overlapping life ranges for them (PR 27283). */
if (number_of_iterations_exit (data->current_loop,
exit, &desc, true)
- && zero_p (desc.may_be_zero)
+ && integer_zerop (desc.may_be_zero)
&& !contains_abnormal_ssa_name_p (desc.niter))
nfe_desc->niter = desc.niter;
else
if (!simple_iv (loop, phi, name, &iv, true))
return NULL_TREE;
- return (zero_p (iv.step) ? NULL_TREE : iv.step);
+ return (null_or_integer_zerop (iv.step) ? NULL_TREE : iv.step);
}
/* Finds basic ivs. */
return use;
}
- if (zero_p (iv->step))
+ if (null_or_integer_zerop (iv->step))
{
record_invariant (data, op, true);
return NULL;
(!iv0 || !iv1)
/* Eliminating condition based on two ivs would be nontrivial.
??? TODO -- it is not really important to handle this case. */
- || (!zero_p (iv0->step) && !zero_p (iv1->step)))
+ || (!null_or_integer_zerop (iv0->step)
+ && !null_or_integer_zerop (iv1->step)))
{
find_interesting_uses_op (data, *op0_p);
find_interesting_uses_op (data, *op1_p);
return;
}
- if (zero_p (iv0->step) && zero_p (iv1->step))
+ if (null_or_integer_zerop (iv0->step)
+ && null_or_integer_zerop (iv1->step))
{
/* If both are invariants, this is a work for unswitching. */
return;
}
civ = XNEW (struct iv);
- *civ = zero_p (iv0->step) ? *iv1: *iv0;
+ *civ = null_or_integer_zerop (iv0->step) ? *iv1: *iv0;
record_use (data, cond_p, civ, stmt, USE_COMPARE);
}
}
}
- if (zero_p (step))
+ if (null_or_integer_zerop (step))
goto fail;
base = tree_mem_ref_addr (type, base);
}
ifs_ivopts_data.stmt = stmt;
ifs_ivopts_data.step_p = &step;
if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
- || zero_p (step))
+ || null_or_integer_zerop (step))
goto fail;
gcc_assert (TREE_CODE (base) != ALIGN_INDIRECT_REF);
iv = get_iv (data, lhs);
- if (iv && !zero_p (iv->step))
+ if (iv && !null_or_integer_zerop (iv->step))
return;
}
lhs = PHI_RESULT (stmt);
iv = get_iv (data, lhs);
- if (iv && !zero_p (iv->step))
+ if (iv && !null_or_integer_zerop (iv->step))
return;
}
{
case INTEGER_CST:
if (!cst_and_fits_in_hwi (expr)
- || zero_p (expr))
+ || integer_zerop (expr))
return orig_expr;
*offset = int_cst_value (expr);
&& op1 == TREE_OPERAND (expr, 1))
return orig_expr;
- if (zero_p (op1))
+ if (integer_zerop (op1))
expr = op0;
- else if (zero_p (op0))
+ else if (integer_zerop (op0))
{
if (code == PLUS_EXPR)
expr = op1;
*offset = off1 * st;
if (top_compref
- && zero_p (op1))
+ && integer_zerop (op1))
{
/* Strip the component reference completely. */
op0 = TREE_OPERAND (expr, 0);
if (!operand_equal_p (base, cand->iv->base, 0))
continue;
- if (zero_p (cand->iv->step))
+ if (null_or_integer_zerop (cand->iv->step))
{
- if (zero_p (step))
+ if (null_or_integer_zerop (step))
break;
}
else
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
{
iv = ver_info (data, i)->iv;
- if (iv && iv->biv_p && !zero_p (iv->step))
+ if (iv && iv->biv_p && !null_or_integer_zerop (iv->step))
add_old_iv_candidates (data, iv);
}
}
return 0;
}
*var_present = true;
- if (zero_p (e2))
+ if (integer_zerop (e2))
return force_var_cost (data, e1, depends_on);
- if (zero_p (e1))
+ if (integer_zerop (e1))
{
cost = force_var_cost (data, e2, depends_on);
cost += multiply_by_cost (-1, mode);
if (TREE_CODE (cond) != SSA_NAME)
{
op = TREE_OPERAND (cond, 0);
- if (TREE_CODE (op) == SSA_NAME && !zero_p (get_iv (data, op)->step))
+ if (TREE_CODE (op) == SSA_NAME
+ && !null_or_integer_zerop (get_iv (data, op)->step))
op = TREE_OPERAND (cond, 1);
if (TREE_CODE (op) == SSA_NAME)
{
cond = *use->op_p;
op_p = &TREE_OPERAND (cond, 0);
if (TREE_CODE (*op_p) != SSA_NAME
- || zero_p (get_iv (data, *op_p)->step))
+ || null_or_integer_zerop (get_iv (data, *op_p)->step))
