--- /dev/null
+/*
+ * Copyright (C) 1996-2016 The Squid Software Foundation and contributors
+ *
+ * Squid software is distributed under GPLv2+ license and includes
+ * contributions from numerous individuals and organizations.
+ * Please see the COPYING and CONTRIBUTORS files for details.
+ */
+
+/* Extended regular expression matching and search library,
+ * version 0.12.
+ * (Implements POSIX draft P10003.2/D11.2, except for
+ * internationalization features.)
+ *
+ * Copyright (C) 1993 Free Software Foundation, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */
+
+/* AIX requires this to be the first thing in the file. */
+#if defined (_AIX) && !defined(REGEX_MALLOC)
+#pragma alloca
+#endif
+
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE 1
+#endif
+
+#include "squid.h"
+
+#if USE_GNUREGEX /* only if squid needs it. Usually not */
+
+#if !HAVE_ALLOCA
+#define REGEX_MALLOC 1
+#endif
+
+/* We used to test for `BSTRING' here, but only GCC and Emacs define
+ * `BSTRING', as far as I know, and neither of them use this code. */
+#if HAVE_STRING_H || STDC_HEADERS
+#include <string.h>
+#else
+#include <strings.h>
+#endif
+
+/* Define the syntax stuff for \<, \>, etc. */
+
+/* This must be nonzero for the wordchar and notwordchar pattern
+ * commands in re_match_2. */
+#ifndef Sword
+#define Sword 1
+#endif
+
+#ifdef SYNTAX_TABLE
+
+extern char *re_syntax_table;
+
+#else /* not SYNTAX_TABLE */
+
+/* How many characters in the character set. */
+#define CHAR_SET_SIZE 256
+
+static char re_syntax_table[CHAR_SET_SIZE];
+
+static void
+init_syntax_once(void)
+{
+ register int c;
+ static int done = 0;
+
+ if (done)
+ return;
+
+ memset(re_syntax_table, 0, sizeof re_syntax_table);
+
+ for (c = 'a'; c <= 'z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = 'A'; c <= 'Z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = '0'; c <= '9'; c++)
+ re_syntax_table[c] = Sword;
+
+ re_syntax_table['_'] = Sword;
+
+ done = 1;
+}
+
+#endif /* not SYNTAX_TABLE */
+
+/* Get the interface, including the syntax bits. */
+#include "compat/GnuRegex.h"
+
+/* Compile a fastmap for the compiled pattern in BUFFER; used to
+ * accelerate searches. Return 0 if successful and -2 if was an
+ * internal error. */
+static int re_compile_fastmap(struct re_pattern_buffer * buffer);
+
+/* Search in the string STRING (with length LENGTH) for the pattern
+ * compiled into BUFFER. Start searching at position START, for RANGE
+ * characters. Return the starting position of the match, -1 for no
+ * match, or -2 for an internal error. Also return register
+ * information in REGS (if REGS and BUFFER->no_sub are nonzero). */
+static int re_search(struct re_pattern_buffer * buffer, const char *string,
+ int length, int start, int range, struct re_registers * regs);
+
+/* Like `re_search', but search in the concatenation of STRING1 and
+ * STRING2. Also, stop searching at index START + STOP. */
+static int re_search_2(struct re_pattern_buffer * buffer, const char *string1,
+ int length1, const char *string2, int length2,
+ int start, int range, struct re_registers * regs, int stop);
+
+/* Like `re_search_2', but return how many characters in STRING the regexp
+ * in BUFFER matched, starting at position START. */
+static int re_match_2(struct re_pattern_buffer * buffer, const char *string1,
+ int length1, const char *string2, int length2,
+ int start, struct re_registers * regs, int stop);
+
+/* isalpha etc. are used for the character classes. */
+#include <ctype.h>
+
+#ifndef isascii
+#define isascii(c) 1
+#endif
+
+#ifdef isblank
+#define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c))
+#else
+#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+#endif
+#ifdef isgraph
+#define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c))
+#else
+#define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c))
+#endif
+
+#define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c))
+#define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c))
+#define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c))
+#define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c))
+#define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c))
+#define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c))
+#define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c))
+#define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c))
+#define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c))
+#define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c))
+
+/* We remove any previous definition of `SIGN_EXTEND_CHAR',
+ * since ours (we hope) works properly with all combinations of
+ * machines, compilers, `char' and `unsigned char' argument types.
+ * (Per Bothner suggested the basic approach.) */
+#undef SIGN_EXTEND_CHAR
+#ifdef __STDC__
+#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+#else /* not __STDC__ */
+/* As in Harbison and Steele. */
+#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+#endif
+\f
+/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ * use `alloca' instead of `malloc'. This is because using malloc in
+ * re_search* or re_match* could cause memory leaks when C-g is used in
+ * Emacs; also, malloc is slower and causes storage fragmentation. On
+ * the other hand, malloc is more portable, and easier to debug.
