]> git.ipfire.org Git - thirdparty/gcc.git/commitdiff
libstdc++: Avoid overflow in bounds checks [PR103955]
authorPatrick Palka <ppalka@redhat.com>
Wed, 12 Jan 2022 14:10:24 +0000 (09:10 -0500)
committerPatrick Palka <ppalka@redhat.com>
Wed, 12 Jan 2022 14:10:24 +0000 (09:10 -0500)
We currently crash when the floating-point to_chars overloads are passed
a precision value near INT_MAX, ultimately due to overflow in the bounds
checks that verify the output range is large enough.

The simplest portable fix seems to be to replace bounds checks of the form
A >= B + C (where B + C may overflow) with the otherwise equivalent check
A >= B && A - B >= C, which is the approach this patch takes.

Before we could do this in __floating_to_chars_hex, there we first need
to track the unbounded "excess" precision (i.e. the number of trailing
fractional digits in the output that are guaranteed to be '0') separately
from the bounded "effective" precision (i.e. the number of significant
fractional digits in the output), like we do in __f_t_c_precision.

PR libstdc++/103955

libstdc++-v3/ChangeLog:

* src/c++17/floating_to_chars.cc (__floating_to_chars_hex):
Track the excess precision separately from the effective
precision.  Avoid overflow in bounds check by splitting it into
two checks.
(__floating_to_chars_precision): Avoid overflow in bounds checks
similarly.
* testsuite/20_util/to_chars/103955.cc: New test.

libstdc++-v3/src/c++17/floating_to_chars.cc
libstdc++-v3/testsuite/20_util/to_chars/103955.cc [new file with mode: 0644]

index c825a3c8b24c9ccb96c9b548da8ac67135f84912..8da2f2385a01c81de1334073e1d5ba61f9fc6a7d 100644 (file)
@@ -747,7 +747,8 @@ template<typename T>
     __glibcxx_assert(shortest_full_precision >= 0);
 
     int written_exponent = unbiased_exponent;
-    const int effective_precision = precision.value_or(shortest_full_precision);
+    int effective_precision = precision.value_or(shortest_full_precision);
+    int excess_precision = 0;
     if (effective_precision < shortest_full_precision)
       {
        // When limiting the precision, we need to determine how to round the
@@ -794,6 +795,11 @@ template<typename T>
              }
          }
       }
+    else
+      {
+       excess_precision = effective_precision - shortest_full_precision;
+       effective_precision = shortest_full_precision;
+      }
 
     // Compute the leading hexit and mask it out from the mantissa.
     char leading_hexit;
@@ -816,26 +822,30 @@ template<typename T>
     // Now before we start writing the string, determine the total length of
     // the output string and perform a single bounds check.
     int expected_output_length = sign + 1;
-    if (effective_precision != 0)
-      expected_output_length += strlen(".") + effective_precision;
+    if (effective_precision + excess_precision > 0)
+      expected_output_length += strlen(".");
+    expected_output_length += effective_precision;
     const int abs_written_exponent = abs(written_exponent);
     expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd")
                               : abs_written_exponent >= 1000 ? strlen("p+dddd")
                               : abs_written_exponent >= 100 ? strlen("p+ddd")
                               : abs_written_exponent >= 10 ? strlen("p+dd")
                               : strlen("p+d"));
-    if (last - first < expected_output_length)
+    if (last - first < expected_output_length
+       || last - first - expected_output_length < excess_precision)
       return {last, errc::value_too_large};
+    char* const expected_output_end = first + expected_output_length + excess_precision;
 
-    const auto saved_first = first;
     // Write the negative sign and the leading hexit.
     if (sign)
       *first++ = '-';
     *first++ = leading_hexit;
 
+    if (effective_precision + excess_precision > 0)
+      *first++ = '.';
+
     if (effective_precision > 0)
       {
-       *first++ = '.';
        int written_hexits = 0;
        // Extract and mask out the leading nibble after the decimal point,
        // write its corresponding hexit, and repeat until the mantissa is
@@ -863,13 +873,18 @@ template<typename T>
          }
       }
 
+    if (excess_precision > 0)
+      {
+       memset(first, '0', excess_precision);
+       first += excess_precision;
+      }
+
     // Finally, write the exponent.
     *first++ = 'p';
     if (written_exponent >= 0)
       *first++ = '+';
     const to_chars_result result = to_chars(first, last, written_exponent);
-    __glibcxx_assert(result.ec == errc{}
-                    && result.ptr == saved_first + expected_output_length);
+    __glibcxx_assert(result.ec == errc{} && result.ptr == expected_output_end);
     return result;
   }
 
@@ -1250,7 +1265,8 @@ template<typename T>
            }
 
        // Copy the string from the buffer over to the output range.
-       if (last - first < output_length + excess_precision)
+       if (last - first < output_length
+           || last - first - output_length < excess_precision)
          return {last, errc::value_too_large};
        memcpy(first, buffer, output_length);
        first += output_length;
@@ -1304,7 +1320,8 @@ template<typename T>
          output_length_upper_bound += strlen("e+dd");
 
        int output_length;
-       if (last - first >= output_length_upper_bound + excess_precision)
+       if (last - first >= output_length_upper_bound
+           && last - first - output_length_upper_bound >= excess_precision)
          {
            // The result will definitely fit into the output range, so we can
            // write directly into it.
@@ -1325,7 +1342,8 @@ template<typename T>
                                                  buffer, nullptr);
            __glibcxx_assert(output_length == output_length_upper_bound - 1
                             || output_length == output_length_upper_bound);
-           if (last - first < output_length + excess_precision)
+           if (last - first < output_length
+               || last - first - output_length < excess_precision)
              return {last, errc::value_too_large};
            memcpy(first, buffer, output_length);
          }
@@ -1365,7 +1383,8 @@ template<typename T>
          output_length_upper_bound += strlen(".") + effective_precision;
 
        int output_length;
-       if (last - first >= output_length_upper_bound + excess_precision)
+       if (last - first >= output_length_upper_bound
+           && last - first - output_length_upper_bound >= excess_precision)
          {
            // The result will definitely fit into the output range, so we can
            // write directly into it.
@@ -1382,7 +1401,8 @@ template<typename T>
            output_length = ryu::d2fixed_buffered_n(value, effective_precision,
                                                    buffer);
            __glibcxx_assert(output_length <= output_length_upper_bound);
-           if (last - first < output_length + excess_precision)
+           if (last - first < output_length
+               || last - first - output_length < excess_precision)
              return {last, errc::value_too_large};
            memcpy(first, buffer, output_length);
          }
diff --git a/libstdc++-v3/testsuite/20_util/to_chars/103955.cc b/libstdc++-v3/testsuite/20_util/to_chars/103955.cc
new file mode 100644 (file)
index 0000000..3753c87
--- /dev/null
@@ -0,0 +1,30 @@
+// PR libstdc++/103955
+// Verify we don't crash when the floating-point to_chars overloads are passed
+// a large precision argument.
+
+#include <charconv>
+
+#include <climits>
+#include <initializer_list>
+#include <testsuite_hooks.h>
+
+void
+test01()
+{
+  const int size = 12;
+  char result[size];
+
+  for (auto fmt : { std::chars_format::fixed, std::chars_format::scientific,
+                   std::chars_format::general, std::chars_format::hex })
+    for (int precision : { INT_MAX, INT_MAX-1, INT_MAX-2 })
+      {
+       auto tcr = std::to_chars(result, result+size, 1.337, fmt, precision);
+       VERIFY( tcr.ptr == result+size && tcr.ec == std::errc::value_too_large );
+      }
+}
+
+int
+main()
+{
+  test01();
+}