; Rotate Right
+(define_insn "rotrsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (rotatert:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "uns_arith_operand" "O")))]
+ ""
+ "ram %0,%1,%2,0x0,0x0"
+ [(set_attr "type" "arith")])
+
+\f
+;;
+;; ....................
+;;
+;; COMPARISONS
+;;
+;; ....................
+
+;; Flow here is rather complex:
+;;
+;; 1) The cmp{si,di,sf,df} routine is called. It deposits the
+;; arguments into the branch_cmp array, and the type into
+;; branch_type. No RTL is generated.
+;;
+;; 2) The appropriate branch define_expand is called, which then
+;; creates the appropriate RTL for the comparison and branch.
+;; Different CC modes are used, based on what type of branch is
+;; done, so that we can constrain things appropriately. There
+;; are assumptions in the rest of GCC that break if we fold the
+;; operands into the branchs for integer operations, and use cc0
+;; for floating point, so we use the fp status register instead.
+;; If needed, an appropriate temporary is created to hold the
+;; of the integer compare.
+
+(define_expand "cmpsi"
+ [(set (cc0)
+ (compare:CC (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "arith_operand" "")))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code message */
+ {
+ branch_cmp[0] = operands[0];
+ branch_cmp[1] = operands[1];
+ branch_type = CMP_SI;
+ DONE;
+ }
+}")
+
+(define_expand "tstsi"
+ [(set (cc0)
+ (match_operand:SI 0 "register_operand" ""))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code message */
+ {
+ branch_cmp[0] = operands[0];
+ branch_cmp[1] = const0_rtx;
+ branch_type = CMP_SI;
+ DONE;
+ }
+}")
+\f
+;;
+;; ....................
+;;
+;; CONDITIONAL BRANCHES
+;;
+;; ....................
+
+;; Conditional branches on comparisons with zero.
+
+(define_insn "branch_zero"
+ [(set (pc)
+ (if_then_else
+ (match_operator:SI 0 "cmp_op"
+ [(match_operand:SI 2 "register_operand" "d")
+ (const_int 0)])
+ (label_ref (match_operand 1 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ return iq2000_output_conditional_branch (insn,
+ operands,
+ /*two_operands_p=*/0,
+ /*float_p=*/0,
+ /*inverted_p=*/0,
+ get_attr_length (insn));
+}"
+ [(set_attr "type" "branch")
+ (set_attr "mode" "none")])
+
+(define_insn "branch_zero_inverted"
+ [(set (pc)
+ (if_then_else
+ (match_operator:SI 0 "cmp_op"
+ [(match_operand:SI 2 "register_operand" "d")
+ (const_int 0)])
+ (pc)
+ (label_ref (match_operand 1 "" ""))))]
+ ""
+ "*
+{
+ return iq2000_output_conditional_branch (insn,
+ operands,
+ /*two_operands_p=*/0,
+ /*float_p=*/0,
+ /*inverted_p=*/1,
+ get_attr_length (insn));
+}"
+ [(set_attr "type" "branch")
+ (set_attr "mode" "none")])
+
+;; Conditional branch on equality comparision.
