#ifdef SQLITE_DEBUG
char cId; /* Symbolic ID of this loop for debugging use */
#endif
- u8 iTab; /* Position in FROM clause of table coded by this loop */
+ u8 iTab; /* Position in FROM clause of table for this loop */
u8 iSortIdx; /* Sorting index number. 0==None */
u16 nTerm; /* Number of entries in aTerm[] */
u32 wsFlags; /* WHERE_* flags describing the plan */
WhereTerm *pCurrent; /* Most recent match */
WhereClause *pOrigWC; /* Original, innermost WhereClause */
WhereClause *pWC; /* WhereClause currently being scanned */
- char *zCollName; /* Must have this collating sequence, if not NULL */
+ char *zCollName; /* Required collating sequence, if not NULL */
char idxaff; /* Must match this affinity, if zCollName!=NULL */
unsigned char nEquiv; /* Number of entries in aEquiv[] */
unsigned char iEquiv; /* Next unused slot in aEquiv[] */
WhereCost cost; /* Lowest cost query plan */
};
-/*
-** Return TRUE if the probe cost is less than the baseline cost
-*/
-static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){
- if( pProbe->rCost<pBaseline->rCost ) return 1;
- if( pProbe->rCost>pBaseline->rCost ) return 0;
- if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1;
- if( pProbe->plan.nRow<pBaseline->plan.nRow ) return 1;
- return 0;
-}
-
/*
** Initialize a preallocated WhereClause structure.
*/
return -1;
}
-/*
-** This routine determines if pIdx can be used to assist in processing a
-** DISTINCT qualifier. In other words, it tests whether or not using this
-** index for the outer loop guarantees that rows with equal values for
-** all expressions in the pDistinct list are delivered grouped together.
-**
-** For example, the query
-**
-** SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
-**
-** can benefit from any index on columns "b" and "c".
-*/
-static int isDistinctIndex(
- Parse *pParse, /* Parsing context */
- WhereClause *pWC, /* The WHERE clause */
- Index *pIdx, /* The index being considered */
- int base, /* Cursor number for the table pIdx is on */
- ExprList *pDistinct, /* The DISTINCT expressions */
- int nEqCol /* Number of index columns with == */
-){
- Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */
- int i; /* Iterator variable */
-
- assert( pDistinct!=0 );
- if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0;
- testcase( pDistinct->nExpr==BMS-1 );
-
- /* Loop through all the expressions in the distinct list. If any of them
- ** are not simple column references, return early. Otherwise, test if the
- ** WHERE clause contains a "col=X" clause. If it does, the expression
- ** can be ignored. If it does not, and the column does not belong to the
- ** same table as index pIdx, return early. Finally, if there is no
- ** matching "col=X" expression and the column is on the same table as pIdx,
- ** set the corresponding bit in variable mask.
- */
- for(i=0; i<pDistinct->nExpr; i++){
- WhereTerm *pTerm;
- Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
- if( p->op!=TK_COLUMN ) return 0;
- pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
- if( pTerm ){
- Expr *pX = pTerm->pExpr;
- CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
- CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
- if( p1==p2 ) continue;
- }
- if( p->iTable!=base ) return 0;
- mask |= (((Bitmask)1) << i);
- }
-
- for(i=nEqCol; mask && i<pIdx->nColumn; i++){
- int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
- if( iExpr<0 ) break;
- mask &= ~(((Bitmask)1) << iExpr);
- }
-
- return (mask==0);
-}
-
-
/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant. A DISTINCT list is redundant if the database contains a
#define TRACE_IDX_OUTPUTS(A)
#endif
-/*
-** Required because bestIndex() is called by bestOrClauseIndex()
-*/
-static void bestIndex(WhereBestIdx*);
-
-/*
-** This routine attempts to find an scanning strategy that can be used
-** to optimize an 'OR' expression that is part of a WHERE clause.
-**
-** The table associated with FROM clause term pSrc may be either a
-** regular B-Tree table or a virtual table.
-*/
-static void bestOrClauseIndex(WhereBestIdx *p){
-#ifndef SQLITE_OMIT_OR_OPTIMIZATION
- WhereClause *pWC = p->pWC; /* The WHERE clause */
- struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
- const int iCur = pSrc->iCursor; /* The cursor of the table */
- const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
- WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
- WhereTerm *pTerm; /* A single term of the WHERE clause */
-
- /* The OR-clause optimization is disallowed if the INDEXED BY or
- ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
- if( pSrc->notIndexed || pSrc->pIndex!=0 ){
- return;
- }
- if( pWC->wctrlFlags & WHERE_AND_ONLY ){
- return;
- }
-
- /* Search the WHERE clause terms for a usable WO_OR term. */
- for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
- if( (pTerm->eOperator & WO_OR)!=0
- && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
- && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
- ){
- WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
- WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
- WhereTerm *pOrTerm;
- double rTotal = 0;
- double nRow = 0;
- Bitmask used = 0;
- WhereBestIdx sBOI;
-
- sBOI = *p;
- sBOI.pOrderBy = 0;
- sBOI.pDistinct = 0;
- sBOI.ppIdxInfo = 0;
- for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
- /*WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
- (pOrTerm - pOrWC->a), (pTerm - pWC->a)
- ));*/
- if( (pOrTerm->eOperator& WO_AND)!=0 ){
- sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
- bestIndex(&sBOI);
- }else if( pOrTerm->leftCursor==iCur ){
- WhereClause tempWC;
- tempWC.pParse = pWC->pParse;
- tempWC.pMaskSet = pWC->pMaskSet;
- tempWC.pOuter = pWC;
- tempWC.op = TK_AND;
- tempWC.a = pOrTerm;
- tempWC.wctrlFlags = 0;
- tempWC.nTerm = 1;
- sBOI.pWC = &tempWC;
- bestIndex(&sBOI);
- }else{
- continue;
- }
- rTotal += sBOI.cost.rCost;
- nRow += sBOI.cost.plan.nRow;
- used |= sBOI.cost.used;
- if( rTotal>=p->cost.rCost ) break;
- }
-
- /* If there is an ORDER BY clause, increase the scan cost to account
- ** for the cost of the sort. */
- if( p->pOrderBy!=0 ){
- /*WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
- rTotal, rTotal+nRow*estLog(nRow)));*/
- rTotal += nRow*estLog(nRow);
- }
-
- /* If the cost of scanning using this OR term for optimization is
- ** less than the current cost stored in pCost, replace the contents
- ** of pCost. */
- /*WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));*/
- if( rTotal<p->cost.rCost ){
- p->cost.rCost = rTotal;
- p->cost.used = used;
- p->cost.plan.nRow = nRow;
- p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
- p->cost.plan.wsFlags = WHERE_MULTI_OR;
- p->cost.plan.u.pTerm = pTerm;
- }
- }
- }
-#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
-}
-
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
}
#endif
-#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
-/*
-** If the query plan for pSrc specified in pCost is a full table scan
-** and indexing is allows (if there is no NOT INDEXED clause) and it
-** possible to construct a transient index that would perform better
-** than a full table scan even when the cost of constructing the index
-** is taken into account, then alter the query plan to use the
-** transient index.
-*/
-static void bestAutomaticIndex(WhereBestIdx *p){
- Parse *pParse = p->pParse; /* The parsing context */
- WhereClause *pWC = p->pWC; /* The WHERE clause */
- struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
- double nTableRow; /* Rows in the input table */
- double logN; /* log(nTableRow) */
- double costTempIdx; /* per-query cost of the transient index */
- WhereTerm *pTerm; /* A single term of the WHERE clause */
- WhereTerm *pWCEnd; /* End of pWC->a[] */
- Table *pTable; /* Table tht might be indexed */
-
- if( pParse->nQueryLoop<=(double)1 ){
- /* There is no point in building an automatic index for a single scan */
- return;
- }
- if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
- /* Automatic indices are disabled at run-time */
- return;
- }
- if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0
- && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0
- ){
- /* We already have some kind of index in use for this query. */
- return;
- }
- if( pSrc->viaCoroutine ){
- /* Cannot index a co-routine */
- return;
- }
- if( pSrc->notIndexed ){
- /* The NOT INDEXED clause appears in the SQL. */
- return;
- }
- if( pSrc->isCorrelated ){
- /* The source is a correlated sub-query. No point in indexing it. */
- return;
- }
-
- assert( pParse->nQueryLoop >= (double)1 );
- pTable = pSrc->pTab;
- nTableRow = pTable->nRowEst;
- logN = estLog(nTableRow);
- costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
- if( costTempIdx>=p->cost.rCost ){
- /* The cost of creating the transient table would be greater than
- ** doing the full table scan */
- return;
- }
-
- /* Search for any equality comparison term */
- pWCEnd = &pWC->a[pWC->nTerm];
- for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
- if( termCanDriveIndex(pTerm, pSrc, p->notReady) ){
- /*WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
- p->cost.rCost, costTempIdx));*/
- p->cost.rCost = costTempIdx;
- p->cost.plan.nRow = logN + 1;
- p->cost.plan.wsFlags = WHERE_TEMP_INDEX;
- p->cost.used = pTerm->prereqRight;
- break;
- }
- }
-}
-#else
-# define bestAutomaticIndex(A) /* no-op */
-#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
-
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
int i; /* Loop counter */
int mxBitCol; /* Maximum column in pSrc->colUsed */
CollSeq *pColl; /* Collating sequence to on a column */
+ WhereLoop *pLoop; /* The Loop object */
Bitmask idxCols; /* Bitmap of columns used for indexing */
Bitmask extraCols; /* Bitmap of additional columns */
nColumn = 0;
pTable = pSrc->pTab;
pWCEnd = &pWC->a[pWC->nTerm];
+ pLoop = pLevel->pWLoop;
idxCols = 0;
for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
if( termCanDriveIndex(pTerm, pSrc, notReady) ){
}
}
assert( nColumn>0 );
- pLevel->plan.nEq = nColumn;
+ pLoop->u.btree.nEq = nColumn;
/* Count the number of additional columns needed to create a
** covering index. A "covering index" is an index that contains all
if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
nColumn += pTable->nCol - BMS + 1;
}
- pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;
+ pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;
/* Construct the Index object to describe this index */
nByte = sizeof(Index);
nByte += nColumn; /* Index.aSortOrder */
pIdx = sqlite3DbMallocZero(pParse->db, nByte);
if( pIdx==0 ) return;
- pLevel->plan.u.pIdx = pIdx;
+ pLoop->u.btree.pIndex = pIdx;
pIdx->azColl = (char**)&pIdx[1];
pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
}
}
}
- assert( (u32)n==pLevel->plan.nEq );
+ assert( (u32)n==pLoop->u.btree.nEq );
/* Add additional columns needed to make the automatic index into
** a covering index */
return pParse->nErr;
}
+#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
-/*
-** Compute the best index for a virtual table.
