--- /dev/null
+/*
+ * Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * https://www.openssl.org/source/license.html
+ * or in the file LICENSE in the source distribution.
+ */
+
+/* Test ML-DSA operation. */
+#include <string.h>
+#include <openssl/evp.h>
+#include <openssl/err.h>
+#include <openssl/rand.h>
+#include <openssl/byteorder.h>
+#include "internal/nelem.h"
+#include "fuzzer.h"
+#include "crypto/ml_dsa.h"
+
+/**
+ * @brief Consumes an 8-bit unsigned integer from a buffer.
+ *
+ * This function extracts an 8-bit unsigned integer from the provided buffer,
+ * updates the buffer pointer, and adjusts the remaining length.
+ *
+ * @param buf Pointer to the input buffer.
+ * @param len Pointer to the size of the remaining buffer; updated after consumption.
+ * @param val Pointer to store the extracted 8-bit value.
+ *
+ * @return Pointer to the updated buffer position after reading the value,
+ * or NULL if the buffer does not contain enough data.
+ */
+static uint8_t *consume_uint8_t(const uint8_t *buf, size_t *len, uint8_t *val)
+{
+ if (*len < sizeof(uint8_t))
+ return NULL;
+ *val = *buf;
+ *len -= sizeof(uint8_t);
+ return (uint8_t *)buf + 1;
+}
+
+/**
+ * @brief Consumes a size_t from a buffer.
+ *
+ * This function extracts a size_t from the provided buffer, updates the buffer
+ * pointer, and adjusts the remaining length.
+ *
+ * @param buf Pointer to the input buffer.
+ * @param len Pointer to the size of the remaining buffer; updated after consumption.
+ * @param val Pointer to store the extracted size_t value.
+ *
+ * @return Pointer to the updated buffer position after reading the value,
+ * or NULL if the buffer does not contain enough data.
+ */
+static uint8_t *consume_size_t(const uint8_t *buf, size_t *len, size_t *val)
+{
+ if (*len < sizeof(size_t))
+ return NULL;
+ *val = *buf;
+ *len -= sizeof(size_t);
+ return (uint8_t *)buf + sizeof(size_t);
+}
+
+/**
+ * @brief Selects a key type and size from a buffer.
+ *
+ * This function reads a key size value from the buffer, determines the
+ * corresponding key type and length, and updates the buffer pointer
+ * accordingly. If `only_valid` is set, it restricts selection to valid key
+ * sizes; otherwise, it includes some invalid sizes for testing.
+ *
+ * @param buf Pointer to the buffer pointer; updated after reading.
+ * @param len Pointer to the remaining buffer size; updated accordingly.
+ * @param keytype Pointer to store the selected key type string.
+ * @param keylen Pointer to store the selected key length.
+ * @param only_valid Flag to restrict selection to valid key sizes.
+ *
+ * @return 1 if a key type is successfully selected, 0 on failure.
+ */
+static int select_keytype_and_size(uint8_t **buf, size_t *len,
+ char **keytype, size_t *keylen,
+ int only_valid)
+{
+ uint16_t keysize;
+ uint16_t modulus = 6;
+
+ /*
+ * Note: We don't really care about endianness here, we just want a random
+ * 16 bit value
+ */
+ *buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
+ *len -= sizeof(uint16_t);
+
+ if (*buf == NULL)
+ return 0;
+
+ /*
+ * If `only_valid` is set, select only ML-DSA-44, ML-DSA-65, and ML-DSA-87.
+ * Otherwise, include some invalid sizes to trigger error paths.
+ */
+
+ if (only_valid)
+ modulus = 3;
+
+ /*
+ * Note, keylens for valid values (cases 0-2) are taken based on input
+ * values from our unit tests
+ */
+ switch (keysize % modulus) {
+ case 0:
+ *keytype = "ML-DSA-44";
+ *keylen = ML_DSA_44_PUB_LEN;
+ break;
+ case 1:
+ *keytype = "ML-DSA-65";
+ *keylen = ML_DSA_65_PUB_LEN;
+ break;
+ case 2:
+ *keytype = "ML-DSA-87";
+ *keylen = ML_DSA_87_PUB_LEN;
+ break;
+ case 3:
+ /* select invalid alg */
+ *keytype = "ML-DSA-33";
+ *keylen = 33;
+ break;
+ case 4:
+ /* Select valid alg, but bogus size */
+ *keytype = "ML-DSA-87";
+ *buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
+ *len -= sizeof(uint16_t);
+ *keylen = (size_t)keysize;
+ *keylen %= ML_DSA_87_PUB_LEN; /* size to our key buffer */
+ break;
+ default:
+ *keytype = NULL;
+ *keylen = 0;
+ break;
+ }
+ return 1;
+}
+
+/**
+ * @brief Creates an ML-DSA raw key from a buffer.