+ *
+ * Because we sometimes use alloca, some routines have to be macros,
+ * not functions -- `alloca'-allocated space disappears at the end of the
+ * function it is called in. */
+
+#ifdef REGEX_MALLOC
+
+#define REGEX_ALLOCATE malloc
+#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+
+#else /* not REGEX_MALLOC */
+
+/* Emacs already defines alloca, sometimes. */
+#ifndef alloca
+
+/* Make alloca work the best possible way. */
+#ifdef __GNUC__
+#define alloca __builtin_alloca
+#else /* not __GNUC__ */
+#if HAVE_ALLOCA_H
+#include <alloca.h>
+#else /* not __GNUC__ or HAVE_ALLOCA_H */
+#ifndef _AIX /* Already did AIX, up at the top. */
+char *alloca();
+#endif /* not _AIX */
+#endif /* not HAVE_ALLOCA_H */
+#endif /* not __GNUC__ */
+
+#endif /* not alloca */
+
+#define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable. */
+#define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = (char *) alloca (nsize), \
+ memcpy (destination, source, osize), \
+ destination)
+
+#endif /* not REGEX_MALLOC */
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+ * `string1' or just past its end. This works if PTR is NULL, which is
+ * a good thing. */
+#define FIRST_STRING_P(ptr) \
+ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail. */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits. */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#if !defined(__MINGW32__) /* MinGW defines boolean */
+typedef char boolean;
+#endif
+#define false 0
+#define true 1
+\f
+/* These are the command codes that appear in compiled regular
+ * expressions. Some opcodes are followed by argument bytes. A
+ * command code can specify any interpretation whatsoever for its
+ * arguments. Zero bytes may appear in the compiled regular expression.
+ *
+ * The value of `exactn' is needed in search.c (search_buffer) in Emacs.
+ * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
+ * `exactn' we use here must also be 1. */
+
+typedef enum {
+ no_op = 0,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn = 1,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ * following byte is number of bitmap bytes. Then come bytes
+ * for a bitmap saying which chars are in. Bits in each byte
+ * are ordered low-bit-first. A character is in the set if its
+ * bit is 1. A character too large to have a bit in the map is
+ * automatically not in the set. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ * not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ * register. Followed by one byte with the register number, in
+ * the range 0 to one less than the pattern buffer's re_nsub
+ * field. Then followed by one byte with the number of groups
+ * inner to this one. (This last has to be part of the
+ * start_memory only because we need it in the on_failure_jump
+ * of re_match_2.) */
+ start_memory,
+
+ /* Stop remembering the text that is matched and store it in a
+ * memory register. Followed by one byte with the register
+ * number, in the range 0 to one less than `re_nsub' in the
+ * pattern buffer, and one byte with the number of inner groups,
+ * just like `start_memory'. (We need the number of inner
+ * groups here because we don't have any easy way of finding the
+ * corresponding start_memory when we're at a stop_memory.) */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ * byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if or at beginning of string to be matched. */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
+
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Same as jump, but marks the end of an alternative. */
+ jump_past_alt,
+
+ /* Followed by two-byte relative address of place to resume at
+ * in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ * current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Throw away latest failure point and then jump to following
+ * two-byte relative address. */
+ pop_failure_jump,
+
+ /* Change to pop_failure_jump if know won't have to backtrack to
+ * match; otherwise change to jump. This is used to jump
+ * back to the beginning of a repeat. If what follows this jump
+ * clearly won't match what the repeat does, such that we can be
+ * sure that there is no use backtracking out of repetitions
+ * already matched, then we change it to a pop_failure_jump.
+ * Followed by two-byte address. */
+ maybe_pop_jump,
+
+ /* Jump to following two-byte address, and push a dummy failure
+ * point. This failure point will be thrown away if an attempt
+ * is made to use it for a failure. A `+' construct makes this
+ * before the first repeat. Also used as an intermediary kind
+ * of jump when compiling an alternative. */
+ dummy_failure_jump,
+
+ /* Push a dummy failure point and continue. Used at the end of
+ * alternatives. */
+ push_dummy_failure,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ * After matching N times, jump to the address upon failure. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ * Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ * subsequent two-byte number. The address *includes* the two
+ * bytes of number. */
+ set_number_at,
+
+ wordchar, /* Matches any word-constituent character. */
+ notwordchar, /* Matches any char that is not a word-constituent. */
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend, /* Succeeds if at word end. */
