}
/* Opcode: HaltIfNull P1 P2 P3 P4 *
+** Synopsis: if r[P3] null then halt
**
** Check the value in register P3. If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
}
/* Opcode: Integer P1 P2 * * *
+** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
}
/* Opcode: Int64 * P2 * P4 *
+** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
+** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
#endif
/* Opcode: String8 * P2 * P4 *
+** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into an OP_String before it is executed for the first time.
}
/* Opcode: String P1 P2 * P4 *
+** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
*/
}
/* Opcode: Null P1 P2 P3 * *
+** Synopsis: r[P2..P3]=NULL
**
** Write a NULL into registers P2. If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3. If P3
/* Opcode: Blob P1 P2 * P4
+** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2.
}
/* Opcode: Variable P1 P2 * P4 *
+** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
}
/* Opcode: Move P1 P2 P3 * *
+** Synopsis: r[P2]=r[P1] N=P3
**
** Move the values in register P1..P1+P3 over into
** registers P2..P2+P3. Registers P1..P1+P3 are
}
/* Opcode: Copy P1 P2 P3 * *
+** Synopsis: r[P2]=r[P1] N=P3
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
}
/* Opcode: SCopy P1 P2 * * *
+** Synopsis: r[P2]=r[P1]
**
** Make a shallow copy of register P1 into register P2.
**
}
/* Opcode: ResultRow P1 P2 * * *
+** Synopsis: output=r[P1].. columns=P1
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
}
/* Opcode: Concat P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]+r[P3]
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
memcpy(pOut->z, pIn2->z, pIn2->n);
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
- pOut->z[nByte] = 0;
+ pOut->z[nByte]=0;
pOut->z[nByte+1] = 0;
pOut->flags |= MEM_Term;
pOut->n = (int)nByte;
}
/* Opcode: Add P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]/r[P2]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]%r[P2]
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3.
}
/* Opcode: Function P1 P2 P3 P4 P5
+** Synopsis: r[P3]=func(r[P2]..) N=P5
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
}
/* Opcode: BitAnd P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
+** Synopsis: r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
+** Synopsis: r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
}
/* Opcode: AddImm P1 P2 * * *
+** Synopsis: r[P1]=r[P1]+P2
**
** Add the constant P2 to the value in register P1.
** The result is always an integer.
#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
/* Opcode: Lt P1 P2 P3 P4 P5
+** Synopsis: r[P1] < r[P3]
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2.
** bit set.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
+** Synopsis: r[P1] != r[P3]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
+** Synopsis: r[P1] == r[P3]
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
+** Synopsis: r[P1] <= r[P3]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
+** Synopsis: r[P1] > r[P3]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
+** Synopsis: r[P1] >= r[P3]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
}
/* Opcode: And P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] && r[P2])
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
+** Synopsis: r[P3]=(r[P1] || r[P2])
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
}
/* Opcode: Not P1 P2 * * *
+** Synopsis: r[P2]= !r[P1]
**
** Interpret the value in register P1 as a boolean value. Store the
** boolean complement in register P2. If the value in register P1 is
}
/* Opcode: BitNot P1 P2 * * *
+** Synopsis: r[P1]= ~r[P1]
**
** Interpret the content of register P1 as an integer. Store the
** ones-complement of the P1 value into register P2. If P1 holds
}
/* Opcode: Column P1 P2 P3 P4 P5
+** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
}
/* Opcode: Affinity P1 P2 * P4 *
+** Synopsis: affinity(r[P1]) N=P2
**
** Apply affinities to a range of P2 registers starting with P1.
**
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
+** Synopsis: r[P3]=rec(r[P1]..) N=P2
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
}
/* Opcode: Count P1 P2 * * *
+** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index
** opened by cursor P1 in register P2
}
/* Opcode: OpenRead P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by P3.
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
+** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. Or if P5!=0 use the content of register P2 to find the
}
/* Opcode: OpenEphemeral P1 P2 * P4 P5
+** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
-** This opcode was once called OpenTemp. But that created
-** confusion because the term "temp table", might refer either
-** to a TEMP table at the SQL level, or to a table opened by
-** this opcode. Then this opcode was call OpenVirtual. But
-** that created confusion with the whole virtual-table idea.
