It optimizes the RSA-2k/3k/4k via the AVXIFMA ISA on Sierra Forest.
The performance improvements of 1.8x-2.2x are observed in the speed
tests of sign and decryption operations on this CPU.
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Saša Nedvědický <sashan@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/25751)
*Watson Ladd*
+ * Parallel dual-prime 1024/1536/2048-bit modular exponentiation for
+ AVX_IFMA capable processors.
+
+ *Zhiguo Zhou, Wangyang Guo (Intel Corp)*
+
OpenSSL 3.3
-----------
--- /dev/null
+# Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
+# Copyright (c) 2024, Intel Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# Written by Zhiguo Zhou <zhiguo.zhou@intel.com> and Wangyang Guo <wangyang.guo@intel.com>.
+# Special thanks to Tomasz Kantecki <tomasz.kantecki@intel.com> for his valuable suggestions.
+#
+# October 2024
+#
+# Initial release.
+#
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+$avxifma=0;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+# TODO: Find out the version of NASM that supports VEX-encoded AVX-IFMA instructions
+if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
+ =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
+ $avxifma = ($1>=2.40);
+}
+
+if (!$avxifma && `$ENV{CC} -v 2>&1`
+ =~ /\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
+ my $ver = $2 + $3/100.0 + $4/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
+ $avxifma = ($ver>=16.0);
+}
+
+open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
+ or die "can't call $xlate: $!";
+*STDOUT=*OUT;
+
+if ($avxifma>0) {{{
+@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
+
+$code.=<<___;
+.text
+.extern OPENSSL_ia32cap_P
+.globl ossl_rsaz_avxifma_eligible
+.type ossl_rsaz_avxifma_eligible,\@abi-omnipotent
+.align 32
+ossl_rsaz_avxifma_eligible:
+ mov OPENSSL_ia32cap_P+20(%rip), %ecx
+ xor %eax,%eax
+ and \$`1<<23`, %ecx # avxifma
+ cmp \$`1<<23`, %ecx
+ cmove %ecx,%eax
+ ret
+.size ossl_rsaz_avxifma_eligible, .-ossl_rsaz_avxifma_eligible
+___
+
+###############################################################################
+# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
+#
+# AMM is defined as presented in the paper [1].
+#
+# The input and output are presented in 2^52 radix domain, i.e.
+# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
+# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
+#
+# NB: the AMM implementation does not perform "conditional" subtraction step
+# specified in the original algorithm as according to the Lemma 1 from the paper
+# [2], the result will be always < 2*m and can be used as a direct input to
+# the next AMM iteration. This post-condition is true, provided the correct
+# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
+# which matches our case: 1040 > 1024 + 2 * 1.
+#
+# [1] Gueron, S. Efficient software implementations of modular exponentiation.
+# DOI: 10.1007/s13389-012-0031-5
+# [2] Gueron, S. Enhanced Montgomery Multiplication.
+# DOI: 10.1007/3-540-36400-5_5
+#
+# void ossl_rsaz_amm52x20_x1_avxifma256(BN_ULONG *res,
+# const BN_ULONG *a,
+# const BN_ULONG *b,
+# const BN_ULONG *m,
+# BN_ULONG k0);
+###############################################################################
+{
+# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
+my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
+
+my $mask52 = "%rax";
+my $acc0_0 = "%r9";
+my $acc0_0_low = "%r9d";
+my $acc0_1 = "%r15";
+my $acc0_1_low = "%r15d";
+my $b_ptr = "%r11";
+
+my $iter = "%ebx";
+
+my $zero = "%ymm0";
+my $Bi = "%ymm1";
+my $Yi = "%ymm2";
+my $Yi_xmm = "%xmm2";
+my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(5..8)));
+my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(9..12)));
+
+# Registers mapping for normalization.
+my ($T0,$T0h,$T1,$T1h,$T2,$tmp) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (13..15)));
+my $T0_xmm = "%xmm0";
+
+sub amm52x20_x1() {
+# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
+# of data for corresponding AMM operation;
+# _b_offset - offset in the |b| array pointing to the next qword digit;
+my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
+$code.=<<___;
+ movq $_b_offset($b_ptr), %r13 # b[i]
+
+ vpbroadcastq $_b_offset($b_ptr), $Bi # broadcast b[i]
+ movq $_data_offset($a), %rdx
+ mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
+ addq %r13, $_acc # acc += t0
+ movq %r12, %r10
+ adcq \$0, %r10 # t2 += CF
+
+ movq $_k0, %r13
+ imulq $_acc, %r13 # acc * k0
+ andq $mask52, %r13 # yi = (acc * k0) & mask52
+
+ vmovq %r13, $Yi_xmm
+ vpbroadcastq $Yi_xmm, $Yi # broadcast y[i]
+ movq $_data_offset($m), %rdx
+ mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
+ addq %r13, $_acc # acc += t0
+ adcq %r12, %r10 # t2 += (t1 + CF)
+
+ shrq \$52, $_acc
+ salq \$12, %r10
+ or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
+
+ lea -168(%rsp), %rsp
+ {vex} vpmadd52luq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
+
+ {vex} vpmadd52luq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
+
+ # Shift accumulators right by 1 qword, zero extending the highest one
+ vmovdqu $_R0, `32*0`(%rsp)
+ vmovdqu $_R0h, `32*1`(%rsp)
+ vmovdqu $_R1, `32*2`(%rsp)
+ vmovdqu $_R1h, `32*3`(%rsp)
+ vmovdqu $_R2, `32*4`(%rsp)
+ movq \$0, `32*5`(%rsp)
+
+ vmovdqu `32*0 + 8`(%rsp), $_R0
+ vmovdqu `32*1 + 8`(%rsp), $_R0h
+ vmovdqu `32*2 + 8`(%rsp), $_R1
+ vmovdqu `32*3 + 8`(%rsp), $_R1h
+ vmovdqu `32*4 + 8`(%rsp), $_R2
+
+ addq 8(%rsp), $_acc # acc += R0[0]
+
+ {vex} vpmadd52huq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
+
+ {vex} vpmadd52huq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
+ lea 168(%rsp),%rsp
+___
+}
+
+# Normalization routine: handles carry bits and gets bignum qwords to normalized
+# 2^52 representation.
+#
+# Uses %r8-14,%e[bcd]x
+sub amm52x20_x1_norm {
+my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
+$code.=<<___;
+ # Put accumulator to low qword in R0
+ vmovq $_acc, $T0_xmm
+ vpbroadcastq $T0_xmm, $T0
+ vpblendd \$3, $T0, $_R0, $_R0
+
+ # Extract "carries" (12 high bits) from each QW of R0..R2
+ # Save them to LSB of QWs in T0..T2
+ vpsrlq \$52, $_R0, $T0
+ vpsrlq \$52, $_R0h, $T0h
+ vpsrlq \$52, $_R1, $T1
+ vpsrlq \$52, $_R1h, $T1h
+ vpsrlq \$52, $_R2, $T2
+
+ # "Shift left" T0..T2 by 1 QW
+ vpermq \$144, $T2, $T2
+ vpermq \$3, $T1h, $tmp
+ vblendpd \$1, $tmp, $T2, $T2
+
+ vpermq \$144, $T1h, $T1h
+ vpermq \$3, $T1, $tmp
+ vblendpd \$1, $tmp, $T1h, $T1h
+
+ vpermq \$144, $T1, $T1
+ vpermq \$3, $T0h, $tmp
+ vblendpd \$1, $tmp, $T1, $T1
+
+ vpermq \$144, $T0h, $T0h
+ vpermq \$3, $T0, $tmp
+ vblendpd \$1, $tmp, $T0h, $T0h
+
+ vpermq \$144, $T0, $T0
+ vpand .Lhigh64x3(%rip), $T0, $T0
+
+ # Drop "carries" from R0..R2 QWs
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+
+ # Sum R0..R2 with corresponding adjusted carries
+ vpaddq $T0, $_R0, $_R0
+ vpaddq $T0h, $_R0h, $_R0h
+ vpaddq $T1, $_R1, $_R1
+ vpaddq $T1h, $_R1h, $_R1h
+ vpaddq $T2, $_R2, $_R2
+
+ # Now handle carry bits from this addition
+ # Get mask of QWs which 52-bit parts overflow...
+ vpcmpgtq .Lmask52x4(%rip), $_R0, $T0
+ vpcmpgtq .Lmask52x4(%rip), $_R0h, $T0h
+ vpcmpgtq .Lmask52x4(%rip), $_R1, $T1
+ vpcmpgtq .Lmask52x4(%rip), $_R1h, $T1h
+ vpcmpgtq .Lmask52x4(%rip), $_R2, $T2
+ vmovmskpd $T0, %r14d
+ vmovmskpd $T0h, %r13d
+ vmovmskpd $T1, %r12d
+ vmovmskpd $T1h, %r11d
+ vmovmskpd $T2, %r10d
+
+ # ...or saturated
+ vpcmpeqq .Lmask52x4(%rip), $_R0, $T0
+ vpcmpeqq .Lmask52x4(%rip), $_R0h, $T0h
+ vpcmpeqq .Lmask52x4(%rip), $_R1, $T1
+ vpcmpeqq .Lmask52x4(%rip), $_R1h, $T1h
+ vpcmpeqq .Lmask52x4(%rip), $_R2, $T2
+ vmovmskpd $T0, %r9d
+ vmovmskpd $T0h, %r8d
+ vmovmskpd $T1, %ebx
+ vmovmskpd $T1h, %ecx
+ vmovmskpd $T2, %edx
+
+ # Get mask of QWs where carries shall be propagated to.
+ # Merge 4-bit masks to 8-bit values to use add with carry.
+ shl \$4, %r13b
+ or %r13b, %r14b
+ shl \$4, %r11b
+ or %r11b, %r12b
+
+ add %r14b, %r14b
+ adc %r12b, %r12b
+ adc %r10b, %r10b
+
+ shl \$4, %r8b
+ or %r8b,%r9b
+ shl \$4, %cl
+ or %cl, %bl
+
+ add %r9b, %r14b
+ adc %bl, %r12b
+ adc %dl, %r10b
+
+ xor %r9b, %r14b
+ xor %bl, %r12b
+ xor %dl, %r10b
+
+ lea .Lkmasklut(%rip), %rdx
+
+ mov %r14b, %r13b
+ and \$0xf, %r14
+ vpsubq .Lmask52x4(%rip), $_R0, $T0
+ shl \$5, %r14
+ vmovapd (%rdx, %r14), $T1
+ vblendvpd $T1, $T0, $_R0, $_R0
+
+ shr \$4, %r13b
+ and \$0xf, %r13
+ vpsubq .Lmask52x4(%rip), $_R0h, $T0
+ shl \$5, %r13
+ vmovapd (%rdx, %r13), $T1
+ vblendvpd $T1, $T0, $_R0h, $_R0h
+
+ mov %r12b, %r11b
+ and \$0xf, %r12
+ vpsubq .Lmask52x4(%rip), $_R1, $T0
+ shl \$5, %r12
+ vmovapd (%rdx, %r12), $T1
+ vblendvpd $T1, $T0, $_R1, $_R1
+
+ shr \$4, %r11b
+ and \$0xf, %r11
+ vpsubq .Lmask52x4(%rip), $_R1h, $T0
+ shl \$5, %r11
+ vmovapd (%rdx, %r11), $T1
+ vblendvpd $T1, $T0, $_R1h, $_R1h
+
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R2, $T0
+ shl \$5, %r10
+ vmovapd (%rdx, %r10), $T1
+ vblendvpd $T1, $T0, $_R2, $_R2
+
+ # Add carries according to the obtained mask
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+___
+}
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x20_x1_avxifma256
+.type ossl_rsaz_amm52x20_x1_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x20_x1_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+.Lossl_rsaz_amm52x20_x1_avxifma256_body:
+
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ # Loop over 20 digits unrolled by 4
+ mov \$5, $iter
+
+.align 32
+.Lloop5:
+___
+ foreach my $idx (0..3) {
+ &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
+ }
+$code.=<<___;
+ lea `4*8`($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop5
+___
+ &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
+$code.=<<___;
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+
+ vzeroupper
+ mov 0(%rsp),%r15
+.cfi_restore %r15
+ mov 8(%rsp),%r14
+.cfi_restore %r14
+ mov 16(%rsp),%r13
+.cfi_restore %r13
+ mov 24(%rsp),%r12
+.cfi_restore %r12
+ mov 32(%rsp),%rbp
+.cfi_restore %rbp
+ mov 40(%rsp),%rbx
+.cfi_restore %rbx
+ lea 48(%rsp),%rsp
+.cfi_adjust_cfa_offset -48
+.Lossl_rsaz_amm52x20_x1_avxifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x20_x1_avxifma256, .-ossl_rsaz_amm52x20_x1_avxifma256
+___
+
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lmask52x4:
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+.Lhigh64x3:
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+.Lkmasklut:
+ #0000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #1000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+___
+
+###############################################################################
+# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
+#
+# See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
+# Montgomery Multiplication algorithm and function input parameters description.