+
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound /* Succeeds if not at a word boundary. */
+
+} re_opcode_t;
+\f
+/* Common operations on the compiled pattern. */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+
+#define STORE_NUMBER(destination, number) \
+ do { \
+ (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; \
+ } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ * the byte after where the number is stored. Therefore, DESTINATION
+ * must be an lvalue. */
+
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ do { \
+ STORE_NUMBER (destination, number); \
+ (destination) += 2; \
+ } while (0)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+ * at SOURCE. */
+
+#define EXTRACT_NUMBER(destination, source) \
+ do { \
+ (destination) = *(source) & 0377; \
+ (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
+ } while (0)
+
+#ifdef DEBUG
+static void
+extract_number(dest, source)
+int *dest;
+unsigned char *source;
+{
+ int temp = SIGN_EXTEND_CHAR(*(source + 1));
+ *dest = *source & 0377;
+ *dest += temp << 8;
+}
+
+#ifndef EXTRACT_MACROS /* To debug the macros. */
+#undef EXTRACT_NUMBER
+#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ * SOURCE must be an lvalue. */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ do { \
+ EXTRACT_NUMBER (destination, source); \
+ (source) += 2; \
+ } while (0)
+
+#ifdef DEBUG
+static void
+extract_number_and_incr(destination, source)
+int *destination;
+unsigned char **source;
+{
+ extract_number(destination, *source);
+ *source += 2;
+}
+
+#ifndef EXTRACT_MACROS
+#undef EXTRACT_NUMBER_AND_INCR
+#define EXTRACT_NUMBER_AND_INCR(dest, src) \
+ extract_number_and_incr (&dest, &src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+\f
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+ * it is doing (if the variable `debug' is nonzero). If linked with the
+ * main program in `iregex.c', you can enter patterns and strings
+ * interactively. And if linked with the main program in `main.c' and
+ * the other test files, you can run the already-written tests. */
+
+#ifdef DEBUG
+
+static int debug = 0;
+
+#define DEBUG_STATEMENT(e) e
+#define DEBUG_PRINT1(x) if (debug) printf (x)
+#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ if (debug) print_partial_compiled_pattern (s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ if (debug) print_double_string (w, s1, sz1, s2, sz2)
+
+extern void printchar();
+
+/* Print the fastmap in human-readable form. */
+
+void
+print_fastmap(fastmap)
+char *fastmap;
+{
+ unsigned was_a_range = 0;
+ unsigned i = 0;
+
+ while (i < (1 << BYTEWIDTH)) {
+ if (fastmap[i++]) {
+ was_a_range = 0;
+ printchar(i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i]) {
+ was_a_range = 1;
+ i++;
+ }
+ if (was_a_range) {
+ printf("-");
+ printchar(i - 1);
+ }
+ }
+ }
+ putchar('\n');
+}
+
+/* Print a compiled pattern string in human-readable form, starting at
+ * the START pointer into it and ending just before the pointer END. */
+
+void
+print_partial_compiled_pattern(start, end)
+unsigned char *start;
+unsigned char *end;
+{
+ int mcnt, mcnt2;
+ unsigned char *p = start;
+ unsigned char *pend = end;
+
+ if (start == NULL) {
+ printf("(null)\n");
+ return;
+ }
+ /* Loop over pattern commands. */
+ while (p < pend) {
+ switch ((re_opcode_t) * p++) {
+ case no_op:
+ printf("/no_op");
+ break;
+
+ case exactn:
+ mcnt = *p++;
+ printf("/exactn/%d", mcnt);
+ do {
+ putchar('/');
+ printchar(*p++);
+ } while (--mcnt);
+ break;
+
+ case start_memory:
+ mcnt = *p++;
+ printf("/start_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case stop_memory:
+ mcnt = *p++;
+ printf("/stop_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case duplicate:
+ printf("/duplicate/%d", *p++);
+ break;
+
+ case anychar:
+ printf("/anychar");
+ break;
+
+ case charset:
+ case charset_not: {
+ register int c;
+
+ printf("/charset%s",
+ (re_opcode_t) * (p - 1) == charset_not ? "_not" : "");
+
+ assert(p + *p < pend);
+
+ for (c = 0; c < *p; c++) {
+ unsigned bit;
+ unsigned char map_byte = p[1 + c];
+
+ putchar('/');
+
+ for (bit = 0; bit < BYTEWIDTH; bit++)
+ if (map_byte & (1 << bit))
+ printchar(c * BYTEWIDTH + bit);
+ }
+ p += 1 + *p;
+ break;
+ }
+
+ case begline:
+ printf("/begline");
+ break;
+
+ case endline:
+ printf("/endline");
+ break;
+
+ case on_failure_jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/on_failure_jump/0/%d", mcnt);
+ break;
+
+ case on_failure_keep_string_jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/on_failure_keep_string_jump/0/%d", mcnt);
+ break;
+
+ case dummy_failure_jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/dummy_failure_jump/0/%d", mcnt);
+ break;
+
+ case push_dummy_failure:
+ printf("/push_dummy_failure");
+ break;
+
+ case maybe_pop_jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/maybe_pop_jump/0/%d", mcnt);
+ break;
+
+ case pop_failure_jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/pop_failure_jump/0/%d", mcnt);
+ break;
+
+ case jump_past_alt:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/jump_past_alt/0/%d", mcnt);
+ break;
+
+ case jump:
+ extract_number_and_incr(&mcnt, &p);
+ printf("/jump/0/%d", mcnt);
+ break;
+
+ case succeed_n:
+ extract_number_and_incr(&mcnt, &p);