op_p = &TREE_OPERAND (cond, 1);
op = force_gimple_operand (comp, &stmts, true, SSA_NAME_VAR (*op_p));
info = ver_info (data, j);
if (info->iv
- && !zero_p (info->iv->step)
+ && !null_or_integer_zerop (info->iv->step)
&& !info->inv_id
&& !info->iv->have_use_for
&& !info->preserve_biv)
*/
-/* Returns true if ARG is either NULL_TREE or constant zero. Unlike
- integer_zerop, it does not care about overflow flags. */
-
-bool
-zero_p (tree arg)
-{
- if (!arg)
- return true;
-
- if (TREE_CODE (arg) != INTEGER_CST)
- return false;
-
- return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
-}
-
-/* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
- not care about overflow flags. */
-
-static bool
-nonzero_p (tree arg)
-{
- if (!arg)
- return false;
-
- if (TREE_CODE (arg) != INTEGER_CST)
- return false;
-
- return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
-}
-
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
static tree
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
assumption, build_int_cst (niter_type, 0));
- if (!nonzero_p (assumption))
+ if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
if (TREE_CODE (mod) != INTEGER_CST)
return false;
- if (nonzero_p (mod))
+ if (integer_nonzerop (mod))
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
tmod = fold_convert (type, mod);
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
{
/* The final value of the iv is iv1->base + MOD, assuming that this
computation does not overflow, and that
iv0->base <= iv1->base + MOD. */
- if (!iv1->no_overflow && !zero_p (mod))
+ if (!iv1->no_overflow && !integer_zerop (mod))
{
bound = fold_build2 (MINUS_EXPR, type,
TYPE_MAX_VALUE (type), tmod);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
- if (zero_p (assumption))
+ if (integer_zerop (assumption))
return false;
}
noloop = fold_build2 (GT_EXPR, boolean_type_node,
/* The final value of the iv is iv0->base - MOD, assuming that this
computation does not overflow, and that
iv0->base - MOD <= iv1->base. */
- if (!iv0->no_overflow && !zero_p (mod))
+ if (!iv0->no_overflow && !integer_zerop (mod))
{
bound = fold_build2 (PLUS_EXPR, type,
TYPE_MIN_VALUE (type), tmod);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
- if (zero_p (assumption))
+ if (integer_zerop (assumption))
return false;
}
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv1->base);
}
- if (!nonzero_p (assumption))
+ if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions,
assumption);
- if (!zero_p (noloop))
+ if (!integer_zerop (noloop))
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero,
noloop);
tree bound, d, assumption, diff;
tree niter_type = TREE_TYPE (step);
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
{
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
if (iv0->no_overflow)
iv0->base, bound);
}
- if (zero_p (assumption))
+ if (integer_zerop (assumption))
return false;
- if (!nonzero_p (assumption))
+ if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
tree assumption = boolean_true_node, bound, diff;
tree mbz, mbzl, mbzr;
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
{
diff = fold_build2 (MINUS_EXPR, type,
iv0->step, build_int_cst (type, 1));
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
- if (!nonzero_p (assumption))
+ if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
- if (!zero_p (mbz))
+ if (!integer_zerop (mbz))
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero, mbz);
}
tree niter_type = unsigned_type_for (type);
tree delta, step, s;
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
{
niter->control = *iv0;
niter->cmp = LT_EXPR;