-**
-** The best index is computed by the xBestIndex method of the virtual
-** table module. This routine is really just a wrapper that sets up
-** the sqlite3_index_info structure that is used to communicate with
-** xBestIndex.
-**
-** In a join, this routine might be called multiple times for the
-** same virtual table. The sqlite3_index_info structure is created
-** and initialized on the first invocation and reused on all subsequent
-** invocations. The sqlite3_index_info structure is also used when
-** code is generated to access the virtual table. The whereInfoDelete()
-** routine takes care of freeing the sqlite3_index_info structure after
-** everybody has finished with it.
-*/
-static void bestVirtualIndex(WhereBestIdx *p){
- Parse *pParse = p->pParse; /* The parsing context */
- WhereClause *pWC = p->pWC; /* The WHERE clause */
- struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
- Table *pTab = pSrc->pTab;
- sqlite3_index_info *pIdxInfo;
- struct sqlite3_index_constraint *pIdxCons;
- struct sqlite3_index_constraint_usage *pUsage;
- WhereTerm *pTerm;
- int i, j;
- int nOrderBy;
- int bAllowIN; /* Allow IN optimizations */
- double rCost;
-
- /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
- ** malloc in allocateIndexInfo() fails and this function returns leaving
- ** wsFlags in an uninitialized state, the caller may behave unpredictably.
- */
- memset(&p->cost, 0, sizeof(p->cost));
- p->cost.plan.wsFlags = WHERE_VIRTUALTABLE;
-
- /* If the sqlite3_index_info structure has not been previously
- ** allocated and initialized, then allocate and initialize it now.
- */
- pIdxInfo = *p->ppIdxInfo;
- if( pIdxInfo==0 ){
- *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse,pWC,pSrc,p->pOrderBy);
- }
- if( pIdxInfo==0 ){
- return;
- }
-
- /* At this point, the sqlite3_index_info structure that pIdxInfo points
- ** to will have been initialized, either during the current invocation or
- ** during some prior invocation. Now we just have to customize the
- ** details of pIdxInfo for the current invocation and pass it to
- ** xBestIndex.
- */
-
- /* The module name must be defined. Also, by this point there must
- ** be a pointer to an sqlite3_vtab structure. Otherwise
- ** sqlite3ViewGetColumnNames() would have picked up the error.
- */
- assert( pTab->azModuleArg && pTab->azModuleArg[0] );
- assert( sqlite3GetVTable(pParse->db, pTab) );
-
- /* Try once or twice. On the first attempt, allow IN optimizations.
- ** If an IN optimization is accepted by the virtual table xBestIndex
- ** method, but the pInfo->aConstrainUsage.omit flag is not set, then
- ** the query will not work because it might allow duplicate rows in
- ** output. In that case, run the xBestIndex method a second time
- ** without the IN constraints. Usually this loop only runs once.
- ** The loop will exit using a "break" statement.
- */
- for(bAllowIN=1; 1; bAllowIN--){
- assert( bAllowIN==0 || bAllowIN==1 );
-
- /* Set the aConstraint[].usable fields and initialize all
- ** output variables to zero.
- **
- ** aConstraint[].usable is true for constraints where the right-hand
- ** side contains only references to tables to the left of the current
- ** table. In other words, if the constraint is of the form:
- **
- ** column = expr
- **
- ** and we are evaluating a join, then the constraint on column is
- ** only valid if all tables referenced in expr occur to the left
- ** of the table containing column.
- **
- ** The aConstraints[] array contains entries for all constraints
- ** on the current table. That way we only have to compute it once
- ** even though we might try to pick the best index multiple times.
- ** For each attempt at picking an index, the order of tables in the
- ** join might be different so we have to recompute the usable flag
- ** each time.
- */
- pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
- pUsage = pIdxInfo->aConstraintUsage;
- for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
- j = pIdxCons->iTermOffset;
- pTerm = &pWC->a[j];
- if( (pTerm->prereqRight&p->notReady)==0
- && (bAllowIN || (pTerm->eOperator & WO_IN)==0)
- ){
- pIdxCons->usable = 1;
- }else{
- pIdxCons->usable = 0;
- }
- }
- memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
- if( pIdxInfo->needToFreeIdxStr ){
- sqlite3_free(pIdxInfo->idxStr);
- }
- pIdxInfo->idxStr = 0;
- pIdxInfo->idxNum = 0;
- pIdxInfo->needToFreeIdxStr = 0;
- pIdxInfo->orderByConsumed = 0;
- /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
- pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
- nOrderBy = pIdxInfo->nOrderBy;
- if( !p->pOrderBy ){
- pIdxInfo->nOrderBy = 0;
- }
-
- if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
- return;
- }
-
- pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
- for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
- if( pUsage[i].argvIndex>0 ){
- j = pIdxCons->iTermOffset;
- pTerm = &pWC->a[j];
- p->cost.used |= pTerm->prereqRight;
- if( (pTerm->eOperator & WO_IN)!=0 ){
- if( pUsage[i].omit==0 ){
- /* Do not attempt to use an IN constraint if the virtual table
- ** says that the equivalent EQ constraint cannot be safely omitted.
- ** If we do attempt to use such a constraint, some rows might be
- ** repeated in the output. */
- break;
- }
- /* A virtual table that is constrained by an IN clause may not
- ** consume the ORDER BY clause because (1) the order of IN terms
- ** is not necessarily related to the order of output terms and
- ** (2) Multiple outputs from a single IN value will not merge
- ** together. */
- pIdxInfo->orderByConsumed = 0;
- }
- }
- }
- if( i>=pIdxInfo->nConstraint ) break;
- }
-
- /* The orderByConsumed signal is only valid if all outer loops collectively
- ** generate just a single row of output.
- */
- if( pIdxInfo->orderByConsumed ){
- for(i=0; i<p->i; i++){
- if( (p->aLevel[i].plan.wsFlags & WHERE_UNIQUE)==0 ){
- pIdxInfo->orderByConsumed = 0;
- }
- }
- }
-
- /* If there is an ORDER BY clause, and the selected virtual table index
- ** does not satisfy it, increase the cost of the scan accordingly. This
- ** matches the processing for non-virtual tables in bestBtreeIndex().
- */
- rCost = pIdxInfo->estimatedCost;
- if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
- rCost += estLog(rCost)*rCost;
- }
-
- /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
- ** inital value of lowestCost in this loop. If it is, then the
- ** (cost<lowestCost) test below will never be true.
- **
- ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
- ** is defined.
- */
- if( (SQLITE_BIG_DBL/((double)2))<rCost ){
- p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
- }else{
- p->cost.rCost = rCost;
- }
- p->cost.plan.u.pVtabIdx = pIdxInfo;
- if( pIdxInfo->orderByConsumed ){
- p->cost.plan.wsFlags |= WHERE_ORDERED;
- p->cost.plan.nOBSat = nOrderBy;
- }else{
- p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
- }
- p->cost.plan.nEq = 0;
- pIdxInfo->nOrderBy = nOrderBy;
-
- /* Try to find a more efficient access pattern by using multiple indexes
- ** to optimize an OR expression within the WHERE clause.
- */
- bestOrClauseIndex(p);
-}
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the location of a particular key among all keys in an
}
#endif /* defined(SQLITE_ENABLE_STAT3) */
-/*
-** Check to see if column iCol of the table with cursor iTab will appear
-** in sorted order according to the current query plan.