+ extract_number_and_incr(&mcnt2, &p);
+ printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case jump_n:
+ extract_number_and_incr(&mcnt, &p);
+ extract_number_and_incr(&mcnt2, &p);
+ printf("/jump_n/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case set_number_at:
+ extract_number_and_incr(&mcnt, &p);
+ extract_number_and_incr(&mcnt2, &p);
+ printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case wordbound:
+ printf("/wordbound");
+ break;
+
+ case notwordbound:
+ printf("/notwordbound");
+ break;
+
+ case wordbeg:
+ printf("/wordbeg");
+ break;
+
+ case wordend:
+ printf("/wordend");
+
+ case wordchar:
+ printf("/wordchar");
+ break;
+
+ case notwordchar:
+ printf("/notwordchar");
+ break;
+
+ case begbuf:
+ printf("/begbuf");
+ break;
+
+ case endbuf:
+ printf("/endbuf");
+ break;
+
+ default:
+ printf("?%d", *(p - 1));
+ }
+ }
+ printf("/\n");
+}
+
+void
+print_compiled_pattern(bufp)
+struct re_pattern_buffer *bufp;
+{
+ unsigned char *buffer = bufp->buffer;
+
+ print_partial_compiled_pattern(buffer, buffer + bufp->used);
+ printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
+
+ if (bufp->fastmap_accurate && bufp->fastmap) {
+ printf("fastmap: ");
+ print_fastmap(bufp->fastmap);
+ }
+ printf("re_nsub: %d\t", bufp->re_nsub);
+ printf("regs_alloc: %d\t", bufp->regs_allocated);
+ printf("can_be_null: %d\t", bufp->can_be_null);
+ printf("newline_anchor: %d\n", bufp->newline_anchor);
+ printf("no_sub: %d\t", bufp->no_sub);
+ printf("not_bol: %d\t", bufp->not_bol);
+ printf("not_eol: %d\t", bufp->not_eol);
+ printf("syntax: %d\n", bufp->syntax);
+ /* Perhaps we should print the translate table? */
+}
+
+void
+print_double_string(where, string1, size1, string2, size2)
+const char *where;
+const char *string1;
+const char *string2;
+int size1;
+int size2;
+{
+ unsigned this_char;
+
+ if (where == NULL)
+ printf("(null)");
+ else {
+ if (FIRST_STRING_P(where)) {
+ for (this_char = where - string1; this_char < size1; this_char++)
+ printchar(string1[this_char]);
+
+ where = string2;
+ }
+ for (this_char = where - string2; this_char < size2; this_char++)
+ printchar(string2[this_char]);
+ }
+}
+
+#else /* not DEBUG */
+
+#undef assert
+#define assert(e)
+
+#define DEBUG_STATEMENT(e)
+#define DEBUG_PRINT1(x)
+#define DEBUG_PRINT2(x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+\f
+/* This table gives an error message for each of the error codes listed
+ * in regex.h. Obviously the order here has to be same as there. */
+
+static const char *re_error_msg[] = {NULL, /* REG_NOERROR */
+ "No match", /* REG_NOMATCH */
+ "Invalid regular expression", /* REG_BADPAT */
+ "Invalid collation character", /* REG_ECOLLATE */
+ "Invalid character class name", /* REG_ECTYPE */
+ "Trailing backslash", /* REG_EESCAPE */
+ "Invalid back reference", /* REG_ESUBREG */
+ "Unmatched [ or [^", /* REG_EBRACK */
+ "Unmatched ( or \\(", /* REG_EPAREN */
+ "Unmatched \\{", /* REG_EBRACE */
+ "Invalid content of \\{\\}", /* REG_BADBR */
+ "Invalid range end", /* REG_ERANGE */
+ "Memory exhausted", /* REG_ESPACE */
+ "Invalid preceding regular expression", /* REG_BADRPT */
+ "Premature end of regular expression", /* REG_EEND */
+ "Regular expression too big", /* REG_ESIZE */
+ "Unmatched ) or \\)", /* REG_ERPAREN */
+ };
+\f
+/* Subroutine declarations and macros for regex_compile. */
+
+/* Fetch the next character in the uncompiled pattern---translating it
+ * if necessary. Also cast from a signed character in the constant
+ * string passed to us by the user to an unsigned char that we can use
+ * as an array index (in, e.g., `translate'). */
+#define PATFETCH(c) \
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ if (translate) c = translate[c]; \
+ } while (0)
+
+/* Fetch the next character in the uncompiled pattern, with no
+ * translation. */
+#define PATFETCH_RAW(c) \
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ } while (0)
+
+/* Go backwards one character in the pattern. */
+#define PATUNFETCH p--
+
+/* If `translate' is non-null, return translate[D], else just D. We
+ * cast the subscript to translate because some data is declared as
+ * `char *', to avoid warnings when a string constant is passed. But
+ * when we use a character as a subscript we must make it unsigned. */
+#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
+
+/* Macros for outputting the compiled pattern into `buffer'. */
+
+/* If the buffer isn't allocated when it comes in, use this. */
+#define INIT_BUF_SIZE 32
+
+/* Make sure we have at least N more bytes of space in buffer. */
+#define GET_BUFFER_SPACE(n) \
+ while (b - bufp->buffer + (n) > bufp->allocated) \
+ EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it. */
+#define BUF_PUSH(c) \
+ do { \
+ GET_BUFFER_SPACE (1); \
+ *b++ = (unsigned char) (c); \
+ } while (0)
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE (2); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ } while (0)
+
+/* As with BUF_PUSH_2, except for three bytes. */
+#define BUF_PUSH_3(c1, c2, c3) \
+ do { \
+ GET_BUFFER_SPACE (3); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ *b++ = (unsigned char) (c3); \
+ } while (0)
+
+/* Store a jump with opcode OP at LOC to location TO. We store a
+ * relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1 (op, loc, (to) - (loc) - 3)