/* First handle the special case that the step is +-1. */
if ((iv0->step && integer_onep (iv0->step)
- && zero_p (iv1->step))
+ && null_or_integer_zerop (iv1->step))
|| (iv1->step && integer_all_onesp (iv1->step)
- && zero_p (iv0->step)))
+ && null_or_integer_zerop (iv0->step)))
{
/* for (i = iv0->base; i < iv1->base; i++)
return true;
}
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
step = fold_convert (niter_type, iv0->step);
else
step = fold_convert (niter_type,
if (!never_infinite)
{
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv1->base, TYPE_MAX_VALUE (type));
else
assumption = fold_build2 (NE_EXPR, boolean_type_node,
iv0->base, TYPE_MIN_VALUE (type));
- if (zero_p (assumption))
+ if (integer_zerop (assumption))
return false;
- if (!nonzero_p (assumption))
+ if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
- if (nonzero_p (iv0->step))
+ if (nonnull_and_integer_nonzerop (iv0->step))
iv1->base = fold_build2 (PLUS_EXPR, type,
iv1->base, build_int_cst (type, 1));
else
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
the control variable is on lhs. */
if (code == GE_EXPR || code == GT_EXPR
- || (code == NE_EXPR && zero_p (iv0->step)))
+ || (code == NE_EXPR && null_or_integer_zerop (iv0->step)))
{
SWAP (iv0, iv1);
code = swap_tree_comparison (code);
/* If the control induction variable does not overflow, the loop obviously
cannot be infinite. */
- if (!zero_p (iv0->step) && iv0->no_overflow)
+ if (!null_or_integer_zerop (iv0->step) && iv0->no_overflow)
never_infinite = true;
- else if (!zero_p (iv1->step) && iv1->no_overflow)
+ else if (!null_or_integer_zerop (iv1->step) && iv1->no_overflow)
never_infinite = true;
else
never_infinite = false;
/* We can handle the case when neither of the sides of the comparison is
invariant, provided that the test is NE_EXPR. This rarely occurs in
practice, but it is simple enough to manage. */
- if (!zero_p (iv0->step) && !zero_p (iv1->step))
+ if (!null_or_integer_zerop (iv0->step) && !null_or_integer_zerop (iv1->step))
{
if (code != NE_EXPR)
return false;
/* If the result of the comparison is a constant, the loop is weird. More
precise handling would be possible, but the situation is not common enough
to waste time on it. */
- if (zero_p (iv0->step) && zero_p (iv1->step))
+ if (null_or_integer_zerop (iv0->step) && null_or_integer_zerop (iv1->step))
return false;
/* Ignore loops of while (i-- < 10) type. */
if (iv0->step && tree_int_cst_sign_bit (iv0->step))
return false;
- if (!zero_p (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
+ if (!null_or_integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
return false;
}
/* If the loop exits immediately, there is nothing to do. */
- if (zero_p (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
+ if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
{
niter->niter = build_int_cst (unsigned_type_for (type), 0);
return true;
switch (code)
{
case NE_EXPR:
- gcc_assert (zero_p (iv1->step));
+ gcc_assert (null_or_integer_zerop (iv1->step));
return number_of_iterations_ne (type, iv0, iv1->base, niter, never_infinite);
case LT_EXPR:
return number_of_iterations_lt (type, iv0, iv1, niter, never_infinite);
/* We know that e0 == e1. Check whether we cannot simplify expr
using this fact. */
e = simplify_replace_tree (expr, e0, e1);
- if (zero_p (e) || nonzero_p (e))
+ if (integer_zerop (e) || integer_nonzerop (e))
return e;
e = simplify_replace_tree (expr, e1, e0);
- if (zero_p (e) || nonzero_p (e))
+ if (integer_zerop (e) || integer_nonzerop (e))
return e;
}
if (TREE_CODE (expr) == EQ_EXPR)
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
e = simplify_replace_tree (cond, e0, e1);
