use std::ffi::CStr;
+pub use bindings::{DeviceClass, DeviceState, Property};
+
use crate::{
- bindings::{self, DeviceClass, DeviceState, Error, ObjectClass, Property, VMStateDescription},
+ bindings::{self, Error},
prelude::*,
- qom::ClassInitImpl,
+ qom::{ClassInitImpl, ObjectClass},
+ vmstate::VMStateDescription,
};
/// Trait providing the contents of [`DeviceClass`].
use std::{ffi::CStr, os::raw::c_void};
-use crate::bindings::{self, Object, ObjectClass, TypeInfo};
+pub use bindings::{Object, ObjectClass};
+
+use crate::bindings::{self, TypeInfo};
unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut Object) {
// SAFETY: obj is an instance of T, since rust_instance_init<T>
///
/// Each struct will implement this trait with `T` equal to each
/// superclass. For example, a device should implement at least
-/// `ClassInitImpl<`[`DeviceClass`](crate::bindings::DeviceClass)`>` and
-/// `ClassInitImpl<`[`ObjectClass`](crate::bindings::ObjectClass)`>`.
-/// Such implementations are made in one of two ways.
+/// `ClassInitImpl<`[`DeviceClass`](crate::qdev::DeviceClass)`>` and
+/// `ClassInitImpl<`[`ObjectClass`]`>`. Such implementations are made
+/// in one of two ways.
///
/// For most superclasses, `ClassInitImpl` is provided by the `qemu-api`
/// crate itself. The Rust implementation of methods will come from a
///
/// The virtual method implementations usually come from another
/// trait, for example [`DeviceImpl`](crate::qdev::DeviceImpl)
- /// when `T` is [`DeviceClass`](crate::bindings::DeviceClass).
+ /// when `T` is [`DeviceClass`](crate::qdev::DeviceClass).
///
/// On entry, `klass`'s parent class is initialized, while the other fields
/// are all zero; it is therefore assumed that all fields in `T` can be
pub use bindings::{SysBusDevice, SysBusDeviceClass};
use crate::{
- bindings::{self, DeviceClass},
- cell::bql_locked,
- irq::InterruptSource,
- prelude::*,
+ bindings, cell::bql_locked, irq::InterruptSource, prelude::*, qdev::DeviceClass,
qom::ClassInitImpl,
};
//! [`vmstate_fields`](crate::vmstate_fields) are meant to be used when
//! declaring a device model state struct.
+pub use crate::bindings::VMStateDescription;
+
#[doc(alias = "VMSTATE_UNUSED_BUFFER")]
#[macro_export]
macro_rules! vmstate_unused_buffer {
}
/// A transparent wrapper type for the `subsections` field of
-/// [`VMStateDescription`](crate::bindings::VMStateDescription).
+/// [`VMStateDescription`].
///
/// This is necessary to be able to declare subsection descriptions as statics,
/// because the only way to implement `Sync` for a foreign type (and `*const`
unsafe impl Sync for VMStateSubsectionsWrapper {}
-/// Helper macro to declare a list of subsections
-/// ([`VMStateDescription`](`crate::bindings::VMStateDescription`)) into a
-/// static and return a pointer to the array of pointers it created.
+/// Helper macro to declare a list of subsections ([`VMStateDescription`])
+/// into a static and return a pointer to the array of pointers it created.
#[macro_export]
macro_rules! vmstate_subsections {
($($subsection:expr),*$(,)*) => {{
use std::ffi::CStr;
use qemu_api::{
- bindings::*, c_str, declare_properties, define_property, prelude::*, qdev::DeviceImpl,
- qom::ObjectImpl, zeroable::Zeroable,
+ bindings::*,
+ c_str, declare_properties, define_property,
+ prelude::*,
+ qdev::{DeviceImpl, DeviceState, Property},
+ qom::ObjectImpl,
+ vmstate::VMStateDescription,
+ zeroable::Zeroable,
};
#[test]