data[hdr+7] = 0;
defragment_out:
+ assert( pPage->nFree>=0 );
if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
return SQLITE_CORRUPT_PAGE(pPage);
}
testcase( gap+2+nByte==top );
if( gap+2+nByte>top ){
assert( pPage->nCell>0 || CORRUPT_DB );
+ assert( pPage->nFree>=0 );
rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
if( rc ) return rc;
top = get2byteNotZero(&data[hdr+5]);
return SQLITE_OK;
}
+/*
+** Compute the amount of freespace on the page. In other words, fill
+** in the pPage->nFree field.
+*/
+static int btreeComputeFreeSpace(MemPage *pPage){
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ u8 hdr; /* Offset to beginning of page header */
+ u8 *data; /* Equal to pPage->aData */
+ int usableSize; /* Amount of usable space on each page */
+ int nFree; /* Number of unused bytes on the page */
+ int top; /* First byte of the cell content area */
+ int iCellFirst; /* First allowable cell or freeblock offset */
+ int iCellLast; /* Last possible cell or freeblock offset */
+
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->db!=0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ assert( pPage->isInit==1 );
+ assert( pPage->nFree<0 );
+
+ usableSize = pPage->pBt->usableSize;
+ hdr = pPage->hdrOffset;
+ data = pPage->aData;
+ /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
+ ** the start of the cell content area. A zero value for this integer is
+ ** interpreted as 65536. */
+ top = get2byteNotZero(&data[hdr+5]);
+ iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
+ iCellLast = usableSize - 4;
+
+ /* Compute the total free space on the page
+ ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
+ ** start of the first freeblock on the page, or is zero if there are no
+ ** freeblocks. */
+ pc = get2byte(&data[hdr+1]);
+ nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
+ if( pc>0 ){
+ u32 next, size;
+ if( pc<iCellFirst ){
+ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
+ ** always be at least one cell before the first freeblock.
+ */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ while( 1 ){
+ if( pc>iCellLast ){
+ /* Freeblock off the end of the page */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ next = get2byte(&data[pc]);
+ size = get2byte(&data[pc+2]);
+ nFree = nFree + size;
+ if( next<=pc+size+3 ) break;
+ pc = next;
+ }
+ if( next>0 ){
+ /* Freeblock not in ascending order */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ if( pc+size>(unsigned int)usableSize ){
+ /* Last freeblock extends past page end */
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ }
+
+ /* At this point, nFree contains the sum of the offset to the start
+ ** of the cell-content area plus the number of free bytes within
+ ** the cell-content area. If this is greater than the usable-size
+ ** of the page, then the page must be corrupted. This check also
+ ** serves to verify that the offset to the start of the cell-content
+ ** area, according to the page header, lies within the page.
+ */
+ if( nFree>usableSize ){
+ return SQLITE_CORRUPT_PAGE(pPage);
+ }
+ pPage->nFree = (u16)(nFree - iCellFirst);
+ return SQLITE_OK;
+}
+
/*
** Initialize the auxiliary information for a disk block.
**
BtShared *pBt; /* The main btree structure */
int usableSize; /* Amount of usable space on each page */
u16 cellOffset; /* Offset from start of page to first cell pointer */
- int nFree; /* Number of unused bytes on the page */
- int top; /* First byte of the cell content area */
int iCellFirst; /* First allowable cell or freeblock offset */
int iCellLast; /* Last possible cell or freeblock offset */
pPage->aDataEnd = &data[usableSize];
pPage->aCellIdx = &data[cellOffset];
pPage->aDataOfst = &data[pPage->childPtrSize];
- /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
- ** the start of the cell content area. A zero value for this integer is
- ** interpreted as 65536. */
- top = get2byteNotZero(&data[hdr+5]);
/* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
** number of cells on the page. */
pPage->nCell = get2byte(&data[hdr+3]);
** possible for a root page of a table that contains no rows) then the
** offset to the cell content area will equal the page size minus the
** bytes of reserved space. */
- assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
+ assert( pPage->nCell>0
+ || get2byteNotZero(&data[hdr+5])==usableSize
+ || CORRUPT_DB );
/* A malformed database page might cause us to read past the end
** of page when parsing a cell.
}
if( !pPage->leaf ) iCellLast++;
}
-
- /* Compute the total free space on the page
- ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
- ** start of the first freeblock on the page, or is zero if there are no
- ** freeblocks. */
- pc = get2byte(&data[hdr+1]);
- nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
- if( pc>0 ){
- u32 next, size;
- if( pc<iCellFirst ){
- /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
- ** always be at least one cell before the first freeblock.
- */
- return SQLITE_CORRUPT_PAGE(pPage);
- }
- while( 1 ){
- if( pc>iCellLast ){
- /* Freeblock off the end of the page */
- return SQLITE_CORRUPT_PAGE(pPage);
- }
- next = get2byte(&data[pc]);
- size = get2byte(&data[pc+2]);
- nFree = nFree + size;
- if( next<=pc+size+3 ) break;
- pc = next;
- }
- if( next>0 ){
- /* Freeblock not in ascending order */
- return SQLITE_CORRUPT_PAGE(pPage);
- }
- if( pc+size>(unsigned int)usableSize ){
- /* Last freeblock extends past page end */
- return SQLITE_CORRUPT_PAGE(pPage);
- }
- }
-
- /* At this point, nFree contains the sum of the offset to the start
- ** of the cell-content area plus the number of free bytes within
- ** the cell-content area. If this is greater than the usable-size
- ** of the page, then the page must be corrupted. This check also
- ** serves to verify that the offset to the start of the cell-content
- ** area, according to the page header, lies within the page.