+
+(define_insn "branch_equality"
+ [(set (pc)
+ (if_then_else
+ (match_operator:SI 0 "equality_op"
+ [(match_operand:SI 2 "register_operand" "d")
+ (match_operand:SI 3 "register_operand" "d")])
+ (label_ref (match_operand 1 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ return iq2000_output_conditional_branch (insn,
+ operands,
+ /*two_operands_p=*/1,
+ /*float_p=*/0,
+ /*inverted_p=*/0,
+ get_attr_length (insn));
+}"
+ [(set_attr "type" "branch")
+ (set_attr "mode" "none")])
+
+(define_insn "branch_equality_inverted"
+ [(set (pc)
+ (if_then_else
+ (match_operator:SI 0 "equality_op"
+ [(match_operand:SI 2 "register_operand" "d")
+ (match_operand:SI 3 "register_operand" "d")])
+ (pc)
+ (label_ref (match_operand 1 "" ""))))]
+ ""
+ "*
+{
+ return iq2000_output_conditional_branch (insn,
+ operands,
+ /*two_operands_p=*/1,
+ /*float_p=*/0,
+ /*inverted_p=*/1,
+ get_attr_length (insn));
+}"
+ [(set_attr "type" "branch")
+ (set_attr "mode" "none")])
+
+(define_expand "beq"
+ [(set (pc)
+ (if_then_else (eq:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, EQ);
+ DONE;
+ }
+}")
+
+(define_expand "bne"
+ [(set (pc)
+ (if_then_else (ne:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, NE);
+ DONE;
+ }
+}")
+
+(define_expand "bgt"
+ [(set (pc)
+ (if_then_else (gt:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, GT);
+ DONE;
+ }
+}")
+
+(define_expand "bge"
+ [(set (pc)
+ (if_then_else (ge:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, GE);
+ DONE;
+ }
+}")
+
+(define_expand "blt"
+ [(set (pc)
+ (if_then_else (lt:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, LT);
+ DONE;
+ }
+}")
+
+(define_expand "ble"
+ [(set (pc)
+ (if_then_else (le:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, LE);
+ DONE;
+ }
+}")
+
+(define_expand "bgtu"
+ [(set (pc)
+ (if_then_else (gtu:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, GTU);
+ DONE;
+ }
+}")
+
+(define_expand "bgeu"
+ [(set (pc)
+ (if_then_else (geu:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, GEU);
+ DONE;
+ }
+}")
+
+
+(define_expand "bltu"
+ [(set (pc)
+ (if_then_else (ltu:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, LTU);
+ DONE;
+ }
+}")
+
+(define_expand "bleu"
+ [(set (pc)
+ (if_then_else (leu:CC (cc0)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "
+{
+ if (operands[0]) /* avoid unused code warning */
+ {
+ gen_conditional_branch (operands, LEU);
+ DONE;
+ }
+}")
+
+;; Recognize bbi and bbin instructions. These use two unusual template
+;; patterns, %Ax and %Px. %Ax outputs an 'i' if operand `x' is a LABEL_REF
+;; otherwise it outputs an 'in'. %Px does nothing if `x' is PC
+;; and outputs the operand if `x' is a LABEL_REF.
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ne (sign_extract:SI (match_operand:SI 0 "register_operand" "r")
+ (const_int 1)
+ (match_operand:SI 1 "arith_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A2\\t%0(31-%1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (eq (sign_extract:SI (match_operand:SI 0 "register_operand" "r")
+ (const_int 1)
+ (match_operand:SI 1 "arith_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A3\\t%0(31-%1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ne (zero_extract:SI (match_operand:SI 0 "register_operand" "r")
+ (const_int 1)
+ (match_operand:SI 1 "arith_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A2\\t%0(31-%1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (eq (zero_extract:SI (match_operand:SI 0 "register_operand" "r")
+ (const_int 1)
+ (match_operand:SI 1 "arith_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A3\\t%0(31-%1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (eq (and:SI (match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "power_of_2_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A3\\t%0(%p1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+
+(define_insn ""
+ [(set (pc)
+ (if_then_else
+ (ne (and:SI (match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "power_of_2_operand" "I"))
+ (const_int 0))
+ (match_operand 2 "pc_or_label_operand" "")
+ (match_operand 3 "pc_or_label_operand" "")))]
+ ""
+ "bb%A2\\t%0(%p1),%P2%P3"
+ [(set_attr "length" "4")
+ (set_attr "type" "branch")])
+\f
+;;
+;; ....................
+;;
+;; SETTING A REGISTER FROM A COMPARISON
+;;
+;; ....................