-**
-** Return values:
-**
-** 0 iCol is not ordered
-** 1 iCol has only a single value
-** 2 iCol is in ASC order
-** 3 iCol is in DESC order
-*/
-static int isOrderedColumn(
- WhereBestIdx *p,
- int iTab,
- int iCol
-){
- int i, j;
- WhereLevel *pLevel = &p->aLevel[p->i-1];
- Index *pIdx;
- u8 sortOrder;
- for(i=p->i-1; i>=0; i--, pLevel--){
- if( pLevel->iTabCur!=iTab ) continue;
- if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
- return 1;
- }
- assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 );
- if( (pIdx = pLevel->plan.u.pIdx)!=0 ){
- if( iCol<0 ){
- sortOrder = 0;
- testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
- }else{
- int n = pIdx->nColumn;
- for(j=0; j<n; j++){
- if( iCol==pIdx->aiColumn[j] ) break;
- }
- if( j>=n ) return 0;
- sortOrder = pIdx->aSortOrder[j];
- testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
- }
- }else{
- if( iCol!=(-1) ) return 0;
- sortOrder = 0;
- testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
- }
- if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){
- assert( sortOrder==0 || sortOrder==1 );
- testcase( sortOrder==1 );
- sortOrder = 1 - sortOrder;
- }
- return sortOrder+2;
- }
- return 0;
-}
-
-/*
-** This routine decides if pIdx can be used to satisfy the ORDER BY
-** clause, either in whole or in part. The return value is the
-** cumulative number of terms in the ORDER BY clause that are satisfied
-** by the index pIdx and other indices in outer loops.
-**
-** The table being queried has a cursor number of "base". pIdx is the
-** index that is postulated for use to access the table.
-**
-** The *pbRev value is set to 0 order 1 depending on whether or not
-** pIdx should be run in the forward order or in reverse order.
-*/
-static int isSortingIndex(
- WhereBestIdx *p, /* Best index search context */
- Index *pIdx, /* The index we are testing */
- int base, /* Cursor number for the table to be sorted */
- int *pbRev, /* Set to 1 for reverse-order scan of pIdx */
- int *pbObUnique /* ORDER BY column values will different in every row */
-){
- int i; /* Number of pIdx terms used */
- int j; /* Number of ORDER BY terms satisfied */
- int sortOrder = 2; /* 0: forward. 1: backward. 2: unknown */
- int nTerm; /* Number of ORDER BY terms */
- struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */
- Table *pTab = pIdx->pTable; /* Table that owns index pIdx */
- ExprList *pOrderBy; /* The ORDER BY clause */
- Parse *pParse = p->pParse; /* Parser context */
- sqlite3 *db = pParse->db; /* Database connection */
- int nPriorSat; /* ORDER BY terms satisfied by outer loops */
- int seenRowid = 0; /* True if an ORDER BY rowid term is seen */
- int uniqueNotNull; /* pIdx is UNIQUE with all terms are NOT NULL */
- int outerObUnique; /* Outer loops generate different values in
- ** every row for the ORDER BY columns */
-
- if( p->i==0 ){
- nPriorSat = 0;
- outerObUnique = 1;
- }else{
- u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags;
- nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
- if( (wsFlags & WHERE_ORDERED)==0 ){
- /* This loop cannot be ordered unless the next outer loop is
- ** also ordered */
- return nPriorSat;
- }
- if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){
- /* Only look at the outer-most loop if the OrderByIdxJoin
- ** optimization is disabled */
- return nPriorSat;
- }
- testcase( wsFlags & WHERE_OB_UNIQUE );
- testcase( wsFlags & WHERE_ALL_UNIQUE );
- outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0;
- }
- pOrderBy = p->pOrderBy;
- assert( pOrderBy!=0 );
- if( pIdx->bUnordered ){
- /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot
- ** be used for sorting */
- return nPriorSat;
- }
- nTerm = pOrderBy->nExpr;
- uniqueNotNull = pIdx->onError!=OE_None;
- assert( nTerm>0 );
-
- /* Argument pIdx must either point to a 'real' named index structure,
- ** or an index structure allocated on the stack by bestBtreeIndex() to
- ** represent the rowid index that is part of every table. */
- assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
-
- /* Match terms of the ORDER BY clause against columns of
- ** the index.
- **
- ** Note that indices have pIdx->nColumn regular columns plus
- ** one additional column containing the rowid. The rowid column
- ** of the index is also allowed to match against the ORDER BY
- ** clause.
- */
- j = nPriorSat;
- for(i=0,pOBItem=&pOrderBy->a[j]; j<nTerm && i<=pIdx->nColumn; i++){
- Expr *pOBExpr; /* The expression of the ORDER BY pOBItem */
- CollSeq *pColl; /* The collating sequence of pOBExpr */
- int termSortOrder; /* Sort order for this term */
- int iColumn; /* The i-th column of the index. -1 for rowid */
- int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
- int isEq; /* Subject to an == or IS NULL constraint */
- int isMatch; /* ORDER BY term matches the index term */
- const char *zColl; /* Name of collating sequence for i-th index term */
- WhereTerm *pConstraint; /* A constraint in the WHERE clause */
-
- /* If the next term of the ORDER BY clause refers to anything other than
- ** a column in the "base" table, then this index will not be of any
- ** further use in handling the ORDER BY. */
- pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr);
- if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){
- break;
- }
-
- /* Find column number and collating sequence for the next entry
- ** in the index */
- if( pIdx->zName && i<pIdx->nColumn ){
- iColumn = pIdx->aiColumn[i];
- if( iColumn==pIdx->pTable->iPKey ){
- iColumn = -1;
- }
- iSortOrder = pIdx->aSortOrder[i];
- zColl = pIdx->azColl[i];
- assert( zColl!=0 );
- }else{
- iColumn = -1;
- iSortOrder = 0;
- zColl = 0;
- }
-
- /* Check to see if the column number and collating sequence of the
- ** index match the column number and collating sequence of the ORDER BY
- ** clause entry. Set isMatch to 1 if they both match. */
- if( pOBExpr->iColumn==iColumn ){
- if( zColl ){
- pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr);
- if( !pColl ) pColl = db->pDfltColl;
- isMatch = sqlite3StrICmp(pColl->zName, zColl)==0;
- }else{
- isMatch = 1;
- }
- }else{
- isMatch = 0;
- }
-
- /* termSortOrder is 0 or 1 for whether or not the access loop should
- ** run forward or backwards (respectively) in order to satisfy this
- ** term of the ORDER BY clause. */
- assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 );
- assert( iSortOrder==0 || iSortOrder==1 );
- termSortOrder = iSortOrder ^ pOBItem->sortOrder;
-
- /* If X is the column in the index and ORDER BY clause, check to see
- ** if there are any X= or X IS NULL constraints in the WHERE clause. */
- pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
- WO_EQ|WO_ISNULL|WO_IN, pIdx);
- if( pConstraint==0 ){
- isEq = 0;
- }else if( (pConstraint->eOperator & WO_IN)!=0 ){
- isEq = 0;
- }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){
- uniqueNotNull = 0;
- isEq = 1; /* "X IS NULL" means X has only a single value */
- }else if( pConstraint->prereqRight==0 ){
- isEq = 1; /* Constraint "X=constant" means X has only a single value */
- }else{
- Expr *pRight = pConstraint->pExpr->pRight;
- if( pRight->op==TK_COLUMN ){
- /*WHERETRACE((" .. isOrderedColumn(tab=%d,col=%d)",
- pRight->iTable, pRight->iColumn));*/
- isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn);
- /*WHERETRACE((" -> isEq=%d\n", isEq));*/
-
- /* If the constraint is of the form X=Y where Y is an ordered value
- ** in an outer loop, then make sure the sort order of Y matches the
- ** sort order required for X. */
- if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){
- testcase( isEq==2 );
- testcase( isEq==3 );
- break;
- }
- }else{
- isEq = 0; /* "X=expr" places no ordering constraints on X */
- }
- }
- if( !isMatch ){
- if( isEq==0 ){
- break;
- }else{
- continue;
- }
- }else if( isEq!=1 ){
- if( sortOrder==2 ){
- sortOrder = termSortOrder;
- }else if( termSortOrder!=sortOrder ){
- break;
- }
- }
- j++;
- pOBItem++;
- if( iColumn<0 ){
- seenRowid = 1;
- break;
- }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){
- testcase( isEq==0 );
- testcase( isEq==2 );
- testcase( isEq==3 );
- uniqueNotNull = 0;
- }
- }
- if( seenRowid ){
- uniqueNotNull = 1;
- }else if( uniqueNotNull==0 || i<pIdx->nColumn ){
- uniqueNotNull = 0;
- }
-
- /* If we have not found at least one ORDER BY term that matches the
- ** index, then show no progress. */
- if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat;
-
- /* Either the outer queries must generate rows where there are no two
- ** rows with the same values in all ORDER BY columns, or else this
- ** loop must generate just a single row of output. Example: Suppose
- ** the outer loops generate A=1 and A=1, and this loop generates B=3
- ** and B=4. Then without the following test, ORDER BY A,B would
- ** generate the wrong order output: 1,3 1,4 1,3 1,4
- */
- if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat;
- *pbObUnique = uniqueNotNull;
-
- /* Return the necessary scan order back to the caller */
- *pbRev = sortOrder & 1;
-
- /* If there was an "ORDER BY rowid" term that matched, or it is only
- ** possible for a single row from this table to match, then skip over
- ** any additional ORDER BY terms dealing with this table.
- */
- if( uniqueNotNull ){
- /* Advance j over additional ORDER BY terms associated with base */
- WhereMaskSet *pMS = p->pWC->pMaskSet;
- Bitmask m = ~getMask(pMS, base);
- while( j<nTerm && (exprTableUsage(pMS, pOrderBy->a[j].pExpr)&m)==0 ){
- j++;
- }
- }
- return j;
-}
-
-/*
-** Find the best query plan for accessing a particular table. Write the
-** best query plan and its cost into the p->cost.
-**
-** The lowest cost plan wins. The cost is an estimate of the amount of
-** CPU and disk I/O needed to process the requested result.
-** Factors that influence cost include:
-**
-** * The estimated number of rows that will be retrieved. (The
-** fewer the better.)
