}
 }
 
+/*
+ * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
+ */
+static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
+{
+       unsigned long nr[NR_LRU_LISTS];
+       unsigned long nr_to_scan;
+       enum lru_list lru;
+       unsigned long nr_reclaimed = 0;
+       unsigned long nr_to_reclaim = sc->nr_to_reclaim;
+       struct blk_plug plug;
+
+       get_scan_count(lruvec, sc, nr);
+
+       blk_start_plug(&plug);
+       while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
+                                       nr[LRU_INACTIVE_FILE]) {
+               for_each_evictable_lru(lru) {
+                       if (nr[lru]) {
+                               nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
+                               nr[lru] -= nr_to_scan;
+
+                               nr_reclaimed += shrink_list(lru, nr_to_scan,
+                                                           lruvec, sc);
+                       }
+               }
+               /*
+                * On large memory systems, scan >> priority can become
+                * really large. This is fine for the starting priority;
+                * we want to put equal scanning pressure on each zone.
+                * However, if the VM has a harder time of freeing pages,
+                * with multiple processes reclaiming pages, the total
+                * freeing target can get unreasonably large.
+                */
+               if (nr_reclaimed >= nr_to_reclaim &&
+                   sc->priority < DEF_PRIORITY)
+                       break;
+       }
+       blk_finish_plug(&plug);
+       sc->nr_reclaimed += nr_reclaimed;
+
+       /*
+        * Even if we did not try to evict anon pages at all, we want to
+        * rebalance the anon lru active/inactive ratio.
+        */
+       if (inactive_anon_is_low(lruvec))
+               shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
+                                  sc, LRU_ACTIVE_ANON);
+
+       throttle_vm_writeout(sc->gfp_mask);
+}
+
 /* Use reclaim/compaction for costly allocs or under memory pressure */
 static bool in_reclaim_compaction(struct scan_control *sc)
 {
  * calls try_to_compact_zone() that it will have enough free pages to succeed.
  * It will give up earlier than that if there is difficulty reclaiming pages.
  */
-static inline bool should_continue_reclaim(struct lruvec *lruvec,
+static inline bool should_continue_reclaim(struct zone *zone,
                                        unsigned long nr_reclaimed,
                                        unsigned long nr_scanned,
                                        struct scan_control *sc)
         * inactive lists are large enough, continue reclaiming
         */
        pages_for_compaction = (2UL << sc->order);
-       inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
+       inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
        if (nr_swap_pages > 0)
-               inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
+               inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
        if (sc->nr_reclaimed < pages_for_compaction &&
                        inactive_lru_pages > pages_for_compaction)
                return true;
 
        /* If compaction would go ahead or the allocation would succeed, stop */
-       switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
+       switch (compaction_suitable(zone, sc->order)) {
        case COMPACT_PARTIAL:
        case COMPACT_CONTINUE:
                return false;
        }
 }
 
-/*
- * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
- */
-static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
+static void shrink_zone(struct zone *zone, struct scan_control *sc)
 {
-       unsigned long nr[NR_LRU_LISTS];
-       unsigned long nr_to_scan;
-       enum lru_list lru;
        unsigned long nr_reclaimed, nr_scanned;
-       unsigned long nr_to_reclaim = sc->nr_to_reclaim;
-       struct blk_plug plug;
-
-restart:
-       nr_reclaimed = 0;
-       nr_scanned = sc->nr_scanned;
-       get_scan_count(lruvec, sc, nr);
-
-       blk_start_plug(&plug);
-       while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
-                                       nr[LRU_INACTIVE_FILE]) {
-               for_each_evictable_lru(lru) {
-                       if (nr[lru]) {
-                               nr_to_scan = min_t(unsigned long,
-                                                  nr[lru], SWAP_CLUSTER_MAX);
-                               nr[lru] -= nr_to_scan;
-
-                               nr_reclaimed += shrink_list(lru, nr_to_scan,
-                                                           lruvec, sc);
-                       }
-               }
-               /*
-                * On large memory systems, scan >> priority can become
-                * really large. This is fine for the starting priority;
-                * we want to put equal scanning pressure on each zone.
-                * However, if the VM has a harder time of freeing pages,
-                * with multiple processes reclaiming pages, the total
-                * freeing target can get unreasonably large.
-                */
-               if (nr_reclaimed >= nr_to_reclaim &&
-                   sc->priority < DEF_PRIORITY)
-                       break;
-       }
-       blk_finish_plug(&plug);
-       sc->nr_reclaimed += nr_reclaimed;
 
-       /*
-        * Even if we did not try to evict anon pages at all, we want to
-        * rebalance the anon lru active/inactive ratio.
-        */
-       if (inactive_anon_is_low(lruvec))
-               shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
-                                  sc, LRU_ACTIVE_ANON);
-
-       /* reclaim/compaction might need reclaim to continue */
-       if (should_continue_reclaim(lruvec, nr_reclaimed,
-                                   sc->nr_scanned - nr_scanned, sc))
-               goto restart;
+       do {
+               struct mem_cgroup *root = sc->target_mem_cgroup;
+               struct mem_cgroup_reclaim_cookie reclaim = {
+                       .zone = zone,
+                       .priority = sc->priority,
+               };
+               struct mem_cgroup *memcg;
 
-       throttle_vm_writeout(sc->gfp_mask);
-}
+               nr_reclaimed = sc->nr_reclaimed;
+               nr_scanned = sc->nr_scanned;
 
-static void shrink_zone(struct zone *zone, struct scan_control *sc)
-{
-       struct mem_cgroup *root = sc->target_mem_cgroup;
-       struct mem_cgroup_reclaim_cookie reclaim = {
-               .zone = zone,
-               .priority = sc->priority,
-       };
-       struct mem_cgroup *memcg;
+               memcg = mem_cgroup_iter(root, NULL, &reclaim);
+               do {
+                       struct lruvec *lruvec;
 
-       memcg = mem_cgroup_iter(root, NULL, &reclaim);
-       do {
-               struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
+                       lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
-               shrink_lruvec(lruvec, sc);
+                       shrink_lruvec(lruvec, sc);
 
-               /*
-                * Limit reclaim has historically picked one memcg and
-                * scanned it with decreasing priority levels until
-                * nr_to_reclaim had been reclaimed.  This priority
-                * cycle is thus over after a single memcg.
-                *
-                * Direct reclaim and kswapd, on the other hand, have
-                * to scan all memory cgroups to fulfill the overall
-                * scan target for the zone.
-                */
-               if (!global_reclaim(sc)) {
-                       mem_cgroup_iter_break(root, memcg);
-                       break;
-               }
-               memcg = mem_cgroup_iter(root, memcg, &reclaim);
-       } while (memcg);
+                       /*
+                        * Limit reclaim has historically picked one
+                        * memcg and scanned it with decreasing
+                        * priority levels until nr_to_reclaim had
+                        * been reclaimed.  This priority cycle is
+                        * thus over after a single memcg.
+                        *
+                        * Direct reclaim and kswapd, on the other
+                        * hand, have to scan all memory cgroups to
+                        * fulfill the overall scan target for the
+                        * zone.
+                        */
+                       if (!global_reclaim(sc)) {
+                               mem_cgroup_iter_break(root, memcg);
+                               break;
+                       }
+                       memcg = mem_cgroup_iter(root, memcg, &reclaim);
+               } while (memcg);
+       } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
+                                        sc->nr_scanned - nr_scanned, sc));
 }
 
 /* Returns true if compaction should go ahead for a high-order request */