+
+(define_expand "seq"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (eq:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (EQ, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+
+(define_insn "seq_si_zero"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (eq:SI (match_operand:SI 1 "register_operand" "d")
+ (const_int 0)))]
+ ""
+ "sltiu\\t%0,%1,1"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "sne"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ne:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (NE, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sne_si_zero"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ne:SI (match_operand:SI 1 "register_operand" "d")
+ (const_int 0)))]
+ ""
+ "sltu\\t%0,%.,%1"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "sgt"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (gt:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (GT, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sgt_si"
+ [(set (match_operand:SI 0 "register_operand" "=d,=d")
+ (gt:SI (match_operand:SI 1 "register_operand" "d,d")
+ (match_operand:SI 2 "reg_or_0_operand" "d,J")))]
+ ""
+ "@
+ slt\\t%0,%z2,%1
+ slt\\t%0,%z2,%1"
+ [(set_attr "type" "arith,arith")
+ (set_attr "mode" "SI,SI")])
+
+(define_expand "sge"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ge:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (GE, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_expand "slt"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (lt:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (LT, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "slt_si"
+ [(set (match_operand:SI 0 "register_operand" "=d,=d")
+ (lt:SI (match_operand:SI 1 "register_operand" "d,d")
+ (match_operand:SI 2 "arith_operand" "d,I")))]
+ ""
+ "@
+ slt\\t%0,%1,%2
+ slti\\t%0,%1,%2"
+ [(set_attr "type" "arith,arith")
+ (set_attr "mode" "SI,SI")])
+
+(define_expand "sle"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (le:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (LE, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sle_si_const"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (le:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "small_int" "I")))]
+ "INTVAL (operands[2]) < 32767"
+ "*
+{
+ operands[2] = GEN_INT (INTVAL (operands[2])+1);
+ return \"slti\\t%0,%1,%2\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "sgtu"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (gtu:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (GTU, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sgtu_si"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (gtu:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "reg_or_0_operand" "dJ")))]
+ ""
+ "sltu\\t%0,%z2,%1"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_insn ""
+ [(set (match_operand:SI 0 "register_operand" "=t")
+ (gtu:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "register_operand" "d")))]
+ ""
+ "sltu\\t%2,%1"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+(define_expand "sgeu"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (geu:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (GEU, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_expand "sltu"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (ltu:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (LTU, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sltu_si"
+ [(set (match_operand:SI 0 "register_operand" "=d,=d")
+ (ltu:SI (match_operand:SI 1 "register_operand" "d,d")
+ (match_operand:SI 2 "arith_operand" "d,I")))]
+ ""
+ "@
+ sltu\\t%0,%1,%2
+ sltiu\\t%0,%1,%2"
+ [(set_attr "type" "arith,arith")
+ (set_attr "mode" "SI,SI")])
+
+(define_expand "sleu"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (leu:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+ "
+{
+ if (branch_type != CMP_SI && (branch_type != CMP_DI))
+ FAIL;
+
+ /* set up operands from compare. */
+ operands[1] = branch_cmp[0];
+ operands[2] = branch_cmp[1];
+
+ gen_int_relational (LEU, operands[0], operands[1], operands[2], (int *)0);
+ DONE;
+}")
+
+(define_insn "sleu_si_const"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (leu:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "small_int" "I")))]
+ "INTVAL (operands[2]) < 32767"
+ "*
+{
+ operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
+ return \"sltiu\\t%0,%1,%2\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")])
+
+\f
+;;
+;; ....................
+;;
+;; UNCONDITIONAL BRANCHES
+;;
+;; ....................
+
+;; Unconditional branches.
+
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "*
+{
+ if (GET_CODE (operands[0]) == REG)
+ return \"j\\t%0\";
+ return \"j\\t%l0\";
+ /* return \"b\\t%l0\";*/
+}"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+(define_expand "indirect_jump"
+ [(set (pc) (match_operand 0 "register_operand" "d"))]
+ ""
+ "
+{
+ rtx dest;
+
+ if (operands[0]) /* eliminate unused code warnings */
+ {
+ dest = operands[0];
+ if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode)
+ operands[0] = copy_to_mode_reg (Pmode, dest);
+
+ if (!(Pmode == DImode))
+ emit_jump_insn (gen_indirect_jump_internal1 (operands[0]));
+ else
+ emit_jump_insn (gen_indirect_jump_internal2 (operands[0]));
+
+ DONE;
+ }
+}")
+
+(define_insn "indirect_jump_internal1"
+ [(set (pc) (match_operand:SI 0 "register_operand" "d"))]
+ "!(Pmode == DImode)"
+ "j\\t%0"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+(define_expand "tablejump"
+ [(set (pc)
+ (match_operand 0 "register_operand" "d"))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "
+{
+ if (operands[0]) /* eliminate unused code warnings */
+ {
+ if (GET_MODE (operands[0]) != Pmode)
+ abort ();
+
+ if (!(Pmode == DImode))
+ emit_jump_insn (gen_tablejump_internal1 (operands[0], operands[1]));
+ else
+ emit_jump_insn (gen_tablejump_internal2 (operands[0], operands[1]));
+
+ DONE;
+ }
+}")
+
+(define_insn "tablejump_internal1"
+ [(set (pc)
+ (match_operand:SI 0 "register_operand" "d"))
+ (use (label_ref (match_operand 1 "" "")))]
+ "!(Pmode == DImode)"
+ "j\\t%0"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+(define_expand "tablejump_internal3"
+ [(parallel [(set (pc)
+ (plus:SI (match_operand:SI 0 "register_operand" "d")
+ (label_ref:SI (match_operand 1 "" ""))))
+ (use (label_ref:SI (match_dup 1)))])]
+ ""
+ "")
+
+;;; Make sure that this only matches the insn before ADDR_DIFF_VEC. Otherwise
+;;; it is not valid. ??? With the USE, the condition tests may not be required
+;;; any longer.