-**
-** * Whether or not sorting must occur.
-**
-** * Whether or not there must be separate lookups in the
-** index and in the main table.
-**
-** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
-** the SQL statement, then this function only considers plans using the
-** named index. If no such plan is found, then the returned cost is
-** SQLITE_BIG_DBL. If a plan is found that uses the named index,
-** then the cost is calculated in the usual way.
-**
-** If a NOT INDEXED clause was attached to the table
-** in the SELECT statement, then no indexes are considered. However, the
-** selected plan may still take advantage of the built-in rowid primary key
-** index.
-*/
-static void bestBtreeIndex(WhereBestIdx *p){
- Parse *pParse = p->pParse; /* The parsing context */
- WhereClause *pWC = p->pWC; /* The WHERE clause */
- struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
- int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
- Index *pProbe; /* An index we are evaluating */
- Index *pIdx; /* Copy of pProbe, or zero for IPK index */
- int eqTermMask; /* Current mask of valid equality operators */
- int idxEqTermMask; /* Index mask of valid equality operators */
- Index sPk; /* A fake index object for the primary key */
- tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
- int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
- int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */
- int nPriorSat; /* ORDER BY terms satisfied by outer loops */
- int nOrderBy; /* Number of ORDER BY terms */
- char bSortInit; /* Initializer for bSort in inner loop */
- char bDistInit; /* Initializer for bDist in inner loop */
-
-
- /* Initialize the cost to a worst-case value */
- memset(&p->cost, 0, sizeof(p->cost));
- p->cost.rCost = SQLITE_BIG_DBL;
-
- /* If the pSrc table is the right table of a LEFT JOIN then we may not
- ** use an index to satisfy IS NULL constraints on that table. This is
- ** because columns might end up being NULL if the table does not match -
- ** a circumstance which the index cannot help us discover. Ticket #2177.
- */
- if( pSrc->jointype & JT_LEFT ){
- idxEqTermMask = WO_EQ|WO_IN;
- }else{
- idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
- }
-
- if( pSrc->pIndex ){
- /* An INDEXED BY clause specifies a particular index to use */
- pIdx = pProbe = pSrc->pIndex;
- wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
- eqTermMask = idxEqTermMask;
- }else{
- /* There is no INDEXED BY clause. Create a fake Index object in local
- ** variable sPk to represent the rowid primary key index. Make this
- ** fake index the first in a chain of Index objects with all of the real
- ** indices to follow */
- Index *pFirst; /* First of real indices on the table */
- memset(&sPk, 0, sizeof(Index));
- sPk.nColumn = 1;
- sPk.aiColumn = &aiColumnPk;
- sPk.aiRowEst = aiRowEstPk;
- sPk.onError = OE_Replace;
- sPk.pTable = pSrc->pTab;
- aiRowEstPk[0] = pSrc->pTab->nRowEst;
- aiRowEstPk[1] = 1;
- pFirst = pSrc->pTab->pIndex;
- if( pSrc->notIndexed==0 ){
- /* The real indices of the table are only considered if the
- ** NOT INDEXED qualifier is omitted from the FROM clause */
- sPk.pNext = pFirst;
- }
- pProbe = &sPk;
- wsFlagMask = ~(
- WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
- );
- eqTermMask = WO_EQ|WO_IN;
- pIdx = 0;
- }
-
- nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0;
- if( p->i ){
- nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
- bSortInit = nPriorSat<nOrderBy;
- bDistInit = 0;
- }else{
- nPriorSat = 0;
- bSortInit = nOrderBy>0;
- bDistInit = p->pDistinct!=0;
- }
-
- /* Loop over all indices looking for the best one to use
- */
- for(; pProbe; pIdx=pProbe=pProbe->pNext){
- const tRowcnt * const aiRowEst = pProbe->aiRowEst;
- WhereCost pc; /* Cost of using pProbe */
- double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */
-
- /* The following variables are populated based on the properties of
- ** index being evaluated. They are then used to determine the expected
- ** cost and number of rows returned.
- **
- ** pc.plan.nEq:
- ** Number of equality terms that can be implemented using the index.
- ** In other words, the number of initial fields in the index that
- ** are used in == or IN or NOT NULL constraints of the WHERE clause.
- **
- ** nInMul:
- ** The "in-multiplier". This is an estimate of how many seek operations
- ** SQLite must perform on the index in question. For example, if the
- ** WHERE clause is:
- **
- ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
- **
- ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
- ** set to 9. Given the same schema and either of the following WHERE
- ** clauses:
- **
- ** WHERE a = 1
- ** WHERE a >= 2
- **
- ** nInMul is set to 1.
- **
- ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
- ** the sub-select is assumed to return 25 rows for the purposes of
- ** determining nInMul.
- **
- ** bInEst:
- ** Set to true if there was at least one "x IN (SELECT ...)" term used
- ** in determining the value of nInMul. Note that the RHS of the
- ** IN operator must be a SELECT, not a value list, for this variable
- ** to be true.
- **
- ** rangeDiv:
- ** An estimate of a divisor by which to reduce the search space due
- ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE
- ** data, a single inequality reduces the search space to 1/4rd its
- ** original size (rangeDiv==4). Two inequalities reduce the search
- ** space to 1/16th of its original size (rangeDiv==16).
- **
- ** bSort:
- ** Boolean. True if there is an ORDER BY clause that will require an
- ** external sort (i.e. scanning the index being evaluated will not
- ** correctly order records).
- **
- ** bDist:
- ** Boolean. True if there is a DISTINCT clause that will require an
- ** external btree.
- **
- ** bLookup:
- ** Boolean. True if a table lookup is required for each index entry
- ** visited. In other words, true if this is not a covering index.
- ** This is always false for the rowid primary key index of a table.
- ** For other indexes, it is true unless all the columns of the table
- ** used by the SELECT statement are present in the index (such an
- ** index is sometimes described as a covering index).
- ** For example, given the index on (a, b), the second of the following
- ** two queries requires table b-tree lookups in order to find the value
- ** of column c, but the first does not because columns a and b are
- ** both available in the index.
- **
- ** SELECT a, b FROM tbl WHERE a = 1;
- ** SELECT a, b, c FROM tbl WHERE a = 1;
- */
- int bInEst = 0; /* True if "x IN (SELECT...)" seen */
- int nInMul = 1; /* Number of distinct equalities to lookup */
- double rangeDiv = (double)1; /* Estimated reduction in search space */
- int nBound = 0; /* Number of range constraints seen */
- char bSort = bSortInit; /* True if external sort required */
- char bDist = bDistInit; /* True if index cannot help with DISTINCT */
- char bLookup = 0; /* True if not a covering index */
- WhereTerm *pTerm; /* A single term of the WHERE clause */
-#ifdef SQLITE_ENABLE_STAT3
- WhereTerm *pFirstTerm = 0; /* First term matching the index */
-#endif
-
- /*WHERETRACE((
- " %s(%s):\n",
- pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk")
- ));*/
- memset(&pc, 0, sizeof(pc));
- pc.plan.nOBSat = nPriorSat;
-
- /* Determine the values of pc.plan.nEq and nInMul */
- for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){
- int j = pProbe->aiColumn[pc.plan.nEq];
- pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx);
- if( pTerm==0 ) break;
- pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
- testcase( pTerm->pWC!=pWC );
- if( pTerm->eOperator & WO_IN ){
- Expr *pExpr = pTerm->pExpr;
- pc.plan.wsFlags |= WHERE_COLUMN_IN;
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){
- /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
- nInMul *= 25;
- bInEst = 1;
- }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
- /* "x IN (value, value, ...)" */
- nInMul *= pExpr->x.pList->nExpr;
- }
- }else if( pTerm->eOperator & WO_ISNULL ){
- pc.plan.wsFlags |= WHERE_COLUMN_NULL;
- }
-#ifdef SQLITE_ENABLE_STAT3
- if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
-#endif
- pc.used |= pTerm->prereqRight;
- }
-
- /* If the index being considered is UNIQUE, and there is an equality
- ** constraint for all columns in the index, then this search will find
- ** at most a single row. In this case set the WHERE_UNIQUE flag to
- ** indicate this to the caller.
- **
- ** Otherwise, if the search may find more than one row, test to see if
- ** there is a range constraint on indexed column (pc.plan.nEq+1) that
- ** can be optimized using the index.