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2 (op, loc, (to) - (loc) - 3, arg)
+
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1 (op, loc, (to) - (loc) - 3, b)
+
+/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+ * into the pattern are two bytes long. So if 2^16 bytes turns out to
+ * be too small, many things would have to change. */
+#define MAX_BUF_SIZE (1L << 16)
+
+/* Extend the buffer by twice its current size via realloc and
+ * reset the pointers that pointed into the old block to point to the
+ * correct places in the new one. If extending the buffer results in it
+ * being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER() \
+ do { \
+ unsigned char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == MAX_BUF_SIZE) \
+ return REG_ESIZE; \
+ bufp->allocated <<= 1; \
+ if (bufp->allocated > MAX_BUF_SIZE) \
+ bufp->allocated = MAX_BUF_SIZE; \
+ bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
+ if (bufp->buffer == NULL) \
+ return REG_ESPACE; \
+ /* If the buffer moved, move all the pointers into it. */ \
+ if (old_buffer != bufp->buffer) \
+ { \
+ b = (b - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (fixup_alt_jump) \
+ fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ } \
+ } while (0)
+
+/* Since we have one byte reserved for the register number argument to
+ * {start,stop}_memory, the maximum number of groups we can report
+ * things about is what fits in that byte. */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers. We just
+ * ignore the excess. */
+typedef unsigned regnum_t;
+
+/* Macros for the compile stack. */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+ * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+typedef int pattern_offset_t;
+
+typedef struct {
+ pattern_offset_t begalt_offset;
+ pattern_offset_t fixup_alt_jump;
+ pattern_offset_t inner_group_offset;
+ pattern_offset_t laststart_offset;
+ regnum_t regnum;
+} compile_stack_elt_t;
+
+typedef struct {
+ compile_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} compile_stack_type;
+
+static void store_op1(re_opcode_t op, unsigned char *loc, int arg);
+static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2);
+static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end);
+static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end);
+static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax);
+static boolean at_endline_loc_p(const char *p, const char *pend, int syntax);
+static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum);
+static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b);
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+/* Set the bit for character C in a list. */
+#define SET_LIST_BIT(c) \
+ (b[((unsigned char) (c)) / BYTEWIDTH] \
+ |= 1 << (((unsigned char) c) % BYTEWIDTH))
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_UNSIGNED_NUMBER(num) \
+ { if (p != pend) \
+ { \
+ PATFETCH (c); \
+ while (ISDIGIT (c)) \
+ { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH (c); \
+ } \
+ } \
+ }
+
+#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
+
+#define IS_CHAR_CLASS(string) \
+ (STREQ (string, "alpha") || STREQ (string, "upper") \
+ || STREQ (string, "lower") || STREQ (string, "digit") \
+ || STREQ (string, "alnum") || STREQ (string, "xdigit") \
+ || STREQ (string, "space") || STREQ (string, "print") \
+ || STREQ (string, "punct") || STREQ (string, "graph") \
+ || STREQ (string, "cntrl") || STREQ (string, "blank"))
+\f
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+ * Returns one of error codes defined in `regex.h', or zero for success.
+ *
+ * Assumes the `allocated' (and perhaps `buffer') and `translate'
+ * fields are set in BUFP on entry.
+ *
+ * If it succeeds, results are put in BUFP (if it returns an error, the
+ * contents of BUFP are undefined):
+ * `buffer' is the compiled pattern;
+ * `syntax' is set to SYNTAX;
+ * `used' is set to the length of the compiled pattern;
+ * `fastmap_accurate' is zero;
+ * `re_nsub' is the number of subexpressions in PATTERN;
+ * `not_bol' and `not_eol' are zero;
+ *
+ * The `fastmap' and `newline_anchor' fields are neither
+ * examined nor set. */
+
+static reg_errcode_t
+regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
+{
+ /* We fetch characters from PATTERN here. Even though PATTERN is
+ * `char *' (i.e., signed), we declare these variables as unsigned, so
+ * they can be reliably used as array indices. */
+ register unsigned char c, c1;
+
+ /* A random tempory spot in PATTERN. */
+ const char *p1;
+
+ /* Points to the end of the buffer, where we should append. */
+ register unsigned char *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
+
+ /* Points to the current (ending) position in the pattern. */
+ const char *p = pattern;
+ const char *pend = pattern + size;
+
+ /* How to translate the characters in the pattern. */
+ char *translate = bufp->translate;
+
+ /* Address of the count-byte of the most recently inserted `exactn'
+ * command. This makes it possible to tell if a new exact-match
+ * character can be added to that command or if the character requires
+ * a new `exactn' command. */
+ unsigned char *pending_exact = 0;
+
+ /* Address of start of the most recently finished expression.