+
+;;; ??? The length depends on the ABI. It is two for o32, and one for n32.
+;;; We just use the conservative number here.
+
+(define_insn ""
+ [(set (pc)
+ (plus:SI (match_operand:SI 0 "register_operand" "d")
+ (label_ref:SI (match_operand 1 "" ""))))
+ (use (label_ref:SI (match_dup 1)))]
+ "!(Pmode == DImode) && next_active_insn (insn) != 0
+ && GET_CODE (PATTERN (next_active_insn (insn))) == ADDR_DIFF_VEC
+ && PREV_INSN (next_active_insn (insn)) == operands[1]"
+ "*
+{
+ return \"j\\t%0\";
+}"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")
+ (set_attr "length" "8")])
+\f
+;;
+;; ....................
+;;
+;; Function prologue/epilogue
+;;
+;; ....................
+;;
+
+(define_expand "prologue"
+ [(const_int 1)]
+ ""
+ "
+{
+ if (iq2000_isa >= 0) /* avoid unused code warnings */
+ {
+ iq2000_expand_prologue ();
+ DONE;
+ }
+}")
+
+;; Block any insns from being moved before this point, since the
+;; profiling call to mcount can use various registers that aren't
+;; saved or used to pass arguments.
+
+(define_insn "blockage"
+ [(unspec_volatile [(const_int 0)] 0)]
+ ""
+ ""
+ [(set_attr "type" "unknown")
+ (set_attr "mode" "none")
+ (set_attr "length" "0")])
+
+(define_expand "epilogue"
+ [(const_int 2)]
+ ""
+ "
+{
+ if (iq2000_isa >= 0) /* avoid unused code warnings */
+ {
+ iq2000_expand_epilogue ();
+ DONE;
+ }
+}")
+
+;; Trivial return. Make it look like a normal return insn as that
+;; allows jump optimizations to work better .
+(define_insn "return"
+ [(return)]
+ "iq2000_can_use_return_insn ()"
+ "j\\t%%31"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+;; Normal return.
+
+(define_insn "return_internal"
+ [(use (match_operand 0 "pmode_register_operand" ""))
+ (return)]
+ ""
+ "*
+{
+ return \"j\\t%0\";
+}"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+(define_insn "eh_return_internal"
+ [(const_int 4)
+ (return)
+ (use (reg:SI 26))
+ (use (reg:SI 31))]
+ ""
+ "j\\t%%26"
+ [(set_attr "type" "jump")
+ (set_attr "mode" "none")])
+
+(define_expand "eh_return"
+ [(use (match_operand:SI 0 "register_operand" "r"))]
+ ""
+ "
+{
+ iq2000_expand_eh_return (operands[0]);
+ DONE;
+}")
+
+\f
+;;
+;; ....................
+;;
+;; FUNCTION CALLS
+;;
+;; ....................