- */
- if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
- testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
- testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
- if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
- pc.plan.wsFlags |= WHERE_UNIQUE;
- if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
- pc.plan.wsFlags |= WHERE_ALL_UNIQUE;
- }
- }
- }else if( pProbe->bUnordered==0 ){
- int j;
- j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]);
- if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
- WhereTerm *pTop, *pBtm;
- pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx);
- pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx);
- whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv);
- if( pTop ){
- nBound = 1;
- pc.plan.wsFlags |= WHERE_TOP_LIMIT;
- pc.used |= pTop->prereqRight;
- testcase( pTop->pWC!=pWC );
- }
- if( pBtm ){
- nBound++;
- pc.plan.wsFlags |= WHERE_BTM_LIMIT;
- pc.used |= pBtm->prereqRight;
- testcase( pBtm->pWC!=pWC );
- }
- pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
- }
- }
-
- /* If there is an ORDER BY clause and the index being considered will
- ** naturally scan rows in the required order, set the appropriate flags
- ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but
- ** the index will scan rows in a different order, set the bSort
- ** variable. */
- if( bSort && (pSrc->jointype & JT_LEFT)==0 ){
- int bRev = 2;
- int bObUnique = 0;
- /*WHERETRACE((" --> before isSortIndex: nPriorSat=%d\n",nPriorSat));*/
- pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique);
- /*WHERETRACE((" --> after isSortIndex: bRev=%d bObU=%d nOBSat=%d\n",
- bRev, bObUnique, pc.plan.nOBSat));*/
- if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
- pc.plan.wsFlags |= WHERE_ORDERED;
- if( bObUnique ) pc.plan.wsFlags |= WHERE_OB_UNIQUE;
- }
- if( nOrderBy==pc.plan.nOBSat ){
- bSort = 0;
- pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE;
- }
- if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE;
- }
-
- /* If there is a DISTINCT qualifier and this index will scan rows in
- ** order of the DISTINCT expressions, clear bDist and set the appropriate
- ** flags in pc.plan.wsFlags. */
- if( bDist
- && isDistinctIndex(pParse, pWC, pProbe, iCur, p->pDistinct, pc.plan.nEq)
- && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0
- ){
- bDist = 0;
- pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
- }
-
- /* If currently calculating the cost of using an index (not the IPK
- ** index), determine if all required column data may be obtained without
- ** using the main table (i.e. if the index is a covering
- ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
- ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true. */
- if( pIdx ){
- Bitmask m = pSrc->colUsed;
- int j;
- for(j=0; j<pIdx->nColumn; j++){
- int x = pIdx->aiColumn[j];
- if( x<BMS-1 ){
- m &= ~(((Bitmask)1)<<x);
- }
- }
- if( m==0 ){
- pc.plan.wsFlags |= WHERE_IDX_ONLY;
- }else{
- bLookup = 1;
- }
- }
-
- /*
- ** Estimate the number of rows of output. For an "x IN (SELECT...)"
- ** constraint, do not let the estimate exceed half the rows in the table.
- */
- pc.plan.nRow = (double)(aiRowEst[pc.plan.nEq] * nInMul);
- if( bInEst && pc.plan.nRow*2>aiRowEst[0] ){
- pc.plan.nRow = aiRowEst[0]/2;
- nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]);
- }
-
-#ifdef SQLITE_ENABLE_STAT3
- /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
- ** and we do not think that values of x are unique and if histogram
- ** data is available for column x, then it might be possible
- ** to get a better estimate on the number of rows based on
- ** VALUE and how common that value is according to the histogram.
- */
- if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
- && pFirstTerm!=0 && aiRowEst[1]>1 ){
- assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
- if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
- testcase( pFirstTerm->eOperator & WO_EQ );
- testcase( pFirstTerm->eOperator & WO_EQUIV );
- testcase( pFirstTerm->eOperator & WO_ISNULL );
- whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
- &pc.plan.nRow);
- }else if( bInEst==0 ){
- assert( pFirstTerm->eOperator & WO_IN );
- whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
- &pc.plan.nRow);
- }
- }
-#endif /* SQLITE_ENABLE_STAT3 */
-
- /* Adjust the number of output rows and downward to reflect rows
- ** that are excluded by range constraints.
- */
- pc.plan.nRow = pc.plan.nRow/rangeDiv;
- if( pc.plan.nRow<1 ) pc.plan.nRow = 1;
-
- /* Experiments run on real SQLite databases show that the time needed
- ** to do a binary search to locate a row in a table or index is roughly
- ** log10(N) times the time to move from one row to the next row within
- ** a table or index. The actual times can vary, with the size of
- ** records being an important factor. Both moves and searches are
- ** slower with larger records, presumably because fewer records fit
- ** on one page and hence more pages have to be fetched.
- **
- ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
- ** not give us data on the relative sizes of table and index records.
- ** So this computation assumes table records are about twice as big
- ** as index records
- */
- if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE))
- ==WHERE_IDX_ONLY
- && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
- && sqlite3GlobalConfig.bUseCis
- && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan)
- ){
- /* This index is not useful for indexing, but it is a covering index.
- ** A full-scan of the index might be a little faster than a full-scan
- ** of the table, so give this case a cost slightly less than a table
- ** scan. */
- pc.rCost = aiRowEst[0]*3 + pProbe->nColumn;
- pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE;
- }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
- /* The cost of a full table scan is a number of move operations equal
- ** to the number of rows in the table.
- **
- ** We add an additional 4x penalty to full table scans. This causes
- ** the cost function to err on the side of choosing an index over
- ** choosing a full scan. This 4x full-scan penalty is an arguable
- ** decision and one which we expect to revisit in the future. But
- ** it seems to be working well enough at the moment.
- */
- pc.rCost = aiRowEst[0]*4;
- pc.plan.wsFlags &= ~WHERE_IDX_ONLY;
- if( pIdx ){
- pc.plan.wsFlags &= ~WHERE_ORDERED;
- pc.plan.nOBSat = nPriorSat;
- }
- }else{
- log10N = estLog(aiRowEst[0]);
- pc.rCost = pc.plan.nRow;
- if( pIdx ){
- if( bLookup ){
- /* For an index lookup followed by a table lookup:
- ** nInMul index searches to find the start of each index range
- ** + nRow steps through the index
- ** + nRow table searches to lookup the table entry using the rowid
- */
- pc.rCost += (nInMul + pc.plan.nRow)*log10N;
- }else{
- /* For a covering index:
- ** nInMul index searches to find the initial entry
- ** + nRow steps through the index
- */
- pc.rCost += nInMul*log10N;
- }
- }else{
- /* For a rowid primary key lookup:
- ** nInMult table searches to find the initial entry for each range
- ** + nRow steps through the table
- */
- pc.rCost += nInMul*log10N;
- }
- }
-
- /* Add in the estimated cost of sorting the result. Actual experimental
- ** measurements of sorting performance in SQLite show that sorting time
- ** adds C*N*log10(N) to the cost, where N is the number of rows to be
- ** sorted and C is a factor between 1.95 and 4.3. We will split the
- ** difference and select C of 3.0.
- */
- if( bSort ){
- double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy);
- m *= (double)(pc.plan.nOBSat ? 2 : 3);
- pc.rCost += pc.plan.nRow*m;
- }
- if( bDist ){
- pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3;
- }
-
- /**** Cost of using this index has now been computed ****/
-
- /* If there are additional constraints on this table that cannot
- ** be used with the current index, but which might lower the number
- ** of output rows, adjust the nRow value accordingly. This only
- ** matters if the current index is the least costly, so do not bother
- ** with this step if we already know this index will not be chosen.
- ** Also, never reduce the output row count below 2 using this step.
- **
- ** It is critical that the notValid mask be used here instead of
- ** the notReady mask. When computing an "optimal" index, the notReady
- ** mask will only have one bit set - the bit for the current table.
- ** The notValid mask, on the other hand, always has all bits set for
- ** tables that are not in outer loops. If notReady is used here instead
- ** of notValid, then a optimal index that depends on inner joins loops
- ** might be selected even when there exists an optimal index that has
- ** no such dependency.
- */
- if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){
- int k; /* Loop counter */
- int nSkipEq = pc.plan.nEq; /* Number of == constraints to skip */
- int nSkipRange = nBound; /* Number of < constraints to skip */
- Bitmask thisTab; /* Bitmap for pSrc */
-
- thisTab = getMask(pWC->pMaskSet, iCur);
- for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){
- if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
- if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue;
- if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
- if( nSkipEq ){
- /* Ignore the first pc.plan.nEq equality matches since the index
- ** has already accounted for these */
- nSkipEq--;
- }else{
- /* Assume each additional equality match reduces the result
- ** set size by a factor of 10 */
- pc.plan.nRow /= 10;
- }
- }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
- if( nSkipRange ){
- /* Ignore the first nSkipRange range constraints since the index
- ** has already accounted for these */
- nSkipRange--;
- }else{
- /* Assume each additional range constraint reduces the result
- ** set size by a factor of 3. Indexed range constraints reduce
- ** the search space by a larger factor: 4. We make indexed range
- ** more selective intentionally because of the subjective
- ** observation that indexed range constraints really are more
- ** selective in practice, on average. */
- pc.plan.nRow /= 3;
- }
- }else if( (pTerm->eOperator & WO_NOOP)==0 ){
- /* Any other expression lowers the output row count by half */
- pc.plan.nRow /= 2;
- }
- }
- if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
- }
-
-
- /*WHERETRACE((
- " nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n"
- " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n"
- " used=0x%llx nOBSat=%d\n",
- pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags,
- p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used,
- pc.plan.nOBSat
- ));*/
-
- /* If this index is the best we have seen so far, then record this
- ** index and its cost in the p->cost structure.
- */
- if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){
- p->cost = pc;
- p->cost.plan.wsFlags &= wsFlagMask;
- p->cost.plan.u.pIdx = pIdx;
- }
-
- /* If there was an INDEXED BY clause, then only that one index is
- ** considered. */
- if( pSrc->pIndex ) break;
-
- /* Reset masks for the next index in the loop */
- wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
- eqTermMask = idxEqTermMask;
- }
-
- /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
- ** is set, then reverse the order that the index will be scanned
- ** in. This is used for application testing, to help find cases
- ** where application behavior depends on the (undefined) order that
- ** SQLite outputs rows in in the absence of an ORDER BY clause. */
- if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
- p->cost.plan.wsFlags |= WHERE_REVERSE;
- }
-
- assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
- assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
- assert( pSrc->pIndex==0
- || p->cost.plan.u.pIdx==0
- || p->cost.plan.u.pIdx==pSrc->pIndex
- );
-
- /*WHERETRACE((" best index is %s cost=%.1f\n",
- p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk",
- p->cost.rCost));*/
-
- bestOrClauseIndex(p);
- bestAutomaticIndex(p);
- if( eqTermMask & WO_ISNULL ) p->cost.plan.wsFlags |= WHERE_NULL_OK;
-}
-
-/*
-** Find the query plan for accessing table pSrc->pTab. Write the
-** best query plan and its cost into the WhereCost object supplied
-** as the last parameter. This function may calculate the cost of
-** both real and virtual table scans.