+ *
+ * This function selects a key type and size from the buffer, generates a random
+ * key of the appropriate length, and creates either a public or private ML-DSA
+ * key using OpenSSL's EVP_PKEY interface.
+ *
+ * @param buf Pointer to the buffer pointer; updated after reading.
+ * @param len Pointer to the remaining buffer size; updated accordingly.
+ * @param key1 Pointer to store the generated EVP_PKEY key (public or private).
+ * @param key2 Unused parameter (reserved for future use).
+ *
+ * @note The generated key is allocated using OpenSSL's EVP_PKEY functions
+ * and should be freed appropriately using `EVP_PKEY_free()`.
+ */
+static void create_ml_dsa_raw_key(uint8_t **buf, size_t *len,
+ void **key1, void **key2)
+{
+ EVP_PKEY *pubkey;
+ char *keytype = NULL;
+ size_t keylen = 0;
+ /* MAX_ML_DSA_PRIV_LEN is longer of that and ML_DSA_87_PUB_LEN */
+ uint8_t key[MAX_ML_DSA_PRIV_LEN];
+ int pub = 0;
+
+ if (!select_keytype_and_size(buf, len, &keytype, &keylen, 0))
+ return;
+
+ /*
+ * Select public or private key creation based on the low order bit of the
+ * next buffer value.
+ * Note that keylen as returned from select_keytype_and_size is a public key
+ * length, so make the adjustment to private key lengths here.
+ */
+ if ((*buf)[0] & 0x1) {
+ pub = 1;
+ } else {
+ switch (keylen) {
+ case (ML_DSA_44_PUB_LEN):
+ keylen = ML_DSA_44_PRIV_LEN;
+ break;
+ case (ML_DSA_65_PUB_LEN):
+ keylen = ML_DSA_65_PRIV_LEN;
+ break;
+ case (ML_DSA_87_PUB_LEN):
+ keylen = ML_DSA_87_PRIV_LEN;
+ break;
+ default:
+ return;
+ }
+ }
+
+ /*
+ * libfuzzer provides by default up to 4096 bit input buffers, but it's
+ * typically much less (between 1 and 100 bytes) so use RAND_bytes here
+ * instead
+ */
+ if (!RAND_bytes(key, keylen))
+ return;
+
+ /*
+ * Try to generate either a raw public or private key using random data
+ * Because the input is completely random, it's effectively certain this
+ * operation will fail, but it will still exercise the code paths below,
+ * which is what we want the fuzzer to do
+ */
+ if (pub == 1)
+ pubkey = EVP_PKEY_new_raw_public_key_ex(NULL, keytype, NULL, key, keylen);
+ else
+ pubkey = EVP_PKEY_new_raw_private_key_ex(NULL, keytype, NULL, key, keylen);
+
+ *key1 = pubkey;
+ return;
+}
+
+static int keygen_ml_dsa_real_key_helper(uint8_t **buf, size_t *len,
+ EVP_PKEY **key)
+{
+ char *keytype = NULL;
+ size_t keylen = 0;
+ EVP_PKEY_CTX *ctx = NULL;
+ int ret = 0;
+
+ /*
+ * Only generate valid key types and lengths. Note, no adjustment is made to
+ * keylen here, as the provider is responsible for selecting the keys and
+ * sizes for us during the EVP_PKEY_keygen call
+ */
+ if (!select_keytype_and_size(buf, len, &keytype, &keylen, 1))
+ goto err;
+
+ ctx = EVP_PKEY_CTX_new_from_name(NULL, keytype, NULL);
+ if (!ctx) {
+ fprintf(stderr, "Failed to generate ctx\n");
+ goto err;
+ }
+
+ if (!EVP_PKEY_keygen_init(ctx)) {
+ fprintf(stderr, "Failed to init keygen ctx\n");
+ goto err;
+ }
+
+ *key = EVP_PKEY_new();
+ if (*key == NULL)
+ goto err;
+
+ if (!EVP_PKEY_generate(ctx, key)) {
+ fprintf(stderr, "Failed to generate new real key\n");
+ goto err;
+ }
+
+ ret = 1;
+err:
+ EVP_PKEY_CTX_free(ctx);
+ return ret;
+}
+
+/**
+ * @brief Generates a valid ML-DSA key using OpenSSL.
