break;
}
-/* Opcode: SeekGe P1 P2 P3 P4 *
+/* Opcode: SeekGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** is greater than or equal to the key value. If there are no records
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
+** This opcode leaves the cursor configured to move in forward order,
+** from the begining toward the end. In other words, the cursor is
+** configured to use OP_Next, not OP_Prev.
+**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
-/* Opcode: SeekGt P1 P2 P3 P4 *
+/* Opcode: SeekGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** is greater than the key value. If there are no records greater than
** the key and P2 is not zero, then jump to P2.
**
+** This opcode leaves the cursor configured to move in forward order,
+** from the begining toward the end. In other words, the cursor is
+** configured to use OP_Next, not OP_Prev.
+**
** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
*/
-/* Opcode: SeekLt P1 P2 P3 P4 *
+/* Opcode: SeekLT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** is less than the key value. If there are no records less than
** the key and P2 is not zero, then jump to P2.
**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use OP_Prev, not OP_Next.
+**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
*/
-/* Opcode: SeekLe P1 P2 P3 P4 *
+/* Opcode: SeekLE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use OP_Prev, not OP_Next.
+**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLT: /* jump, in3 */
assert( pC->pCursor!=0 );
oc = pOp->opcode;
pC->nullRow = 0;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = pOp->opcode;
+#endif
if( pC->isTable ){
/* The input value in P3 might be of any type: integer, real, string,
** blob, or NULL. But it needs to be an integer before we can do
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
** See also: Found, NotExists, NoConflict
*/
/* Opcode: NoConflict P1 P2 P3 P4 *
** This opcode is similar to OP_NotFound with the exceptions that the
** branch is always taken if any part of the search key input is NULL.
**
+** This operation leaves the cursor in a state where it cannot be
+** advanced in either direction. In other words, the Next and Prev
+** opcodes do not work after this operation.
+**
** See also: NotFound, Found, NotExists
*/
case OP_NoConflict: /* jump, in3 */
assert( pOp->p4type==P4_INT32 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = 0;
+#endif
pIn3 = &aMem[pOp->p3];
assert( pC->pCursor!=0 );
assert( pC->isTable==0 );
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
+** This opcode leaves the cursor in a state where it cannot be advanced
+** in either direction. In other words, the Next and Prev opcodes will
+** not work following this opcode.
+**
** See also: Found, NotFound, NoConflict
*/
case OP_NotExists: { /* jump, in3 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
+#ifdef SQLITE_DEBUG
+ pC->seekOp = 0;
+#endif
assert( pC->isTable );
assert( pC->pseudoTableReg==0 );
pCrsr = pC->pCursor;
/* Opcode: Last P1 P2 * * *
**
-** The next use of the Rowid or Column or Next instruction for P1
+** The next use of the Rowid or Column or Prev instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in reverse order,
+** from the end toward the beginning. In other words, the cursor is
+** configured to use OP_Prev, not OP_Next.
*/
case OP_Last: { /* jump */
VdbeCursor *pC;
pC->deferredMoveto = 0;
pC->rowidIsValid = 0;
pC->cacheStatus = CACHE_STALE;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Last;
+#endif
if( pOp->p2>0 ){
VdbeBranchTaken(res!=0,2);
if( res ) pc = pOp->p2 - 1;
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
+**
+** This opcode leaves the cursor configured to move in forward order,
+** from the begining toward the end. In other words, the cursor is
+** configured to use OP_Next, not OP_Prev.
*/
case OP_Rewind: { /* jump */
VdbeCursor *pC;
assert( pC!=0 );
assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
res = 1;
+#ifdef SQLITE_DEBUG
+ pC->seekOp = OP_Rewind;
+#endif
if( isSorter(pC) ){
rc = sqlite3VdbeSorterRewind(db, pC, &res);
}else{
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
+** The OP_Next opcode is only valid following an OP_SeekGT, OP_SeekGE, or
+** OP_Rewind opcode used to position the cursor. OP_Next is not allowed
+** to follow OP_SeekLT, OP_SeekLE, or OP_Last.
+**
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
** been opened prior to this opcode or the program will segfault.
**
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
+**
+** The OP_Prev opcode is only valid following an OP_SeekLT, OP_SeekLE, or
+** OP_Last opcode used to position the cursor. OP_Prev is not allowed
+** to follow OP_SeekGT, OP_SeekGE, or OP_Rewind.
+**
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
** not open then the behavior is undefined.
**
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
+
+ /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
+ ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
+ assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
+ || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
+ || pC->seekOp==OP_Rewind );
+ assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
+ || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
+ || pC->seekOp==OP_Last );
+
rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
pC->cacheStatus = CACHE_STALE;