-**
-** This function does not take ORDER BY or DISTINCT into account. Nor
-** does it remember the virtual table query plan. All it does is compute
-** the cost while determining if an OR optimization is applicable. The
-** details will be reconsidered later if the optimization is found to be
-** applicable.
-*/
-static void bestIndex(WhereBestIdx *p){
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(p->pSrc->pTab) ){
- sqlite3_index_info *pIdxInfo = 0;
- p->ppIdxInfo = &pIdxInfo;
- bestVirtualIndex(p);
- assert( pIdxInfo!=0 || p->pParse->db->mallocFailed );
- if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){
- sqlite3_free(pIdxInfo->idxStr);
- }
- sqlite3DbFree(p->pParse->db, pIdxInfo);
- }else
-#endif
- {
- bestBtreeIndex(p);
- }
-}
-
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
WhereLevel *pLevel, /* The level of the FROM clause we are working on */
int iEq, /* Index of the equality term within this level */
+ int bRev, /* True for reverse-order IN operations */
int iTarget /* Attempt to leave results in this register */
){
Expr *pX = pTerm->pExpr;
int eType;
int iTab;
struct InLoop *pIn;
- u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
+ WhereLoop *pLoop = pLevel->pWLoop;
- if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0
- && pLevel->plan.u.pIdx->aSortOrder[iEq]
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
+ && pLoop->u.btree.pIndex!=0
+ && pLoop->u.btree.pIndex->aSortOrder[iEq]
){
testcase( iEq==0 );
testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 );
}
iTab = pX->iTable;
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
- assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
+ assert( pLoop->wsFlags & WHERE_IN_ABLE );
if( pLevel->u.in.nIn==0 ){
pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
}
WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
WhereClause *pWC, /* The WHERE clause */
Bitmask notReady, /* Which parts of FROM have not yet been coded */
+ int bRev, /* Reverse the order of IN operators */
int nExtraReg, /* Number of extra registers to allocate */
char **pzAff /* OUT: Set to point to affinity string */
){
- int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
+ int nEq; /* The number of == or IN constraints to code */
Vdbe *v = pParse->pVdbe; /* The vm under construction */
Index *pIdx; /* The index being used for this loop */
- int iCur = pLevel->iTabCur; /* The cursor of the table */
WhereTerm *pTerm; /* A single constraint term */
+ WhereLoop *pLoop; /* The WhereLoop object */
int j; /* Loop counter */
int regBase; /* Base register */
int nReg; /* Number of registers to allocate */
char *zAff; /* Affinity string to return */
- int eqFlags; /* WO_EQ|WO_IN and maybe also WO_ISNULL */
/* This module is only called on query plans that use an index. */
- assert( pLevel->plan.wsFlags & WHERE_INDEXED );
- pIdx = pLevel->plan.u.pIdx;
+ pLoop = pLevel->pWLoop;
+ assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
+ nEq = pLoop->u.btree.nEq;
+ pIdx = pLoop->u.btree.pIndex;
+ assert( pIdx!=0 );
/* Figure out how many memory cells we will need then allocate them.
*/
regBase = pParse->nMem + 1;
- nReg = pLevel->plan.nEq + nExtraReg;
+ nReg = pLoop->u.btree.nEq + nExtraReg;
pParse->nMem += nReg;
zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
/* Evaluate the equality constraints
*/
assert( pIdx->nColumn>=nEq );
- eqFlags = (pLevel->plan.wsFlags&WHERE_NULL_OK) ? (WO_EQ|WO_IN|WO_ISNULL)
- : (WO_EQ|WO_IN);
for(j=0; j<nEq; j++){
int r1;
- int k = pIdx->aiColumn[j];
- pTerm = findTerm(pWC, iCur, k, notReady, eqFlags, pIdx);
- if( pTerm==0 ) break;
+ pTerm = pLoop->aTerm[j];
+ assert( pTerm!=0 );
/* The following true for indices with redundant columns.
** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
- r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j);
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
if( r1!=regBase+j ){
if( nReg==1 ){
sqlite3ReleaseTempReg(pParse, regBase);
int omitTable; /* True if we use the index only */
int bRev; /* True if we need to scan in reverse order */
WhereLevel *pLevel; /* The where level to be coded */
+ WhereLoop *pLoop; /* The WhereLoop object being coded */
WhereClause *pWC; /* Decomposition of the entire WHERE clause */
WhereTerm *pTerm; /* A WHERE clause term */
Parse *pParse; /* Parsing context */
v = pParse->pVdbe;
pWC = pWInfo->pWC;
pLevel = &pWInfo->a[iLevel];
+ pLoop = pLevel->pWLoop;
pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
iCur = pTabItem->iCursor;
- bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
- omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
+ bRev = (pWInfo->revMask>>iLevel)&1;
+ omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
&& (wctrlFlags & WHERE_FORCE_TABLE)==0;
VdbeNoopComment((v, "Begin Join Loop %d", iLevel));
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
- /* Case 0: The table is a virtual-table. Use the VFilter and VNext
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ /* Case 1: The table is a virtual-table. Use the VFilter and VNext
** to access the data.
*/
int iReg; /* P3 Value for OP_VFilter */
int addrNotFound;
- sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
- int nConstraint = pVtabIdx->nConstraint;
- struct sqlite3_index_constraint_usage *aUsage =
- pVtabIdx->aConstraintUsage;
- const struct sqlite3_index_constraint *aConstraint =
- pVtabIdx->aConstraint;
+ int nConstraint = pLoop->nTerm;
sqlite3ExprCachePush(pParse);
iReg = sqlite3GetTempRange(pParse, nConstraint+2);
addrNotFound = pLevel->addrBrk;
- for(j=1; j<=nConstraint; j++){
- for(k=0; k<nConstraint; k++){
- if( aUsage[k].argvIndex==j ){
- int iTarget = iReg+j+1;
- pTerm = &pWC->a[aConstraint[k].iTermOffset];
- if( pTerm->eOperator & WO_IN ){
- codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget);
- addrNotFound = pLevel->addrNxt;
- }else{
- sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
- }
- break;
- }
+ for(j=0; j<nConstraint; j++){
+ int iTarget = iReg+j+1;
+ pTerm = pLoop->aTerm[j];
+ if( pTerm->eOperator & WO_IN ){
+ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
+ addrNotFound = pLevel->addrNxt;
+ }else{
+ sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
}
- if( k==nConstraint ) break;
}
- sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
- sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr,
- pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
- pVtabIdx->needToFreeIdxStr = 0;
- for(j=0; j<nConstraint; j++){
- if( aUsage[j].omit ){
- int iTerm = aConstraint[j].iTermOffset;
- disableTerm(pLevel, &pWC->a[iTerm]);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
+ pLoop->u.vtab.idxStr,
+ pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
+ pLoop->u.vtab.needFree = 0;
+ for(j=0; j<nConstraint && j<16; j++){
+ if( (pLoop->u.vtab.omitMask>>j)&1 ){
+ disableTerm(pLevel, pLoop->aTerm[j]);
}
}
pLevel->op = OP_VNext;
}else
#endif /* SQLITE_OMIT_VIRTUALTABLE */
- if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
- /* Case 1: We can directly reference a single row using an
+ if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
+ ){
+ /* Case 2: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
+ assert( pLoop->u.btree.nEq==1 );
iReleaseReg = sqlite3GetTempReg(pParse);
- pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ pTerm = pLoop->aTerm[0];
assert( pTerm!=0 );
assert( pTerm->pExpr!=0 );
assert( omitTable==0 );
testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
- iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg);
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
addrNxt = pLevel->addrNxt;
sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
- }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
- /* Case 2: We have an inequality comparison against the ROWID field.
+ }else if( (pLoop->wsFlags & WHERE_IPK)!=0
+ && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
+ ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
WhereTerm *pStart, *pEnd;
assert( omitTable==0 );
- pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
- pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
+ j = 0;
+ pStart = pEnd = 0;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aTerm[j++];
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aTerm[j++];
if( bRev ){
pTerm = pStart;
pStart = pEnd;
sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
}
- }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
- /* Case 3: A scan using an index.
+ }else if( pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ|WHERE_IDX_ONLY) ){
+ /* Case 4: A scan using an index.