+ *
+ * This function selects a valid ML-DSA key type and size from the buffer,
+ * initializes an OpenSSL EVP_PKEY context, and generates a cryptographic key
+ * accordingly.
+ *
+ * @param buf Pointer to the buffer pointer; updated after reading.
+ * @param len Pointer to the remaining buffer size; updated accordingly.
+ * @param key1 Pointer to store the first generated EVP_PKEY key.
+ * @param key2 Pointer to store the second generated EVP_PKEY key.
+ *
+ * @note The generated key is allocated using OpenSSL's EVP_PKEY functions
+ * and should be freed using `EVP_PKEY_free()`.
+ */
+static void keygen_ml_dsa_real_key(uint8_t **buf, size_t *len,
+ void **key1, void **key2)
+{
+ if (!keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key1)
+ || !keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key2))
+ fprintf(stderr, "Unable to generate valid keys");
+}
+
+/**
+ * @brief Performs key sign and verify using an EVP_PKEY.
+ *
+ * This function generates a random key, signs random data using the provided
+ * public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
+ * encryption and decryption.
+ *
+ * @param[out] buf Unused output buffer (reserved for future use).
+ * @param[out] len Unused length parameter (reserved for future use).
+ * @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
+ * @param[in] in2 Unused input parameter (reserved for future use).
+ * @param[out] out1 Unused output parameter (reserved for future use).
+ * @param[out] out2 Unused output parameter (reserved for future use).
+ */
+static void ml_dsa_sign_verify(uint8_t **buf, size_t *len, void *key1,
+ void *in2, void **out1, void **out2)
+{
+ EVP_PKEY *key = (EVP_PKEY *)key1;
+ EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
+ EVP_SIGNATURE *sig_alg = NULL;
+ unsigned char *sig = NULL;
+ size_t sig_len = 0, tbslen;
+ unsigned char *tbs = NULL;
+ /* Ownership of alg is retained by the pkey object */
+ const char *alg = EVP_PKEY_get0_type_name(key);
+ const OSSL_PARAM params[] = {
+ OSSL_PARAM_octet_string("context-string",
+ (unsigned char *)"A context string", 16),
+ OSSL_PARAM_END
+ };
+
+ if (!consume_size_t(*buf, len, &tbslen)) {
+ fprintf(stderr, "Failed to set tbslen");
+ goto err;
+ }
+ /* Keep tbslen within a reasonable value we can malloc */
+ tbslen = (tbslen % 2048) + 1;
+
+ if ((tbs = OPENSSL_malloc(tbslen)) == NULL
+ || ctx == NULL || alg == NULL
+ || !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
+ fprintf(stderr, "Failed basic initialization\n");
+ goto err;
+ }
+
+ /*
+ * Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
+ * and Ed448, we don't have any immediate plans to implement intermediate
+ * sign/verify functions. Therefore, we only test the one-shot functions.
+ */
+
+ if ((sig_alg = EVP_SIGNATURE_fetch(NULL, alg, NULL)) == NULL
+ || EVP_PKEY_sign_message_init(ctx, sig_alg, params) <= 0
+ || EVP_PKEY_sign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
+ || (sig = OPENSSL_zalloc(sig_len)) == NULL
+ || EVP_PKEY_sign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
+ fprintf(stderr, "Failed to sign message\n");
+ goto err;
+ }
+
+ /* Verify signature */
+ EVP_PKEY_CTX_free(ctx);
+ ctx = NULL;
+
+ if ((ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL)) == NULL
+ || EVP_PKEY_verify_message_init(ctx, sig_alg, params) <= 0
+ || EVP_PKEY_verify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
+ fprintf(stderr, "Failed to verify message\n");
+ goto err;
+ }
+
+err:
+ OPENSSL_free(tbs);
+ EVP_PKEY_CTX_free(ctx);
+ EVP_SIGNATURE_free(sig_alg);
+ OPENSSL_free(sig);
+ return;
+}
+
+/**
+ * @brief Performs key sign and verify using an EVP_PKEY.
