#include <kunit/test.h>
#include <kunit/test-bug.h>
#include <linux/sort.h>
-
+#include <linux/irq_work.h>
+#include <linux/kprobes.h>
#include <linux/debugfs.h>
#include <trace/events/kmem.h>
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct slab *partial; /* Partially allocated slabs */
#endif
- local_lock_t lock; /* Protects the fields above */
+ local_trylock_t lock; /* Protects the fields above */
#ifdef CONFIG_SLUB_STATS
unsigned int stat[NR_SLUB_STAT_ITEMS];
#endif
int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab)
{
+ bool allow_spin = gfpflags_allow_spinning(gfp);
unsigned int objects = objs_per_slab(s, slab);
unsigned long new_exts;
unsigned long old_exts;
gfp &= ~OBJCGS_CLEAR_MASK;
/* Prevent recursive extension vector allocation */
gfp |= __GFP_NO_OBJ_EXT;
- vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
- slab_nid(slab));
+
+ /*
+ * Note that allow_spin may be false during early boot and its
+ * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
+ * architectures with cmpxchg16b, early obj_exts will be missing for
+ * very early allocations on those.
+ */
+ if (unlikely(!allow_spin)) {
+ size_t sz = objects * sizeof(struct slabobj_ext);
+
+ vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
+ slab_nid(slab));
+ } else {
+ vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
+ slab_nid(slab));
+ }
if (!vec) {
/* Mark vectors which failed to allocate */
if (new_slab)
}
new_exts = (unsigned long)vec;
+ if (unlikely(!allow_spin))
+ new_exts |= OBJEXTS_NOSPIN_ALLOC;
#ifdef CONFIG_MEMCG
new_exts |= MEMCG_DATA_OBJEXTS;
#endif
* objcg vector should be reused.
*/
mark_objexts_empty(vec);
- kfree(vec);
+ if (unlikely(!allow_spin))
+ kfree_nolock(vec);
+ else
+ kfree(vec);
return 0;
}
* the extension for obj_exts is expected to be NULL.
*/
mark_objexts_empty(obj_exts);
- kfree(obj_exts);
+ if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
+ kfree_nolock(obj_exts);
+ else
+ kfree(obj_exts);
slab->obj_exts = 0;
}
}
/* KASAN might put x into memory quarantine, delaying its reuse. */
- return !kasan_slab_free(s, x, init, still_accessible);
+ return !kasan_slab_free(s, x, init, still_accessible, false);
}
static __fastpath_inline
* Slab allocation and freeing
*/
static inline struct slab *alloc_slab_page(gfp_t flags, int node,
- struct kmem_cache_order_objects oo)
+ struct kmem_cache_order_objects oo,
+ bool allow_spin)
{
struct folio *folio;
struct slab *slab;
unsigned int order = oo_order(oo);
- if (node == NUMA_NO_NODE)
+ if (unlikely(!allow_spin))
+ folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
+ node, order);
+ else if (node == NUMA_NO_NODE)
folio = (struct folio *)alloc_frozen_pages(flags, order);
else
folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
+ bool allow_spin = gfpflags_allow_spinning(flags);
struct slab *slab;
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
- slab = alloc_slab_page(alloc_gfp, node, oo);
+ /*
+ * __GFP_RECLAIM could be cleared on the first allocation attempt,
+ * so pass allow_spin flag directly.
+ */
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab)) {
oo = s->min;
alloc_gfp = flags;
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
- slab = alloc_slab_page(alloc_gfp, node, oo);
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab))
return NULL;
stat(s, ORDER_FALLBACK);
return object;
}
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
+
/*
* Called only for kmem_cache_debug() caches to allocate from a freshly
* allocated slab. Allocate a single object instead of whole freelist
* and put the slab to the partial (or full) list.
*/
-static void *alloc_single_from_new_slab(struct kmem_cache *s,
- struct slab *slab, int orig_size)
+static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
+ int orig_size, gfp_t gfpflags)
{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
unsigned long flags;
void *object;
+ if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
+ /* Unlucky, discard newly allocated slab */
+ slab->frozen = 1;
+ defer_deactivate_slab(slab, NULL);
+ return NULL;
+ }
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
- if (!alloc_debug_processing(s, slab, object, orig_size))
+ if (!alloc_debug_processing(s, slab, object, orig_size)) {
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
* corruption in theory could cause that.