- if (zero_p (e))
+ if (integer_zerop (e))
return e;
e = simplify_replace_tree (cond, e1, e0);
- if (zero_p (e))
+ if (integer_zerop (e))
return e;
}
if (TREE_CODE (expr) == NE_EXPR)
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
e = simplify_replace_tree (cond, e0, e1);
- if (zero_p (e))
+ if (integer_zerop (e))
return boolean_true_node;
e = simplify_replace_tree (cond, e1, e0);
- if (zero_p (e))
+ if (integer_zerop (e))
return boolean_true_node;
}
/* Check whether COND ==> EXPR. */
notcond = invert_truthvalue (cond);
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
- if (nonzero_p (e))
+ if (e && integer_nonzerop (e))
return e;
/* Check whether COND ==> not EXPR. */
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
- if (e && zero_p (e))
+ if (e && integer_zerop (e))
return e;
return expr;
/* We can provide a more specific warning if one of the operator is
constant and the other advances by +1 or -1. */
- if (!zero_p (iv1.step)
- ? (zero_p (iv0.step)
+ if (!null_or_integer_zerop (iv1.step)
+ ? (null_or_integer_zerop (iv0.step)
&& (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
: (iv0.step
&& (integer_onep (iv0.step) || integer_all_onesp (iv0.step))))
if (!number_of_iterations_exit (loop, ex, &desc, false))
continue;
- if (nonzero_p (desc.may_be_zero))
+ if (integer_nonzerop (desc.may_be_zero))
{
/* We exit in the first iteration through this exit.
We won't find anything better. */
break;
}
- if (!zero_p (desc.may_be_zero))
+ if (!integer_zerop (desc.may_be_zero))
continue;
aniter = desc.niter;
aval[j] = get_val_for (op[j], val[j]);
acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
- if (acnd && zero_p (acnd))
+ if (acnd && integer_zerop (acnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
if (tree_expr_nonnegative_p (val))
return true;
- if (nonzero_p (cond))
+ if (integer_nonzerop (cond))
return false;
compare = fold_build2 (GE_EXPR,
boolean_type_node, val, build_int_cst (type, 0));
compare = tree_simplify_using_condition_1 (cond, compare);
- return nonzero_p (compare);
+ return integer_nonzerop (compare);
}
/* Returns true if we can prove that COND ==> A >= B. */
{
tree compare = fold_build2 (GE_EXPR, boolean_type_node, a, b);
- if (nonzero_p (compare))
+ if (integer_nonzerop (compare))
return true;
- if (nonzero_p (cond))
+ if (integer_nonzerop (cond))
return false;
compare = tree_simplify_using_condition_1 (cond, compare);
- return nonzero_p (compare);
+ return integer_nonzerop (compare);
}
/* Returns a constant upper bound on the value of expression VAL. VAL
tree niter_bound, extreme, delta;
tree type = TREE_TYPE (base), unsigned_type;
- if (TREE_CODE (step) != INTEGER_CST || zero_p (step))
+ if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
if (!init
|| !step
|| TREE_CODE (step) != INTEGER_CST
- || zero_p (step)
+ || integer_zerop (step)
|| tree_contains_chrecs (init, NULL)
|| chrec_contains_symbols_defined_in_loop (init, loop->num))
return true;
tree niter)
{
double_int bound = niter_bound->bound;
- tree nit_type = TREE_TYPE (niter);
+ tree nit_type = TREE_TYPE (niter), e;
enum tree_code cmp;
gcc_assert (TYPE_UNSIGNED (nit_type));
cmp = GT_EXPR;
}
- return nonzero_p (fold_binary (cmp, boolean_type_node,
- niter,
- double_int_to_tree (nit_type, bound)));
+ e = fold_binary (cmp, boolean_type_node,
+ niter, double_int_to_tree (nit_type, bound));
+ return e && integer_nonzerop (e);
}
/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
|| TREE_CODE (step) != INTEGER_CST)
return true;
- if (zero_p (step))
+ if (integer_zerop (step))
return false;
/* If we can use the fact that signed and pointer arithmetics does not