+#
+# This function does two AMMs for two independent inputs, hence dual.
+#
+# void ossl_rsaz_amm52x20_x2_avxifma256(BN_ULONG out[2][20],
+# const BN_ULONG a[2][20],
+# const BN_ULONG b[2][20],
+# const BN_ULONG m[2][20],
+# const BN_ULONG k0[2]);
+###############################################################################
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x20_x2_avxifma256
+.type ossl_rsaz_amm52x20_x2_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x20_x2_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+.Lossl_rsaz_amm52x20_x2_avxifma256_body:
+
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R0_1
+ vmovapd $zero, $R0_1h
+ vmovapd $zero, $R1_1
+ vmovapd $zero, $R1_1h
+ vmovapd $zero, $R2_1
+
+ xorl $acc0_0_low, $acc0_0_low
+ xorl $acc0_1_low, $acc0_1_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ mov \$20, $iter
+
+.align 32
+.Lloop20:
+___
+ &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
+ # 20*8 = offset of the next dimension in two-dimension array
+ &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop20
+___
+ &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
+ &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
+$code.=<<___;
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+
+ vmovdqu $R0_1, `5*32`($res)
+ vmovdqu $R0_1h, `6*32`($res)
+ vmovdqu $R1_1, `7*32`($res)
+ vmovdqu $R1_1h, `8*32`($res)
+ vmovdqu $R2_1, `9*32`($res)
+
+ vzeroupper
+ mov 0(%rsp),%r15
+.cfi_restore %r15
+ mov 8(%rsp),%r14
+.cfi_restore %r14
+ mov 16(%rsp),%r13
+.cfi_restore %r13
+ mov 24(%rsp),%r12
+.cfi_restore %r12
+ mov 32(%rsp),%rbp
+.cfi_restore %rbp
+ mov 40(%rsp),%rbx
+.cfi_restore %rbx
+ lea 48(%rsp),%rsp
+.cfi_adjust_cfa_offset -48
+.Lossl_rsaz_amm52x20_x2_avxifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x20_x2_avxifma256, .-ossl_rsaz_amm52x20_x2_avxifma256
+___
+}
+
+###############################################################################
+# Constant time extraction from the precomputed table of powers base^i, where
+# i = 0..2^EXP_WIN_SIZE-1
+#
+# The input |red_table| contains precomputations for two independent base values.
+# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
+#
+# Extracted value (output) is 2 20 digit numbers in 2^52 radix.
+#
+# void ossl_extract_multiplier_2x20_win5_avx(BN_ULONG *red_Y,
+# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
+# int red_table_idx1, int red_table_idx2);
+#
+# EXP_WIN_SIZE = 5
+###############################################################################
+{
+# input parameters
+my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx"); # Unix order
+
+my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
+my ($t6,$t7,$t8,$t9) = map("%ymm$_", (6..9));
+my ($tmp,$cur_idx,$idx1,$idx2,$ones,$mask) = map("%ymm$_", (10..15));
+
+my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
+my $t0xmm = $t0;
+my $tmp_xmm = "%xmm10";
+$t0xmm =~ s/%y/%x/;
+
+$code.=<<___;
+.text
+
+.align 32
+.globl ossl_extract_multiplier_2x20_win5_avx
+.type ossl_extract_multiplier_2x20_win5_avx,\@abi-omnipotent
+ossl_extract_multiplier_2x20_win5_avx:
+.cfi_startproc
+ endbranch
+ vmovapd .Lones(%rip), $ones # broadcast ones
+ vmovq $red_tbl_idx1, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx1
+ vmovq $red_tbl_idx2, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx2
+ leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
+
+ # zeroing t0..n, cur_idx
+ vpxor $t0xmm, $t0xmm, $t0xmm
+ vmovapd $t0, $cur_idx
+___
+foreach (1..9) {
+ $code.="vmovapd $t0, $t[$_] \n";
+}
+$code.=<<___;
+
+.align 32
+.Lloop:
+ vpcmpeqq $cur_idx, $idx1, $mask # mask of (idx1 == cur_idx)
+___
+foreach (0..4) {
+$code.=<<___;
+ vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
+ vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpcmpeqq $cur_idx, $idx2, $mask # mask of (idx2 == cur_idx)
+___
+foreach (5..9) {
+$code.=<<___;
+ vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
+ vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
+ addq \$`2*20*8`, $red_tbl
+ cmpq $red_tbl, %rax
+ jne .Lloop
+___
+# store t0..n
+foreach (0..9) {
+ $code.="vmovdqu $t[$_], `${_}*32`($out) \n";
+}
+$code.=<<___;
+ ret
+.cfi_endproc
+.size ossl_extract_multiplier_2x20_win5_avx, .-ossl_extract_multiplier_2x20_win5_avx
+___
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lones:
+ .quad 1,1,1,1
+.Lzeros:
+ .quad 0,0,0,0
+___
+}
+
+if ($win64) {
+$rec="%rcx";
+$frame="%rdx";
+$context="%r8";
+$disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type rsaz_def_handler,\@abi-omnipotent
+.align 16
+rsaz_def_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ mov 8($disp),%rsi # disp->ImageBase
+ mov 56($disp),%r11 # disp->HandlerData
+
+ mov 0(%r11),%r10d # HandlerData[0]
+ lea (%rsi,%r10),%r10 # prologue label
+ cmp %r10,%rbx # context->Rip<.Lprologue
+ jb .Lcommon_seh_tail
+
+ mov 152($context),%rax # pull context->Rsp
+
+ mov 4(%r11),%r10d # HandlerData[1]
+ lea (%rsi,%r10),%r10 # epilogue label
+ cmp %r10,%rbx # context->Rip>=.Lepilogue
+ jae .Lcommon_seh_tail
+
+ lea 48(%rax),%rax
+
+ mov -8(%rax),%rbx
+ mov -16(%rax),%rbp
+ mov -24(%rax),%r12
+ mov -32(%rax),%r13
+ mov -40(%rax),%r14
+ mov -48(%rax),%r15
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+ mov %r13,224($context) # restore context->R13
+ mov %r14,232($context) # restore context->R14
+ mov %r15,240($context) # restore context->R14
+
+.Lcommon_seh_tail:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$154,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size rsaz_def_handler,.-rsaz_def_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_ossl_rsaz_amm52x20_x1_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x20_x1_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x20_x1_avxifma256
+
+ .rva .LSEH_begin_ossl_rsaz_amm52x20_x2_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x20_x2_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x20_x2_avxifma256
+
+.section .xdata
+.align 8
+.LSEH_info_ossl_rsaz_amm52x20_x1_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_def_handler
+ .rva .Lossl_rsaz_amm52x20_x1_avxifma256_body,.Lossl_rsaz_amm52x20_x1_avxifma256_epilogue
+.LSEH_info_ossl_rsaz_amm52x20_x2_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_def_handler
+ .rva .Lossl_rsaz_amm52x20_x2_avxifma256_body,.Lossl_rsaz_amm52x20_x2_avxifma256_epilogue
+___
+}
+}}} else {{{ # fallback for old assembler
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_avxifma_eligible
+.type ossl_rsaz_avxifma_eligible,\@abi-omnipotent
+ossl_rsaz_avxifma_eligible:
+ xor %eax,%eax
+ ret
+.size ossl_rsaz_avxifma_eligible, .-ossl_rsaz_avxifma_eligible
+
+.globl ossl_rsaz_amm52x20_x1_avxifma256
+.globl ossl_rsaz_amm52x20_x2_avxifma256
+.globl ossl_extract_multiplier_2x20_win5_avx
+.type ossl_rsaz_amm52x20_x1_avxifma256,\@abi-omnipotent
+ossl_rsaz_amm52x20_x1_avxifma256:
+ossl_rsaz_amm52x20_x2_avxifma256:
+ossl_extract_multiplier_2x20_win5_avx:
+ .byte 0x0f,0x0b # ud2
+ ret
+.size ossl_rsaz_amm52x20_x1_avxifma256, .-ossl_rsaz_amm52x20_x1_avxifma256
+___
+}}}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT or die "error closing STDOUT: $!";
--- /dev/null
+# Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
+# Copyright (c) 2024, Intel Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# Written by Zhiguo Zhou <zhiguo.zhou@intel.com> and Wangyang Guo <wangyang.guo@intel.com>.
+# Special thanks to Tomasz Kantecki <tomasz.kantecki@intel.com> for his valuable suggestions.
+#
+# October 2024
+#
+# Initial release.
+#
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+$avxifma=0;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+# TODO: Find out the version of NASM that supports VEX-encoded AVX-IFMA instructions
+if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
+ =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
+ $avxifma = ($1>=2.40);
+}
+
+if (!$avxifma && `$ENV{CC} -v 2>&1`
+ =~ /\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
+ my $ver = $2 + $3/100.0 + $4/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
+ $avxifma = ($ver>=16.0);
+}
+
+open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
+ or die "can't call $xlate: $!";
+*STDOUT=*OUT;
+
+if ($avxifma>0) {{{
+@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
+
+###############################################################################
+# Almost Montgomery Multiplication (AMM) for 30-digit number in radix 2^52.
+#
+# AMM is defined as presented in the paper [1].
+#
+# The input and output are presented in 2^52 radix domain, i.e.
+# |res|, |a|, |b|, |m| are arrays of 32 64-bit qwords with 12 high bits zeroed
+#
+# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
+#
+# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
+#
+# NB: the AMM implementation does not perform "conditional" subtraction step
+# specified in the original algorithm as according to the Lemma 1 from the paper
+# [2], the result will be always < 2*m and can be used as a direct input to
+# the next AMM iteration. This post-condition is true, provided the correct
+# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
+# which matches our case: 1560 > 1536 + 2 * 1.
+#
+# [1] Gueron, S. Efficient software implementations of modular exponentiation.
+# DOI: 10.1007/s13389-012-0031-5
+# [2] Gueron, S. Enhanced Montgomery Multiplication.