+ * This tells, e.g., postfix * where to find the start of its
+ * operand. Reset at the beginning of groups and alternatives. */
+ unsigned char *laststart = 0;
+
+ /* Address of beginning of regexp, or inside of last group. */
+ unsigned char *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ * which to go back if the interval is invalid. */
+ const char *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ * the containing expression. Each alternative of an `or' -- except the
+ * last -- ends with a forward jump of this sort. */
+ unsigned char *fixup_alt_jump = 0;
+
+ /* Counts open-groups as they are encountered. Remembered for the
+ * matching close-group on the compile stack, so the same register
+ * number is put in the stop_memory as the start_memory. */
+ regnum_t regnum = 0;
+
+#ifdef DEBUG
+ DEBUG_PRINT1("\nCompiling pattern: ");
+ if (debug) {
+ unsigned debug_count;
+
+ for (debug_count = 0; debug_count < size; debug_count++)
+ printchar(pattern[debug_count]);
+ putchar('\n');
+ }
+#endif /* DEBUG */
+
+ /* Initialize the compile stack. */
+ compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+ if (compile_stack.stack == NULL)
+ return REG_ESPACE;
+
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ /* Initialize the pattern buffer. */
+ bufp->syntax = syntax;
+ bufp->fastmap_accurate = 0;
+ bufp->not_bol = bufp->not_eol = 0;
+
+ /* Set `used' to zero, so that if we return an error, the pattern
+ * printer (for debugging) will think there's no pattern. We reset it
+ * at the end. */
+ bufp->used = 0;
+
+ /* Always count groups, whether or not bufp->no_sub is set. */
+ bufp->re_nsub = 0;
+
+#if !defined (SYNTAX_TABLE)
+ /* Initialize the syntax table. */
+ init_syntax_once();
+#endif
+
+ if (bufp->allocated == 0) {
+ if (bufp->buffer) {
+ /* If zero allocated, but buffer is non-null, try to realloc
+ * enough space. This loses if buffer's address is bogus, but
+ * that is the user's responsibility. */
+ RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ } else { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
+ }
+ if (!bufp->buffer)
+ return REG_ESPACE;
+
+ bufp->allocated = INIT_BUF_SIZE;
+ }
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
+ while (p != pend) {
+ PATFETCH(c);
+
+ switch (c) {
+ case '^': {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p(pattern, p, syntax))
+ BUF_PUSH(begline);
+ else
+ goto normal_char;
+ }
+ break;
+
+ case '$': {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p(p, pend, syntax))
+ BUF_PUSH(endline);
+ else
+ goto normal_char;
+ }
+ break;
+
+ case '+':
+ case '?':
+ if ((syntax & RE_BK_PLUS_QM)
+ || (syntax & RE_LIMITED_OPS))
+ goto normal_char;
+handle_plus:
+ case '*':
+ /* If there is no previous pattern... */
+ if (!laststart) {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ } {
+ /* Are we optimizing this jump? */
+ boolean keep_string_p = false;
+
+ /* 1 means zero (many) matches is allowed. */
+ char zero_times_ok = 0, many_times_ok = 0;
+
+ /* If there is a sequence of repetition chars, collapse it
+ * down to just one (the right one). We can't combine
+ * interval operators with these because of, e.g., `a{2}*',
+ * which should only match an even number of `a's. */
+
+ for (;;) {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+
+ if (p == pend)
+ break;
+
+ PATFETCH(c);
+
+ if (c == '*'
+ || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')));
+
+ else if (syntax & RE_BK_PLUS_QM && c == '\\') {
+ if (p == pend)
+ return REG_EESCAPE;
+
+ PATFETCH(c1);
+ if (!(c1 == '+' || c1 == '?')) {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+ c = c1;
+ } else {
+ PATUNFETCH;
+ break;
+ }
+
+ /* If we get here, we found another repeat character. */
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ * to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ * and also whether or not two or more matches is allowed. */
+ if (many_times_ok) {
+ /* More than one repetition is allowed, so put in at the
+ * end a backward relative jump from `b' to before the next
+ * jump we're going to put in below (which jumps from
+ * laststart to after this jump).
+ *
+ * But if we are at the `*' in the exact sequence `.*\n',
+ * insert an unconditional jump backwards to the .,
+ * instead of the beginning of the loop. This way we only
+ * push a failure point once, instead of every time
+ * through the loop. */
+ assert(p - 1 > pattern);
+
+ /* Allocate the space for the jump. */
+ GET_BUFFER_SPACE(3);
+
+ /* We know we are not at the first character of the pattern,
+ * because laststart was nonzero. And we've already
+ * incremented `p', by the way, to be the character after
+ * the `*'. Do we have to do something analogous here
+ * for null bytes, because of RE_DOT_NOT_NULL? */
+ if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
+ && zero_times_ok
+ && p < pend && TRANSLATE(*p) == TRANSLATE('\n')
+ && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */
+ STORE_JUMP(jump, b, laststart);
+ keep_string_p = true;
+ } else
+ /* Anything else. */
+ STORE_JUMP(maybe_pop_jump, b, laststart - 3);
+
+ /* We've added more stuff to the buffer. */
+ b += 3;
+ }
+ /* On failure, jump from laststart to b + 3, which will be the
+ * end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
+ : on_failure_jump,
+ laststart, b + 3);
+ pending_exact = 0;
+ b += 3;
+
+ if (!zero_times_ok) {
+ /* At least one repetition is required, so insert a
+ * `dummy_failure_jump' before the initial
+ * `on_failure_jump' instruction of the loop. This
+ * effects a skip over that instruction the first time
+ * we hit that loop. */
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
