This patch introduces a flag to track TIF_SIGPENDING is suppress
temporarily during the uprobe single-step. Upon uprobe singlestep is
handled and the flag is confirmed, it could resume the TIF_SIGPENDING
directly without acquiring the siglock in most case, then reducing
contention and improving overall performance.
I've use the script developed by Andrii in [1] to run benchmark. The CPU
used was Kunpeng916 (Hi1616), 4 NUMA nodes, 64 cores@2.4GHz running the
kernel on next tree + the optimization for get_xol_insn_slot() [2].
before-opt
----------
uprobe-nop ( 1 cpus): 0.907 ± 0.003M/s ( 0.907M/s/cpu)
uprobe-nop ( 2 cpus): 1.676 ± 0.008M/s ( 0.838M/s/cpu)
uprobe-nop ( 4 cpus): 3.210 ± 0.003M/s ( 0.802M/s/cpu)
uprobe-nop ( 8 cpus): 4.457 ± 0.003M/s ( 0.557M/s/cpu)
uprobe-nop (16 cpus): 3.724 ± 0.011M/s ( 0.233M/s/cpu)
uprobe-nop (32 cpus): 2.761 ± 0.003M/s ( 0.086M/s/cpu)
uprobe-nop (64 cpus): 1.293 ± 0.015M/s ( 0.020M/s/cpu)
uprobe-push ( 1 cpus): 0.883 ± 0.001M/s ( 0.883M/s/cpu)
uprobe-push ( 2 cpus): 1.642 ± 0.005M/s ( 0.821M/s/cpu)
uprobe-push ( 4 cpus): 3.086 ± 0.002M/s ( 0.771M/s/cpu)
uprobe-push ( 8 cpus): 3.390 ± 0.003M/s ( 0.424M/s/cpu)
uprobe-push (16 cpus): 2.652 ± 0.005M/s ( 0.166M/s/cpu)
uprobe-push (32 cpus): 2.713 ± 0.005M/s ( 0.085M/s/cpu)
uprobe-push (64 cpus): 1.313 ± 0.009M/s ( 0.021M/s/cpu)
uprobe-ret ( 1 cpus): 1.774 ± 0.000M/s ( 1.774M/s/cpu)
uprobe-ret ( 2 cpus): 3.350 ± 0.001M/s ( 1.675M/s/cpu)
uprobe-ret ( 4 cpus): 6.604 ± 0.000M/s ( 1.651M/s/cpu)
uprobe-ret ( 8 cpus): 6.706 ± 0.005M/s ( 0.838M/s/cpu)
uprobe-ret (16 cpus): 5.231 ± 0.001M/s ( 0.327M/s/cpu)
uprobe-ret (32 cpus): 5.743 ± 0.003M/s ( 0.179M/s/cpu)
uprobe-ret (64 cpus): 4.726 ± 0.016M/s ( 0.074M/s/cpu)
after-opt
---------
uprobe-nop ( 1 cpus): 0.985 ± 0.002M/s ( 0.985M/s/cpu)
uprobe-nop ( 2 cpus): 1.773 ± 0.005M/s ( 0.887M/s/cpu)
uprobe-nop ( 4 cpus): 3.304 ± 0.001M/s ( 0.826M/s/cpu)
uprobe-nop ( 8 cpus): 5.328 ± 0.002M/s ( 0.666M/s/cpu)
uprobe-nop (16 cpus): 6.475 ± 0.002M/s ( 0.405M/s/cpu)
uprobe-nop (32 cpus): 4.831 ± 0.082M/s ( 0.151M/s/cpu)
uprobe-nop (64 cpus): 2.564 ± 0.053M/s ( 0.040M/s/cpu)
uprobe-push ( 1 cpus): 0.964 ± 0.001M/s ( 0.964M/s/cpu)
uprobe-push ( 2 cpus): 1.766 ± 0.002M/s ( 0.883M/s/cpu)
uprobe-push ( 4 cpus): 3.290 ± 0.009M/s ( 0.823M/s/cpu)
uprobe-push ( 8 cpus): 4.670 ± 0.002M/s ( 0.584M/s/cpu)
uprobe-push (16 cpus): 5.197 ± 0.004M/s ( 0.325M/s/cpu)
uprobe-push (32 cpus): 5.068 ± 0.161M/s ( 0.158M/s/cpu)
uprobe-push (64 cpus): 2.605 ± 0.026M/s ( 0.041M/s/cpu)
uprobe-ret ( 1 cpus): 1.833 ± 0.001M/s ( 1.833M/s/cpu)
uprobe-ret ( 2 cpus): 3.384 ± 0.003M/s ( 1.692M/s/cpu)
uprobe-ret ( 4 cpus): 6.677 ± 0.004M/s ( 1.669M/s/cpu)
uprobe-ret ( 8 cpus): 6.854 ± 0.005M/s ( 0.857M/s/cpu)
uprobe-ret (16 cpus): 6.508 ± 0.006M/s ( 0.407M/s/cpu)
uprobe-ret (32 cpus): 5.793 ± 0.009M/s ( 0.181M/s/cpu)
uprobe-ret (64 cpus): 4.743 ± 0.016M/s ( 0.074M/s/cpu)
Above benchmark results demonstrates a obivious improvement in the
scalability of trig-uprobe-nop and trig-uprobe-push, the peak throughput
of which are from 4.5M/s to 6.4M/s and 3.3M/s to 5.1M/s individually.
[1] https://lore.kernel.org/all/
20240731214256.
3588718-1-andrii@kernel.org
[2] https://lore.kernel.org/all/
20240727094405.
1362496-1-liaochang1@huawei.com
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250124093826.2123675-3-liaochang1@huawei.com