- */
- if( nFree>usableSize ){
- return SQLITE_CORRUPT_PAGE(pPage);
- }
- pPage->nFree = (u16)(nFree - iCellFirst);
+ pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
pPage->isInit = 1;
return SQLITE_OK;
}
if( pgno>btreePagecount(pBt) ){
rc = SQLITE_CORRUPT_BKPT;
- goto getAndInitPage_error;
+ goto getAndInitPage_error1;
}
rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
if( rc ){
- goto getAndInitPage_error;
+ goto getAndInitPage_error1;
}
*ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
if( (*ppPage)->isInit==0 ){
btreePageFromDbPage(pDbPage, pgno, pBt);
rc = btreeInitPage(*ppPage);
if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- goto getAndInitPage_error;
+ goto getAndInitPage_error2;
}
}
assert( (*ppPage)->pgno==pgno );
** compatible with the root page. */
if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
rc = SQLITE_CORRUPT_PGNO(pgno);
- releasePage(*ppPage);
- goto getAndInitPage_error;
+ goto getAndInitPage_error2;
}
return SQLITE_OK;
-getAndInitPage_error:
+getAndInitPage_error2:
+ releasePage(*ppPage);
+getAndInitPage_error1:
if( pCur ){
pCur->iPage--;
pCur->pPage = pCur->apPage[pCur->iPage];
assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->nFree>=0 );
data = pPage->aData;
ptr = &pPage->aCellIdx[2*idx];
pc = get2byte(ptr);
** might be less than 8 (leaf-size + pointer) on the interior node. Hence
** the term after the || in the following assert(). */
assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
+ assert( pPage->nFree>=0 );
if( pPage->nOverflow || sz+2>pPage->nFree ){
if( pTemp ){
memcpy(pTemp, pCell, sz);
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
assert( sqlite3PagerIswriteable(pParent->pDbPage) );
assert( pPage->nOverflow==1 );
-
+
if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
+ if( pPage->nFree<0 ){
+ rc = btreeComputeFreeSpace(pPage);
+ if( rc ) return rc;
+ }
+ if( pParent->nFree<0 ){
+ rc = btreeComputeFreeSpace(pParent);
+ if( rc ) return rc;
+ }
+
/* Allocate a new page. This page will become the right-sibling of
** pPage. Make the parent page writable, so that the new divider cell
if( !aOvflSpace ){
return SQLITE_NOMEM_BKPT;
}
+ if( pParent->nFree<0 ){
+ rc = btreeComputeFreeSpace(pParent);
+ if( rc ) return rc;
+ }
/* Find the sibling pages to balance. Also locate the cells in pParent
** that divide the siblings. An attempt is made to find NN siblings on
pgno = get4byte(pRight);
while( 1 ){
rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
+ if( rc==0 && apOld[i]->nFree<0 ){
+ rc = btreeComputeFreeSpace(apOld[i]);
+ }
if( rc ){
memset(apOld, 0, (i+1)*sizeof(MemPage*));
goto balance_cleanup;
b.apEnd[k] = pParent->aDataEnd;
b.ixNx[k] = cntOld[i]+1;
}
+ assert( p->nFree>=0 );
szNew[i] = usableSpace - p->nFree;
for(j=0; j<p->nOverflow; j++){
szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
int iPage = pCur->iPage;
MemPage *pPage = pCur->pPage;
+ if( pPage->nFree<0 ){
+ rc = btreeComputeFreeSpace(pPage);
+ if( rc ) break;
+ }
if( iPage==0 ){
if( pPage->nOverflow ){
/* The root page of the b-tree is overfull. In this case call the
pPage = pCur->pPage;
assert( pPage->intKey || pX->nKey>=0 );
assert( pPage->leaf || !pPage->intKey );
+ if( pPage->nFree<0 ){
+ rc = btreeComputeFreeSpace(pPage);
+ if( rc ) return rc;
+ }
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
iCellIdx = pCur->ix;
pPage = pCur->pPage;
pCell = findCell(pPage, iCellIdx);
+ if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
/* If the bPreserve flag is set to true, then the cursor position must
** be preserved following this delete operation. If the current delete
Pgno n;
unsigned char *pTmp;
+ if( pLeaf->nFree<0 ){
+ rc = btreeComputeFreeSpace(pLeaf);
+ if( rc ) return rc;
+ }
if( iCellDepth<pCur->iPage-1 ){
n = pCur->apPage[iCellDepth+1]->pgno;
}else{
"btreeInitPage() returns error code %d", rc);
goto end_of_check;
}
+ if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
+ assert( rc==SQLITE_CORRUPT );
+ checkAppendMsg(pCheck, "free space corruption", rc);
+ goto end_of_check;
+ }
data = pPage->aData;
hdr = pPage->hdrOffset;