+ *
+ * This function generates a random key, signs random data using the provided
+ * public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
+ * encryption and decryption.
+ *
+ * @param[out] buf Unused output buffer (reserved for future use).
+ * @param[out] len Unused length parameter (reserved for future use).
+ * @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
+ * @param[in] in2 Unused input parameter (reserved for future use).
+ * @param[out] out1 Unused output parameter (reserved for future use).
+ * @param[out] out2 Unused output parameter (reserved for future use).
+ */
+static void ml_dsa_digest_sign_verify(uint8_t **buf, size_t *len, void *key1,
+ void *in2, void **out1, void **out2)
+{
+ EVP_PKEY *key = (EVP_PKEY *)key1;
+ EVP_MD_CTX *ctx = EVP_MD_CTX_new();
+ EVP_SIGNATURE *sig_alg = NULL;
+ unsigned char *sig = NULL;
+ size_t sig_len, tbslen;
+ unsigned char *tbs = NULL;
+ const OSSL_PARAM params[] = {
+ OSSL_PARAM_octet_string("context-string",
+ (unsigned char *)"A context string", 16),
+ OSSL_PARAM_END
+ };
+
+ if (!consume_size_t(*buf, len, &tbslen)) {
+ fprintf(stderr, "Failed to set tbslen");
+ goto err;
+ }
+ /* Keep tbslen within a reasonable value we can malloc */
+ tbslen = (tbslen % 2048) + 1;
+
+ if ((tbs = OPENSSL_malloc(tbslen)) == NULL
+ || ctx == NULL
+ || !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
+ fprintf(stderr, "Failed basic initialization\n");
+ goto err;
+ }
+
+ /*
+ * Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
+ * and Ed448, we don't have any immediate plans to implement intermediate
+ * sign/verify functions. Therefore, we only test the one-shot functions.
+ */
+
+ if (!EVP_DigestSignInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key, params)
+ || EVP_DigestSign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
+ || (sig = OPENSSL_malloc(sig_len)) == NULL
+ || EVP_DigestSign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
+ fprintf(stderr, "Failed to sign digest with EVP_DigestSign\n");
+ goto err;
+ }
+
+ /* Verify signature */
+ EVP_MD_CTX_free(ctx);
+ ctx = NULL;
+
+ if ((ctx = EVP_MD_CTX_new()) == NULL
+ || EVP_DigestVerifyInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key,
+ params) <= 0
+ || EVP_DigestVerify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
+ fprintf(stderr, "Failed to verify digest with EVP_DigestVerify\n");
+ goto err;
+ }
+
+err:
+ OPENSSL_free(tbs);
+ EVP_MD_CTX_free(ctx);
+ EVP_SIGNATURE_free(sig_alg);
+ OPENSSL_free(sig);
+ return;
+}
+
+/**
+ * @brief Exports and imports an ML-DSA key.
+ *
+ * This function extracts key material from the given key (`key1`), exports it
+ * as parameters, and then attempts to reconstruct a new key from those
+ * parameters. It uses OpenSSL's `EVP_PKEY_todata()` and `EVP_PKEY_fromdata()`
+ * functions for this process.
+ *
+ * @param[out] buf Unused output buffer (reserved for future use).
+ * @param[out] len Unused output length (reserved for future use).
+ * @param[in] key1 The key to be exported and imported.
+ * @param[in] key2 Unused input key (reserved for future use).
+ * @param[out] out1 Unused output parameter (reserved for future use).
+ * @param[out] out2 Unused output parameter (reserved for future use).
+ *
+ * @note If any step in the export-import process fails, the function
+ * logs an error and cleans up allocated resources.