+# DOI: 10.1007/3-540-36400-5_5
+#
+# void ossl_rsaz_amm52x30_x1_avxifma256(BN_ULONG *res,
+# const BN_ULONG *a,
+# const BN_ULONG *b,
+# const BN_ULONG *m,
+# BN_ULONG k0);
+###############################################################################
+{
+# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
+my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
+
+my $mask52 = "%rax";
+my $acc0_0 = "%r9";
+my $acc0_0_low = "%r9d";
+my $acc0_1 = "%r15";
+my $acc0_1_low = "%r15d";
+my $b_ptr = "%r11";
+
+my $iter = "%ebx";
+
+my $zero = "%ymm0";
+my $Bi = "%ymm1";
+my $Bi_xmm = "%xmm1";
+my $Yi = "%ymm2";
+my $Yi_xmm = "%xmm2";
+my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h) = map("%ymm$_",(3..10));
+
+# Registers mapping for normalization
+my ($T0,$T0h,$T1,$T1h,$T2,$T2h,$T3,$T3h) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (11..15)));
+my $T0_xmm = "%xmm0";
+
+sub amm52x30_x1() {
+# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
+# of data for corresponding AMM operation;
+# _b_offset - offset in the |b| array pointing to the next qword digit;
+my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_k0) = @_;
+$code.=<<___;
+ movq $_b_offset($b_ptr), %r13 # b[i]
+
+ vpbroadcastq $_b_offset($b_ptr), $Bi # broadcast b[i]
+ movq $_data_offset($a), %rdx
+ mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
+ addq %r13, $_acc # acc += t0
+ movq %r12, %r10
+ adcq \$0, %r10 # t2 += CF
+
+ movq $_k0, %r13
+ imulq $_acc, %r13 # acc * k0
+ andq $mask52, %r13 # yi = (acc * k0) & mask52
+
+ vmovq %r13, $Yi_xmm
+ vpbroadcastq $Yi_xmm, $Yi # broadcast y[i]
+ movq $_data_offset($m), %rdx
+ mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
+ addq %r13, $_acc # acc += t0
+ adcq %r12, %r10 # t2 += (t1 + CF)
+
+ shrq \$52, $_acc
+ salq \$12, %r10
+ or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
+
+ lea -264(%rsp), %rsp
+
+ {vex} vpmadd52luq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
+ {vex} vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ {vex} vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
+ {vex} vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+
+ {vex} vpmadd52luq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
+ {vex} vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ {vex} vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
+ {vex} vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+
+ # Shift accumulators right by 1 qword, zero extending the highest one
+ vmovdqu $_R0, `32*0`(%rsp)
+ vmovdqu $_R0h, `32*1`(%rsp)
+ vmovdqu $_R1, `32*2`(%rsp)
+ vmovdqu $_R1h, `32*3`(%rsp)
+ vmovdqu $_R2, `32*4`(%rsp)
+ vmovdqu $_R2h, `32*5`(%rsp)
+ vmovdqu $_R3, `32*6`(%rsp)
+ vmovdqu $_R3h, `32*7`(%rsp)
+ movq \$0, `32*8`(%rsp)
+
+ vmovdqu `32*0 + 8`(%rsp), $_R0
+ vmovdqu `32*1 + 8`(%rsp), $_R0h
+ vmovdqu `32*2 + 8`(%rsp), $_R1
+ vmovdqu `32*3 + 8`(%rsp), $_R1h
+ vmovdqu `32*4 + 8`(%rsp), $_R2
+ vmovdqu `32*5 + 8`(%rsp), $_R2h
+ vmovdqu `32*6 + 8`(%rsp), $_R3
+ vmovdqu `32*7 + 8`(%rsp), $_R3h
+
+ addq 8(%rsp), $_acc # acc += R0[0]
+
+ {vex} vpmadd52huq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
+ {vex} vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ {vex} vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
+ {vex} vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+
+ {vex} vpmadd52huq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
+ {vex} vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ {vex} vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
+ {vex} vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+
+ lea 264(%rsp),%rsp
+___
+}
+
+# Normalization routine: handles carry bits and gets bignum qwords to normalized
+# 2^52 representation.
+#
+# Uses %r8-14,%e[abcd]x
+sub amm52x30_x1_norm {
+my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h) = @_;
+$code.=<<___;
+ # Put accumulator to low qword in R0
+ vmovq $_acc, $T0_xmm
+ vpbroadcastq $T0_xmm, $T0
+ vpblendd \$3, $T0, $_R0, $_R0
+
+ # Extract "carries" (12 high bits) from each QW of the bignum
+ # Save them to LSB of QWs in T0..Tn
+ vpsrlq \$52, $_R0, $T0
+ vpsrlq \$52, $_R0h, $T0h
+ vpsrlq \$52, $_R1, $T1
+ vpsrlq \$52, $_R1h, $T1h
+ vpsrlq \$52, $_R2, $T2
+ vpsrlq \$52, $_R2h, $T2h
+ vpsrlq \$52, $_R3, $T3
+ vpsrlq \$52, $_R3h, $T3h
+
+ lea -32(%rsp),%rsp
+ vmovupd $_R0, (%rsp)
+
+ # "Shift left" T0..Tn by 1 QW
+ vpermq \$144, $T3h, $T3h
+ vpermq \$3, $T3, $_R0
+ vblendpd \$1, $_R0, $T3h, $T3h
+
+ vpermq \$144, $T3, $T3
+ vpermq \$3, $T2h, $_R0
+ vblendpd \$1, $_R0, $T3, $T3
+
+ vpermq \$144, $T2h, $T2h
+ vpermq \$3, $T2, $_R0
+ vblendpd \$1, $_R0, $T2h, $T2h
+
+ vpermq \$144, $T2, $T2
+ vpermq \$3, $T1h, $_R0
+ vblendpd \$1, $_R0, $T2, $T2
+
+ vpermq \$144, $T1h, $T1h
+ vpermq \$3, $T1, $_R0
+ vblendpd \$1, $_R0, $T1h, $T1h
+
+ vpermq \$144, $T1, $T1
+ vpermq \$3, $T0h, $_R0
+ vblendpd \$1, $_R0, $T1, $T1
+
+ vpermq \$144, $T0h, $T0h
+ vpermq \$3, $T0, $_R0
+ vblendpd \$1, $_R0, $T0h, $T0h
+
+ vpermq \$144, $T0, $T0
+ vpand .Lhigh64x3(%rip), $T0, $T0
+
+ vmovupd (%rsp), $_R0
+ lea 32(%rsp),%rsp
+
+ # Drop "carries" from R0..Rn QWs
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+ vpand .Lmask52x4(%rip), $_R2h, $_R2h
+ vpand .Lmask52x4(%rip), $_R3, $_R3
+ vpand .Lmask52x4(%rip), $_R3h, $_R3h
+
+ # Sum R0..Rn with corresponding adjusted carries
+ vpaddq $T0, $_R0, $_R0
+ vpaddq $T0h, $_R0h, $_R0h
+ vpaddq $T1, $_R1, $_R1
+ vpaddq $T1h, $_R1h, $_R1h
+ vpaddq $T2, $_R2, $_R2
+ vpaddq $T2h, $_R2h, $_R2h
+ vpaddq $T3, $_R3, $_R3
+ vpaddq $T3h, $_R3h, $_R3h
+
+ # Now handle carry bits from this addition
+ # Get mask of QWs whose 52-bit parts overflow
+ vpcmpgtq .Lmask52x4(%rip),${_R0},$T0 # OP=nle (i.e. gt)
+ vpcmpgtq .Lmask52x4(%rip),${_R0h},$T0h
+ vmovmskpd $T0, %r14d
+ vmovmskpd $T0h,%r13d
+ shl \$4,%r13b
+ or %r13b,%r14b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R1},$T1
+ vpcmpgtq .Lmask52x4(%rip),${_R1h},$T1h
+ vmovmskpd $T1, %r13d
+ vmovmskpd $T1h,%r12d
+ shl \$4,%r12b
+ or %r12b,%r13b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R2},$T2
+ vpcmpgtq .Lmask52x4(%rip),${_R2h},$T2h
+ vmovmskpd $T2, %r12d
+ vmovmskpd $T2h,%r11d
+ shl \$4,%r11b
+ or %r11b,%r12b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R3},$T3
+ vpcmpgtq .Lmask52x4(%rip),${_R3h},$T3h
+ vmovmskpd $T3, %r11d
+ vmovmskpd $T3h,%r10d
+ shl \$4,%r10b
+ or %r10b,%r11b
+
+ addb %r14b,%r14b
+ adcb %r13b,%r13b
+ adcb %r12b,%r12b
+ adcb %r11b,%r11b
+
+ # Get mask of QWs whose 52-bit parts saturated
+ vpcmpeqq .Lmask52x4(%rip),${_R0},$T0 # OP=eq
+ vpcmpeqq .Lmask52x4(%rip),${_R0h},$T0h
+ vmovmskpd $T0, %r9d
+ vmovmskpd $T0h,%r8d
+ shl \$4,%r8b
+ or %r8b,%r9b
+
+ vpcmpeqq .Lmask52x4(%rip),${_R1},$T1
+ vpcmpeqq .Lmask52x4(%rip),${_R1h},$T1h
+ vmovmskpd $T1, %r8d
+ vmovmskpd $T1h,%edx
+ shl \$4,%dl
+ or %dl,%r8b
+
+ vpcmpeqq .Lmask52x4(%rip),${_R2},$T2
+ vpcmpeqq .Lmask52x4(%rip),${_R2h},$T2h
+ vmovmskpd $T2, %edx
+ vmovmskpd $T2h,%ecx
+ shl \$4,%cl
+ or %cl,%dl
+
+ vpcmpeqq .Lmask52x4(%rip),${_R3},$T3
+ vpcmpeqq .Lmask52x4(%rip),${_R3h},$T3h
+ vmovmskpd $T3, %ecx
+ vmovmskpd $T3h,%ebx
+ shl \$4,%bl
+ or %bl,%cl
+
+ addb %r9b,%r14b
+ adcb %r8b,%r13b
+ adcb %dl,%r12b
+ adcb %cl,%r11b
+
+ xor %r9b,%r14b
+ xor %r8b,%r13b
+ xor %dl,%r12b
+ xor %cl,%r11b
+
+ lea .Lkmasklut(%rip), %rdx
+
+ mov %r14b, %r10b
+ and \$0xf, %r14
+ vpsubq .Lmask52x4(%rip), $_R0, $T0
+ shl \$5, %r14
+ vmovapd (%rdx, %r14), $T1
+ vblendvpd $T1, $T0, $_R0, $_R0
+
+ shr \$4, %r10b
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R0h, $T0
+ shl \$5, %r10
+ vmovapd (%rdx, %r10), $T1
+ vblendvpd $T1, $T0, $_R0h, $_R0h
+
+ mov %r13b, %r10b
+ and \$0xf, %r13
+ vpsubq .Lmask52x4(%rip), $_R1, $T0
+ shl \$5, %r13
+ vmovapd (%rdx, %r13), $T1
+ vblendvpd $T1, $T0, $_R1, $_R1
+
+ shr \$4, %r10b
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R1h, $T0
+ shl \$5, %r10
+ vmovapd (%rdx, %r10), $T1
+ vblendvpd $T1, $T0, $_R1h, $_R1h
+
+ mov %r12b, %r10b
+ and \$0xf, %r12
+ vpsubq .Lmask52x4(%rip), $_R2, $T0
+ shl \$5, %r12
+ vmovapd (%rdx, %r12), $T1
+ vblendvpd $T1, $T0, $_R2, $_R2
+
+ shr \$4, %r10b
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R2h, $T0
+ shl \$5, %r10
+ vmovapd (%rdx, %r10), $T1
+ vblendvpd $T1, $T0, $_R2h, $_R2h
+
+ mov %r11b, %r10b
+ and \$0xf, %r11
+ vpsubq .Lmask52x4(%rip), $_R3, $T0
+ shl \$5, %r11
+ vmovapd (%rdx, %r11), $T1
+ vblendvpd $T1, $T0, $_R3, $_R3
+
+ shr \$4, %r10b
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R3h, $T0
+ shl \$5, %r10
+ vmovapd (%rdx, %r10), $T1
+ vblendvpd $T1, $T0, $_R3h, $_R3h
+
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+ vpand .Lmask52x4(%rip), $_R2h, $_R2h
+ vpand .Lmask52x4(%rip), $_R3, $_R3
+
+ vpand .Lmask52x4(%rip), $_R3h, $_R3h
+___
+}
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x1_avxifma256
+.type ossl_rsaz_amm52x30_x1_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x30_x1_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
+ vmovapd %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovapd %xmm7, `1*16`(%rsp)
+ vmovapd %xmm8, `2*16`(%rsp)
+ vmovapd %xmm9, `3*16`(%rsp)
+ vmovapd %xmm10,`4*16`(%rsp)
+ vmovapd %xmm11,`5*16`(%rsp)
+ vmovapd %xmm12,`6*16`(%rsp)
+ vmovapd %xmm13,`7*16`(%rsp)
+ vmovapd %xmm14,`8*16`(%rsp)
+ vmovapd %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x30_x1_avxifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ # Loop over 30 digits unrolled by 4
+ mov \$7, $iter
+
+.align 32
+.Lloop7:
+___
+ foreach my $idx (0..3) {
+ &amm52x30_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+ }
+$code.=<<___;
+ lea `4*8`($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop7
+___
+ &amm52x30_x1(0,8*0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+ &amm52x30_x1(0,8*1,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$k0);
+
+ &amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
+$code.=<<___;
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+ vmovdqu $R2_0h, `5*32`($res)
+ vmovdqu $R3_0, `6*32`($res)
+ vmovdqu $R3_0h, `7*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovapd `0*16`(%rax),%xmm6
+ vmovapd `1*16`(%rax),%xmm7
+ vmovapd `2*16`(%rax),%xmm8
+ vmovapd `3*16`(%rax),%xmm9
+ vmovapd `4*16`(%rax),%xmm10
+ vmovapd `5*16`(%rax),%xmm11
+ vmovapd `6*16`(%rax),%xmm12
+ vmovapd `7*16`(%rax),%xmm13
+ vmovapd `8*16`(%rax),%xmm14
+ vmovapd `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp # restore rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x30_x1_avxifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x30_x1_avxifma256, .-ossl_rsaz_amm52x30_x1_avxifma256
+___
+
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lmask52x4:
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+.Lhigh64x3:
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+.Lkmasklut:
+ #0000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #1000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+___
+
+###############################################################################
+# Dual Almost Montgomery Multiplication for 30-digit number in radix 2^52
+#
+# See description of ossl_rsaz_amm52x30_x1_ifma256() above for details about Almost
+# Montgomery Multiplication algorithm and function input parameters description.