+ * Leak memory of allocated slab.
*/
+ if (!allow_spin)
+ spin_unlock_irqrestore(&n->list_lock, flags);
return NULL;
+ }
- spin_lock_irqsave(&n->list_lock, flags);
+ if (allow_spin)
+ spin_lock_irqsave(&n->list_lock, flags);
if (slab->inuse == slab->objects)
add_full(s, n, slab);
if (!n || !n->nr_partial)
return NULL;
- spin_lock_irqsave(&n->list_lock, flags);
+ if (gfpflags_allow_spinning(pc->flags))
+ spin_lock_irqsave(&n->list_lock, flags);
+ else if (!spin_trylock_irqsave(&n->list_lock, flags))
+ return NULL;
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
if (!pfmemalloc_match(slab, pc->flags))
continue;
lockdep_register_key(&s->lock_key);
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(s->cpu_slab, cpu);
- local_lock_init(&c->lock);
+ local_trylock_init(&c->lock);
if (finegrain_lockdep)
lockdep_set_class(&c->lock, &s->lock_key);
c->tid = init_tid(cpu);
}
}
+/*
+ * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
+ * can be acquired without a deadlock before invoking the function.
+ *
+ * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
+ * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
+ * and kmalloc() is not used in an unsupported context.
+ *
+ * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
+ * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
+ * lockdep_assert() will catch a bug in case:
+ * #1
+ * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
+ * or
+ * #2
+ * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
+ *
+ * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
+ * disabled context. The lock will always be acquired and if needed it
+ * block and sleep until the lock is available.
+ * #1 is possible in !PREEMPT_RT only.
+ * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
+ * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
+ * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
+ *
+ * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
+ */
+#if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
+#define local_lock_cpu_slab(s, flags) \
+ local_lock_irqsave(&(s)->cpu_slab->lock, flags)
+#else
+#define local_lock_cpu_slab(s, flags) \
+ do { \
+ bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
+ lockdep_assert(__l); \
+ } while (0)
+#endif
+
+#define local_unlock_cpu_slab(s, flags) \
+ local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
+
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
{
unsigned long flags;
int slabs = 0;
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
oldslab = this_cpu_read(s->cpu_slab->partial);
this_cpu_write(s->cpu_slab->partial, slab);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
if (slab_to_put) {
__put_partials(s, slab_to_put);
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
void *freelist;
struct slab *slab;
unsigned long flags;
if (unlikely(!node_match(slab, node))) {
/*
* same as above but node_match() being false already
- * implies node != NUMA_NO_NODE
+ * implies node != NUMA_NO_NODE.
+ *
+ * We don't strictly honor pfmemalloc and NUMA preferences
+ * when !allow_spin because:
+ *
+ * 1. Most kmalloc() users allocate objects on the local node,
+ * so kmalloc_nolock() tries not to interfere with them by
+ * deactivating the cpu slab.
+ *
+ * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
+ * unnecessary slab allocations even when n->partial list
+ * is not empty.
