#define KVM_RUN_X86_SMM (1 << 0)
/* x86, set if bus lock detected in VM */
#define KVM_RUN_X86_BUS_LOCK (1 << 1)
+ /* x86, set if the VCPU is executing a nested (L2) guest */
+ #define KVM_RUN_X86_GUEST_MODE (1 << 2)
+
/* arm64, set for KVM_EXIT_DEBUG */
#define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0)
Note: Userspace is responsible for correctly configuring CPUID 0x15, a.k.a. the
core crystal clock frequency, if a non-zero CPUID 0x15 is exposed to the guest.
+7.36 KVM_CAP_X86_GUEST_MODE
+------------------------------
+
+:Architectures: x86
+:Returns: Informational only, -EINVAL on direct KVM_ENABLE_CAP.
+
+The presence of this capability indicates that KVM_RUN will update the
+KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags to indicate whether the
+vCPU was executing nested guest code when it exited.
+
+KVM exits with the register state of either the L1 or L2 guest
+depending on which executed at the time of an exit. Userspace must
+take care to differentiate between these cases.
+
8. Other capabilities.
======================
#define KVM_RUN_X86_SMM (1 << 0)
#define KVM_RUN_X86_BUS_LOCK (1 << 1)
+#define KVM_RUN_X86_GUEST_MODE (1 << 2)
/* for KVM_GET_REGS and KVM_SET_REGS */
struct kvm_regs {
case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
case KVM_CAP_IRQFD_RESAMPLE:
case KVM_CAP_MEMORY_FAULT_INFO:
+ case KVM_CAP_X86_GUEST_MODE:
r = 1;
break;
case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
if (is_smm(vcpu))
kvm_run->flags |= KVM_RUN_X86_SMM;
+ if (is_guest_mode(vcpu))
+ kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
#define KVM_CAP_GUEST_MEMFD 234
#define KVM_CAP_VM_TYPES 235
#define KVM_CAP_X86_APIC_BUS_CYCLES_NS 236
+#define KVM_CAP_X86_GUEST_MODE 237
struct kvm_irq_routing_irqchip {
__u32 irqchip;