+#
+# This function does two AMMs for two independent inputs, hence dual.
+#
+# NOTE: the function uses zero-padded data - 2 high QWs is a padding.
+#
+# void ossl_rsaz_amm52x30_x2_avxifma256(BN_ULONG out[2][32],
+# const BN_ULONG a[2][32],
+# const BN_ULONG b[2][32],
+# const BN_ULONG m[2][32],
+# const BN_ULONG k0[2]);
+###############################################################################
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x2_avxifma256
+.type ossl_rsaz_amm52x30_x2_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x30_x2_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp
+ vmovapd %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovapd %xmm7, `1*16`(%rsp)
+ vmovapd %xmm8, `2*16`(%rsp)
+ vmovapd %xmm9, `3*16`(%rsp)
+ vmovapd %xmm10,`4*16`(%rsp)
+ vmovapd %xmm11,`5*16`(%rsp)
+ vmovapd %xmm12,`6*16`(%rsp)
+ vmovapd %xmm13,`7*16`(%rsp)
+ vmovapd %xmm14,`8*16`(%rsp)
+ vmovapd %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x30_x2_avxifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ mov \$30, $iter
+
+.align 32
+.Lloop30:
+___
+ &amm52x30_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,"($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop30
+
+ push $b_ptr
+ push $a
+ push $m
+ push $k0
+___
+ &amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
+$code.=<<___;
+ pop $k0
+ pop $m
+ pop $a
+ pop $b_ptr
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+ vmovdqu $R2_0h, `5*32`($res)
+ vmovdqu $R3_0, `6*32`($res)
+ vmovdqu $R3_0h, `7*32`($res)
+
+ xorl $acc0_1_low, $acc0_1_low
+
+ lea 16($b_ptr), $b_ptr
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ mov \$30, $iter
+
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+.align 32
+.Lloop40:
+___
+ # 32*8 = offset of the next dimension in two-dimension array
+ &amm52x30_x1(32*8, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,"8($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop40
+___
+ &amm52x30_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h);
+$code.=<<___;
+
+ vmovdqu $R0_0, `8*32`($res)
+ vmovdqu $R0_0h, `9*32`($res)
+ vmovdqu $R1_0, `10*32`($res)
+ vmovdqu $R1_0h, `11*32`($res)
+ vmovdqu $R2_0, `12*32`($res)
+ vmovdqu $R2_0h, `13*32`($res)
+ vmovdqu $R3_0, `14*32`($res)
+ vmovdqu $R3_0h, `15*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovapd `0*16`(%rax),%xmm6
+ vmovapd `1*16`(%rax),%xmm7
+ vmovapd `2*16`(%rax),%xmm8
+ vmovapd `3*16`(%rax),%xmm9
+ vmovapd `4*16`(%rax),%xmm10
+ vmovapd `5*16`(%rax),%xmm11
+ vmovapd `6*16`(%rax),%xmm12
+ vmovapd `7*16`(%rax),%xmm13
+ vmovapd `8*16`(%rax),%xmm14
+ vmovapd `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x30_x2_avxifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x30_x2_avxifma256, .-ossl_rsaz_amm52x30_x2_avxifma256
+___
+}
+
+###############################################################################
+# Constant time extraction from the precomputed table of powers base^i, where
+# i = 0..2^EXP_WIN_SIZE-1
+#
+# The input |red_table| contains precomputations for two independent base values.
+# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
+#
+# Extracted value (output) is 2 (30 + 2) digits numbers in 2^52 radix.
+# (2 high QW is zero padding)
+#
+# void ossl_extract_multiplier_2x30_win5_avx(BN_ULONG *red_Y,
+# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][32],
+# int red_table_idx1, int red_table_idx2);
+#
+# EXP_WIN_SIZE = 5
+###############################################################################
+{
+# input parameters
+my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx"); # Unix order
+
+my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7) = map("%ymm$_", (0..7));
+my ($t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15) = map("%ymm$_", (0..7));
+my ($tmp,$cur_idx,$idx1,$idx2,$ones,$mask) = map("%ymm$_", (8..13));
+
+my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9,$t10,$t11,$t12,$t13,$t14,$t15);
+my $t0xmm = $t0;
+my $tmp_xmm = "%xmm8";
+$t0xmm =~ s/%y/%x/;
+
+$code.=<<___;
+.text
+
+.align 32
+.globl ossl_extract_multiplier_2x30_win5_avx
+.type ossl_extract_multiplier_2x30_win5_avx,\@abi-omnipotent
+ossl_extract_multiplier_2x30_win5_avx:
+.cfi_startproc
+ endbranch
+ vmovapd .Lones(%rip), $ones # broadcast ones
+ vmovq $red_tbl_idx1, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx1
+ vmovq $red_tbl_idx2, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx2
+ leaq `(1<<5)*2*32*8`($red_tbl), %rax # holds end of the tbl
+
+ # zeroing t0..n, cur_idx
+ vpxor $t0xmm, $t0xmm, $t0xmm
+ vmovapd $t0, $cur_idx
+___
+foreach (1..7) {
+ $code.="vmovapd $t0, $t[$_] \n";
+}
+$code.=<<___;
+
+.align 32
+.Lloop:
+ vpcmpeqq $cur_idx, $idx1, $mask # mask of (idx1 == cur_idx)
+___
+foreach (0..7) {
+$code.=<<___;
+ vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
+ #vpblendmq $tmp, $t[$_], ${t[$_]}{%k1} # extract data when mask is not zero
+ vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
+ addq \$`2*32*8`, $red_tbl
+ cmpq $red_tbl, %rax
+ jne .Lloop
+___
+# store t0..n
+foreach (0..7) {
+ $code.="vmovdqu $t[$_], `${_}*32`($out) \n";
+}
+
+#second half
+$code.=<<___;
+ leaq `-(1<<5)*2*32*8`(%rax), $red_tbl
+
+ # zeroing t0..n, cur_idx
+ vpxor $t0xmm, $t0xmm, $t0xmm
+ vmovapd $t0, $cur_idx
+___
+foreach (8..15) {
+ $code.="vmovapd $t0, $t[$_] \n";
+}
+$code.=<<___;
+
+.align 32
+.Lloop_8_15:
+ vpcmpeqq $cur_idx, $idx2, $mask # mask of (idx2 == cur_idx)
+___
+foreach (8..15) {
+$code.=<<___;
+ vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
+ #vpblendmq $tmp, $t[$_], ${t[$_]}{%k2} # extract data when mask is not zero
+ vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
+ addq \$`2*32*8`, $red_tbl
+ cmpq $red_tbl, %rax
+ jne .Lloop_8_15
+___
+# store t0..n
+foreach (8..15) {
+ $code.="vmovdqu $t[$_], `${_}*32`($out) \n";
+}
+
+
+$code.=<<___;
+
+ ret
+.cfi_endproc
+.size ossl_extract_multiplier_2x30_win5_avx, .-ossl_extract_multiplier_2x30_win5_avx
+___
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lones:
+ .quad 1,1,1,1
+.Lzeros:
+ .quad 0,0,0,0
+___
+}
+
+if ($win64) {
+$rec="%rcx";
+$frame="%rdx";
+$context="%r8";
+$disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type rsaz_avx_handler,\@abi-omnipotent
+.align 16
+rsaz_avx_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ mov 8($disp),%rsi # disp->ImageBase
+ mov 56($disp),%r11 # disp->HandlerData
+
+ mov 0(%r11),%r10d # HandlerData[0]
+ lea (%rsi,%r10),%r10 # prologue label
+ cmp %r10,%rbx # context->Rip<.Lprologue
+ jb .Lcommon_seh_tail
+
+ mov 4(%r11),%r10d # HandlerData[1]
+ lea (%rsi,%r10),%r10 # epilogue label
+ cmp %r10,%rbx # context->Rip>=.Lepilogue
+ jae .Lcommon_seh_tail
+
+ mov 152($context),%rax # pull context->Rsp
+
+ lea (%rax),%rsi # %xmm save area
+ lea 512($context),%rdi # & context.Xmm6
+ mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
+ .long 0xa548f3fc # cld; rep movsq
+
+ lea `48+168`(%rax),%rax
+
+ mov -8(%rax),%rbx
+ mov -16(%rax),%rbp
+ mov -24(%rax),%r12
+ mov -32(%rax),%r13
+ mov -40(%rax),%r14
+ mov -48(%rax),%r15
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+ mov %r13,224($context) # restore context->R13
+ mov %r14,232($context) # restore context->R14
+ mov %r15,240($context) # restore context->R14
+
+.Lcommon_seh_tail:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$154,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size rsaz_avx_handler,.-rsaz_avx_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_ossl_rsaz_amm52x30_x1_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x30_x1_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x30_x1_avxifma256
+
+ .rva .LSEH_begin_ossl_rsaz_amm52x30_x2_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x30_x2_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x30_x2_avxifma256
+
+.section .xdata
+.align 8
+.LSEH_info_ossl_rsaz_amm52x30_x1_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x30_x1_avxifma256_body,.Lossl_rsaz_amm52x30_x1_avxifma256_epilogue
+.LSEH_info_ossl_rsaz_amm52x30_x2_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x30_x2_avxifma256_body,.Lossl_rsaz_amm52x30_x2_avxifma256_epilogue
+___
+}
+}}} else {{{ # fallback for old assembler
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x30_x1_avxifma256
+.globl ossl_rsaz_amm52x30_x2_avxifma256
+.globl ossl_extract_multiplier_2x30_win5_avx
+.type ossl_rsaz_amm52x30_x1_avxifma256,\@abi-omnipotent
+ossl_rsaz_amm52x30_x1_avxifma256:
+ossl_rsaz_amm52x30_x2_avxifma256:
+ossl_extract_multiplier_2x30_win5_avx:
+ .byte 0x0f,0x0b # ud2
+ ret
+.size ossl_rsaz_amm52x30_x1_avxifma256, .-ossl_rsaz_amm52x30_x1_avxifma256
+___
+}}}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT or die "error closing STDOUT: $!";
--- /dev/null
+# Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
+# Copyright (c) 2024, Intel Corporation. All Rights Reserved.
