--- /dev/null
+/*
+ * QEMU ARM CP Register PMU insns
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/timer.h"
+#include "exec/icount.h"
+#include "hw/irq.h"
+#include "cpu.h"
+#include "cpu-features.h"
+#include "cpregs.h"
+#include "internals.h"
+
+
+#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
+
+/*
+ * Check for traps to performance monitor registers, which are controlled
+ * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
+ */
+static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+
+ if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+ return CP_ACCESS_OK;
+}
+
+typedef struct pm_event {
+ uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
+ /* If the event is supported on this CPU (used to generate PMCEID[01]) */
+ bool (*supported)(CPUARMState *);
+ /*
+ * Retrieve the current count of the underlying event. The programmed
+ * counters hold a difference from the return value from this function
+ */
+ uint64_t (*get_count)(CPUARMState *);
+ /*
+ * Return how many nanoseconds it will take (at a minimum) for count events
+ * to occur. A negative value indicates the counter will never overflow, or
+ * that the counter has otherwise arranged for the overflow bit to be set
+ * and the PMU interrupt to be raised on overflow.
+ */
+ int64_t (*ns_per_count)(uint64_t);
+} pm_event;
+
+static bool event_always_supported(CPUARMState *env)
+{
+ return true;
+}
+
+static uint64_t swinc_get_count(CPUARMState *env)
+{
+ /*
+ * SW_INCR events are written directly to the pmevcntr's by writes to
+ * PMSWINC, so there is no underlying count maintained by the PMU itself
+ */
+ return 0;
+}
+
+static int64_t swinc_ns_per(uint64_t ignored)
+{
+ return -1;
+}
+
+/*
+ * Return the underlying cycle count for the PMU cycle counters. If we're in
+ * usermode, simply return 0.
+ */
+static uint64_t cycles_get_count(CPUARMState *env)
+{
+#ifndef CONFIG_USER_ONLY
+ return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
+#else
+ return cpu_get_host_ticks();
+#endif
+}
+
+#ifndef CONFIG_USER_ONLY
+static int64_t cycles_ns_per(uint64_t cycles)
+{
+ return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
+}
+
+static bool instructions_supported(CPUARMState *env)
+{
+ /* Precise instruction counting */
+ return icount_enabled() == ICOUNT_PRECISE;
+}
+
+static uint64_t instructions_get_count(CPUARMState *env)
+{
+ assert(icount_enabled() == ICOUNT_PRECISE);
+ return (uint64_t)icount_get_raw();
+}
+
+static int64_t instructions_ns_per(uint64_t icount)
+{
+ assert(icount_enabled() == ICOUNT_PRECISE);
+ return icount_to_ns((int64_t)icount);
+}
+#endif
+
+static bool pmuv3p1_events_supported(CPUARMState *env)
+{
+ /* For events which are supported in any v8.1 PMU */
+ return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
+}
+
+static bool pmuv3p4_events_supported(CPUARMState *env)
+{
+ /* For events which are supported in any v8.1 PMU */
+ return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
+}
+
+static uint64_t zero_event_get_count(CPUARMState *env)
+{
+ /* For events which on QEMU never fire, so their count is always zero */
+ return 0;
+}
+
+static int64_t zero_event_ns_per(uint64_t cycles)
+{
+ /* An event which never fires can never overflow */
+ return -1;
+}
+
+static const pm_event pm_events[] = {
+ { .number = 0x000, /* SW_INCR */
+ .supported = event_always_supported,
+ .get_count = swinc_get_count,
+ .ns_per_count = swinc_ns_per,
+ },
+#ifndef CONFIG_USER_ONLY
+ { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
+ .supported = instructions_supported,
+ .get_count = instructions_get_count,
+ .ns_per_count = instructions_ns_per,
+ },
+ { .number = 0x011, /* CPU_CYCLES, Cycle */
+ .supported = event_always_supported,
+ .get_count = cycles_get_count,
+ .ns_per_count = cycles_ns_per,
+ },
+#endif
+ { .number = 0x023, /* STALL_FRONTEND */
+ .supported = pmuv3p1_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+ { .number = 0x024, /* STALL_BACKEND */
+ .supported = pmuv3p1_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+ { .number = 0x03c, /* STALL */
+ .supported = pmuv3p4_events_supported,
+ .get_count = zero_event_get_count,
+ .ns_per_count = zero_event_ns_per,
+ },
+};
+
+/*
+ * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
+ * events (i.e. the statistical profiling extension), this implementation
+ * should first be updated to something sparse instead of the current
+ * supported_event_map[] array.
+ */
+#define MAX_EVENT_ID 0x3c
+#define UNSUPPORTED_EVENT UINT16_MAX
+static uint16_t supported_event_map[MAX_EVENT_ID + 1];
+
+/*
+ * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
+ * of ARM event numbers to indices in our pm_events array.
+ *
+ * Note: Events in the 0x40XX range are not currently supported.
+ */
+void pmu_init(ARMCPU *cpu)
+{
+ unsigned int i;
+
+ /*
+ * Empty supported_event_map and cpu->pmceid[01] before adding supported
+ * events to them
+ */
+ for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
+ supported_event_map[i] = UNSUPPORTED_EVENT;
+ }
+ cpu->pmceid0 = 0;
+ cpu->pmceid1 = 0;
+
+ for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
+ const pm_event *cnt = &pm_events[i];
+ assert(cnt->number <= MAX_EVENT_ID);
+ /* We do not currently support events in the 0x40xx range */
+ assert(cnt->number <= 0x3f);
+
+ if (cnt->supported(&cpu->env)) {
+ supported_event_map[cnt->number] = i;
+ uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
+ if (cnt->number & 0x20) {
+ cpu->pmceid1 |= event_mask;
+ } else {
+ cpu->pmceid0 |= event_mask;
+ }
+ }
+ }
+}
+
+/*
+ * Check at runtime whether a PMU event is supported for the current machine
+ */
+static bool event_supported(uint16_t number)
+{
+ if (number > MAX_EVENT_ID) {
+ return false;
+ }
+ return supported_event_map[number] != UNSUPPORTED_EVENT;
+}
+
+static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /*
+ * Performance monitor registers user accessibility is controlled
+ * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
+ * trapping to EL2 or EL3 for other accesses.
+ */
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
+
+ if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
+ return CP_ACCESS_TRAP_EL1;
+ }
+ if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL2;
+ }
+ if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
+ return CP_ACCESS_TRAP_EL3;
+ }
+
+ return CP_ACCESS_OK;
+}
+
+static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* ER: event counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
+ && isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_swinc(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* SW: software increment write trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
+ && !isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_selr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* ER: event counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
+ const ARMCPRegInfo *ri,
+ bool isread)
+{
+ /* CR: cycle counter read trap control */
+ if (arm_feature(env, ARM_FEATURE_V8)
+ && arm_current_el(env) == 0
+ && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
+ && isread) {
+ return CP_ACCESS_OK;
+ }
+
+ return pmreg_access(env, ri, isread);
+}
+
+/*
+ * Returns true if the counter (pass 31 for PMCCNTR) should count events using
+ * the current EL, security state, and register configuration.
+ */
+static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
+{
+ uint64_t filter;
+ bool e, p, u, nsk, nsu, nsh, m;
+ bool enabled, prohibited = false, filtered;
+ bool secure = arm_is_secure(env);
+ int el = arm_current_el(env);
+ uint64_t mdcr_el2;
+ uint8_t hpmn;
+
+ /*
+ * We might be called for M-profile cores where MDCR_EL2 doesn't
+ * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
+ * must be before we read that value.