+ */
+static void ml_dsa_export_import(uint8_t **buf, size_t *len, void *key1,
+ void *key2, void **out1, void **out2)
+{
+ EVP_PKEY *alice = (EVP_PKEY *)key1;
+ EVP_PKEY *new_key = NULL;
+ EVP_PKEY_CTX *ctx = NULL;
+ OSSL_PARAM *params = NULL;
+
+ if (!EVP_PKEY_todata(alice, EVP_PKEY_KEYPAIR, ¶ms)) {
+ fprintf(stderr, "Failed todata\n");
+ goto err;
+ }
+
+ ctx = EVP_PKEY_CTX_new_from_pkey(NULL, alice, NULL);
+ if (ctx == NULL) {
+ fprintf(stderr, "Failed new ctx\n");
+ goto err;
+ }
+
+ if (!EVP_PKEY_fromdata(ctx, &new_key, EVP_PKEY_KEYPAIR, params)) {
+ fprintf(stderr, "Failed fromdata\n");
+ goto err;
+ }
+
+err:
+ EVP_PKEY_CTX_free(ctx);
+ EVP_PKEY_free(new_key);
+ OSSL_PARAM_free(params);
+}
+
+/**
+ * @brief Compares two cryptographic keys and performs equality checks.
+ *
+ * This function takes in two cryptographic keys, casts them to `EVP_PKEY`
+ * structures, and checks their equality using `EVP_PKEY_eq()`. The purpose of
+ * `buf`, `len`, `out1`, and `out2` parameters is not clear from the function's
+ * current implementation.
+ *
+ * @param buf Unused parameter (purpose unclear).
+ * @param len Unused parameter (purpose unclear).
+ * @param key1 First key, expected to be an `EVP_PKEY *`.
+ * @param key2 Second key, expected to be an `EVP_PKEY *`.
+ * @param out1 Unused parameter (purpose unclear).
+ * @param out2 Unused parameter (purpose unclear).
+ */
+static void ml_dsa_compare(uint8_t **buf, size_t *len, void *key1,
+ void *key2, void **out1, void **out2)
+{
+ EVP_PKEY *alice = (EVP_PKEY *)key1;
+ EVP_PKEY *bob = (EVP_PKEY *)key2;
+
+ EVP_PKEY_eq(alice, alice);
+ EVP_PKEY_eq(alice, bob);
+}
+
+/**
+ * @brief Frees allocated ML-DSA keys.
+ *
+ * This function releases memory associated with up to four EVP_PKEY objects by
+ * calling `EVP_PKEY_free()` on each provided key.
+ *
+ * @param key1 Pointer to the first key to be freed.
+ * @param key2 Pointer to the second key to be freed.
+ * @param key3 Pointer to the third key to be freed.
+ * @param key4 Pointer to the fourth key to be freed.
+ *
+ * @note This function assumes that each key is either a valid EVP_PKEY
+ * object or NULL. Passing NULL is safe and has no effect.
+ */
+static void cleanup_ml_dsa_keys(void *key1, void *key2,
+ void *key3, void *key4)
+{
+ EVP_PKEY_free((EVP_PKEY *)key1);
+ EVP_PKEY_free((EVP_PKEY *)key2);
+ EVP_PKEY_free((EVP_PKEY *)key3);
+ EVP_PKEY_free((EVP_PKEY *)key4);
+}
+
+/**
+ * @brief Represents an operation table entry for cryptographic operations.
+ *
+ * This structure defines a table entry containing function pointers for setting
+ * up, executing, and cleaning up cryptographic operations, along with
+ * associated metadata such as a name and description.
+ *
+ * @struct op_table_entry
+ */
+struct op_table_entry {
+ /** Name of the operation. */
+ char *name;
+
+ /** Description of the operation. */
+ char *desc;
+
+ /**
+ * @brief Function pointer for setting up the operation.
+ *
+ * @param buf Pointer to the buffer pointer; may be updated.
+ * @param len Pointer to the remaining buffer size; may be updated.
+ * @param out1 Pointer to store the first output of the setup function.
+ * @param out2 Pointer to store the second output of the setup function.
+ */
+ void (*setup)(uint8_t **buf, size_t *len, void **out1, void **out2);
+
+ /**
+ * @brief Function pointer for executing the operation.
+ *
+ * @param buf Pointer to the buffer pointer; may be updated.