+#
+# Licensed under the Apache License 2.0 (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+#
+# Written by Zhiguo Zhou <zhiguo.zhou@intel.com> and Wangyang Guo <wangyang.guo@intel.com>.
+# Special thanks to Tomasz Kantecki <tomasz.kantecki@intel.com> for his valuable suggestions.
+#
+# October 2024
+#
+# Initial release.
+#
+
+# $output is the last argument if it looks like a file (it has an extension)
+# $flavour is the first argument if it doesn't look like a file
+$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
+$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
+
+$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
+$avxifma=0;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
+die "can't locate x86_64-xlate.pl";
+
+# TODO: Find out the version of NASM that supports VEX-encoded AVX-IFMA instructions
+if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
+ =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
+ $avxifma = ($1>=2.40);
+}
+
+if (!$avxifma && `$ENV{CC} -v 2>&1`
+ =~ /\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
+ my $ver = $2 + $3/100.0 + $4/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
+ $avxifma = ($ver>=16.0);
+}
+
+open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
+ or die "can't call $xlate: $!";
+*STDOUT=*OUT;
+
+if ($avxifma>0) {{{
+@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
+
+###############################################################################
+# Almost Montgomery Multiplication (AMM) for 40-digit number in radix 2^52.
+#
+# AMM is defined as presented in the paper [1].
+#
+# The input and output are presented in 2^52 radix domain, i.e.
+# |res|, |a|, |b|, |m| are arrays of 40 64-bit qwords with 12 high bits zeroed.
+# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
+#
+# NB: the AMM implementation does not perform "conditional" subtraction step
+# specified in the original algorithm as according to the Lemma 1 from the paper
+# [2], the result will be always < 2*m and can be used as a direct input to
+# the next AMM iteration. This post-condition is true, provided the correct
+# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
+# which matches our case: 2080 > 2048 + 2 * 1.
+#
+# [1] Gueron, S. Efficient software implementations of modular exponentiation.
+# DOI: 10.1007/s13389-012-0031-5
+# [2] Gueron, S. Enhanced Montgomery Multiplication.
+# DOI: 10.1007/3-540-36400-5_5
+#
+# void ossl_rsaz_amm52x40_x1_avxifma256(BN_ULONG *res,
+# const BN_ULONG *a,
+# const BN_ULONG *b,
+# const BN_ULONG *m,
+# BN_ULONG k0);
+###############################################################################
+{
+# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
+my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
+
+my $mask52 = "%rax";
+my $acc0_0 = "%r9";
+my $acc0_0_low = "%r9d";
+my $acc0_1 = "%r15";
+my $acc0_1_low = "%r15d";
+my $b_ptr = "%r11";
+
+my $iter = "%ebx";
+
+my $zero = "%ymm0";
+my $zero_xmm = "%xmm0";
+my $Bi = "%ymm1";
+my $Bi_xmm = "%xmm1";
+my $Yi = "%ymm2";
+my $Yi_xmm = "%xmm2";
+my $tmp = "%ymm13";
+my $tmp2 = "%ymm14";
+my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h) = map("%ymm$_",(3..12));
+
+sub amm52x40_x1() {
+# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
+# of data for corresponding AMM operation;
+# _b_offset - offset in the |b| array pointing to the next qword digit;
+my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h,$_k0) = @_;
+$code.=<<___;
+ movq $_b_offset($b_ptr), %r13 # b[i]
+
+ vpbroadcastq $_b_offset($b_ptr),$Bi # broadcast b[i]
+ movq $_data_offset($a), %rdx
+ mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
+ addq %r13, $_acc # acc += t0
+ movq %r12, %r10
+ adcq \$0, %r10 # t2 += CF
+
+ movq $_k0, %r13
+ imulq $_acc, %r13 # acc * k0
+ andq $mask52, %r13 # yi = (acc * k0) & mask52
+
+ vmovq %r13, $Yi_xmm
+ vpbroadcastq $Yi_xmm, $Yi # broadcast y[i]
+ movq $_data_offset($m), %rdx
+ mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
+ addq %r13, $_acc # acc += t0
+ adcq %r12, %r10 # t2 += (t1 + CF)
+
+ shrq \$52, $_acc
+ salq \$12, %r10
+ or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
+
+ lea -328(%rsp), %rsp
+
+ {vex} vpmadd52luq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
+ {vex} vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ {vex} vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
+ {vex} vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+ {vex} vpmadd52luq `$_data_offset+64*4`($a), $Bi, $_R4
+ {vex} vpmadd52luq `$_data_offset+64*4+32`($a), $Bi, $_R4h
+
+ {vex} vpmadd52luq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52luq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
+ {vex} vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ {vex} vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
+ {vex} vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+ {vex} vpmadd52luq `$_data_offset+64*4`($m), $Yi, $_R4
+ {vex} vpmadd52luq `$_data_offset+64*4+32`($m), $Yi, $_R4h
+ vmovdqu $_R0, `32*0`(%rsp)
+ vmovdqu $_R0h, `32*1`(%rsp)
+ vmovdqu $_R1, `32*2`(%rsp)
+ vmovdqu $_R1h, `32*3`(%rsp)
+ vmovdqu $_R2, `32*4`(%rsp)
+ vmovdqu $_R2h, `32*5`(%rsp)
+ vmovdqu $_R3, `32*6`(%rsp)
+ vmovdqu $_R3h, `32*7`(%rsp)
+ vmovdqu $_R4, `32*8`(%rsp)
+ vmovdqu $_R4h, `32*9`(%rsp)
+ movq \$0, `32*10`(%rsp)
+
+ vmovdqu `32*0 + 8`(%rsp), $_R0
+ vmovdqu `32*1 + 8`(%rsp), $_R0h
+ vmovdqu `32*2 + 8`(%rsp), $_R1
+ vmovdqu `32*3 + 8`(%rsp), $_R1h
+ vmovdqu `32*4 + 8`(%rsp), $_R2
+ vmovdqu `32*5 + 8`(%rsp), $_R2h
+ vmovdqu `32*6 + 8`(%rsp), $_R3
+ vmovdqu `32*7 + 8`(%rsp), $_R3h
+ vmovdqu `32*8 + 8`(%rsp), $_R4
+ vmovdqu `32*9 + 8`(%rsp), $_R4h
+
+ addq 8(%rsp), $_acc # acc += R0[0]
+
+ {vex} vpmadd52huq `$_data_offset`($a), $Bi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($a), $Bi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
+ {vex} vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
+ {vex} vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
+ {vex} vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
+ {vex} vpmadd52huq `$_data_offset+64*4`($a), $Bi, $_R4
+ {vex} vpmadd52huq `$_data_offset+64*4+32`($a), $Bi, $_R4h
+
+ {vex} vpmadd52huq `$_data_offset`($m), $Yi, $_R0
+ {vex} vpmadd52huq `$_data_offset+32`($m), $Yi, $_R0h
+ {vex} vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
+ {vex} vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
+ {vex} vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
+ {vex} vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
+ {vex} vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
+ {vex} vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
+ {vex} vpmadd52huq `$_data_offset+64*4`($m), $Yi, $_R4
+ {vex} vpmadd52huq `$_data_offset+64*4+32`($m), $Yi, $_R4h
+ lea 328(%rsp),%rsp
+___
+}
+
+# Normalization routine: handles carry bits and gets bignum qwords to normalized
+# 2^52 representation.
+#
+# Uses %r8-14,%e[abcd]x
+sub amm52x40_x1_norm {
+my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h) = @_;
+$code.=<<___;
+ # Put accumulator to low qword in R0
+ vmovq $_acc, $zero_xmm
+ vpbroadcastq $zero_xmm, $zero
+ vpblendd \$3, $zero, $_R0, $_R0
+
+ lea -640(%rsp),%rsp
+ vmovupd $_R0, `0*32`(%rsp)
+ vmovupd $_R0h, `1*32`(%rsp)
+ vmovupd $_R1, `2*32`(%rsp)
+ vmovupd $_R1h, `3*32`(%rsp)
+ vmovupd $_R2, `4*32`(%rsp)
+ vmovupd $_R2h, `5*32`(%rsp)
+ vmovupd $_R3, `6*32`(%rsp)
+ vmovupd $_R3h, `7*32`(%rsp)
+ vmovupd $_R4, `8*32`(%rsp)
+ vmovupd $_R4h, `9*32`(%rsp)
+
+ # Extract "carries" (12 high bits) from each QW of the bignum
+ # Save them to LSB of QWs in T0..Tn
+ vpsrlq \$52, $_R0, $_R0
+ vpsrlq \$52, $_R0h, $_R0h
+ vpsrlq \$52, $_R1, $_R1
+ vpsrlq \$52, $_R1h, $_R1h
+ vpsrlq \$52, $_R2, $_R2
+ vpsrlq \$52, $_R2h, $_R2h
+ vpsrlq \$52, $_R3, $_R3
+ vpsrlq \$52, $_R3h, $_R3h
+ vpsrlq \$52, $_R4, $_R4
+ vpsrlq \$52, $_R4h, $_R4h
+
+ # "Shift left" _R0.._Rn by 1 QW
+ vpermq \$144, $_R4h, $_R4h
+ vpermq \$3, $_R4, $tmp
+ vblendpd \$1, $tmp, $_R4h, $_R4h
+
+ vpermq \$144, $_R4, $_R4
+ vpermq \$3, $_R3h, $tmp
+ vblendpd \$1, $tmp, $_R4, $_R4
+
+ vpermq \$144, $_R3h, $_R3h
+ vpermq \$3, $_R3, $tmp
+ vblendpd \$1, $tmp, $_R3h, $_R3h
+
+ vpermq \$144, $_R3, $_R3
+ vpermq \$3, $_R2h, $tmp
+ vblendpd \$1, $tmp, $_R3, $_R3
+
+ vpermq \$144, $_R2h, $_R2h
+ vpermq \$3, $_R2, $tmp
+ vblendpd \$1, $tmp, $_R2h, $_R2h
+
+ vpermq \$144, $_R2, $_R2
+ vpermq \$3, $_R1h, $tmp
+ vblendpd \$1, $tmp, $_R2, $_R2
+
+ vpermq \$144, $_R1h, $_R1h
+ vpermq \$3, $_R1, $tmp
+ vblendpd \$1, $tmp, $_R1h, $_R1h
+
+ vpermq \$144, $_R1, $_R1
+ vpermq \$3, $_R0h, $tmp
+ vblendpd \$1, $tmp, $_R1, $_R1
+
+ vpermq \$144, $_R0h, $_R0h
+ vpermq \$3, $_R0, $tmp
+ vblendpd \$1, $tmp, $_R0h, $_R0h
+
+ vpermq \$144, $_R0, $_R0
+ vpand .Lhigh64x3(%rip), $_R0, $_R0
+
+ vmovupd $_R0, `10*32`(%rsp)
+ vmovupd $_R0h, `11*32`(%rsp)
+ vmovupd $_R1, `12*32`(%rsp)