+ */
+ if (!arm_feature(env, ARM_FEATURE_PMU)) {
+ return false;
+ }
+
+ mdcr_el2 = arm_mdcr_el2_eff(env);
+ hpmn = mdcr_el2 & MDCR_HPMN;
+
+ if (!arm_feature(env, ARM_FEATURE_EL2) ||
+ (counter < hpmn || counter == 31)) {
+ e = env->cp15.c9_pmcr & PMCRE;
+ } else {
+ e = mdcr_el2 & MDCR_HPME;
+ }
+ enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
+
+ /* Is event counting prohibited? */
+ if (el == 2 && (counter < hpmn || counter == 31)) {
+ prohibited = mdcr_el2 & MDCR_HPMD;
+ }
+ if (secure) {
+ prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
+ }
+
+ if (counter == 31) {
+ /*
+ * The cycle counter defaults to running. PMCR.DP says "disable
+ * the cycle counter when event counting is prohibited".
+ * Some MDCR bits disable the cycle counter specifically.
+ */
+ prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
+ if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ if (secure) {
+ prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
+ }
+ if (el == 2) {
+ prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
+ }
+ }
+ }
+
+ if (counter == 31) {
+ filter = env->cp15.pmccfiltr_el0;
+ } else {
+ filter = env->cp15.c14_pmevtyper[counter];
+ }
+
+ p = filter & PMXEVTYPER_P;
+ u = filter & PMXEVTYPER_U;
+ nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
+ nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
+ nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
+ m = arm_el_is_aa64(env, 1) &&
+ arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
+
+ if (el == 0) {
+ filtered = secure ? u : u != nsu;
+ } else if (el == 1) {
+ filtered = secure ? p : p != nsk;
+ } else if (el == 2) {
+ filtered = !nsh;
+ } else { /* EL3 */
+ filtered = m != p;
+ }
+
+ if (counter != 31) {
+ /*
+ * If not checking PMCCNTR, ensure the counter is setup to an event we
+ * support
+ */
+ uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
+ if (!event_supported(event)) {
+ return false;
+ }
+ }
+
+ return enabled && !prohibited && !filtered;
+}
+
+static void pmu_update_irq(CPUARMState *env)
+{
+ ARMCPU *cpu = env_archcpu(env);
+ qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
+ (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
+}
+
+static bool pmccntr_clockdiv_enabled(CPUARMState *env)
+{
+ /*
+ * Return true if the clock divider is enabled and the cycle counter
+ * is supposed to tick only once every 64 clock cycles. This is
+ * controlled by PMCR.D, but if PMCR.LC is set to enable the long
+ * (64-bit) cycle counter PMCR.D has no effect.
+ */
+ return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
+}
+
+static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
+{
+ /* Return true if the specified event counter is configured to be 64 bit */
+
+ /* This isn't intended to be used with the cycle counter */
+ assert(counter < 31);
+
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ return false;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ /*
+ * MDCR_EL2.HLP still applies even when EL2 is disabled in the
+ * current security state, so we don't use arm_mdcr_el2_eff() here.
+ */
+ bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
+ int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
+
+ if (counter >= hpmn) {
+ return hlp;
+ }
+ }
+ return env->cp15.c9_pmcr & PMCRLP;
+}
+
+/*
+ * Ensure c15_ccnt is the guest-visible count so that operations such as
+ * enabling/disabling the counter or filtering, modifying the count itself,
+ * etc. can be done logically. This is essentially a no-op if the counter is
+ * not enabled at the time of the call.
+ */
+static void pmccntr_op_start(CPUARMState *env)
+{
+ uint64_t cycles = cycles_get_count(env);
+
+ if (pmu_counter_enabled(env, 31)) {
+ uint64_t eff_cycles = cycles;
+ if (pmccntr_clockdiv_enabled(env)) {
+ eff_cycles /= 64;
+ }
+
+ uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
+
+ uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
+ 1ull << 63 : 1ull << 31;
+ if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1ULL << 31);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c15_ccnt = new_pmccntr;
+ }
+ env->cp15.c15_ccnt_delta = cycles;
+}
+
+/*
+ * If PMCCNTR is enabled, recalculate the delta between the clock and the
+ * guest-visible count. A call to pmccntr_op_finish should follow every call to
+ * pmccntr_op_start.
+ */
+static void pmccntr_op_finish(CPUARMState *env)
+{
+ if (pmu_counter_enabled(env, 31)) {
+#ifndef CONFIG_USER_ONLY
+ /* Calculate when the counter will next overflow */
+ uint64_t remaining_cycles = -env->cp15.c15_ccnt;
+ if (!(env->cp15.c9_pmcr & PMCRLC)) {
+ remaining_cycles = (uint32_t)remaining_cycles;
+ }
+ int64_t overflow_in = cycles_ns_per(remaining_cycles);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at;
+
+ if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ overflow_in, &overflow_at)) {
+ ARMCPU *cpu = env_archcpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+ }
+#endif
+
+ uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
+ if (pmccntr_clockdiv_enabled(env)) {
+ prev_cycles /= 64;
+ }
+ env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
+ }
+}
+
+static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
+{
+
+ uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
+ uint64_t count = 0;
+ if (event_supported(event)) {
+ uint16_t event_idx = supported_event_map[event];
+ count = pm_events[event_idx].get_count(env);
+ }
+
+ if (pmu_counter_enabled(env, counter)) {
+ uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
+ uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
+ 1ULL << 63 : 1ULL << 31;
+
+ if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1 << counter);
+ pmu_update_irq(env);
+ }
+ env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
+ }
+ env->cp15.c14_pmevcntr_delta[counter] = count;
+}
+
+static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
+{
+ if (pmu_counter_enabled(env, counter)) {
+#ifndef CONFIG_USER_ONLY
+ uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
+ uint16_t event_idx = supported_event_map[event];
+ uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
+ int64_t overflow_in;
+
+ if (!pmevcntr_is_64_bit(env, counter)) {
+ delta = (uint32_t)delta;
+ }
+ overflow_in = pm_events[event_idx].ns_per_count(delta);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at;
+
+ if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
+ overflow_in, &overflow_at)) {
+ ARMCPU *cpu = env_archcpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+ }
+#endif
+
+ env->cp15.c14_pmevcntr_delta[counter] -=
+ env->cp15.c14_pmevcntr[counter];
+ }
+}
+
+void pmu_op_start(CPUARMState *env)
+{
+ unsigned int i;
+ pmccntr_op_start(env);
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ pmevcntr_op_start(env, i);
+ }
+}
+
+void pmu_op_finish(CPUARMState *env)
+{
+ unsigned int i;
+ pmccntr_op_finish(env);
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ pmevcntr_op_finish(env, i);
+ }
+}
+
+void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
+{
+ pmu_op_start(&cpu->env);
+}
+
+void pmu_post_el_change(ARMCPU *cpu, void *ignored)
+{
+ pmu_op_finish(&cpu->env);
+}
+
+void arm_pmu_timer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ /*
+ * Update all the counter values based on the current underlying counts,
+ * triggering interrupts to be raised, if necessary. pmu_op_finish() also
+ * has the effect of setting the cpu->pmu_timer to the next earliest time a
+ * counter may expire.