+
+;; calls.c now passes a third argument, make saber happy
+
+(define_expand "call"
+ [(parallel [(call (match_operand 0 "memory_operand" "m")
+ (match_operand 1 "" "i"))
+ (clobber (reg:SI 31))
+ (use (match_operand 2 "" "")) ;; next_arg_reg
+ (use (match_operand 3 "" ""))])] ;; struct_value_size_rtx
+ ""
+ "
+{
+ rtx addr;
+
+ if (operands[0]) /* eliminate unused code warnings */
+ {
+ addr = XEXP (operands[0], 0);
+ if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr)))
+ || ! call_insn_operand (addr, VOIDmode))
+ XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr);
+
+ /* In order to pass small structures by value in registers
+ compatibly with the IQ2000 compiler, we need to shift the value
+ into the high part of the register. Function_arg has encoded
+ a PARALLEL rtx, holding a vector of adjustments to be made
+ as the next_arg_reg variable, so we split up the insns,
+ and emit them separately. */
+
+ if (operands[2] != (rtx)0 && GET_CODE (operands[2]) == PARALLEL)
+ {
+ rtvec adjust = XVEC (operands[2], 0);
+ int num = GET_NUM_ELEM (adjust);
+ int i;
+
+ for (i = 0; i < num; i++)
+ emit_insn (RTVEC_ELT (adjust, i));
+ }
+
+ emit_call_insn (gen_call_internal0 (operands[0], operands[1],
+ gen_rtx_REG (SImode,
+ GP_REG_FIRST + 31)));
+ DONE;
+ }
+}")
+
+(define_expand "call_internal0"
+ [(parallel [(call (match_operand 0 "" "")
+ (match_operand 1 "" ""))
+ (clobber (match_operand:SI 2 "" ""))])]
+ ""
+ "")
+
+(define_insn "call_internal1"
+ [(call (mem (match_operand 0 "call_insn_operand" "ri"))
+ (match_operand 1 "" "i"))
+ (clobber (match_operand:SI 2 "register_operand" "=d"))]
+ ""
+ "*
+{
+ register rtx target = operands[0];
+
+ if (GET_CODE (target) == CONST_INT)
+ return \"li\\t%@,%0\\n\\tjalr\\t%2,%@\";
+ else if (CONSTANT_ADDRESS_P (target))
+ return \"jal\\t%0\";
+ else
+ return \"jalr\\t%2,%0\";
+}"
+ [(set_attr "type" "call")
+ (set_attr "mode" "none")])
+
+;; calls.c now passes a fourth argument, make saber happy
+
+(define_expand "call_value"
+ [(parallel [(set (match_operand 0 "register_operand" "=df")
+ (call (match_operand 1 "memory_operand" "m")
+ (match_operand 2 "" "i")))
+ (clobber (reg:SI 31))
+ (use (match_operand 3 "" ""))])] ;; next_arg_reg
+ ""
+ "
+{
+ rtx addr;
+
+ if (operands[0]) /* eliminate unused code warning */
+ {
+ addr = XEXP (operands[1], 0);
+ if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr)))
+ || ! call_insn_operand (addr, VOIDmode))
+ XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr);
+
+ /* In order to pass small structures by value in registers
+ compatibly with the IQ2000 compiler, we need to shift the value
+ into the high part of the register. Function_arg has encoded
+ a PARALLEL rtx, holding a vector of adjustments to be made
+ as the next_arg_reg variable, so we split up the insns,
+ and emit them separately. */
+
+ if (operands[3] != (rtx)0 && GET_CODE (operands[3]) == PARALLEL)
+ {
+ rtvec adjust = XVEC (operands[3], 0);
+ int num = GET_NUM_ELEM (adjust);
+ int i;
+
+ for (i = 0; i < num; i++)
+ emit_insn (RTVEC_ELT (adjust, i));
+ }
+
+ if (GET_CODE (operands[0]) == PARALLEL && XVECLEN (operands[0], 0) > 1)
+ {
+ emit_call_insn (gen_call_value_multiple_internal0
+ (XEXP (XVECEXP (operands[0], 0, 0), 0),
+ operands[1], operands[2],
+ XEXP (XVECEXP (operands[0], 0, 1), 0),
+ gen_rtx_REG (SImode, GP_REG_FIRST + 31)));
+ DONE;
+ }
+
+ /* We have a call returning a DImode structure in an FP reg.