+ vmovupd $_R1h, `13*32`(%rsp)
+ vmovupd $_R2, `14*32`(%rsp)
+ vmovupd $_R2h, `15*32`(%rsp)
+ vmovupd $_R3, `16*32`(%rsp)
+ vmovupd $_R3h, `17*32`(%rsp)
+ vmovupd $_R4, `18*32`(%rsp)
+ vmovupd $_R4h, `19*32`(%rsp)
+
+ vmovupd `0*32`(%rsp), $_R0
+ vmovupd `1*32`(%rsp), $_R0h
+ vmovupd `2*32`(%rsp), $_R1
+ vmovupd `3*32`(%rsp), $_R1h
+ vmovupd `4*32`(%rsp), $_R2
+ vmovupd `5*32`(%rsp), $_R2h
+ vmovupd `6*32`(%rsp), $_R3
+ vmovupd `7*32`(%rsp), $_R3h
+ vmovupd `8*32`(%rsp), $_R4
+ vmovupd `9*32`(%rsp), $_R4h
+
+ # Drop "carries" from R0..Rn QWs
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+ vpand .Lmask52x4(%rip), $_R2h, $_R2h
+ vpand .Lmask52x4(%rip), $_R3, $_R3
+ vpand .Lmask52x4(%rip), $_R3h, $_R3h
+ vpand .Lmask52x4(%rip), $_R4, $_R4
+ vpand .Lmask52x4(%rip), $_R4h, $_R4h
+
+ # Sum R0..Rn with corresponding adjusted carries
+ vpaddq `10*32`(%rsp), $_R0, $_R0
+ vpaddq `11*32`(%rsp), $_R0h, $_R0h
+ vpaddq `12*32`(%rsp), $_R1, $_R1
+ vpaddq `13*32`(%rsp), $_R1h, $_R1h
+ vpaddq `14*32`(%rsp), $_R2, $_R2
+ vpaddq `15*32`(%rsp), $_R2h, $_R2h
+ vpaddq `16*32`(%rsp), $_R3, $_R3
+ vpaddq `17*32`(%rsp), $_R3h, $_R3h
+ vpaddq `18*32`(%rsp), $_R4, $_R4
+ vpaddq `19*32`(%rsp), $_R4h, $_R4h
+
+ lea 640(%rsp),%rsp
+
+ # Now handle carry bits from this addition
+ # Get mask of QWs whose 52-bit parts overflow
+ vpcmpgtq .Lmask52x4(%rip),${_R0},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r14d
+ vpcmpgtq .Lmask52x4(%rip),${_R0h},$tmp
+ vmovmskpd $tmp,%r13d
+ shl \$4,%r13b
+ or %r13b,%r14b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R1},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r13d
+ vpcmpgtq .Lmask52x4(%rip),${_R1h},$tmp
+ vmovmskpd $tmp,%r12d
+ shl \$4,%r12b
+ or %r12b,%r13b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R2},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r12d
+ vpcmpgtq .Lmask52x4(%rip),${_R2h},$tmp
+ vmovmskpd $tmp,%r11d
+ shl \$4,%r11b
+ or %r11b,%r12b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R3},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r11d
+ vpcmpgtq .Lmask52x4(%rip),${_R3h},$tmp
+ vmovmskpd $tmp,%r10d
+ shl \$4,%r10b
+ or %r10b,%r11b
+
+ vpcmpgtq .Lmask52x4(%rip),${_R4},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r10d
+ vpcmpgtq .Lmask52x4(%rip),${_R4h},$tmp
+ vmovmskpd $tmp,%r9d
+ shl \$4,%r9b
+ or %r9b,%r10b
+
+ addb %r14b,%r14b
+ adcb %r13b,%r13b
+ adcb %r12b,%r12b
+ adcb %r11b,%r11b
+ adcb %r10b,%r10b
+
+ # Get mask of QWs whose 52-bit parts saturated
+ vpcmpeqq .Lmask52x4(%rip),${_R0},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r9d
+ vpcmpeqq .Lmask52x4(%rip),${_R0h},$tmp
+ vmovmskpd $tmp,%r8d
+ shl \$4,%r8b
+ or %r8b,%r9b
+
+ vpcmpeqq .Lmask52x4(%rip),${_R1},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%r8d
+ vpcmpeqq .Lmask52x4(%rip),${_R1h},$tmp
+ vmovmskpd $tmp,%edx
+ shl \$4,%dl
+ or %dl,%r8b
+
+ vpcmpeqq .Lmask52x4(%rip),${_R2},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%edx
+ vpcmpeqq .Lmask52x4(%rip),${_R2h},$tmp
+ vmovmskpd $tmp,%ecx
+ shl \$4,%cl
+ or %cl,%dl
+
+ vpcmpeqq .Lmask52x4(%rip),${_R3},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%ecx
+ vpcmpeqq .Lmask52x4(%rip),${_R3h},$tmp
+ vmovmskpd $tmp,%ebx
+ shl \$4,%bl
+ or %bl,%cl
+
+ vpcmpeqq .Lmask52x4(%rip),${_R4},$tmp # OP=nle (i.e. gt)
+ vmovmskpd $tmp,%ebx
+ vpcmpeqq .Lmask52x4(%rip),${_R4h},$tmp
+ vmovmskpd $tmp,%eax
+ shl \$4,%al
+ or %al,%bl
+
+ addb %r9b,%r14b
+ adcb %r8b,%r13b
+ adcb %dl,%r12b
+ adcb %cl,%r11b
+ adcb %bl,%r10b
+
+ xor %r9b,%r14b
+ xor %r8b,%r13b
+ xor %dl,%r12b
+ xor %cl,%r11b
+ xor %bl,%r10b
+
+ push %r9
+ push %r8
+
+ lea .Lkmasklut(%rip), %r8
+
+ movb %r14b,%r9b
+ and \$0xf, %r14
+ vpsubq .Lmask52x4(%rip), $_R0, $tmp
+ shl \$5, %r14
+ vmovapd (%r8, %r14), $tmp2
+ vblendvpd $tmp2, $tmp, $_R0, $_R0
+
+ shr \$4, %r9b
+ and \$0xf, %r9
+ vpsubq .Lmask52x4(%rip), $_R0h, $tmp
+ shl \$5, %r9
+ vmovapd (%r8, %r9), $tmp2
+ vblendvpd $tmp2, $tmp, $_R0h, $_R0h
+
+ movb %r13b,%r9b
+ and \$0xf, %r13
+ vpsubq .Lmask52x4(%rip), $_R1, $tmp
+ shl \$5, %r13
+ vmovapd (%r8, %r13), $tmp2
+ vblendvpd $tmp2, $tmp, $_R1, $_R1
+
+ shr \$4, %r9b
+ and \$0xf, %r9
+ vpsubq .Lmask52x4(%rip), $_R1h, $tmp
+ shl \$5, %r9
+ vmovapd (%r8, %r9), $tmp2
+ vblendvpd $tmp2, $tmp, $_R1h, $_R1h
+
+ movb %r12b,%r9b
+ and \$0xf, %r12
+ vpsubq .Lmask52x4(%rip), $_R2, $tmp
+ shl \$5, %r12
+ vmovapd (%r8, %r12), $tmp2
+ vblendvpd $tmp2, $tmp, $_R2, $_R2
+
+ shr \$4, %r9b
+ and \$0xf, %r9
+ vpsubq .Lmask52x4(%rip), $_R2h, $tmp
+ shl \$5, %r9
+ vmovapd (%r8, %r9), $tmp2
+ vblendvpd $tmp2, $tmp, $_R2h, $_R2h
+
+ movb %r11b,%r9b
+ and \$0xf, %r11
+ vpsubq .Lmask52x4(%rip), $_R3, $tmp
+ shl \$5, %r11
+ vmovapd (%r8, %r11), $tmp2
+ vblendvpd $tmp2, $tmp, $_R3, $_R3
+
+ shr \$4, %r9b
+ and \$0xf, %r9
+ vpsubq .Lmask52x4(%rip), $_R3h, $tmp
+ shl \$5, %r9
+ vmovapd (%r8, %r9), $tmp2
+ vblendvpd $tmp2, $tmp, $_R3h, $_R3h
+
+ movb %r10b,%r9b
+ and \$0xf, %r10
+ vpsubq .Lmask52x4(%rip), $_R4, $tmp
+ shl \$5, %r10
+ vmovapd (%r8, %r10), $tmp2
+ vblendvpd $tmp2, $tmp, $_R4, $_R4
+
+ shr \$4, %r9b
+ and \$0xf, %r9
+ vpsubq .Lmask52x4(%rip), $_R4h, $tmp
+ shl \$5, %r9
+ vmovapd (%r8, %r9), $tmp2
+ vblendvpd $tmp2, $tmp, $_R4h, $_R4h
+
+ pop %r8
+ pop %r9
+
+ vpand .Lmask52x4(%rip), $_R0, $_R0
+ vpand .Lmask52x4(%rip), $_R0h, $_R0h
+ vpand .Lmask52x4(%rip), $_R1, $_R1
+ vpand .Lmask52x4(%rip), $_R1h, $_R1h
+ vpand .Lmask52x4(%rip), $_R2, $_R2
+ vpand .Lmask52x4(%rip), $_R2h, $_R2h
+ vpand .Lmask52x4(%rip), $_R3, $_R3
+
+ vpand .Lmask52x4(%rip), $_R3h, $_R3h
+ vpand .Lmask52x4(%rip), $_R4, $_R4
+ vpand .Lmask52x4(%rip), $_R4h, $_R4h
+___
+}
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x40_x1_avxifma256
+.type ossl_rsaz_amm52x40_x1_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x40_x1_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
+ vmovapd %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovapd %xmm7, `1*16`(%rsp)
+ vmovapd %xmm8, `2*16`(%rsp)
+ vmovapd %xmm9, `3*16`(%rsp)
+ vmovapd %xmm10,`4*16`(%rsp)
+ vmovapd %xmm11,`5*16`(%rsp)
+ vmovapd %xmm12,`6*16`(%rsp)
+ vmovapd %xmm13,`7*16`(%rsp)
+ vmovapd %xmm14,`8*16`(%rsp)
+ vmovapd %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x40_x1_avxifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+ vmovapd $zero, $R4_0
+ vmovapd $zero, $R4_0h
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ # Loop over 40 digits unrolled by 4
+ mov \$10, $iter
+
+.align 32
+.Lloop10:
+___
+ foreach my $idx (0..3) {
+ &amm52x40_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,$k0);
+ }
+$code.=<<___;
+ lea `4*8`($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop10
+___
+ &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
+$code.=<<___;
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+ vmovdqu $R2_0h, `5*32`($res)
+ vmovdqu $R3_0, `6*32`($res)
+ vmovdqu $R3_0h, `7*32`($res)
+ vmovdqu $R4_0, `8*32`($res)
+ vmovdqu $R4_0h, `9*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovapd `0*16`(%rax),%xmm6
+ vmovapd `1*16`(%rax),%xmm7
+ vmovapd `2*16`(%rax),%xmm8
+ vmovapd `3*16`(%rax),%xmm9
+ vmovapd `4*16`(%rax),%xmm10
+ vmovapd `5*16`(%rax),%xmm11
+ vmovapd `6*16`(%rax),%xmm12
+ vmovapd `7*16`(%rax),%xmm13
+ vmovapd `8*16`(%rax),%xmm14
+ vmovapd `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp # restore rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x40_x1_avxifma256_epilogue:
+
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x40_x1_avxifma256, .-ossl_rsaz_amm52x40_x1_avxifma256
+___
+
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lmask52x4:
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+ .quad 0xfffffffffffff
+.Lhigh64x3:
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+.Lkmasklut:
+ #0000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ #0010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ #0100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #0111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ #1000
+ .quad 0x0
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1001
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1010
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1011
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ #1100
+ .quad 0x0
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1101
+ .quad 0xffffffffffffffff
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1110
+ .quad 0x0
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ #1111
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+ .quad 0xffffffffffffffff
+___
+
+###############################################################################
+# Dual Almost Montgomery Multiplication for 40-digit number in radix 2^52
+#
+# See description of ossl_rsaz_amm52x40_x1_ifma256() above for details about Almost
+# Montgomery Multiplication algorithm and function input parameters description.