+ */
+ pmu_op_start(&cpu->env);
+ pmu_op_finish(&cpu->env);
+}
+
+static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+
+ if (value & PMCRC) {
+ /* The counter has been reset */
+ env->cp15.c15_ccnt = 0;
+ }
+
+ if (value & PMCRP) {
+ unsigned int i;
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ env->cp15.c14_pmevcntr[i] = 0;
+ }
+ }
+
+ env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
+ env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
+
+ pmu_op_finish(env);
+}
+
+static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint64_t pmcr = env->cp15.c9_pmcr;
+
+ /*
+ * If EL2 is implemented and enabled for the current security state, reads
+ * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
+ */
+ if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
+ pmcr &= ~PMCRN_MASK;
+ pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
+ }
+
+ return pmcr;
+}
+
+static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ unsigned int i;
+ uint64_t overflow_mask, new_pmswinc;
+
+ for (i = 0; i < pmu_num_counters(env); i++) {
+ /* Increment a counter's count iff: */
+ if ((value & (1 << i)) && /* counter's bit is set */
+ /* counter is enabled and not filtered */
+ pmu_counter_enabled(env, i) &&
+ /* counter is SW_INCR */
+ (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
+ pmevcntr_op_start(env, i);
+
+ /*
+ * Detect if this write causes an overflow since we can't predict
+ * PMSWINC overflows like we can for other events
+ */
+ new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
+
+ overflow_mask = pmevcntr_is_64_bit(env, i) ?
+ 1ULL << 63 : 1ULL << 31;
+
+ if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1 << i);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c14_pmevcntr[i] = new_pmswinc;
+
+ pmevcntr_op_finish(env, i);
+ }
+ }
+}
+
+static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint64_t ret;
+ pmccntr_op_start(env);
+ ret = env->cp15.c15_ccnt;
+ pmccntr_op_finish(env);
+ return ret;
+}
+
+static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /*
+ * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
+ * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
+ * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
+ * accessed.
+ */
+ env->cp15.c9_pmselr = value & 0x1f;
+}
+
+static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ env->cp15.c15_ccnt = value;
+ pmccntr_op_finish(env);
+}
+
+static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint64_t cur_val = pmccntr_read(env, NULL);
+
+ pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
+}
+
+static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
+ pmccntr_op_finish(env);
+}
+
+static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmccntr_op_start(env);
+ /* M is not accessible from AArch32 */
+ env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
+ (value & PMCCFILTR);
+ pmccntr_op_finish(env);
+}
+
+static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ /* M is not visible in AArch32 */
+ return env->cp15.pmccfiltr_el0 & PMCCFILTR;
+}
+
+static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmcnten |= value;
+ pmu_op_finish(env);
+}
+
+static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmu_op_start(env);
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmcnten &= ~value;
+ pmu_op_finish(env);
+}
+
+static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmovsr &= ~value;
+ pmu_update_irq(env);
+}
+
+static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pmovsr |= value;
+ pmu_update_irq(env);
+}
+
+static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value, const uint8_t counter)
+{
+ if (counter == 31) {
+ pmccfiltr_write(env, ri, value);
+ } else if (counter < pmu_num_counters(env)) {
+ pmevcntr_op_start(env, counter);
+
+ /*
+ * If this counter's event type is changing, store the current
+ * underlying count for the new type in c14_pmevcntr_delta[counter] so
+ * pmevcntr_op_finish has the correct baseline when it converts back to
+ * a delta.
+ */
+ uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
+ PMXEVTYPER_EVTCOUNT;
+ uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
+ if (old_event != new_event) {
+ uint64_t count = 0;
+ if (event_supported(new_event)) {
+ uint16_t event_idx = supported_event_map[new_event];
+ count = pm_events[event_idx].get_count(env);
+ }
+ env->cp15.c14_pmevcntr_delta[counter] = count;
+ }
+
+ env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
+ pmevcntr_op_finish(env, counter);
+ }
+ /*
+ * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
+ * PMSELR value is equal to or greater than the number of implemented
+ * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
+ */
+}
+
+static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ const uint8_t counter)
+{
+ if (counter == 31) {
+ return env->cp15.pmccfiltr_el0;
+ } else if (counter < pmu_num_counters(env)) {
+ return env->cp15.c14_pmevtyper[counter];
+ } else {
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
+ * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
+ */
+ return 0;
+ }
+}
+
+static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ pmevtyper_write(env, ri, value, counter);
+}
+
+static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ env->cp15.c14_pmevtyper[counter] = value;
+
+ /*
+ * pmevtyper_rawwrite is called between a pair of pmu_op_start and
+ * pmu_op_finish calls when loading saved state for a migration. Because
+ * we're potentially updating the type of event here, the value written to
+ * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
+ * different counter type. Therefore, we need to set this value to the
+ * current count for the counter type we're writing so that pmu_op_finish
+ * has the correct count for its calculation.
+ */
+ uint16_t event = value & PMXEVTYPER_EVTCOUNT;
+ if (event_supported(event)) {
+ uint16_t event_idx = supported_event_map[event];
+ env->cp15.c14_pmevcntr_delta[counter] =
+ pm_events[event_idx].get_count(env);
+ }
+}
+
+static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ return pmevtyper_read(env, ri, counter);
+}
+
+static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
+}
+
+static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
+}
+
+static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value, uint8_t counter)
+{
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
+ value &= MAKE_64BIT_MASK(0, 32);
+ }
+ if (counter < pmu_num_counters(env)) {
+ pmevcntr_op_start(env, counter);
+ env->cp15.c14_pmevcntr[counter] = value;
+ pmevcntr_op_finish(env, counter);
+ }
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
+ * are CONSTRAINED UNPREDICTABLE.
+ */
+}
+
+static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint8_t counter)
+{
+ if (counter < pmu_num_counters(env)) {
+ uint64_t ret;
+ pmevcntr_op_start(env, counter);
+ ret = env->cp15.c14_pmevcntr[counter];
+ pmevcntr_op_finish(env, counter);
+ if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
+ /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
+ ret &= MAKE_64BIT_MASK(0, 32);
+ }
+ return ret;
+ } else {
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
+ * are CONSTRAINED UNPREDICTABLE.
+ */
+ return 0;
+ }
+}
+
+static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ pmevcntr_write(env, ri, value, counter);
+}
+
+static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ return pmevcntr_read(env, ri, counter);
+}
+
+static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ assert(counter < pmu_num_counters(env));
+ env->cp15.c14_pmevcntr[counter] = value;
+ pmevcntr_write(env, ri, value, counter);
+}
+
+static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
+ assert(counter < pmu_num_counters(env));
+ return env->cp15.c14_pmevcntr[counter];
+}
+
+static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
+}
+
+static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
+}
+
+static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ env->cp15.c9_pmuserenr = value & 0xf;
+ } else {
+ env->cp15.c9_pmuserenr = value & 1;
+ }
+}
+
+static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* We have no event counters so only the C bit can be changed */
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pminten |= value;
+ pmu_update_irq(env);
+}
+
+static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= pmu_counter_mask(env);
+ env->cp15.c9_pminten &= ~value;
+ pmu_update_irq(env);
+}
+
+static const ARMCPRegInfo v7_pm_reginfo[] = {
+ /*
+ * Performance monitors are implementation defined in v7,
+ * but with an ARM recommended set of registers, which we
+ * follow.