+ Strip off the now unnecessary PARALLEL. */
+ if (GET_CODE (operands[0]) == PARALLEL)
+ operands[0] = XEXP (XVECEXP (operands[0], 0, 0), 0);
+
+ emit_call_insn (gen_call_value_internal0 (operands[0], operands[1], operands[2],
+ gen_rtx_REG (SImode,
+ GP_REG_FIRST + 31)));
+
+ DONE;
+ }
+}")
+
+(define_expand "call_value_internal0"
+ [(parallel [(set (match_operand 0 "" "")
+ (call (match_operand 1 "" "")
+ (match_operand 2 "" "")))
+ (clobber (match_operand:SI 3 "" ""))])]
+ ""
+ "")
+
+(define_insn "call_value_internal1"
+ [(set (match_operand 0 "register_operand" "=df")
+ (call (mem (match_operand 1 "call_insn_operand" "ri"))
+ (match_operand 2 "" "i")))
+ (clobber (match_operand:SI 3 "register_operand" "=d"))]
+ ""
+ "*
+{
+ register rtx target = operands[1];
+
+ if (GET_CODE (target) == CONST_INT)
+ return \"li\\t%@,%1\\n\\tjalr\\t%3,%@\";
+ else if (CONSTANT_ADDRESS_P (target))
+ return \"jal\\t%1\";
+ else
+ return \"jalr\\t%3,%1\";
+}"
+ [(set_attr "type" "call")
+ (set_attr "mode" "none")])
+
+(define_expand "call_value_multiple_internal0"
+ [(parallel [(set (match_operand 0 "" "")
+ (call (match_operand 1 "" "")
+ (match_operand 2 "" "")))
+ (set (match_operand 3 "" "")
+ (call (match_dup 1)
+ (match_dup 2)))
+ (clobber (match_operand:SI 4 "" ""))])]
+ ""
+ "")
+
+;; ??? May eventually need all 6 versions of the call patterns with multiple
+;; return values.
+
+(define_insn "call_value_multiple_internal1"
+ [(set (match_operand 0 "register_operand" "=df")
+ (call (mem (match_operand 1 "call_insn_operand" "ri"))
+ (match_operand 2 "" "i")))
+ (set (match_operand 3 "register_operand" "=df")
+ (call (mem (match_dup 1))
+ (match_dup 2)))
+ (clobber (match_operand:SI 4 "register_operand" "=d"))]
+ ""
+ "*
+{
+ register rtx target = operands[1];
+
+ if (GET_CODE (target) == CONST_INT)
+ return \"li\\t%@,%1\\n\\tjalr\\t%4,%@\";
+ else if (CONSTANT_ADDRESS_P (target))
+ return \"jal\\t%1\";
+ else
+ return \"jalr\\t%4,%1\";
+}"
+ [(set_attr "type" "call")
+ (set_attr "mode" "none")])
+
+;; Call subroutine returning any type.
+
+(define_expand "untyped_call"
+ [(parallel [(call (match_operand 0 "" "")
+ (const_int 0))
+ (match_operand 1 "" "")
+ (match_operand 2 "" "")])]
+ ""
+ "
+{
+ if (operands[0]) /* silence statement not reached warnings */
+ {
+ int i;
+
+ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
+
+ for (i = 0; i < XVECLEN (operands[2], 0); i++)
+ {
+ rtx set = XVECEXP (operands[2], 0, i);
+ emit_move_insn (SET_DEST (set), SET_SRC (set));
+ }
+
+ emit_insn (gen_blockage ());
+ DONE;
+ }
+}")
+\f
+;;
+;; ....................
+;;
+;; MISC.
+;;
+;; ....................
+;;
+
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "nop"
+ [(set_attr "type" "nop")
+ (set_attr "mode" "none")])
+
+\f
+;; For the rare case where we need to load an address into a register
+;; that can not be recognized by the normal movsi/addsi instructions.
+;; I have no idea how many insns this can actually generate. It should
+;; be rare, so over-estimating as 10 instructions should not have any
+;; real performance impact.