+#
+# This function does two AMMs for two independent inputs, hence dual.
+#
+# void ossl_rsaz_amm52x40_x2_avxifma256(BN_ULONG out[2][40],
+# const BN_ULONG a[2][40],
+# const BN_ULONG b[2][40],
+# const BN_ULONG m[2][40],
+# const BN_ULONG k0[2]);
+###############################################################################
+
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x40_x2_avxifma256
+.type ossl_rsaz_amm52x40_x2_avxifma256,\@function,5
+.align 32
+ossl_rsaz_amm52x40_x2_avxifma256:
+.cfi_startproc
+ endbranch
+ push %rbx
+.cfi_push %rbx
+ push %rbp
+.cfi_push %rbp
+ push %r12
+.cfi_push %r12
+ push %r13
+.cfi_push %r13
+ push %r14
+.cfi_push %r14
+ push %r15
+.cfi_push %r15
+___
+$code.=<<___ if ($win64);
+ lea -168(%rsp),%rsp
+ vmovapd %xmm6, `0*16`(%rsp) # save non-volatile registers
+ vmovapd %xmm7, `1*16`(%rsp)
+ vmovapd %xmm8, `2*16`(%rsp)
+ vmovapd %xmm9, `3*16`(%rsp)
+ vmovapd %xmm10,`4*16`(%rsp)
+ vmovapd %xmm11,`5*16`(%rsp)
+ vmovapd %xmm12,`6*16`(%rsp)
+ vmovapd %xmm13,`7*16`(%rsp)
+ vmovapd %xmm14,`8*16`(%rsp)
+ vmovapd %xmm15,`9*16`(%rsp)
+.Lossl_rsaz_amm52x40_x2_avxifma256_body:
+___
+$code.=<<___;
+ # Zeroing accumulators
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+ vmovapd $zero, $R4_0
+ vmovapd $zero, $R4_0h
+
+ xorl $acc0_0_low, $acc0_0_low
+
+ movq $b, $b_ptr # backup address of b
+ movq \$0xfffffffffffff, $mask52 # 52-bit mask
+
+ mov \$40, $iter
+
+.align 32
+.Lloop40:
+___
+ &amm52x40_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,"($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop40
+
+ push $b_ptr
+ push $a
+ push $m
+ push $k0
+___
+ &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
+$code.=<<___;
+
+ pop $k0
+ pop $m
+ pop $a
+ pop $b_ptr
+
+ vmovdqu $R0_0, `0*32`($res)
+ vmovdqu $R0_0h, `1*32`($res)
+ vmovdqu $R1_0, `2*32`($res)
+ vmovdqu $R1_0h, `3*32`($res)
+ vmovdqu $R2_0, `4*32`($res)
+ vmovdqu $R2_0h, `5*32`($res)
+ vmovdqu $R3_0, `6*32`($res)
+ vmovdqu $R3_0h, `7*32`($res)
+ vmovdqu $R4_0, `8*32`($res)
+ vmovdqu $R4_0h, `9*32`($res)
+
+ xorl $acc0_1_low, $acc0_1_low
+
+ movq \$0xfffffffffffff, $mask52
+
+ mov \$40, $iter
+
+ vpxor $zero, $zero, $zero
+ vmovapd $zero, $R0_0
+ vmovapd $zero, $R0_0h
+ vmovapd $zero, $R1_0
+ vmovapd $zero, $R1_0h
+ vmovapd $zero, $R2_0
+ vmovapd $zero, $R2_0h
+ vmovapd $zero, $R3_0
+ vmovapd $zero, $R3_0h
+ vmovapd $zero, $R4_0
+ vmovapd $zero, $R4_0h
+.align 32
+.Lloop40_1:
+___
+ # 40*8 = offset of the next dimension in two-dimension array
+ &amm52x40_x1(40*8, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,"8($k0)");
+$code.=<<___;
+ lea 8($b_ptr), $b_ptr
+ dec $iter
+ jne .Lloop40_1
+___
+ &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
+$code.=<<___;
+
+ vmovdqu $R0_0, `10*32`($res)
+ vmovdqu $R0_0h, `11*32`($res)
+ vmovdqu $R1_0, `12*32`($res)
+ vmovdqu $R1_0h, `13*32`($res)
+ vmovdqu $R2_0, `14*32`($res)
+ vmovdqu $R2_0h, `15*32`($res)
+ vmovdqu $R3_0, `16*32`($res)
+ vmovdqu $R3_0h, `17*32`($res)
+ vmovdqu $R4_0, `18*32`($res)
+ vmovdqu $R4_0h, `19*32`($res)
+
+ vzeroupper
+ lea (%rsp),%rax
+.cfi_def_cfa_register %rax
+___
+$code.=<<___ if ($win64);
+ vmovapd `0*16`(%rax),%xmm6
+ vmovapd `1*16`(%rax),%xmm7
+ vmovapd `2*16`(%rax),%xmm8
+ vmovapd `3*16`(%rax),%xmm9
+ vmovapd `4*16`(%rax),%xmm10
+ vmovapd `5*16`(%rax),%xmm11
+ vmovapd `6*16`(%rax),%xmm12
+ vmovapd `7*16`(%rax),%xmm13
+ vmovapd `8*16`(%rax),%xmm14
+ vmovapd `9*16`(%rax),%xmm15
+ lea 168(%rsp),%rax
+___
+$code.=<<___;
+ mov 0(%rax),%r15
+.cfi_restore %r15
+ mov 8(%rax),%r14
+.cfi_restore %r14
+ mov 16(%rax),%r13
+.cfi_restore %r13
+ mov 24(%rax),%r12
+.cfi_restore %r12
+ mov 32(%rax),%rbp
+.cfi_restore %rbp
+ mov 40(%rax),%rbx
+.cfi_restore %rbx
+ lea 48(%rax),%rsp
+.cfi_def_cfa %rsp,8
+.Lossl_rsaz_amm52x40_x2_avxifma256_epilogue:
+ ret
+.cfi_endproc
+.size ossl_rsaz_amm52x40_x2_avxifma256, .-ossl_rsaz_amm52x40_x2_avxifma256
+___
+}
+
+###############################################################################
+# Constant time extraction from the precomputed table of powers base^i, where
+# i = 0..2^EXP_WIN_SIZE-1
+#
+# The input |red_table| contains precomputations for two independent base values.
+# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
+#
+# Extracted value (output) is 2 40 digits numbers in 2^52 radix.
+#
+# void ossl_extract_multiplier_2x40_win5_avx(BN_ULONG *red_Y,
+# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][40],
+# int red_table_idx1, int red_table_idx2);
+#
+# EXP_WIN_SIZE = 5
+###############################################################################
+{
+# input parameters
+my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
+ ("%rdi","%rsi","%rdx","%rcx"); # Unix order
+
+my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
+my ($t6,$t7,$t8,$t9) = map("%ymm$_", (6..9));
+my ($tmp,$cur_idx,$idx1,$idx2,$ones,$mask) = map("%ymm$_", (10..15));
+my $tmp_xmm = "%xmm10";
+
+my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
+my $t0xmm = $t0;
+$t0xmm =~ s/%y/%x/;
+
+sub get_table_value_consttime() {
+my ($_idx,$_offset) = @_;
+$code.=<<___;
+ vpxor $cur_idx, $cur_idx, $cur_idx
+.align 32
+.Lloop_$_offset:
+ vpcmpeqq $cur_idx, $_idx, $mask # mask of (idx == cur_idx)
+___
+foreach (0..9) {
+$code.=<<___;
+ vmovdqu `$_offset+${_}*32`($red_tbl), $tmp # load data from red_tbl
+ #vpblendmq $tmp, $t[$_], ${t[$_]}{%k1} # extract data when mask is not zero
+ vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
+___
+}
+$code.=<<___;
+ vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
+ addq \$`2*40*8`, $red_tbl
+ cmpq $red_tbl, %rax
+ jne .Lloop_$_offset
+___
+}
+
+$code.=<<___;
+.text
+
+.align 32
+.globl ossl_extract_multiplier_2x40_win5_avx
+.type ossl_extract_multiplier_2x40_win5_avx,\@abi-omnipotent
+ossl_extract_multiplier_2x40_win5_avx:
+.cfi_startproc
+ endbranch
+ vmovapd .Lones(%rip), $ones # broadcast ones
+ vmovq $red_tbl_idx1, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx1
+ vmovq $red_tbl_idx2, $tmp_xmm
+ vpbroadcastq $tmp_xmm, $idx2
+ leaq `(1<<5)*2*40*8`($red_tbl), %rax # holds end of the tbl
+
+ # backup red_tbl address
+ movq $red_tbl, %r10
+
+ # zeroing t0..n, cur_idx
+ vpxor $t0xmm, $t0xmm, $t0xmm
+___
+foreach (1..9) {
+ $code.="vmovapd $t0, $t[$_] \n";
+}
+
+&get_table_value_consttime($idx1, 0);
+foreach (0..9) {
+ $code.="vmovdqu $t[$_], `(0+$_)*32`($out) \n";
+}
+$code.="movq %r10, $red_tbl \n";
+&get_table_value_consttime($idx2, 40*8);
+foreach (0..9) {
+ $code.="vmovdqu $t[$_], `(10+$_)*32`($out) \n";
+}
+$code.=<<___;
+
+ ret
+.cfi_endproc
+.size ossl_extract_multiplier_2x40_win5_avx, .-ossl_extract_multiplier_2x40_win5_avx
+___
+$code.=<<___;
+.section .rodata align=32
+.align 32
+.Lones:
+ .quad 1,1,1,1
+.Lzeros:
+ .quad 0,0,0,0
+___
+}
+
+if ($win64) {
+$rec="%rcx";
+$frame="%rdx";
+$context="%r8";
+$disp="%r9";
+
+$code.=<<___;
+.extern __imp_RtlVirtualUnwind
+.type rsaz_avx_handler,\@abi-omnipotent
+.align 16
+rsaz_avx_handler:
+ push %rsi
+ push %rdi
+ push %rbx
+ push %rbp
+ push %r12
+ push %r13
+ push %r14
+ push %r15
+ pushfq
+ sub \$64,%rsp
+
+ mov 120($context),%rax # pull context->Rax
+ mov 248($context),%rbx # pull context->Rip
+
+ mov 8($disp),%rsi # disp->ImageBase
+ mov 56($disp),%r11 # disp->HandlerData
+
+ mov 0(%r11),%r10d # HandlerData[0]
+ lea (%rsi,%r10),%r10 # prologue label
+ cmp %r10,%rbx # context->Rip<.Lprologue
+ jb .Lcommon_seh_tail
+
+ mov 4(%r11),%r10d # HandlerData[1]
+ lea (%rsi,%r10),%r10 # epilogue label
+ cmp %r10,%rbx # context->Rip>=.Lepilogue
+ jae .Lcommon_seh_tail
+
+ mov 152($context),%rax # pull context->Rsp
+
+ lea (%rax),%rsi # %xmm save area
+ lea 512($context),%rdi # & context.Xmm6
+ mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
+ .long 0xa548f3fc # cld; rep movsq
+
+ lea `48+168`(%rax),%rax
+
+ mov -8(%rax),%rbx
+ mov -16(%rax),%rbp
+ mov -24(%rax),%r12
+ mov -32(%rax),%r13
+ mov -40(%rax),%r14
+ mov -48(%rax),%r15
+ mov %rbx,144($context) # restore context->Rbx
+ mov %rbp,160($context) # restore context->Rbp
+ mov %r12,216($context) # restore context->R12
+ mov %r13,224($context) # restore context->R13
+ mov %r14,232($context) # restore context->R14
+ mov %r15,240($context) # restore context->R14
+
+.Lcommon_seh_tail:
+ mov 8(%rax),%rdi
+ mov 16(%rax),%rsi
+ mov %rax,152($context) # restore context->Rsp
+ mov %rsi,168($context) # restore context->Rsi
+ mov %rdi,176($context) # restore context->Rdi
+
+ mov 40($disp),%rdi # disp->ContextRecord
+ mov $context,%rsi # context
+ mov \$154,%ecx # sizeof(CONTEXT)
+ .long 0xa548f3fc # cld; rep movsq
+
+ mov $disp,%rsi
+ xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