*/
- if (!node_isset(node, slab_nodes)) {
+ if (!node_isset(node, slab_nodes) ||
+ !allow_spin) {
node = NUMA_NO_NODE;
} else {
stat(s, ALLOC_NODE_MISMATCH);
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
- if (unlikely(!pfmemalloc_match(slab, gfpflags)))
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
goto deactivate_slab;
/* must check again c->slab in case we got preempted and it changed */
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
+
if (unlikely(slab != c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
if (!freelist) {
c->slab = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
VM_BUG_ON(!c->slab->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
return freelist;
deactivate_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (slab != c->slab) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
deactivate_slab(s, slab, freelist);
new_slab:
#ifdef CONFIG_SLUB_CPU_PARTIAL
while (slub_percpu_partial(c)) {
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
if (unlikely(!slub_percpu_partial(c))) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
/* we were preempted and partial list got empty */
goto new_objects;
}
slub_set_percpu_partial(c, slab);
if (likely(node_match(slab, node) &&
- pfmemalloc_match(slab, gfpflags))) {
+ pfmemalloc_match(slab, gfpflags)) ||
+ !allow_spin) {
c->slab = slab;
freelist = get_freelist(s, slab);
VM_BUG_ON(!freelist);
goto load_freelist;
}
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
slab->next = NULL;
__put_partials(s, slab);
* allocating new page from other nodes
*/
if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
- && try_thisnode))
- pc.flags = GFP_NOWAIT | __GFP_THISNODE;
+ && try_thisnode)) {
+ if (unlikely(!allow_spin))
+ /* Do not upgrade gfp to NOWAIT from more restrictive mode */
+ pc.flags = gfpflags | __GFP_THISNODE;
+ else
+ pc.flags = GFP_NOWAIT | __GFP_THISNODE;
+ }
pc.orig_size = orig_size;
slab = get_partial(s, node, &pc);
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
- freelist = alloc_single_from_new_slab(s, slab, orig_size);
+ freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
if (unlikely(!freelist))
goto new_objects;
inc_slabs_node(s, slab_nid(slab), slab->objects);
- if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
retry_load_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
void *flush_freelist = c->freelist;
struct slab *flush_slab = c->slab;
c->freelist = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
- deactivate_slab(s, flush_slab, flush_freelist);
+ if (unlikely(!allow_spin)) {
+ /* Reentrant slub cannot take locks, defer */
+ defer_deactivate_slab(flush_slab, flush_freelist);
+ } else {
+ deactivate_slab(s, flush_slab, flush_freelist);
+ }
stat(s, CPUSLAB_FLUSH);
goto load_freelist;
}
+/*
+ * We disallow kprobes in ___slab_alloc() to prevent reentrance
+ *
+ * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
+ * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
+ * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
+ * manipulating c->freelist without lock.
+ *
+ * This does not prevent kprobe in functions called from ___slab_alloc() such as
+ * local_lock_irqsave() itself, and that is fine, we only need to protect the
+ * c->freelist manipulation in ___slab_alloc() itself.
+ */
+NOKPROBE_SYMBOL(___slab_alloc);
/*
* A wrapper for ___slab_alloc() for contexts where preemption is not yet
*/
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
-
+ if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
+ if (local_lock_is_locked(&s->cpu_slab->lock)) {
+ /*
+ * EBUSY is an internal signal to kmalloc_nolock() to
+ * retry a different bucket. It's not propagated
+ * to the caller.
+ */
+ p = ERR_PTR(-EBUSY);
+ goto out;
+ }
+ }
p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
+out:
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
return NULL;
}
- object = alloc_single_from_new_slab(s, slab, orig_size);
+ object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
return object;
}
if (p[i] && init && (!kasan_init ||
!kasan_has_integrated_init()))
memset(p[i], 0, zero_size);
- kmemleak_alloc_recursive(p[i], s->object_size, 1,
- s->flags, init_flags);
+ if (gfpflags_allow_spinning(flags))
+ kmemleak_alloc_recursive(p[i], s->object_size, 1,
+ s->flags, init_flags);
kmsan_slab_alloc(s, p[i], init_flags);
alloc_tagging_slab_alloc_hook(s, p[i], flags);
}
}
EXPORT_SYMBOL(__kmalloc_noprof);
+/**
+ * kmalloc_nolock - Allocate an object of given size from any context.
+ * @size: size to allocate
+ * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
+ * allowed.
+ * @node: node number of the target node.
+ *
+ * Return: pointer to the new object or NULL in case of error.
+ * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
+ * There is no reason to call it again and expect !NULL.
+ */
+void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
+{
+ gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
+ struct kmem_cache *s;
+ bool can_retry = true;
+ void *ret = ERR_PTR(-EBUSY);
+
+ VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
+ __GFP_NO_OBJ_EXT));
+
+ if (unlikely(!size))
+ return ZERO_SIZE_PTR;
+
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
+ /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
+ return NULL;
+retry:
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
+ return NULL;
+ s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
+
+ if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
+ /*
+ * kmalloc_nolock() is not supported on architectures that
+ * don't implement cmpxchg16b, but debug caches don't use
+ * per-cpu slab and per-cpu partial slabs. They rely on
+ * kmem_cache_node->list_lock, so kmalloc_nolock() can
+ * attempt to allocate from debug caches by
+ * spin_trylock_irqsave(&n->list_lock, ...)