+(define_insn "leasi"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (match_operand:SI 1 "address_operand" "p"))]
+ "Pmode == SImode"
+ "*
+{
+ rtx xoperands [3];
+
+ xoperands[0] = operands[0];
+ xoperands[1] = XEXP (operands[1], 0);
+ xoperands[2] = XEXP (operands[1], 1);
+ output_asm_insn (\"addiu\\t%0,%1,%2\", xoperands);
+ return \"\";
+}"
+ [(set_attr "type" "arith")
+ (set_attr "mode" "SI")
+ (set_attr "length" "40")])
+
+(define_insn "ado16"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec:SI [(match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "register_operand" "r")]
+ UNSPEC_ADO16))]
+ ""
+ "ado16\\t%0, %1, %2"
+)
+
+(define_insn "ram"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec:SI [(match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "const_int_operand" "I")
+ (match_operand:SI 3 "const_int_operand" "I")
+ (match_operand:SI 4 "const_int_operand" "I")]
+ UNSPEC_RAM))]
+ ""
+ "ram\\t%0, %1, %2, %3, %4"
+)
+
+(define_insn "chkhdr"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "=r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_CHKHDR)]
+ ""
+ "* return iq2000_fill_delay_slot (\"chkhdr\\t%0, %1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "pkrl"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_PKRL)]
+ ""
+ "* return iq2000_fill_delay_slot (\"pkrl\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "cfc0"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CFC0))]
+ ""
+ "* return iq2000_fill_delay_slot (\"cfc0\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "cfc1"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CFC1))]
+ ""
+ "* return iq2000_fill_delay_slot (\"cfc1\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "cfc2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CFC2))]
+ ""
+ "* return iq2000_fill_delay_slot (\"cfc2\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "cfc3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CFC3))]
+ ""
+ "* return iq2000_fill_delay_slot (\"cfc3\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "ctc0"
+ [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CTC0)]
+ ""
+ "* return iq2000_fill_delay_slot (\"ctc0\\t%z0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "ctc1"
+ [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CTC1)]
+ ""
+ "* return iq2000_fill_delay_slot (\"ctc1\\t%z0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "ctc2"
+ [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CTC2)]
+ ""
+ "* return iq2000_fill_delay_slot (\"ctc2\\t%z0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "ctc3"
+ [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_CTC3)]
+ ""
+ "* return iq2000_fill_delay_slot (\"ctc3\\t%z0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mfc0"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MFC0))]
+ ""
+ "* return iq2000_fill_delay_slot (\"mfc0\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mfc1"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MFC1))]
+ ""
+ "* return iq2000_fill_delay_slot (\"mfc1\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mfc2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MFC2))]
+ ""
+ "* return iq2000_fill_delay_slot (\"mfc2\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "mfc3"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MFC3))]
+ ""
+ "* return iq2000_fill_delay_slot (\"mfc3\\t%0, %%%1\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "mtc0"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MTC0)]
+ ""
+ "* return iq2000_fill_delay_slot (\"mtc0\\t%0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mtc1"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MTC1)]
+ ""
+ "* return iq2000_fill_delay_slot (\"mtc1\\t%0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mtc2"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MTC2)]
+ ""
+ "* return iq2000_fill_delay_slot (\"mtc2\\t%0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "mtc3"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "const_int_operand" "I")]
+ UNSPEC_MTC3)]
+ ""
+ "* return iq2000_fill_delay_slot (\"mtc3\\t%0, %%%1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "lur"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUR)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lur\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "rb"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_RB)]
+ ""
+ "* return iq2000_fill_delay_slot (\"rb\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "rx"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_RX)]
+ ""
+ "* return iq2000_fill_delay_slot (\"rx\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "srrd"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")]
+ UNSPEC_SRRD)]
+ ""
+ "* return iq2000_fill_delay_slot (\"srrd\\t%0\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "srwr"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_SRWR)]
+ ""
+ "* return iq2000_fill_delay_slot (\"srwr\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "wb"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_WB)]
+ ""
+ "* return iq2000_fill_delay_slot (\"wb\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "wx"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_WX)]
+ ""
+ "* return iq2000_fill_delay_slot (\"wx\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "luc32"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUC32)]
+ ""
+ "* return iq2000_fill_delay_slot (\"luc32\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "luc32l"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUC32L)]