**
** The WHERE clause may contain zero or more equality
** terms ("==" or "IN" operators) that refer to the N
OP_IdxGE, /* 1: (end_constraints && !bRev) */
OP_IdxLT /* 2: (end_constraints && bRev) */
};
- int nEq = pLevel->plan.nEq; /* Number of == or IN terms */
- int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
+ int nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
+ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
int regBase; /* Base register holding constraint values */
int r1; /* Temp register */
WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
char *zStartAff; /* Affinity for start of range constraint */
char *zEndAff; /* Affinity for end of range constraint */
- pIdx = pLevel->plan.u.pIdx;
+ pIdx = pLoop->u.btree.pIndex;
iIdxCur = pLevel->iIdxCur;
k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);
** this requires some special handling.
*/
if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
- && (pLevel->plan.wsFlags&WHERE_ORDERED)
+ && (pWInfo->nOBSat>0)
&& (pIdx->nColumn>nEq)
){
/* assert( pOrderBy->nExpr==1 ); */
/* Find any inequality constraint terms for the start and end
** of the range.
*/
- if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
- pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
+ j = nEq;
+ if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
+ pRangeStart = pLoop->aTerm[j++];
nExtraReg = 1;
}
- if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
- pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
+ if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
+ pRangeEnd = pLoop->aTerm[j++];
nExtraReg = 1;
}
** starting at regBase.
*/
regBase = codeAllEqualityTerms(
- pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
+ pParse, pLevel, pWC, notReady, bRev, nExtraReg, &zStartAff
);
zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
addrNxt = pLevel->addrNxt;
r1 = sqlite3GetTempReg(pParse);
testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
- if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
+ if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
}
/* Record the instruction used to terminate the loop. Disable
** WHERE clause terms made redundant by the index range scan.
*/
- if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
+ if( pLoop->wsFlags & WHERE_UNIQUE ){
pLevel->op = OP_Noop;
}else if( bRev ){
pLevel->op = OP_Prev;
pLevel->op = OP_Next;
}
pLevel->p1 = iIdxCur;
- if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){
+ if( pLoop->wsFlags & WHERE_COVER_SCAN ){
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
}else{
assert( pLevel->p5==0 );
}else
#ifndef SQLITE_OMIT_OR_OPTIMIZATION
- if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
- /* Case 4: Two or more separately indexed terms connected by OR
+ if( pLoop->wsFlags & WHERE_MULTI_OR ){
+ /* Case 5: Two or more separately indexed terms connected by OR
**
** Example:
**
int ii; /* Loop counter */
Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
- pTerm = pLevel->plan.u.pTerm;
+ pTerm = pLoop->aTerm[0];
assert( pTerm!=0 );
assert( pTerm->eOperator & WO_OR );
assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed );
if( pSubWInfo ){
- WhereLevel *pLvl;
+ WhereLoop *pSubLoop;
explainOneScan(
pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
);
** pCov to NULL to indicate that no candidate covering index will
** be available.
*/
- pLvl = &pSubWInfo->a[0];
- if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0
- && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0
- && (ii==0 || pLvl->plan.u.pIdx==pCov)
+ pSubLoop = pSubWInfo->a[0].pWLoop;
+ if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
+ && (pSubLoop->wsFlags & WHERE_TEMP_INDEX)==0
+ && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
){
- assert( pLvl->iIdxCur==iCovCur );
- pCov = pLvl->plan.u.pIdx;
+ assert( pSubWInfo->a[0].iIdxCur==iCovCur );
+ pCov = pLoop->u.btree.pIndex;
}else{
pCov = 0;
}
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
{
- /* Case 5: There is no usable index. We must do a complete
+ /* Case 6: There is no usable index. We must do a complete
** scan of the entire table.
*/
static const u8 aStep[] = { OP_Next, OP_Prev };
static const u8 aStart[] = { OP_Rewind, OP_Last };
assert( bRev==0 || bRev==1 );
- assert( omitTable==0 );
pLevel->op = aStep[bRev];
pLevel->p1 = iCur;
pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
if( ALWAYS(pWInfo) ){
int i;
for(i=0; i<pWInfo->nLevel; i++){
- sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
- if( pInfo ){
- /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
- if( pInfo->needToFreeIdxStr ){
- sqlite3_free(pInfo->idxStr);
- }
- sqlite3DbFree(db, pInfo);
- }
- if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
- Index *pIdx = pWInfo->a[i].plan.u.pIdx;
+ if( pWInfo->a[i].pWLoop->wsFlags & WHERE_TEMP_INDEX ){
+ Index *pIdx = pWInfo->a[i].pWLoop->u.btree.pIndex;
if( pIdx ){
sqlite3DbFree(db, pIdx->zColAff);
sqlite3DbFree(db, pIdx);
rLogSize = estLog(pProbe->aiRowEst[0]);
for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
int nIn = 1;
+ pNew->wsFlags = savedLoop.wsFlags;
pNew->u.btree.nEq = savedLoop.u.btree.nEq;
pNew->nTerm = savedLoop.nTerm;
if( pNew->nTerm>=pBuilder->mxTerm ) break; /* Repeated column in index */
assert( pWInfo->nLevel==nLoop );
/* Load the lowest cost path into pWInfo */
for(iLoop=0; iLoop<nLoop; iLoop++){
- pWInfo->a[iLoop].pWLoop = pFrom->aLoop[iLoop];
+ WhereLevel *pLevel = pWInfo->a + iLoop;
+ pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
+ pLevel->iFrom = pWLoop->iTab; /* FIXME: Omit the iFrom field */
+ pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
}
if( pFrom->isOrdered ){
pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
WhereLoopBuilder sWLB; /* The WhereLoop builder */
WhereMaskSet *pMaskSet; /* The expression mask set */
WhereLevel *pLevel; /* A single level in pWInfo->a[] */
- int iFrom; /* First unused FROM clause element */
- int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
int ii; /* Loop counter */
sqlite3 *db; /* Database connection */
int rc; /* Return code */
}
#endif
- /* Chose the best index to use for each table in the FROM clause.
- **
- ** This loop fills in the following fields:
- **
- ** pWInfo->a[].pIdx The index to use for this level of the loop.
- ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
- ** pWInfo->a[].nEq The number of == and IN constraints
- ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
- ** pWInfo->a[].iTabCur The VDBE cursor for the database table
- ** pWInfo->a[].iIdxCur The VDBE cursor for the index
- ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
- **
- ** This loop also figures out the nesting order of tables in the FROM
- ** clause.
- */
- sWBI.notValid = ~(Bitmask)0;
- sWBI.pOrderBy = pOrderBy;
- sWBI.n = nTabList;
- sWBI.pDistinct = pDistinct;
- andFlags = ~0;
- for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
- WhereCost bestPlan; /* Most efficient plan seen so far */
- Index *pIdx; /* Index for FROM table at pTabItem */
- int j; /* For looping over FROM tables */
- int bestJ = -1; /* The value of j */
- Bitmask m; /* Bitmask value for j or bestJ */
- int isOptimal; /* Iterator for optimal/non-optimal search */
- int ckOptimal; /* Do the optimal scan check */
- int nUnconstrained; /* Number tables without INDEXED BY */
- Bitmask notIndexed; /* Mask of tables that cannot use an index */
-
- memset(&bestPlan, 0, sizeof(bestPlan));
- bestPlan.rCost = SQLITE_BIG_DBL;
- /*WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));*/
-
- /* Loop through the remaining entries in the FROM clause to find the
- ** next nested loop. The loop tests all FROM clause entries
- ** either once or twice.
- **
- ** The first test is always performed if there are two or more entries
- ** remaining and never performed if there is only one FROM clause entry
- ** to choose from. The first test looks for an "optimal" scan. In
- ** this context an optimal scan is one that uses the same strategy
- ** for the given FROM clause entry as would be selected if the entry
- ** were used as the innermost nested loop. In other words, a table
- ** is chosen such that the cost of running that table cannot be reduced
- ** by waiting for other tables to run first. This "optimal" test works
- ** by first assuming that the FROM clause is on the inner loop and finding
- ** its query plan, then checking to see if that query plan uses any
- ** other FROM clause terms that are sWBI.notValid. If no notValid terms
- ** are used then the "optimal" query plan works.
- **
- ** Note that the WhereCost.nRow parameter for an optimal scan might
- ** not be as small as it would be if the table really were the innermost
- ** join. The nRow value can be reduced by WHERE clause constraints
- ** that do not use indices. But this nRow reduction only happens if the
- ** table really is the innermost join.
- **
- ** The second loop iteration is only performed if no optimal scan
- ** strategies were found by the first iteration. This second iteration
- ** is used to search for the lowest cost scan overall.
- **
- ** Without the optimal scan step (the first iteration) a suboptimal
- ** plan might be chosen for queries like this:
- **
- ** CREATE TABLE t1(a, b);
- ** CREATE TABLE t2(c, d);
- ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
- **
- ** The best strategy is to iterate through table t1 first. However it
- ** is not possible to determine this with a simple greedy algorithm.
- ** Since the cost of a linear scan through table t2 is the same
- ** as the cost of a linear scan through table t1, a simple greedy
- ** algorithm may choose to use t2 for the outer loop, which is a much
- ** costlier approach.
- */
- nUnconstrained = 0;
- notIndexed = 0;
-
- /* The optimal scan check only occurs if there are two or more tables
- ** available to be reordered */
- if( iFrom==nTabList-1 ){
- ckOptimal = 0; /* Common case of just one table in the FROM clause */
- }else{
- ckOptimal = -1;
- for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
- m = getMask(pMaskSet, sWBI.pSrc->iCursor);
- if( (m & sWBI.notValid)==0 ){
- if( j==iFrom ) iFrom++;
- continue;
- }
- if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break;
- if( ++ckOptimal ) break;
- if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
- }
- }
- assert( ckOptimal==0 || ckOptimal==1 );
-
- for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){
- for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
- if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){
- /* This break and one like it in the ckOptimal computation loop
- ** above prevent table reordering across LEFT and CROSS JOINs.