+ */
+ return NULL;
+
+ /*
+ * Do not call slab_alloc_node(), since trylock mode isn't
+ * compatible with slab_pre_alloc_hook/should_failslab and
+ * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
+ * and slab_post_alloc_hook() directly.
+ *
+ * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
+ * in irq saved region. It assumes that the same cpu will not
+ * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
+ * Therefore use in_nmi() to check whether particular bucket is in
+ * irq protected section.
+ *
+ * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
+ * this cpu was interrupted somewhere inside ___slab_alloc() after
+ * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
+ * In this case fast path with __update_cpu_freelist_fast() is not safe.
+ */
+#ifndef CONFIG_SLUB_TINY
+ if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
+#endif
+ ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
+
+ if (PTR_ERR(ret) == -EBUSY) {
+ if (can_retry) {
+ /* pick the next kmalloc bucket */
+ size = s->object_size + 1;
+ /*
+ * Another alternative is to
+ * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
+ * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
+ * to retry from bucket of the same size.
+ */
+ can_retry = false;
+ goto retry;
+ }
+ ret = NULL;
+ }
+
+ maybe_wipe_obj_freeptr(s, ret);
+ slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
+ slab_want_init_on_alloc(alloc_gfp, s), size);
+
+ ret = kasan_kmalloc(s, ret, size, alloc_gfp);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
+
void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
int node, unsigned long caller)
{
}
}
+struct defer_free {
+ struct llist_head objects;
+ struct llist_head slabs;
+ struct irq_work work;
+};
+
+static void free_deferred_objects(struct irq_work *work);
+
+static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
+ .objects = LLIST_HEAD_INIT(objects),
+ .slabs = LLIST_HEAD_INIT(slabs),
+ .work = IRQ_WORK_INIT(free_deferred_objects),
+};
+
+/*
+ * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
+ * to take sleeping spin_locks from __slab_free() and deactivate_slab().
+ * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
+ */
+static void free_deferred_objects(struct irq_work *work)
+{
+ struct defer_free *df = container_of(work, struct defer_free, work);
+ struct llist_head *objs = &df->objects;
+ struct llist_head *slabs = &df->slabs;
+ struct llist_node *llnode, *pos, *t;
+
+ if (llist_empty(objs) && llist_empty(slabs))
+ return;
+
+ llnode = llist_del_all(objs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct kmem_cache *s;
+ struct slab *slab;
+ void *x = pos;
+
+ slab = virt_to_slab(x);
+ s = slab->slab_cache;
+
+ /*
+ * We used freepointer in 'x' to link 'x' into df->objects.
+ * Clear it to NULL to avoid false positive detection
+ * of "Freepointer corruption".
+ */
+ *(void **)x = NULL;
+
+ /* Point 'x' back to the beginning of allocated object */
+ x -= s->offset;
+ __slab_free(s, slab, x, x, 1, _THIS_IP_);
+ }
+
+ llnode = llist_del_all(slabs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct slab *slab = container_of(pos, struct slab, llnode);
+
+#ifdef CONFIG_SLUB_TINY
+ discard_slab(slab->slab_cache, slab);
+#else
+ deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
+#endif
+ }
+}
+
+static void defer_free(struct kmem_cache *s, void *head)
+{
+ struct defer_free *df = this_cpu_ptr(&defer_free_objects);
+
+ if (llist_add(head + s->offset, &df->objects))
+ irq_work_queue(&df->work);
+}
+
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
+{
+ struct defer_free *df = this_cpu_ptr(&defer_free_objects);
+
+ slab->flush_freelist = flush_freelist;
+ if (llist_add(&slab->llnode, &df->slabs))
+ irq_work_queue(&df->work);
+}
+
+void defer_free_barrier(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
+}
+
#ifndef CONFIG_SLUB_TINY
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
+ /* cnt == 0 signals that it's called from kfree_nolock() */
+ bool allow_spin = cnt;
struct kmem_cache_cpu *c;
unsigned long tid;
void **freelist;
barrier();
if (unlikely(slab != c->slab)) {
- __slab_free(s, slab, head, tail, cnt, addr);
+ if (unlikely(!allow_spin)) {
+ /*
+ * __slab_free() can locklessly cmpxchg16 into a slab,
+ * but then it might need to take spin_lock or local_lock
+ * in put_cpu_partial() for further processing.