-**
** The P5 parameter can be a mask of the BTREE_* flags defined
** in btree.h. These flags control aspects of the operation of
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
** added automatically.
*/
/* Opcode: OpenAutoindex P1 P2 * P4 *
+** Synopsis: nColumn=P2
**
** This opcode works the same as OP_OpenEphemeral. It has a
** different name to distinguish its use. Tables created using
}
/* Opcode: SorterOpen P1 P2 * P4 *
+** Synopsis: nColumn=P2
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
}
/* Opcode: OpenPseudo P1 P2 P3 * P5
+** Synopsis: content in r[P2].. N=P3
**
** Open a new cursor that points to a fake table that contains a single
** row of data. The content of that one row in the content of memory
}
/* Opcode: SeekGe P1 P2 P3 P4 *
+** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as the key. If cursor P1 refers
** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGt P1 P2 P3 P4 *
+** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLt P1 P2 P3 P4 *
+** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLe P1 P2 P3 P4 *
+** Synopsis: key=r[P3].. N=P4
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
}
/* Opcode: Seek P1 P2 * * *
+** Synopsis: intkey=r[P2]
**
** P1 is an open table cursor and P2 is a rowid integer. Arrange
** for P1 to move so that it points to the rowid given by P2.
/* Opcode: Found P1 P2 P3 P4 *
+** Synopsis: key=r[P3].. N=P4
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
+** Synopsis: key=r[P3] N=P4
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
}
/* Opcode: NotExists P1 P2 P3 * *
+** Synopsis: intkey=r[P3]
**
** Use the content of register P3 as an integer key. If a record
** with that key does not exist in table of P1, then jump to P2.
}
/* Opcode: Sequence P1 P2 * * *
+** Synopsis: r[P2]=rowid
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
/* Opcode: NewRowid P1 P2 P3 * *
+** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
}
/* Opcode: Insert P1 P2 P3 P4 P5
+** Synopsis: intkey=r[P3] data=r[P2]
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
+** Synopsis: intkey=P3 data=r[P2]
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
}
/* Opcode: SorterCompare P1 P2 P3
+** Synopsis: if key(P1)!=r[P3] goto P2
**
** P1 is a sorter cursor. This instruction compares the record blob in
** register P3 with the entry that the sorter cursor currently points to.
};
/* Opcode: SorterData P1 P2 * * *
+** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.
*/
}
/* Opcode: RowData P1 P2 * * *
+** Synopsis: r[P2]=data
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
+** Synopsis: r[P2]=key
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.
}
/* Opcode: Rowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
break;
}
-/* Opcode: Next P1 P2 * P4 P5
+/* Opcode: Next P1 P2 * * P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
}
/* Opcode: IdxInsert P1 P2 P3 * P5
+** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
}
/* Opcode: IdxDelete P1 P2 P3 * *
+** Synopsis: key=r[P2]..
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the
}
/* Opcode: IdxRowid P1 P2 * * *
+** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
}
/* Opcode: IdxGE P1 P2 P3 P4 P5
+** Synopsis: key=r[P3] N=P4
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
** the result is false whereas it would be true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
+** Synopsis: key=r[P3] N=P4
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
}
/* Opcode: CreateTable P1 P2 * * *
+** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** See also: CreateIndex
*/
/* Opcode: CreateIndex P1 P2 * * *
+** Synopsis: r[P2]=root iDb=P1
**
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: RowSetAdd P1 P2 * * *
+** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
}
/* Opcode: RowSetRead P1 P2 P3 * *
+** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3. Or, if boolean index P1 is initially empty, leave P3
}
/* Opcode: RowSetTest P1 P2 P3 P4
+** Synopsis: if r[P3] in rowset(P1) goto P2
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Opcode: FkCounter P1 P2 * * *
+** Synopsis: fkctr[P1]+=P2
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented
}
/* Opcode: FkIfZero P1 P2 * * *
+** Synopsis: if fkctr[P1]==0 goto P2
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
+** Synopsis: r[P1]=max(r[P1],r[P2])
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: IfPos P1 P2 * * *
+** Synopsis: if r[P1]>0 goto P2
**
** If the value of register P1 is 1 or greater, jump to P2.
**
}
/* Opcode: IfNeg P1 P2 * * *
+** Synopsis: if r[P1]<0 goto P2
**
** If the value of register P1 is less than zero, jump to P2.
**
}
/* Opcode: IfZero P1 P2 P3 * *
+** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer. Add literal P3 to the