+ mov 8(%rsi),%rdx # arg2, disp->ImageBase
+ mov 0(%rsi),%r8 # arg3, disp->ControlPc
+ mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
+ mov 40(%rsi),%r10 # disp->ContextRecord
+ lea 56(%rsi),%r11 # &disp->HandlerData
+ lea 24(%rsi),%r12 # &disp->EstablisherFrame
+ mov %r10,32(%rsp) # arg5
+ mov %r11,40(%rsp) # arg6
+ mov %r12,48(%rsp) # arg7
+ mov %rcx,56(%rsp) # arg8, (NULL)
+ call *__imp_RtlVirtualUnwind(%rip)
+
+ mov \$1,%eax # ExceptionContinueSearch
+ add \$64,%rsp
+ popfq
+ pop %r15
+ pop %r14
+ pop %r13
+ pop %r12
+ pop %rbp
+ pop %rbx
+ pop %rdi
+ pop %rsi
+ ret
+.size rsaz_avx_handler,.-rsaz_avx_handler
+
+.section .pdata
+.align 4
+ .rva .LSEH_begin_ossl_rsaz_amm52x40_x1_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x40_x1_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x40_x1_avxifma256
+
+ .rva .LSEH_begin_ossl_rsaz_amm52x40_x2_avxifma256
+ .rva .LSEH_end_ossl_rsaz_amm52x40_x2_avxifma256
+ .rva .LSEH_info_ossl_rsaz_amm52x40_x2_avxifma256
+
+.section .xdata
+.align 8
+.LSEH_info_ossl_rsaz_amm52x40_x1_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x40_x1_avxifma256_body,.Lossl_rsaz_amm52x40_x1_avxifma256_epilogue
+.LSEH_info_ossl_rsaz_amm52x40_x2_avxifma256:
+ .byte 9,0,0,0
+ .rva rsaz_avx_handler
+ .rva .Lossl_rsaz_amm52x40_x2_avxifma256_body,.Lossl_rsaz_amm52x40_x2_avxifma256_epilogue
+___
+}
+}}} else {{{ # fallback for old assembler
+$code.=<<___;
+.text
+
+.globl ossl_rsaz_amm52x40_x1_avxifma256
+.globl ossl_rsaz_amm52x40_x2_avxifma256
+.globl ossl_extract_multiplier_2x40_win5_avx
+.type ossl_rsaz_amm52x40_x1_avxifma256,\@abi-omnipotent
+ossl_rsaz_amm52x40_x1_avxifma256:
+ossl_rsaz_amm52x40_x2_avxifma256:
+ossl_extract_multiplier_2x40_win5_avx:
+ .byte 0x0f,0x0b # ud2
+ ret
+.size ossl_rsaz_amm52x40_x1_avxifma256, .-ossl_rsaz_amm52x40_x1_avxifma256
+___
+}}}
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT or die "error closing STDOUT: $!";
/*
* This is a variant of modular exponentiation optimization that does
* parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
- * in 52-bit binary redundant representation.
+ * or AVX_IFMA ISA in 52-bit binary redundant representation.
* If such instructions are not available, or input data size is not supported,
* it falls back to two BN_mod_exp_mont_consttime() calls.
*/
BN_MONT_CTX *mont1 = NULL;
BN_MONT_CTX *mont2 = NULL;
- if (ossl_rsaz_avx512ifma_eligible() &&
+ if ((ossl_rsaz_avx512ifma_eligible() || ossl_rsaz_avxifma_eligible()) &&
(((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
(a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024)) ||
((a1->top == 24) && (p1->top == 24) && (BN_num_bits(m1) == 1536) &&
$BNASM_x86_64=\
x86_64-mont.s x86_64-mont5.s x86_64-gf2m.s rsaz_exp.c rsaz-x86_64.s \
- rsaz-avx2.s rsaz_exp_x2.c rsaz-2k-avx512.s rsaz-3k-avx512.s rsaz-4k-avx512.s
+ rsaz-avx2.s rsaz_exp_x2.c rsaz-2k-avx512.s rsaz-3k-avx512.s rsaz-4k-avx512.s \
+ rsaz-2k-avxifma.s rsaz-3k-avxifma.s rsaz-4k-avxifma.s
IF[{- $config{target} !~ /^VC/ -}]
$BNASM_x86_64=asm/x86_64-gcc.c $BNASM_x86_64
ELSE
GENERATE[rsaz-2k-avx512.s]=asm/rsaz-2k-avx512.pl
GENERATE[rsaz-3k-avx512.s]=asm/rsaz-3k-avx512.pl
GENERATE[rsaz-4k-avx512.s]=asm/rsaz-4k-avx512.pl
+GENERATE[rsaz-2k-avxifma.s]=asm/rsaz-2k-avxifma.pl
+GENERATE[rsaz-3k-avxifma.s]=asm/rsaz-3k-avxifma.pl
+GENERATE[rsaz-4k-avxifma.s]=asm/rsaz-4k-avxifma.pl
GENERATE[bn-ia64.s]=asm/ia64.S
GENERATE[ia64-mont.s]=asm/ia64-mont.pl
int ossl_rsaz_avx512ifma_eligible(void);
+int ossl_rsaz_avxifma_eligible(void);
+
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
const BN_ULONG *base1,
const BN_ULONG *exponent1,
* 52xZZ - data represented as array of ZZ digits in 52-bit radix
* _x1_/_x2_ - 1 or 2 independent inputs/outputs
* _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
+ * _avxifma256 - uses 256-bit wide AVXIFMA ISA (AVX_IFMA256)
*/
void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *red_table,
int red_table_idx1, int red_table_idx2);
+void ossl_rsaz_amm52x20_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ BN_ULONG k0);
+void ossl_rsaz_amm52x20_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ const BN_ULONG k0[2]);
+void ossl_extract_multiplier_2x20_win5_avx(BN_ULONG *red_Y,
+ const BN_ULONG *red_table,
+ int red_table_idx1,
+ int red_table_idx2);
+
+void ossl_rsaz_amm52x30_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ BN_ULONG k0);
+void ossl_rsaz_amm52x30_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ const BN_ULONG k0[2]);
+void ossl_extract_multiplier_2x30_win5_avx(BN_ULONG *red_Y,
+ const BN_ULONG *red_table,
+ int red_table_idx1,
+ int red_table_idx2);
+
+void ossl_rsaz_amm52x40_x1_avxifma256(BN_ULONG *res, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ BN_ULONG k0);
+void ossl_rsaz_amm52x40_x2_avxifma256(BN_ULONG *out, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ const BN_ULONG k0[2]);
+void ossl_extract_multiplier_2x40_win5_avx(BN_ULONG *red_Y,
+ const BN_ULONG *red_table,
+ int red_table_idx1,
+ int red_table_idx2);
+
+typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
+ const BN_ULONG *m, BN_ULONG k0);
+
+static AMM ossl_rsaz_amm52_x1[] = {
+ ossl_rsaz_amm52x20_x1_avxifma256, ossl_rsaz_amm52x20_x1_ifma256,
+ ossl_rsaz_amm52x30_x1_avxifma256, ossl_rsaz_amm52x30_x1_ifma256,
+ ossl_rsaz_amm52x40_x1_avxifma256, ossl_rsaz_amm52x40_x1_ifma256,
+};
+
+typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b,
+ const BN_ULONG *m, const BN_ULONG k0[2]);
+
+static DAMM ossl_rsaz_amm52_x2[] = {
+ ossl_rsaz_amm52x20_x2_avxifma256, ossl_rsaz_amm52x20_x2_ifma256,
+ ossl_rsaz_amm52x30_x2_avxifma256, ossl_rsaz_amm52x30_x2_ifma256,
+ ossl_rsaz_amm52x40_x2_avxifma256, ossl_rsaz_amm52x40_x2_ifma256,
+};
+
+typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
+ int red_table_idx, int tbl_idx);
+
+static DEXTRACT ossl_extract_multiplier_win5[] = {
+ ossl_extract_multiplier_2x20_win5_avx, ossl_extract_multiplier_2x20_win5,
+ ossl_extract_multiplier_2x30_win5_avx, ossl_extract_multiplier_2x30_win5,
+ ossl_extract_multiplier_2x40_win5_avx, ossl_extract_multiplier_2x40_win5,
+};
+
static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
const BN_ULONG *exp[2], const BN_ULONG *m,
const BN_ULONG *rr, const BN_ULONG k0[2],
/*
* Dual Montgomery modular exponentiation using prime moduli of the
- * same bit size, optimized with AVX512 ISA.
+ * same bit size, optimized with AVX512 ISA or AVXIFMA ISA.
*
* Input and output parameters for each exponentiation are independent and
* denoted here by index |i|, i = 1..2.
BN_ULONG k0_2,
int factor_size)
{
- typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
int ret = 0;
/*
BN_ULONG k0[2] = {0};
/* AMM = Almost Montgomery Multiplication */
AMM amm = NULL;
+ int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
- switch (factor_size) {
- case 1024:
- amm = ossl_rsaz_amm52x20_x1_ifma256;
- break;
- case 1536:
- amm = ossl_rsaz_amm52x30_x1_ifma256;
- break;
- case 2048:
- amm = ossl_rsaz_amm52x40_x1_ifma256;
- break;
- default:
+ if (factor_size % 512)
goto err;
- }
+
+ amm = ossl_rsaz_amm52_x1[(factor_size / 512 - 2) * 2 + avx512ifma];
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
if (storage == NULL)
const BN_ULONG k0[2],
int modulus_bitsize)
{
- typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
- const BN_ULONG *b, const BN_ULONG *m,
- const BN_ULONG k0[2]);
- typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
- int red_table_idx, int tbl_idx);
-
int ret = 0;
int idx;
DAMM damm = NULL;
/* Extractor from red_table */
DEXTRACT extract = NULL;
+ int avx512ifma = !!ossl_rsaz_avx512ifma_eligible();
/*
* Squaring is done using multiplication now. That can be a subject of
*/
# define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
+ if (modulus_bitsize % 512)
+ goto err;
+
+ damm = ossl_rsaz_amm52_x2[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
+ extract = ossl_extract_multiplier_win5[(modulus_bitsize / 512 - 2) * 2 + avx512ifma];
+
switch (modulus_bitsize) {
case 1024:
red_digits = 20;
exp_digits = 16;
- damm = ossl_rsaz_amm52x20_x2_ifma256;
- extract = ossl_extract_multiplier_2x20_win5;
break;
case 1536:
/* Extended with 2 digits padding to avoid mask ops in high YMM register */
red_digits = 30 + 2;
exp_digits = 24;
- damm = ossl_rsaz_amm52x30_x2_ifma256;
- extract = ossl_extract_multiplier_2x30_win5;
break;
case 2048:
red_digits = 40;
exp_digits = 32;
- damm = ossl_rsaz_amm52x40_x2_ifma256;
- extract = ossl_extract_multiplier_2x40_win5;
break;
default:
goto err;
xor %eax,%eax
mov %rax,8(%rdi) # clear extended feature flags
+ mov %rax,16(%rdi)
cpuid
mov %eax,%r11d # max value for standard query level