RFC 5549 was obsoleted by RFC 8950.
<item> <rfc id="5065"> - AS confederations for BGP
<item> <rfc id="5082"> - Generalized TTL Security Mechanism
<item> <rfc id="5492"> - Capabilities Advertisement with BGP
-<item> <rfc id="5549"> - Advertising IPv4 NLRI with an IPv6 Next Hop
<item> <rfc id="5575"> - Dissemination of Flow Specification Rules
<item> <rfc id="5668"> - 4-Octet AS Specific BGP Extended Community
<item> <rfc id="6286"> - AS-Wide Unique BGP Identifier
<item> <rfc id="8203"> - BGP Administrative Shutdown Communication
<item> <rfc id="8212"> - Default EBGP Route Propagation Behavior without Policies
<item> <rfc id="8654"> - Extended Message Support for BGP
+<item> <rfc id="8950"> - Advertising IPv4 NLRI with an IPv6 Next Hop
<item> <rfc id="9072"> - Extended Optional Parameters Length for BGP OPEN Message
<item> <rfc id="9117"> - Revised Validation Procedure for BGP Flow Specifications
<item> <rfc id="9234"> - Route Leak Prevention and Detection Using Roles
associated network prefixes. This option provides an extension to use
IPv4 next hops with IPv6 prefixes and vice versa. For IPv4 / VPNv4
channels, the behavior is controlled by the Extended Next Hop Encoding
- capability, as described in <rfc id="5549">. For IPv6 / VPNv6 channels,
+ capability, as described in <rfc id="8950">. For IPv6 / VPNv6 channels,
just IPv4-mapped IPv6 addresses are used, as described in
<rfc id="4798"> and <rfc id="4659">. Default: off.
* RFC 5065 - AS confederations for BGP
* RFC 5082 - Generalized TTL Security Mechanism
* RFC 5492 - Capabilities Advertisement with BGP
- * RFC 5549 - Advertising IPv4 NLRI with an IPv6 Next Hop
* RFC 5575 - Dissemination of Flow Specification Rules
* RFC 5668 - 4-Octet AS Specific BGP Extended Community
* RFC 6286 - AS-Wide Unique BGP Identifier
* RFC 8203 - BGP Administrative Shutdown Communication
* RFC 8212 - Default EBGP Route Propagation Behavior without Policies
* RFC 8654 - Extended Message Support for BGP
+ * RFC 8950 - Advertising IPv4 NLRI with an IPv6 Next Hop
* RFC 9072 - Extended Optional Parameters Length for BGP OPEN Message
* RFC 9117 - Revised Validation Procedure for BGP Flow Specifications
* RFC 9234 - Route Leak Prevention and Detection Using Roles
u8 llgr_able; /* Long-lived GR, RFC draft */
u32 llgr_time; /* Long-lived GR stale time */
u8 llgr_flags; /* Long-lived GR per-AF flags */
- u8 ext_next_hop; /* Extended IPv6 next hop, RFC 5549 */
+ u8 ext_next_hop; /* Extended IPv6 next hop, RFC 8950 */
u8 add_path; /* Multiple paths support, RFC 7911 */
};
caps->route_refresh = 1;
break;
- case 5: /* Extended next hop encoding capability, RFC 5549 */
+ case 5: /* Extended next hop encoding capability, RFC 8950 */
if (cl % 6)
goto err;
/*
* Both IPv4 and IPv6 next hops can be used (with ext_next_hop enabled). This
- * is specified in RFC 5549 for IPv4 and in RFC 4798 for IPv6. The difference
+ * is specified in RFC 8950 for IPv4 and in RFC 4798 for IPv6. The difference
* is that IPv4 address is directly encoded with IPv4 NLRI, but as IPv4-mapped
* IPv6 address with IPv6 NLRI.
*/
/*
* Both IPv4 and IPv6 next hops can be used (with ext_next_hop enabled). This
- * is specified in RFC 5549 for VPNv4 and in RFC 4659 for VPNv6. The difference
+ * is specified in RFC 8950 for VPNv4 and in RFC 4659 for VPNv6. The difference
* is that IPv4 address is directly encoded with VPNv4 NLRI, but as IPv4-mapped
* IPv6 address with VPNv6 NLRI.
*/