+ *
+ * Performance registers fall into three categories:
+ * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
+ * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
+ * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
+ * For the cases controlled by PMUSERENR we must set .access to PL0_RW
+ * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
+ */
+ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+ .writefn = pmcntenset_write,
+ .accessfn = pmreg_access,
+ .fgt = FGT_PMCNTEN,
+ .raw_writefn = raw_write },
+ { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMCNTEN,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
+ .writefn = pmcntenset_write, .raw_writefn = raw_write },
+ { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
+ .accessfn = pmreg_access,
+ .fgt = FGT_PMCNTEN,
+ .writefn = pmcntenclr_write, .raw_writefn = raw_write,
+ .type = ARM_CP_ALIAS | ARM_CP_IO },
+ { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMCNTEN,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .writefn = pmcntenclr_write, .raw_writefn = raw_write },
+ { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
+ .access = PL0_RW, .type = ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
+ .accessfn = pmreg_access,
+ .fgt = FGT_PMOVS,
+ .writefn = pmovsr_write,
+ .raw_writefn = raw_write },
+ { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMOVS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsr_write,
+ .raw_writefn = raw_write },
+ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .fgt = FGT_PMSWINC_EL0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .writefn = pmswinc_write },
+ { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .fgt = FGT_PMSWINC_EL0,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .writefn = pmswinc_write },
+ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
+ .access = PL0_RW, .type = ARM_CP_ALIAS,
+ .fgt = FGT_PMSELR_EL0,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
+ .accessfn = pmreg_access_selr, .writefn = pmselr_write,
+ .raw_writefn = raw_write},
+ { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
+ .access = PL0_RW, .accessfn = pmreg_access_selr,
+ .fgt = FGT_PMSELR_EL0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
+ .writefn = pmselr_write, .raw_writefn = raw_write, },
+ { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fgt = FGT_PMCCNTR_EL0,
+ .readfn = pmccntr_read, .writefn = pmccntr_write32,
+ .accessfn = pmreg_access_ccntr },
+ { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
+ .access = PL0_RW, .accessfn = pmreg_access_ccntr,
+ .fgt = FGT_PMCCNTR_EL0,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
+ .readfn = pmccntr_read, .writefn = pmccntr_write,
+ .raw_readfn = raw_read, .raw_writefn = raw_write, },
+ { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
+ .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMCCFILTR_EL0,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .resetvalue = 0, },
+ { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
+ .writefn = pmccfiltr_write, .raw_writefn = raw_write,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMCCFILTR_EL0,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
+ .resetvalue = 0, },
+ { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access,
+ .fgt = FGT_PMEVTYPERN_EL0,
+ .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
+ { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access,
+ .fgt = FGT_PMEVTYPERN_EL0,
+ .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
+ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access_xevcntr,
+ .fgt = FGT_PMEVCNTRN_EL0,
+ .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
+ { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
+ .accessfn = pmreg_access_xevcntr,
+ .fgt = FGT_PMEVCNTRN_EL0,
+ .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
+ { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R | PL1_RW, .accessfn = access_tpm,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write, .raw_writefn = raw_write },
+ { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
+ .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write, .raw_writefn = raw_write },
+ { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .fgt = FGT_PMINTEN,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenset_write, .raw_writefn = raw_write },
+ { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .fgt = FGT_PMINTEN,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenset_write, .raw_writefn = raw_write,
+ .resetvalue = 0x0 },
+ { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .fgt = FGT_PMINTEN,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenclr_write, .raw_writefn = raw_write },
+ { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
+ .access = PL1_RW, .accessfn = access_tpm,
+ .fgt = FGT_PMINTEN,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .writefn = pmintenclr_write, .raw_writefn = raw_write },
+};
+
+static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
+ /* PMOVSSET is not implemented in v7 before v7ve */
+ { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMOVS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsset_write,
+ .raw_writefn = raw_write },
+ { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMOVS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .writefn = pmovsset_write,
+ .raw_writefn = raw_write },
+};
+
+void define_pm_cpregs(ARMCPU *cpu)
+{
+ CPUARMState *env = &cpu->env;
+
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ /*
+ * v7 performance monitor control register: same implementor
+ * field as main ID register, and we implement four counters in
+ * addition to the cycle count register.
+ */
+ static const ARMCPRegInfo pmcr = {
+ .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW,
+ .fgt = FGT_PMCR_EL0,
+ .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
+ .accessfn = pmreg_access,
+ .readfn = pmcr_read, .raw_readfn = raw_read,
+ .writefn = pmcr_write, .raw_writefn = raw_write,
+ };
+ const ARMCPRegInfo pmcr64 = {
+ .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
+ .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMCR_EL0,
+ .type = ARM_CP_IO,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
+ .resetvalue = cpu->isar.reset_pmcr_el0,
+ .readfn = pmcr_read, .raw_readfn = raw_read,
+ .writefn = pmcr_write, .raw_writefn = raw_write,
+ };
+
+ define_one_arm_cp_reg(cpu, &pmcr);
+ define_one_arm_cp_reg(cpu, &pmcr64);
+ define_arm_cp_regs(cpu, v7_pm_reginfo);
+
+ for (unsigned i = 0, pmcrn = pmu_num_counters(env); i < pmcrn; i++) {
+ g_autofree char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
+ g_autofree char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
+ g_autofree char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
+ g_autofree char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
+
+ ARMCPRegInfo pmev_regs[] = {
+ { .name = pmevcntr_name, .cp = 15, .crn = 14,
+ .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
+ .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fgt = FGT_PMEVCNTRN_EL0,
+ .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
+ .accessfn = pmreg_access_xevcntr },
+ { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
+ .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
+ .type = ARM_CP_IO,
+ .fgt = FGT_PMEVCNTRN_EL0,
+ .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
+ .raw_readfn = pmevcntr_rawread,
+ .raw_writefn = pmevcntr_rawwrite },
+ { .name = pmevtyper_name, .cp = 15, .crn = 14,
+ .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
+ .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
+ .fgt = FGT_PMEVTYPERN_EL0,
+ .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
+ .accessfn = pmreg_access },
+ { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
+ .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
+ .fgt = FGT_PMEVTYPERN_EL0,
+ .type = ARM_CP_IO,
+ .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
+ .raw_writefn = pmevtyper_rawwrite },
+ };
+ define_arm_cp_regs(cpu, pmev_regs);
+ }
+ }
+ if (arm_feature(env, ARM_FEATURE_V7VE)) {
+ define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ const ARMCPRegInfo v8_pm_reginfo[] = {
+ { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = extract64(cpu->pmceid0, 0, 32) },
+ { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = cpu->pmceid0 },
+ { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = extract64(cpu->pmceid1, 0, 32) },
+ { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = cpu->pmceid1 },
+ };
+ define_arm_cp_regs(cpu, v8_pm_reginfo);
+ }
+
+ if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
+ ARMCPRegInfo v81_pmu_regs[] = {
+ { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = extract64(cpu->pmceid0, 32, 32) },
+ { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
+ .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMCEIDN_EL0,
+ .resetvalue = extract64(cpu->pmceid1, 32, 32) },
+ };
+ define_arm_cp_regs(cpu, v81_pmu_regs);
+ }
+
+ if (cpu_isar_feature(any_pmuv3p4, cpu)) {
+ static const ARMCPRegInfo v84_pmmir = {
+ .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
+ .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
+ .fgt = FGT_PMMIR_EL1,
+ .resetvalue = 0
+ };
+ define_one_arm_cp_reg(cpu, &v84_pmmir);
+ }
+}
#define HELPER_H "tcg/helper.h"
#include "exec/helper-proto.h.inc"
-#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
-
static void switch_mode(CPUARMState *env, int mode);
-static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
+uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
assert(ri->fieldoffset);
if (cpreg_field_is_64bit(ri)) {
return CP_ACCESS_UNDEFINED;
}
-/*
- * Check for traps to performance monitor registers, which are controlled
- * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
- */
-static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- int el = arm_current_el(env);
- uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
-
- if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL3;
- }
- return CP_ACCESS_OK;
-}
-
/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
.resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
};
-typedef struct pm_event {
- uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
- /* If the event is supported on this CPU (used to generate PMCEID[01]) */
- bool (*supported)(CPUARMState *);
- /*
- * Retrieve the current count of the underlying event. The programmed
- * counters hold a difference from the return value from this function
- */
- uint64_t (*get_count)(CPUARMState *);
- /*
- * Return how many nanoseconds it will take (at a minimum) for count events
- * to occur. A negative value indicates the counter will never overflow, or
- * that the counter has otherwise arranged for the overflow bit to be set
- * and the PMU interrupt to be raised on overflow.