+ * @param len Pointer to the remaining buffer size; may be updated.
+ * @param in1 First input parameter for the operation.
+ * @param in2 Second input parameter for the operation.
+ * @param out1 Pointer to store the first output of the operation.
+ * @param out2 Pointer to store the second output of the operation.
+ */
+ void (*doit)(uint8_t **buf, size_t *len, void *in1, void *in2,
+ void **out1, void **out2);
+
+ /**
+ * @brief Function pointer for cleaning up after the operation.
+ *
+ * @param in1 First input parameter to be cleaned up.
+ * @param in2 Second input parameter to be cleaned up.
+ * @param out1 First output parameter to be cleaned up.
+ * @param out2 Second output parameter to be cleaned up.
+ */
+ void (*cleanup)(void *in1, void *in2, void *out1, void *out2);
+};
+
+static struct op_table_entry ops[] = {
+ {
+ "Generate ML-DSA raw key",
+ "Try generate a raw keypair using random data. Usually fails",
+ create_ml_dsa_raw_key,
+ NULL,
+ cleanup_ml_dsa_keys
+ }, {
+ "Generate ML-DSA keypair, using EVP_PKEY_keygen",
+ "Generates a real ML-DSA keypair, should always work",
+ keygen_ml_dsa_real_key,
+ NULL,
+ cleanup_ml_dsa_keys
+ }, {
+ "Do a sign/verify operation on a key",
+ "Generate key, sign random data, verify it, should work",
+ keygen_ml_dsa_real_key,
+ ml_dsa_sign_verify,
+ cleanup_ml_dsa_keys
+ }, {
+ "Do a digest sign/verify operation on a key",
+ "Generate key, digest sign random data, verify it, should work",
+ keygen_ml_dsa_real_key,
+ ml_dsa_digest_sign_verify,
+ cleanup_ml_dsa_keys
+ }, {
+ "Do an export/import of key data",
+ "Exercise EVP_PKEY_todata/fromdata",
+ keygen_ml_dsa_real_key,
+ ml_dsa_export_import,
+ cleanup_ml_dsa_keys
+ }, {
+ "Compare keys for equality",
+ "Compare key1/key1 and key1/key2 for equality",
+ keygen_ml_dsa_real_key,
+ ml_dsa_compare,
+ cleanup_ml_dsa_keys
+ }
+};
+
+int FuzzerInitialize(int *argc, char ***argv)
+{
+ return 0;
+}
+
+/**
+ * @brief Processes a fuzzing input by selecting and executing an operation.
+ *
+ * This function interprets the first byte of the input buffer to determine an
+ * operation to execute. It then follows a setup, execution, and cleanup
+ * sequence based on the selected operation.
+ *
+ * @param buf Pointer to the input buffer.
+ * @param len Length of the input buffer.
+ *
+ * @return 0 on successful execution, -1 if the input is too short.
+ *
+ * @note The function requires at least 32 bytes in the buffer to proceed.
+ * It utilizes the `ops` operation table to dynamically determine and
+ * execute the selected operation.
+ */
+int FuzzerTestOneInput(const uint8_t *buf, size_t len)
+{
+ uint8_t operation;
+ uint8_t *buffer_cursor;
+ void *in1 = NULL, *in2 = NULL;
+ void *out1 = NULL, *out2 = NULL;
+
+ if (len < 32)
+ return -1;
+
+ /* Get the first byte of the buffer to tell us what operation to perform */
+ buffer_cursor = consume_uint8_t(buf, &len, &operation);
+ if (buffer_cursor == NULL)
+ return -1;
+
+ /* Adjust for operational array size */
+ operation %= OSSL_NELEM(ops);
+
+ /* And run our setup/doit/cleanup sequence */
+ if (ops[operation].setup != NULL)
+ ops[operation].setup(&buffer_cursor, &len, &in1, &in2);
+ if (ops[operation].doit != NULL)
+ ops[operation].doit(&buffer_cursor, &len, in1, in2, &out1, &out2);
+ if (ops[operation].cleanup != NULL)
+ ops[operation].cleanup(in1, in2, out1, out2);
+
+ return 0;
+}
+
+void FuzzerCleanup(void)
+{
+ OPENSSL_cleanup();
+}