** value in register P1. If the result is exactly 0, jump to P2.
}
/* Opcode: AggStep * P2 P3 P4 P5
+** Synopsis: accum=r[P3] step(r[P2]..) N=P5
**
** Execute the step function for an aggregate. The
** function has P5 arguments. P4 is a pointer to the FuncDef
}
/* Opcode: AggFinal P1 P2 * P4 *
+** Synopsis: accum=r[P1] N=P2
**
** Execute the finalizer function for an aggregate. P1 is
** the memory location that is the accumulator for the aggregate.
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
+** Synopsis: iDb=P1 root=P2 write=P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
+** Synopsis: iPlan=r[P3] zPlan='P4'
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * *
+** Synopsis: r[P3]=vcolumn(P2)
**
** Store the value of the P2-th column of
** the row of the virtual-table that the
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
+** Synopsis: data=r[P3] N=P2
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
}
}
+#if defined(SQLITE_DEBUG)
+/*
+** Compute a string for the "comment" field of a VDBE opcode listing
+*/
+static int displayComment(Op *pOp, const char *zP4, char *zTemp, int nTemp){
+ const char *zOpName;
+ const char *zSynopsis;
+ int nOpName;
+ int ii, jj;
+ zOpName = sqlite3OpcodeName(pOp->opcode);
+ nOpName = sqlite3Strlen30(zOpName);
+ if( zOpName[nOpName+1] ){
+ int seenCom = 0;
+ zSynopsis = zOpName += nOpName + 1;
+ for(ii=jj=0; jj<nTemp-1 && zSynopsis[ii]; ii++){
+ if( zSynopsis[ii]=='P' ){
+ int v;
+ const char *zShow = 0;
+ ii++;
+ switch( zSynopsis[ii] ){
+ case '1': v = pOp->p1; break;
+ case '2': v = pOp->p2; break;
+ case '3': v = pOp->p3; break;
+ case '5': v = pOp->p5; break;
+ case '4': zShow = zP4; break;
+ case 'X': zShow = pOp->zComment; seenCom = 1; break;
+ }
+ if( zShow ){
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zShow);
+ }else{
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v);
+ }
+ jj += sqlite3Strlen30(zTemp+jj);
+ }else{
+ zTemp[jj++] = zSynopsis[ii];
+ }
+ }
+ if( !seenCom && jj<nTemp-5 && pOp->zComment ){
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
+ jj += sqlite3Strlen30(zTemp+jj);
+ }
+ if( jj<nTemp ) zTemp[jj] = 0;
+ }else if( pOp->zComment ){
+ sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
+ jj = sqlite3Strlen30(zTemp);
+ }else{
+ zTemp[0] = 0;
+ jj = 0;
+ }
+ return jj;
+}
+#endif /* SQLITE_DEBUG */
+
+
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
char *zP4;
char zPtr[50];
+ char zCom[100];
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
if( pOut==0 ) pOut = stdout;
zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
- fprintf(pOut, zFormat1, pc,
- sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
#ifdef SQLITE_DEBUG
- pOp->zComment ? pOp->zComment : ""
+ displayComment(pOp, zP4, zCom, sizeof(zCom));
#else
- ""
+ zCom[0] = 0
#endif
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
+ zCom
);
fflush(pOut);
}
rc = SQLITE_ERROR;
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
}else{
- char *z;
+ char *zP4;
Op *pOp;
if( i<p->nOp ){
/* The output line number is small enough that we are still in the
pMem++;
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem->type = SQLITE_TEXT;
return SQLITE_ERROR;
}
pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- z = displayP4(pOp, pMem->z, 32);
- if( z!=pMem->z ){
- sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
+ zP4 = displayP4(pOp, pMem->z, 32);
+ if( zP4!=pMem->z ){
+ sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
}else{
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem++;
#ifdef SQLITE_DEBUG
- if( pOp->zComment ){
- pMem->flags = MEM_Str|MEM_Term;
- pMem->z = pOp->zComment;
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->enc = SQLITE_UTF8;
- pMem->type = SQLITE_TEXT;
- }else
-#endif
- {
- pMem->flags = MEM_Null; /* Comment */
- pMem->type = SQLITE_NULL;
+ if( sqlite3VdbeMemGrow(pMem, 500, 0) ){
+ assert( p->db->mallocFailed );
+ return SQLITE_ERROR;
}
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ pMem->n = displayComment(pOp, zP4, pMem->z, 500);
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+#else
+ pMem->flags = MEM_Null; /* Comment */
+ pMem->type = SQLITE_NULL;
+#endif
}
p->nResColumn = 8 - 4*(p->explain-1);