- */
- int64_t (*ns_per_count)(uint64_t);
-} pm_event;
-
-static bool event_always_supported(CPUARMState *env)
-{
- return true;
-}
-
-static uint64_t swinc_get_count(CPUARMState *env)
-{
- /*
- * SW_INCR events are written directly to the pmevcntr's by writes to
- * PMSWINC, so there is no underlying count maintained by the PMU itself
- */
- return 0;
-}
-
-static int64_t swinc_ns_per(uint64_t ignored)
-{
- return -1;
-}
-
-/*
- * Return the underlying cycle count for the PMU cycle counters. If we're in
- * usermode, simply return 0.
- */
-static uint64_t cycles_get_count(CPUARMState *env)
-{
-#ifndef CONFIG_USER_ONLY
- return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
-#else
- return cpu_get_host_ticks();
-#endif
-}
-
-#ifndef CONFIG_USER_ONLY
-static int64_t cycles_ns_per(uint64_t cycles)
-{
- return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
-}
-
-static bool instructions_supported(CPUARMState *env)
-{
- /* Precise instruction counting */
- return icount_enabled() == ICOUNT_PRECISE;
-}
-
-static uint64_t instructions_get_count(CPUARMState *env)
-{
- assert(icount_enabled() == ICOUNT_PRECISE);
- return (uint64_t)icount_get_raw();
-}
-
-static int64_t instructions_ns_per(uint64_t icount)
-{
- assert(icount_enabled() == ICOUNT_PRECISE);
- return icount_to_ns((int64_t)icount);
-}
-#endif
-
-static bool pmuv3p1_events_supported(CPUARMState *env)
-{
- /* For events which are supported in any v8.1 PMU */
- return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
-}
-
-static bool pmuv3p4_events_supported(CPUARMState *env)
-{
- /* For events which are supported in any v8.1 PMU */
- return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
-}
-
-static uint64_t zero_event_get_count(CPUARMState *env)
-{
- /* For events which on QEMU never fire, so their count is always zero */
- return 0;
-}
-
-static int64_t zero_event_ns_per(uint64_t cycles)
-{
- /* An event which never fires can never overflow */
- return -1;
-}
-
-static const pm_event pm_events[] = {
- { .number = 0x000, /* SW_INCR */
- .supported = event_always_supported,
- .get_count = swinc_get_count,
- .ns_per_count = swinc_ns_per,
- },
-#ifndef CONFIG_USER_ONLY
- { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
- .supported = instructions_supported,
- .get_count = instructions_get_count,
- .ns_per_count = instructions_ns_per,
- },
- { .number = 0x011, /* CPU_CYCLES, Cycle */
- .supported = event_always_supported,
- .get_count = cycles_get_count,
- .ns_per_count = cycles_ns_per,
- },
-#endif
- { .number = 0x023, /* STALL_FRONTEND */
- .supported = pmuv3p1_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
- { .number = 0x024, /* STALL_BACKEND */
- .supported = pmuv3p1_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
- { .number = 0x03c, /* STALL */
- .supported = pmuv3p4_events_supported,
- .get_count = zero_event_get_count,
- .ns_per_count = zero_event_ns_per,
- },
-};
-
-/*
- * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
- * events (i.e. the statistical profiling extension), this implementation
- * should first be updated to something sparse instead of the current
- * supported_event_map[] array.
- */
-#define MAX_EVENT_ID 0x3c
-#define UNSUPPORTED_EVENT UINT16_MAX
-static uint16_t supported_event_map[MAX_EVENT_ID + 1];
-
-/*
- * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
- * of ARM event numbers to indices in our pm_events array.
- *
- * Note: Events in the 0x40XX range are not currently supported.
- */
-void pmu_init(ARMCPU *cpu)
-{
- unsigned int i;
-
- /*
- * Empty supported_event_map and cpu->pmceid[01] before adding supported
- * events to them
- */
- for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
- supported_event_map[i] = UNSUPPORTED_EVENT;
- }
- cpu->pmceid0 = 0;
- cpu->pmceid1 = 0;
-
- for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
- const pm_event *cnt = &pm_events[i];
- assert(cnt->number <= MAX_EVENT_ID);
- /* We do not currently support events in the 0x40xx range */
- assert(cnt->number <= 0x3f);
-
- if (cnt->supported(&cpu->env)) {
- supported_event_map[cnt->number] = i;
- uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
- if (cnt->number & 0x20) {
- cpu->pmceid1 |= event_mask;
- } else {
- cpu->pmceid0 |= event_mask;
- }
- }
- }
-}
-
-/*
- * Check at runtime whether a PMU event is supported for the current machine
- */
-static bool event_supported(uint16_t number)
-{
- if (number > MAX_EVENT_ID) {
- return false;
- }
- return supported_event_map[number] != UNSUPPORTED_EVENT;
-}
-
-static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
- bool isread)
-{
- /*
- * Performance monitor registers user accessibility is controlled
- * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
- * trapping to EL2 or EL3 for other accesses.
- */
- int el = arm_current_el(env);
- uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
-
- if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
- return CP_ACCESS_TRAP_EL1;
- }
- if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL2;
- }
- if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
- return CP_ACCESS_TRAP_EL3;
- }
-
- return CP_ACCESS_OK;
-}
-
-static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* ER: event counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
- && isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_swinc(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* SW: software increment write trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
- && !isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_selr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* ER: event counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
-static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
- const ARMCPRegInfo *ri,
- bool isread)
-{
- /* CR: cycle counter read trap control */
- if (arm_feature(env, ARM_FEATURE_V8)
- && arm_current_el(env) == 0
- && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
- && isread) {
- return CP_ACCESS_OK;
- }
-
- return pmreg_access(env, ri, isread);
-}
-
/*
* Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
* We use these to decide whether we need to wrap a write to MDCR_EL2
(MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
-/*
- * Returns true if the counter (pass 31 for PMCCNTR) should count events using
- * the current EL, security state, and register configuration.
- */
-static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
-{
- uint64_t filter;
- bool e, p, u, nsk, nsu, nsh, m;
- bool enabled, prohibited = false, filtered;
- bool secure = arm_is_secure(env);
- int el = arm_current_el(env);
- uint64_t mdcr_el2;
- uint8_t hpmn;
-
- /*
- * We might be called for M-profile cores where MDCR_EL2 doesn't
- * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
- * must be before we read that value.
- */
- if (!arm_feature(env, ARM_FEATURE_PMU)) {
- return false;
- }
-
- mdcr_el2 = arm_mdcr_el2_eff(env);
- hpmn = mdcr_el2 & MDCR_HPMN;
-
- if (!arm_feature(env, ARM_FEATURE_EL2) ||
- (counter < hpmn || counter == 31)) {
- e = env->cp15.c9_pmcr & PMCRE;
- } else {
- e = mdcr_el2 & MDCR_HPME;
- }
- enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
-
- /* Is event counting prohibited? */
- if (el == 2 && (counter < hpmn || counter == 31)) {
- prohibited = mdcr_el2 & MDCR_HPMD;
- }
- if (secure) {
- prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
- }
-
- if (counter == 31) {
- /*
- * The cycle counter defaults to running. PMCR.DP says "disable
- * the cycle counter when event counting is prohibited".