+ * Avoid the complexity and simply add to a deferred list.
+ */
+ defer_free(s, head);
+ } else {
+ __slab_free(s, slab, head, tail, cnt, addr);
+ }
return;
}
+ if (unlikely(!allow_spin)) {
+ if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
+ local_lock_is_locked(&s->cpu_slab->lock)) {
+ defer_free(s, head);
+ return;
+ }
+ cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
+ }
+
if (USE_LOCKLESS_FAST_PATH()) {
freelist = READ_ONCE(c->freelist);
goto redo;
}
} else {
+ __maybe_unused unsigned long flags = 0;
+
/* Update the free list under the local lock */
- local_lock(&s->cpu_slab->lock);
+ local_lock_cpu_slab(s, flags);
c = this_cpu_ptr(s->cpu_slab);
if (unlikely(slab != c->slab)) {
- local_unlock(&s->cpu_slab->lock);
+ local_unlock_cpu_slab(s, flags);
goto redo;
}
tid = c->tid;
c->freelist = head;
c->tid = next_tid(tid);
- local_unlock(&s->cpu_slab->lock);
+ local_unlock_cpu_slab(s, flags);
}
stat_add(s, FREE_FASTPATH, cnt);
}
}
EXPORT_SYMBOL(kfree);
+/*
+ * Can be called while holding raw_spinlock_t or from IRQ and NMI,
+ * but ONLY for objects allocated by kmalloc_nolock().
+ * Debug checks (like kmemleak and kfence) were skipped on allocation,
+ * hence
+ * obj = kmalloc(); kfree_nolock(obj);
+ * will miss kmemleak/kfence book keeping and will cause false positives.
+ * large_kmalloc is not supported either.
+ */
+void kfree_nolock(const void *object)
+{
+ struct folio *folio;
+ struct slab *slab;
+ struct kmem_cache *s;
+ void *x = (void *)object;
+
+ if (unlikely(ZERO_OR_NULL_PTR(object)))
+ return;
+
+ folio = virt_to_folio(object);
+ if (unlikely(!folio_test_slab(folio))) {
+ WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
+ return;
+ }
+
+ slab = folio_slab(folio);
+ s = slab->slab_cache;
+
+ memcg_slab_free_hook(s, slab, &x, 1);
+ alloc_tagging_slab_free_hook(s, slab, &x, 1);
+ /*
+ * Unlike slab_free() do NOT call the following:
+ * kmemleak_free_recursive(x, s->flags);
+ * debug_check_no_locks_freed(x, s->object_size);
+ * debug_check_no_obj_freed(x, s->object_size);
+ * __kcsan_check_access(x, s->object_size, ..);
+ * kfence_free(x);
+ * since they take spinlocks or not safe from any context.
+ */
+ kmsan_slab_free(s, x);
+ /*
+ * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
+ * which will call raw_spin_lock_irqsave() which is technically
+ * unsafe from NMI, but take chance and report kernel bug.
+ * The sequence of
+ * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
+ * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
+ * is double buggy and deserves to deadlock.
+ */
+ if (kasan_slab_pre_free(s, x))
+ return;
+ /*
+ * memcg, kasan_slab_pre_free are done for 'x'.
+ * The only thing left is kasan_poison without quarantine,
+ * since kasan quarantine takes locks and not supported from NMI.
+ */
+ kasan_slab_free(s, x, false, false, /* skip quarantine */true);
+#ifndef CONFIG_SLUB_TINY
+ do_slab_free(s, slab, x, x, 0, _RET_IP_);
+#else
+ defer_free(s, x);
+#endif
+}
+EXPORT_SYMBOL_GPL(kfree_nolock);
+
static __always_inline __realloc_size(2) void *
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
{