+ ""
+ "* return iq2000_fill_delay_slot (\"luc32l\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "luc64"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUC64)]
+ ""
+ "* return iq2000_fill_delay_slot (\"luc64\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "luc64l"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUC64L)]
+ ""
+ "* return iq2000_fill_delay_slot (\"luc64l\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "luk"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUK)]
+ ""
+ "* return iq2000_fill_delay_slot (\"luk\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "lulck"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")]
+ UNSPEC_LULCK)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lulck\\t%0\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "lum32"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUM32)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lum32\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "lum32l"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUM32L)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lum32l\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "lum64"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUM64)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lum64\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "lum64l"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LUM64L)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lum64l\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "lurl"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_LURL)]
+ ""
+ "* return iq2000_fill_delay_slot (\"lurl\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "mrgb"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI [(match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "register_operand" "r")
+ (match_operand:SI 3 "const_int_operand" "I")]
+ UNSPEC_MRGB))]
+ ""
+ "* return iq2000_fill_delay_slot (\"mrgb\\t%0, %1, %2, %3\", DELAY_LOAD, operands, insn);"
+ [(set_attr "dslot" "ok_in_dslot")]
+)
+
+(define_insn "srrdl"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")]
+ UNSPEC_SRRDL)]
+ ""
+ "* return iq2000_fill_delay_slot (\"srrdl\\t%0\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "srulck"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")]
+ UNSPEC_SRULCK)]
+ ""
+ "* return iq2000_fill_delay_slot (\"srulck\\t%0\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "srwru"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_SRWRU)]
+ ""
+ "* return iq2000_fill_delay_slot (\"srwru\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "trapqfl"
+ [(unspec_volatile:SI [(const_int 1)] UNSPEC_TRAPQFL)]
+ ""
+ "* return iq2000_fill_delay_slot (\"trapqfl\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "trapqne"
+ [(unspec_volatile:SI [(const_int 2)] UNSPEC_TRAPQNE)]
+ ""
+ "* return iq2000_fill_delay_slot (\"trapqne\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "traprel"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")]
+ UNSPEC_TRAPREL)]
+ ""
+ "* return iq2000_fill_delay_slot (\"traprel %0\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "wbu"
+ [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_WBU)]
+ ""
+ "* return iq2000_fill_delay_slot (\"wbu\\t%0, %1\", DELAY_NONE, operands, insn);"
+ [(set_attr "dslot" "not_in_dslot")]
+)
+
+(define_insn "syscall"
+ [(unspec_volatile:SI [(const_int 2)] UNSPEC_SYSCALL)]
+ ""
+ "syscall"
+ [(set_attr "dslot" "not_in_dslot")]
+)
--- /dev/null
+typedef unsigned int USItype __attribute__ ((mode (SI)));
+
+USItype
+__mulsi3 (USItype a, USItype b)
+{
+ USItype c = 0;
+
+ while (a != 0)
+ {
+ if (a & 1)
+ c += b;
+ a >>= 1;
+ b <<= 1;
+ }
+
+ return c;
+}
--- /dev/null
+# Suppress building libgcc1.a, since the MIPS compiler port is complete
+# and does not need anything from libgcc1.a.
+LIBGCC1 =
+CROSS_LIBGCC1 =
+
+# We must build libgcc2.a with -G 0, in case the user wants to link
+# without the $gp register.
+TARGET_LIBGCC2_CFLAGS = -G 0
+
+LIB2FUNCS_EXTRA = $(srcdir)/config/udivmod.c $(srcdir)/config/divmod.c $(srcdir)/config/udivmodsi4.c $(srcdir)/config/iq2000/lib2extra-funcs.c
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# Enable the following if multilibs are needed.
+# See gcc/genmultilib, gcc/gcc.texi and gcc/tm.texi for a
+# description of the options and their values.
+#
+# MULTILIB_OPTIONS =
+# MULTILIB_DIRNAMES =
+# MULTILIB_MATCHES =
+# MULTILIB_EXCEPTIONS =
+# MULTILIB_EXTRA_OPTS =
+#
+# LIBGCC = stmp-multilib
+# INSTALL_LIBGCC = install-multilib
+
--- /dev/null
+/* Configuration for IQ based processors
+ Copyright (C) 2003 Free Software Foundation, Inc.
+ Contributed by Red Hat Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* #defines that need visibility everywhere. */
+#define FALSE 0
+#define TRUE 1
+
+/* This describes the machine the compiler is hosted on. */
+#define HOST_BITS_PER_CHAR 8
+#define HOST_BITS_PER_SHORT 16
+#define HOST_BITS_PER_INT 32
+#define HOST_BITS_PER_LONG 32
+#define HOST_BITS_PER_LONGLONG 64
+
+/* Arguments to use with `exit'. */
+#define SUCCESS_EXIT_CODE 0
+#define FATAL_EXIT_CODE 33
@item
@uref{#ip2k-*-elf,,ip2k-*-elf}
@item
+@uref{#iq2000-*-elf,,iq2000-*-elf}
+@item
@uref{#m32r-*-elf,,m32r-*-elf}
@item
@uref{#m6811-elf,,m6811-elf}
Use @samp{configure --target=ip2k-elf --enable-languages=c} to configure GCC@.
+@html
+<hr />
+@end html
+@heading @anchor{iq2000-*-elf}iq2000-*-elf
+Vitesse IQ2000 processors. These are used in embedded
+applications. There are no standard Unix configurations.
+
@html
<hr />
@end html