- * Some MDCR bits disable the cycle counter specifically.
- */
- prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
- if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- if (secure) {
- prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
- }
- if (el == 2) {
- prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
- }
- }
- }
-
- if (counter == 31) {
- filter = env->cp15.pmccfiltr_el0;
- } else {
- filter = env->cp15.c14_pmevtyper[counter];
- }
-
- p = filter & PMXEVTYPER_P;
- u = filter & PMXEVTYPER_U;
- nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
- nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
- nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
- m = arm_el_is_aa64(env, 1) &&
- arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
-
- if (el == 0) {
- filtered = secure ? u : u != nsu;
- } else if (el == 1) {
- filtered = secure ? p : p != nsk;
- } else if (el == 2) {
- filtered = !nsh;
- } else { /* EL3 */
- filtered = m != p;
- }
-
- if (counter != 31) {
- /*
- * If not checking PMCCNTR, ensure the counter is setup to an event we
- * support
- */
- uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
- if (!event_supported(event)) {
- return false;
- }
- }
-
- return enabled && !prohibited && !filtered;
-}
-
-static void pmu_update_irq(CPUARMState *env)
-{
- ARMCPU *cpu = env_archcpu(env);
- qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
- (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
-}
-
-static bool pmccntr_clockdiv_enabled(CPUARMState *env)
-{
- /*
- * Return true if the clock divider is enabled and the cycle counter
- * is supposed to tick only once every 64 clock cycles. This is
- * controlled by PMCR.D, but if PMCR.LC is set to enable the long
- * (64-bit) cycle counter PMCR.D has no effect.
- */
- return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
-}
-
-static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
-{
- /* Return true if the specified event counter is configured to be 64 bit */
-
- /* This isn't intended to be used with the cycle counter */
- assert(counter < 31);
-
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- return false;
- }
-
- if (arm_feature(env, ARM_FEATURE_EL2)) {
- /*
- * MDCR_EL2.HLP still applies even when EL2 is disabled in the
- * current security state, so we don't use arm_mdcr_el2_eff() here.
- */
- bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
- int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
-
- if (counter >= hpmn) {
- return hlp;
- }
- }
- return env->cp15.c9_pmcr & PMCRLP;
-}
-
-/*
- * Ensure c15_ccnt is the guest-visible count so that operations such as
- * enabling/disabling the counter or filtering, modifying the count itself,
- * etc. can be done logically. This is essentially a no-op if the counter is
- * not enabled at the time of the call.
- */
-static void pmccntr_op_start(CPUARMState *env)
-{
- uint64_t cycles = cycles_get_count(env);
-
- if (pmu_counter_enabled(env, 31)) {
- uint64_t eff_cycles = cycles;
- if (pmccntr_clockdiv_enabled(env)) {
- eff_cycles /= 64;
- }
-
- uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
-
- uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
- 1ull << 63 : 1ull << 31;
- if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
- env->cp15.c9_pmovsr |= (1ULL << 31);
- pmu_update_irq(env);
- }
-
- env->cp15.c15_ccnt = new_pmccntr;
- }
- env->cp15.c15_ccnt_delta = cycles;
-}
-
-/*
- * If PMCCNTR is enabled, recalculate the delta between the clock and the
- * guest-visible count. A call to pmccntr_op_finish should follow every call to
- * pmccntr_op_start.
- */
-static void pmccntr_op_finish(CPUARMState *env)
-{
- if (pmu_counter_enabled(env, 31)) {
-#ifndef CONFIG_USER_ONLY
- /* Calculate when the counter will next overflow */
- uint64_t remaining_cycles = -env->cp15.c15_ccnt;
- if (!(env->cp15.c9_pmcr & PMCRLC)) {
- remaining_cycles = (uint32_t)remaining_cycles;
- }
- int64_t overflow_in = cycles_ns_per(remaining_cycles);
-
- if (overflow_in > 0) {
- int64_t overflow_at;
-
- if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- overflow_in, &overflow_at)) {
- ARMCPU *cpu = env_archcpu(env);
- timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
- }
- }
-#endif
-
- uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
- if (pmccntr_clockdiv_enabled(env)) {
- prev_cycles /= 64;
- }
- env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
- }
-}
-
-static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
-{
-
- uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
- uint64_t count = 0;
- if (event_supported(event)) {
- uint16_t event_idx = supported_event_map[event];
- count = pm_events[event_idx].get_count(env);
- }
-
- if (pmu_counter_enabled(env, counter)) {
- uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
- uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
- 1ULL << 63 : 1ULL << 31;
-
- if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
- env->cp15.c9_pmovsr |= (1 << counter);
- pmu_update_irq(env);
- }
- env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
- }
- env->cp15.c14_pmevcntr_delta[counter] = count;
-}
-
-static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
-{
- if (pmu_counter_enabled(env, counter)) {
-#ifndef CONFIG_USER_ONLY
- uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
- uint16_t event_idx = supported_event_map[event];
- uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
- int64_t overflow_in;
-
- if (!pmevcntr_is_64_bit(env, counter)) {
- delta = (uint32_t)delta;
- }
- overflow_in = pm_events[event_idx].ns_per_count(delta);
-
- if (overflow_in > 0) {
- int64_t overflow_at;
-
- if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
- overflow_in, &overflow_at)) {
- ARMCPU *cpu = env_archcpu(env);
- timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
- }
- }
-#endif
-
- env->cp15.c14_pmevcntr_delta[counter] -=
- env->cp15.c14_pmevcntr[counter];
- }
-}
-
-void pmu_op_start(CPUARMState *env)
-{
- unsigned int i;
- pmccntr_op_start(env);
- for (i = 0; i < pmu_num_counters(env); i++) {
- pmevcntr_op_start(env, i);
- }
-}
-
-void pmu_op_finish(CPUARMState *env)
-{
- unsigned int i;
- pmccntr_op_finish(env);
- for (i = 0; i < pmu_num_counters(env); i++) {
- pmevcntr_op_finish(env, i);
- }
-}
-
-void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
-{
- pmu_op_start(&cpu->env);
-}
-
-void pmu_post_el_change(ARMCPU *cpu, void *ignored)
-{
- pmu_op_finish(&cpu->env);
-}
-
-void arm_pmu_timer_cb(void *opaque)
-{
- ARMCPU *cpu = opaque;
-
- /*
- * Update all the counter values based on the current underlying counts,
- * triggering interrupts to be raised, if necessary. pmu_op_finish() also
- * has the effect of setting the cpu->pmu_timer to the next earliest time a
- * counter may expire.