- ** The LEFT JOIN case is necessary for correctness. The prohibition
- ** against reordering across a CROSS JOIN is an SQLite feature that
- ** allows the developer to control table reordering */
- break;
- }
- m = getMask(pMaskSet, sWBI.pSrc->iCursor);
- if( (m & sWBI.notValid)==0 ){
- assert( j>iFrom );
- continue;
- }
- sWBI.notReady = (isOptimal ? m : sWBI.notValid);
- if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
-
- /*WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n",
- j, sWBI.pSrc->pTab->zName, isOptimal));*/
- assert( sWBI.pSrc->pTab );
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(sWBI.pSrc->pTab) ){
- sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo;
- bestVirtualIndex(&sWBI);
- }else
-#endif
- {
- bestBtreeIndex(&sWBI);
- }
- assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 );
-
- /* If an INDEXED BY clause is present, then the plan must use that
- ** index if it uses any index at all */
- assert( sWBI.pSrc->pIndex==0
- || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
- || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );
-
- if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
- notIndexed |= m;
- }
- if( isOptimal ){
- pWInfo->a[j].rOptCost = sWBI.cost.rCost;
- }else if( ckOptimal ){
- /* If two or more tables have nearly the same outer loop cost, but
- ** very different inner loop (optimal) cost, we want to choose
- ** for the outer loop that table which benefits the least from
- ** being in the inner loop. The following code scales the
- ** outer loop cost estimate to accomplish that. */
- /*WHERETRACE((" scaling cost from %.1f to %.1f\n",
- sWBI.cost.rCost,
- sWBI.cost.rCost/pWInfo->a[j].rOptCost));*/
- sWBI.cost.rCost /= pWInfo->a[j].rOptCost;
- }
-
- /* Conditions under which this table becomes the best so far:
- **
- ** (1) The table must not depend on other tables that have not
- ** yet run. (In other words, it must not depend on tables
- ** in inner loops.)
- **
- ** (2) (This rule was removed on 2012-11-09. The scaling of the
- ** cost using the optimal scan cost made this rule obsolete.)
- **
- ** (3) All tables have an INDEXED BY clause or this table lacks an
- ** INDEXED BY clause or this table uses the specific
- ** index specified by its INDEXED BY clause. This rule ensures
- ** that a best-so-far is always selected even if an impossible
- ** combination of INDEXED BY clauses are given. The error
- ** will be detected and relayed back to the application later.
- ** The NEVER() comes about because rule (2) above prevents
- ** An indexable full-table-scan from reaching rule (3).
- **
- ** (4) The plan cost must be lower than prior plans, where "cost"
- ** is defined by the compareCost() function above.
- */
- if( (sWBI.cost.used&sWBI.notValid)==0 /* (1) */
- && (nUnconstrained==0 || sWBI.pSrc->pIndex==0 /* (3) */
- || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
- && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan)) /* (4) */
- ){
- /*WHERETRACE((" === table %d (%s) is best so far\n"
- " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
- j, sWBI.pSrc->pTab->zName,
- sWBI.cost.rCost, sWBI.cost.plan.nRow,
- sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));*/
- bestPlan = sWBI.cost;
- bestJ = j;
- }
-
- /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that
- ** table y (and not table z) is always the next inner loop inside
- ** of table x. */
- if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
- }
- }
- assert( bestJ>=0 );
- assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
- assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 );
- testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 );
- testcase( bestJ>iFrom && bestJ<nTabList-1
- && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 );
- /*WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
- " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
- bestJ, pTabList->a[bestJ].pTab->zName,
- pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
- bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));*/
- if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
- assert( pWInfo->eDistinct==0 );
- pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
- }
- andFlags &= bestPlan.plan.wsFlags;
- pLevel->plan = bestPlan.plan;
- pLevel->iTabCur = pTabList->a[bestJ].iCursor;
- testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
- testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
- if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
- if( (wctrlFlags & WHERE_ONETABLE_ONLY)
- && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0
- ){
- pLevel->iIdxCur = iIdxCur;
- }else{
- pLevel->iIdxCur = pParse->nTab++;
- }
- }else{
- pLevel->iIdxCur = -1;
- }
- sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
- pLevel->iFrom = (u8)bestJ;
- if( bestPlan.plan.nRow>=(double)1 ){
- pParse->nQueryLoop *= bestPlan.plan.nRow;
- }
-
- /* Check that if the table scanned by this loop iteration had an
- ** INDEXED BY clause attached to it, that the named index is being
- ** used for the scan. If not, then query compilation has failed.
- ** Return an error.
- */
- pIdx = pTabList->a[bestJ].pIndex;
- if( pIdx ){
- if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
- sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
- goto whereBeginError;
- }else{
- /* If an INDEXED BY clause is used, the bestIndex() function is
- ** guaranteed to find the index specified in the INDEXED BY clause
- ** if it find an index at all. */
- assert( bestPlan.plan.u.pIdx==pIdx );
- }
- }
- }
- WHERETRACE(("*** Optimizer Finished ***\n"));
- if( pParse->nErr || db->mallocFailed ){
- goto whereBeginError;
- }
- if( nTabList ){
- pLevel--;
- pWInfo->nOBSat = pLevel->plan.nOBSat;
- }else{
- pWInfo->nOBSat = 0;
- }
-
- /* If the total query only selects a single row, then the ORDER BY
- ** clause is irrelevant.
- */
- if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){
- assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 );
- pWInfo->nOBSat = pOrderBy->nExpr;
- }
-
+#if 0 /* FIXME: Add this back in? */
/* If the caller is an UPDATE or DELETE statement that is requesting
** to use a one-pass algorithm, determine if this is appropriate.
** The one-pass algorithm only works if the WHERE clause constraints
pWInfo->okOnePass = 1;
pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
}
-
-#if 1
- /* Scaffolding: Check the new query plan against the old. Report any
- ** discrepencies */
- for(ii=0; ii<nTabList; ii++){
- if( pWInfo->a[ii].iFrom!=pWInfo->a[ii].pWLoop->iTab ){
- sqlite3DebugPrintf("(QP-Mismatch)");
- break;
- }
- }
#endif
/* Open all tables in the pTabList and any indices selected for
Table *pTab; /* Table to open */
int iDb; /* Index of database containing table/index */
struct SrcList_item *pTabItem;
+ WhereLoop *pLoop;
pTabItem = &pTabList->a[pLevel->iFrom];
pTab = pTabItem->pTab;
- pWInfo->nRowOut *= pLevel->plan.nRow;
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ pLoop = pLevel->pWLoop;
if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
/* Do nothing */
}else
#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
+ if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
int iCur = pTabItem->iCursor;
sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
/* noop */
}else
#endif
- if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
+ if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
&& (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
}
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
- if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
+ if( (pLoop->wsFlags & WHERE_TEMP_INDEX)!=0 ){
constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel);
}else
#endif
- if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
- Index *pIx = pLevel->plan.u.pIdx;
+ if( pLoop->u.btree.pIndex!=0 ){
+ Index *pIx = pLoop->u.btree.pIndex;
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
- int iIndexCur = pLevel->iIdxCur;
+ /* FIXME: Might need to be the iIdxCur parameter. As an optimization
+ ** use pTabItem->iCursor if WHERE_IDX_ONLY */
+ int iIndexCur = pLevel->iIdxCur = pParse->nTab++;
assert( pIx->pSchema==pTab->pSchema );
assert( iIndexCur>=0 );
sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
pWInfo->iContinue = pLevel->addrCont;
}
-#ifdef SQLITE_TEST /* For testing and debugging use only */
+#if defined(SQLITE_TEST) && 0 /* For testing and debugging use only */
/* Record in the query plan information about the current table
** and the index used to access it (if any). If the table itself
** is not used, its name is just '{}'. If no index is used
Vdbe *v = pParse->pVdbe;
int i;
WhereLevel *pLevel;
+ WhereLoop *pLoop;
SrcList *pTabList = pWInfo->pTabList;
sqlite3 *db = pParse->db;
sqlite3ExprCacheClear(pParse);
for(i=pWInfo->nLevel-1; i>=0; i--){
pLevel = &pWInfo->a[i];
+ pLoop = pLevel->pWLoop;
sqlite3VdbeResolveLabel(v, pLevel->addrCont);
if( pLevel->op!=OP_Noop ){
sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
sqlite3VdbeChangeP5(v, pLevel->p5);
}
- if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
+ if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
struct InLoop *pIn;
int j;
sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
if( pLevel->iLeftJoin ){
int addr;
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
- assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
- || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
- if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
+ || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
+ if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
}
if( pLevel->iIdxCur>=0 ){
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert( pTab!=0 );
+ pLoop = pLevel->pWLoop;
if( (pTab->tabFlags & TF_Ephemeral)==0
&& pTab->pSelect==0
&& (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
){
- int ws = pLevel->plan.wsFlags;
+ int ws = pLoop->wsFlags;
if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
}
- if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
+ if( (ws & WHERE_INDEXED)!=0 && (ws & (WHERE_IPK|WHERE_TEMP_INDEX))==0 ){
sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
}
}
** that reference the table and converts them into opcodes that
** reference the index.
*/
- if( pLevel->plan.wsFlags & WHERE_INDEXED ){
- pIdx = pLevel->plan.u.pIdx;
- }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
+ if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
+ pIdx = pLoop->u.btree.pIndex;
+ }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
pIdx = pLevel->u.pCovidx;
}
- if( pIdx && !db->mallocFailed){
+ if( pIdx && !db->mallocFailed ){
int k, j, last;
VdbeOp *pOp;
break;
}
}
- assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
- || j<pIdx->nColumn );
+ assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || j<pIdx->nColumn );
}else if( pOp->opcode==OP_Rowid ){
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;