- */
- pmu_op_start(&cpu->env);
- pmu_op_finish(&cpu->env);
-}
-
-static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
-
- if (value & PMCRC) {
- /* The counter has been reset */
- env->cp15.c15_ccnt = 0;
- }
-
- if (value & PMCRP) {
- unsigned int i;
- for (i = 0; i < pmu_num_counters(env); i++) {
- env->cp15.c14_pmevcntr[i] = 0;
- }
- }
-
- env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
- env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
-
- pmu_op_finish(env);
-}
-
-static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint64_t pmcr = env->cp15.c9_pmcr;
-
- /*
- * If EL2 is implemented and enabled for the current security state, reads
- * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
- */
- if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
- pmcr &= ~PMCRN_MASK;
- pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
- }
-
- return pmcr;
-}
-
-static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- unsigned int i;
- uint64_t overflow_mask, new_pmswinc;
-
- for (i = 0; i < pmu_num_counters(env); i++) {
- /* Increment a counter's count iff: */
- if ((value & (1 << i)) && /* counter's bit is set */
- /* counter is enabled and not filtered */
- pmu_counter_enabled(env, i) &&
- /* counter is SW_INCR */
- (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
- pmevcntr_op_start(env, i);
-
- /*
- * Detect if this write causes an overflow since we can't predict
- * PMSWINC overflows like we can for other events
- */
- new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
-
- overflow_mask = pmevcntr_is_64_bit(env, i) ?
- 1ULL << 63 : 1ULL << 31;
-
- if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
- env->cp15.c9_pmovsr |= (1 << i);
- pmu_update_irq(env);
- }
-
- env->cp15.c14_pmevcntr[i] = new_pmswinc;
-
- pmevcntr_op_finish(env, i);
- }
- }
-}
-
-static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint64_t ret;
- pmccntr_op_start(env);
- ret = env->cp15.c15_ccnt;
- pmccntr_op_finish(env);
- return ret;
-}
-
-static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /*
- * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
- * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
- * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
- * accessed.
- */
- env->cp15.c9_pmselr = value & 0x1f;
-}
-
-static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- env->cp15.c15_ccnt = value;
- pmccntr_op_finish(env);
-}
-
-static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint64_t cur_val = pmccntr_read(env, NULL);
-
- pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
-}
-
-static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
- pmccntr_op_finish(env);
-}
-
-static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmccntr_op_start(env);
- /* M is not accessible from AArch32 */
- env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
- (value & PMCCFILTR);
- pmccntr_op_finish(env);
-}
-
-static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- /* M is not visible in AArch32 */
- return env->cp15.pmccfiltr_el0 & PMCCFILTR;
-}
-
-static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmcnten |= value;
- pmu_op_finish(env);
-}
-
-static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmu_op_start(env);
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmcnten &= ~value;
- pmu_op_finish(env);
-}
-
-static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmovsr &= ~value;
- pmu_update_irq(env);
-}
-
-static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pmovsr |= value;
- pmu_update_irq(env);
-}
-
-static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value, const uint8_t counter)
-{
- if (counter == 31) {
- pmccfiltr_write(env, ri, value);
- } else if (counter < pmu_num_counters(env)) {
- pmevcntr_op_start(env, counter);
-
- /*
- * If this counter's event type is changing, store the current
- * underlying count for the new type in c14_pmevcntr_delta[counter] so
- * pmevcntr_op_finish has the correct baseline when it converts back to
- * a delta.
- */
- uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
- PMXEVTYPER_EVTCOUNT;
- uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
- if (old_event != new_event) {
- uint64_t count = 0;
- if (event_supported(new_event)) {
- uint16_t event_idx = supported_event_map[new_event];
- count = pm_events[event_idx].get_count(env);
- }
- env->cp15.c14_pmevcntr_delta[counter] = count;
- }
-
- env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
- pmevcntr_op_finish(env, counter);
- }
- /*
- * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
- * PMSELR value is equal to or greater than the number of implemented
- * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
- */
-}
-
-static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
- const uint8_t counter)
-{
- if (counter == 31) {
- return env->cp15.pmccfiltr_el0;
- } else if (counter < pmu_num_counters(env)) {
- return env->cp15.c14_pmevtyper[counter];
- } else {
- /*
- * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
- * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
- */
- return 0;
- }
-}
-
-static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- pmevtyper_write(env, ri, value, counter);
-}
-
-static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- env->cp15.c14_pmevtyper[counter] = value;
-
- /*
- * pmevtyper_rawwrite is called between a pair of pmu_op_start and
- * pmu_op_finish calls when loading saved state for a migration. Because
- * we're potentially updating the type of event here, the value written to
- * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
- * different counter type. Therefore, we need to set this value to the
- * current count for the counter type we're writing so that pmu_op_finish
- * has the correct count for its calculation.
- */
- uint16_t event = value & PMXEVTYPER_EVTCOUNT;
- if (event_supported(event)) {
- uint16_t event_idx = supported_event_map[event];
- env->cp15.c14_pmevcntr_delta[counter] =
- pm_events[event_idx].get_count(env);
- }
-}
-
-static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- return pmevtyper_read(env, ri, counter);
-}
-
-static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
-}
-
-static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
-}
-
-static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value, uint8_t counter)
-{
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
- value &= MAKE_64BIT_MASK(0, 32);
- }
- if (counter < pmu_num_counters(env)) {
- pmevcntr_op_start(env, counter);
- env->cp15.c14_pmevcntr[counter] = value;
- pmevcntr_op_finish(env, counter);
- }
- /*
- * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
- * are CONSTRAINED UNPREDICTABLE.
- */
-}
-
-static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
- uint8_t counter)
-{
- if (counter < pmu_num_counters(env)) {
- uint64_t ret;
- pmevcntr_op_start(env, counter);
- ret = env->cp15.c14_pmevcntr[counter];
- pmevcntr_op_finish(env, counter);
- if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
- /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
- ret &= MAKE_64BIT_MASK(0, 32);
- }
- return ret;
- } else {
- /*
- * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
- * are CONSTRAINED UNPREDICTABLE.
- */
- return 0;
- }
-}
-
-static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- pmevcntr_write(env, ri, value, counter);
-}
-
-static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- return pmevcntr_read(env, ri, counter);
-}
-
-static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- assert(counter < pmu_num_counters(env));
- env->cp15.c14_pmevcntr[counter] = value;
- pmevcntr_write(env, ri, value, counter);
-}
-
-static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
- assert(counter < pmu_num_counters(env));
- return env->cp15.c14_pmevcntr[counter];
-}
-
-static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
-}
-
-static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
-{
- return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
-}
-
-static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- if (arm_feature(env, ARM_FEATURE_V8)) {
- env->cp15.c9_pmuserenr = value & 0xf;
- } else {
- env->cp15.c9_pmuserenr = value & 1;
- }
-}
-
-static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- /* We have no event counters so only the C bit can be changed */
- value &= pmu_counter_mask(env);
- env->cp15.c9_pminten |= value;
- pmu_update_irq(env);
-}
-
-static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
- uint64_t value)
-{
- value &= pmu_counter_mask(env);
- env->cp15.c9_pminten &= ~value;
- pmu_update_irq(env);
-}
-
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
- /*
- * Performance monitors are implementation defined in v7,
- * but with an ARM recommended set of registers, which we
- * follow.
- *
- * Performance registers fall into three categories:
- * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
- * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
- * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
- * For the cases controlled by PMUSERENR we must set .access to PL0_RW
- * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
- */
- { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
- .writefn = pmcntenset_write,
- .accessfn = pmreg_access,
- .fgt = FGT_PMCNTEN,
- .raw_writefn = raw_write },
- { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMCNTEN,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
- .writefn = pmcntenset_write, .raw_writefn = raw_write },
- { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
- .access = PL0_RW,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
- .accessfn = pmreg_access,
- .fgt = FGT_PMCNTEN,
- .writefn = pmcntenclr_write, .raw_writefn = raw_write,
- .type = ARM_CP_ALIAS | ARM_CP_IO },
- { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMCNTEN,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
- .writefn = pmcntenclr_write, .raw_writefn = raw_write },
- { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
- .access = PL0_RW, .type = ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
- .accessfn = pmreg_access,
- .fgt = FGT_PMOVS,
- .writefn = pmovsr_write,
- .raw_writefn = raw_write },
- { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMOVS,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsr_write,
- .raw_writefn = raw_write },
- { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc,
- .fgt = FGT_PMSWINC_EL0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .writefn = pmswinc_write },
- { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc,
- .fgt = FGT_PMSWINC_EL0,
- .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .writefn = pmswinc_write },
- { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
- .access = PL0_RW, .type = ARM_CP_ALIAS,
- .fgt = FGT_PMSELR_EL0,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
- .accessfn = pmreg_access_selr, .writefn = pmselr_write,
- .raw_writefn = raw_write},
- { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
- .access = PL0_RW, .accessfn = pmreg_access_selr,
- .fgt = FGT_PMSELR_EL0,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
- .writefn = pmselr_write, .raw_writefn = raw_write, },
- { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
- .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fgt = FGT_PMCCNTR_EL0,
- .readfn = pmccntr_read, .writefn = pmccntr_write32,
- .accessfn = pmreg_access_ccntr },
- { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
- .access = PL0_RW, .accessfn = pmreg_access_ccntr,
- .fgt = FGT_PMCCNTR_EL0,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
- .readfn = pmccntr_read, .writefn = pmccntr_write,
- .raw_readfn = raw_read, .raw_writefn = raw_write, },
- { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
- .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMCCFILTR_EL0,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .resetvalue = 0, },
- { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
- .writefn = pmccfiltr_write, .raw_writefn = raw_write,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMCCFILTR_EL0,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
- .resetvalue = 0, },
- { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access,
- .fgt = FGT_PMEVTYPERN_EL0,
- .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
- { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access,
- .fgt = FGT_PMEVTYPERN_EL0,
- .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
- { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access_xevcntr,
- .fgt = FGT_PMEVCNTRN_EL0,
- .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
- { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
- .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
- .accessfn = pmreg_access_xevcntr,
- .fgt = FGT_PMEVCNTRN_EL0,
- .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
- { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
- .access = PL0_R | PL1_RW, .accessfn = access_tpm,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
- .resetvalue = 0,
- .writefn = pmuserenr_write, .raw_writefn = raw_write },
- { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
- .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
- .resetvalue = 0,
- .writefn = pmuserenr_write, .raw_writefn = raw_write },
- { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tpm,
- .fgt = FGT_PMINTEN,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
- .resetvalue = 0,
- .writefn = pmintenset_write, .raw_writefn = raw_write },
- { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
- .access = PL1_RW, .accessfn = access_tpm,
- .fgt = FGT_PMINTEN,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenset_write, .raw_writefn = raw_write,
- .resetvalue = 0x0 },
- { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tpm,
- .fgt = FGT_PMINTEN,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenclr_write, .raw_writefn = raw_write },
- { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
- .access = PL1_RW, .accessfn = access_tpm,
- .fgt = FGT_PMINTEN,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
- .writefn = pmintenclr_write, .raw_writefn = raw_write },
{ .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
.access = PL1_R,
.type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
};
-static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
- /* PMOVSSET is not implemented in v7 before v7ve */
- { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMOVS,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsset_write,
- .raw_writefn = raw_write },
- { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMOVS,
- .type = ARM_CP_ALIAS | ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
- .writefn = pmovsset_write,
- .raw_writefn = raw_write },
-};
-
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
.resetfn = arm_cp_reset_ignore },
};
-static void define_pmu_regs(ARMCPU *cpu)
-{
- /*
- * v7 performance monitor control register: same implementor
- * field as main ID register, and we implement four counters in
- * addition to the cycle count register.
- */
- unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
- ARMCPRegInfo pmcr = {
- .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
- .access = PL0_RW,
- .fgt = FGT_PMCR_EL0,
- .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
- .accessfn = pmreg_access,
- .readfn = pmcr_read, .raw_readfn = raw_read,
- .writefn = pmcr_write, .raw_writefn = raw_write,
- };
- ARMCPRegInfo pmcr64 = {
- .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
- .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMCR_EL0,
- .type = ARM_CP_IO,
- .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
- .resetvalue = cpu->isar.reset_pmcr_el0,
- .readfn = pmcr_read, .raw_readfn = raw_read,
- .writefn = pmcr_write, .raw_writefn = raw_write,
- };
-
- define_one_arm_cp_reg(cpu, &pmcr);
- define_one_arm_cp_reg(cpu, &pmcr64);
- for (i = 0; i < pmcrn; i++) {
- char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
- char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
- char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
- char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
- ARMCPRegInfo pmev_regs[] = {
- { .name = pmevcntr_name, .cp = 15, .crn = 14,
- .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
- .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fgt = FGT_PMEVCNTRN_EL0,
- .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
- .accessfn = pmreg_access_xevcntr },
- { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
- .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
- .type = ARM_CP_IO,
- .fgt = FGT_PMEVCNTRN_EL0,
- .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
- .raw_readfn = pmevcntr_rawread,
- .raw_writefn = pmevcntr_rawwrite },
- { .name = pmevtyper_name, .cp = 15, .crn = 14,
- .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
- .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
- .fgt = FGT_PMEVTYPERN_EL0,
- .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
- .accessfn = pmreg_access },
- { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
- .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
- .fgt = FGT_PMEVTYPERN_EL0,
- .type = ARM_CP_IO,
- .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
- .raw_writefn = pmevtyper_rawwrite },
- };
- define_arm_cp_regs(cpu, pmev_regs);
- g_free(pmevcntr_name);
- g_free(pmevcntr_el0_name);
- g_free(pmevtyper_name);
- g_free(pmevtyper_el0_name);
- }
- if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
- ARMCPRegInfo v81_pmu_regs[] = {
- { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = extract64(cpu->pmceid0, 32, 32) },
- { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = extract64(cpu->pmceid1, 32, 32) },
- };
- define_arm_cp_regs(cpu, v81_pmu_regs);
- }
- if (cpu_isar_feature(any_pmuv3p4, cpu)) {
- static const ARMCPRegInfo v84_pmmir = {
- .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
- .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
- .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMMIR_EL1,
- .resetvalue = 0
- };
- define_one_arm_cp_reg(cpu, &v84_pmmir);
- }
-}
-
#ifndef CONFIG_USER_ONLY
/*
* We don't know until after realize whether there's a GICv3
if (arm_feature(env, ARM_FEATURE_V6K)) {
define_arm_cp_regs(cpu, v6k_cp_reginfo);
}
- if (arm_feature(env, ARM_FEATURE_V7VE)) {
- define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
- }
if (arm_feature(env, ARM_FEATURE_V7)) {
ARMCPRegInfo clidr = {
.name = "CLIDR", .state = ARM_CP_STATE_BOTH,
define_one_arm_cp_reg(cpu, &clidr);
define_arm_cp_regs(cpu, v7_cp_reginfo);
define_debug_regs(cpu);
- define_pmu_regs(cpu);
} else {
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
}
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid3,
.resetvalue = 0 },
- { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = extract64(cpu->pmceid0, 0, 32) },
- { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = cpu->pmceid0 },
- { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
- .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = extract64(cpu->pmceid1, 0, 32) },
- { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
- .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
- .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
- .fgt = FGT_PMCEIDN_EL0,
- .resetvalue = cpu->pmceid1 },
};
#ifdef CONFIG_USER_ONLY
static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
define_arm_cp_regs(cpu, ccsidr2_reginfo);
}
+ define_pm_cpregs(cpu);
+
#ifndef CONFIG_USER_ONLY
/*
* Register redirections and aliases must be done last,