+ break;
+
+ case '.':
+ laststart = b;
+ BUF_PUSH(anychar);
+ break;
+
+ case '[': {
+ boolean had_char_class = false;
+
+ if (p == pend)
+ return REG_EBRACK;
+
+ /* Ensure that we have enough space to push a charset: the
+ * opcode, the length count, and the bitset; 34 bytes in all. */
+ GET_BUFFER_SPACE(34);
+
+ laststart = b;
+
+ /* We test `*p == '^' twice, instead of using an if
+ * statement, so we only need one BUF_PUSH. */
+ BUF_PUSH(*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
+
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* charset_not matches newline according to a syntax bit. */
+ if ((re_opcode_t) b[-2] == charset_not
+ && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ SET_LIST_BIT('\n');
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;) {
+ if (p == pend)
+ return REG_EBRACK;
+
+ PATFETCH(c);
+
+ /* \ might escape characters inside [...] and [^...]. */
+ if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
+ if (p == pend)
+ return REG_EESCAPE;
+
+ PATFETCH(c1);
+ SET_LIST_BIT(c1);
+ continue;
+ }
+ /* Could be the end of the bracket expression. If it's
+ * not (i.e., when the bracket expression is `[]' so
+ * far), the ']' character bit gets set way below. */
+ if (c == ']' && p != p1 + 1)
+ break;
+
+ /* Look ahead to see if it's a range when the last thing
+ * was a character class. */
+ if (had_char_class && c == '-' && *p != ']')
+ return REG_ERANGE;
+
+ /* Look ahead to see if it's a range when the last thing
+ * was a character: if this is a hyphen not at the
+ * beginning or the end of a list, then it's the range
+ * operator. */
+ if (c == '-'
+ && !(p - 2 >= pattern && p[-2] == '[')
+ && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+ && *p != ']') {
+ reg_errcode_t ret
+ = compile_range(&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR)
+ return ret;
+ } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */
+ reg_errcode_t ret;
+
+ /* Move past the `-'. */
+ PATFETCH(c1);
+
+ ret = compile_range(&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR)
+ return ret;
+ }
+ /* See if we're at the beginning of a possible character
+ * class. */
+
+ else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */
+ char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+ PATFETCH(c);
+ c1 = 0;
+
+ /* If pattern is `[[:'. */
+ if (p == pend)
+ return REG_EBRACK;
+
+ for (;;) {
+ PATFETCH(c);
+ if (c == ':' || c == ']' || p == pend
+ || c1 == CHAR_CLASS_MAX_LENGTH)
+ break;
+ str[c1++] = c;
+ }
+ str[c1] = '\0';
+
+ /* If isn't a word bracketed by `[:' and:`]':
+ * undo the ending character, the letters, and leave
+ * the leading `:' and `[' (but set bits for them). */
+ if (c == ':' && *p == ']') {
+ int ch;
+ boolean is_alnum = STREQ(str, "alnum");
+ boolean is_alpha = STREQ(str, "alpha");
+ boolean is_blank = STREQ(str, "blank");
+ boolean is_cntrl = STREQ(str, "cntrl");
+ boolean is_digit = STREQ(str, "digit");
+ boolean is_graph = STREQ(str, "graph");
+ boolean is_lower = STREQ(str, "lower");
+ boolean is_print = STREQ(str, "print");
+ boolean is_punct = STREQ(str, "punct");
+ boolean is_space = STREQ(str, "space");
+ boolean is_upper = STREQ(str, "upper");
+ boolean is_xdigit = STREQ(str, "xdigit");
+
+ if (!IS_CHAR_CLASS(str))
+ return REG_ECTYPE;
+
+ /* Throw away the ] at the end of the character
+ * class. */
+ PATFETCH(c);
+
+ if (p == pend)
+ return REG_EBRACK;
+
+ for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
+ if ((is_alnum && ISALNUM(ch))
+ || (is_alpha && ISALPHA(ch))
+ || (is_blank && ISBLANK(ch))
+ || (is_cntrl && ISCNTRL(ch))
+ || (is_digit && ISDIGIT(ch))
+ || (is_graph && ISGRAPH(ch))
+ || (is_lower && ISLOWER(ch))
+ || (is_print && ISPRINT(ch))
+ || (is_punct && ISPUNCT(ch))
+ || (is_space && ISSPACE(ch))
+ || (is_upper && ISUPPER(ch))
+ || (is_xdigit && ISXDIGIT(ch)))
+ SET_LIST_BIT(ch);
+ }
+ had_char_class = true;
+ } else {
+ c1++;
+ while (c1--)
+ PATUNFETCH;
+ SET_LIST_BIT('[');
+ SET_LIST_BIT(':');
+ had_char_class = false;
+ }
+ } else {
+ had_char_class = false;
+ SET_LIST_BIT(c);
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ * end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+ }
+ break;
+
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_open;
+ else
+ goto normal_char;
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_close;
+ else
+ goto normal_char;
+
+ case '\n':
+ if (syntax & RE_NEWLINE_ALT)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+ case '|':
+ if (syntax & RE_NO_BK_VBAR)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+ case '{':
+ if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+ goto handle_interval;
+ else
+ goto normal_char;
+
+ case '\\':
+ if (p == pend)
+ return REG_EESCAPE;
+
+ /* Do not translate the character after the \, so that we can
+ * distinguish, e.g., \B from \b, even if we normally would
+ * translate, e.g., B to b. */
+ PATFETCH_RAW(c);
+
+ switch (c) {
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+handle_open:
+ bufp->re_nsub++;
+ regnum++;
+
+ if (compile_stack.avail == compile_stack.size) {
+ RETALLOC(compile_stack.stack, compile_stack.size << 1,
+ compile_stack_elt_t);
+ if (compile_stack.stack == NULL)
+ return REG_ESPACE;
+
+ compile_stack.size <<= 1;
+ }
+ /* These are the values to restore when we hit end of this
+ * group. They are all relative offsets, so that if the
+ * whole pattern moves because of realloc, they will still
+ * be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* We will eventually replace the 0 with the number of
+ * groups inner to this one. But do not push a
+ * start_memory for groups beyond the last one we can
+ * represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM) {
+ COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+ BUF_PUSH_3(start_memory, regnum, 0);
+ }
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ * won't actually generate any code, so we'll have to
+ * clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+ if (compile_stack.avail == 0) {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_backslash;
+ else
+ return REG_ERPAREN;
+ }
+handle_close:
+ if (fixup_alt_jump) {
+ /* Push a dummy failure point at the end of the
+ * alternative for a possible future
+ * `pop_failure_jump' to pop. See comments at
+ * `push_dummy_failure' in `re_match_2'. */
+ BUF_PUSH(push_dummy_failure);
+
+ /* We allocated space for this jump when we assigned
+ * to `fixup_alt_jump', in the `handle_alt' case below. */
+ STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
+ }
+ /* See similar code for backslashed left paren above. */
+ if (compile_stack.avail == 0) {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_char;
+ else
+ return REG_ERPAREN;
+ }
+ /* Since we just checked for an empty stack above, this
+ * ``can't happen''. */
+ assert(compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into `regnum', because
+ * later groups should continue to be numbered higher,
+ * as in `(ab)c(de)' -- the second group is #2. */
+ regnum_t this_group_regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ this_group_regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ * won't actually generate any code, so we'll have to
+ * clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ * groups were inside this one. */
+ if (this_group_regnum <= MAX_REGNUM) {
+ unsigned char *inner_group_loc
+ = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+ *inner_group_loc = regnum - this_group_regnum;
+ BUF_PUSH_3(stop_memory, this_group_regnum,
+ regnum - this_group_regnum);
+ }
+ }
+ break;
+
+ case '|': /* `\|'. */
+ if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ goto normal_backslash;
+handle_alt:
+ if (syntax & RE_LIMITED_OPS)
+ goto normal_char;
+
+ /* Insert before the previous alternative a jump which
+ * jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ * which gets executed if it gets matched. Adjust that
+ * jump so it will jump to this alternative's analogous
+ * jump (put in below, which in turn will jump to the next
+ * (if any) alternative's such jump, etc.). The last such
+ * jump jumps to the correct final destination. A picture:
+ * _____ _____
+ * | | | |
+ * | v | v
+ * a | b | c
+ *
+ * If we are at `b', then fixup_alt_jump right now points to a
+ * three-byte space after `a'. We'll put in the jump, set
+ * fixup_alt_jump to right after `b', and leave behind three
+ * bytes which we'll fill in when we get to after `c'. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
+
+ /* Mark and leave space for a jump after this alternative,
+ * to be filled in later either by next alternative or
+ * when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE(3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+ case '{':
+ /* If \{ is a literal. */
+ if (!(syntax & RE_INTERVALS)
+ /* If we're at `\{' and it's not the open-interval
+ * operator. */
+ || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+ || (p - 2 == pattern && p == pend))
+ goto normal_backslash;
+
+handle_interval: {
+ /* If got here, then the syntax allows intervals. */
+
+ /* At least (most) this many matches must be made. */
+ int lower_bound = -1, upper_bound = -1;
+
+ beg_interval = p - 1;
+
+ if (p == pend) {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_EBRACE;
+ }
+ GET_UNSIGNED_NUMBER(lower_bound);
+
+ if (c == ',') {
+ GET_UNSIGNED_NUMBER(upper_bound);
+ if (upper_bound < 0)
+ upper_bound = RE_DUP_MAX;
+ } else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound) {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+ if (!(syntax & RE_NO_BK_BRACES)) {
+ if (c != '\\')
+ return REG_EBRACE;
+
+ PATFETCH(c);
+ }
+ if (c != '}') {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart) {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (syntax & RE_CONTEXT_INDEP_OPS)
+ laststart = b;
+ else
+ goto unfetch_interval;
+ }
+ /* If the upper bound is zero, don't want to succeed at
+ * all; jump from `laststart' to `b + 3', which will be
+ * the end of the buffer after we insert the jump. */
+ if (upper_bound == 0) {
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(jump, laststart, b + 3);
+ b += 3;
+ }
+ /* Otherwise, we have a nontrivial interval. When
+ * we're all done, the pattern will look like:
+ * set_number_at <jump count> <upper bound>
+ * set_number_at <succeed_n count> <lower bound>
+ * succeed_n <after jump addr> <succed_n count>
+ * <body of loop>
+ * jump_n <succeed_n addr> <jump count>
+ * (The upper bound and `jump_n' are omitted if
+ * `upper_bound' is 1, though.) */
+ else {
+ /* If the upper bound is > 1, we need to insert
+ * more at the end of the loop. */
+ unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+ GET_BUFFER_SPACE(nbytes);
+
+ /* Initialize lower bound of the `succeed_n', even
+ * though it will be set during matching by its
+ * attendant `set_number_at' (inserted next),
+ * because `re_compile_fastmap' needs to know.
+ * Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2(succeed_n, laststart,
+ b + 5 + (upper_bound > 1) * 5,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ * before the `succeed_n'. The `5' is the last two
+ * bytes of this `set_number_at', plus 3 bytes of
+ * the following `succeed_n'. */
+ insert_op2(set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+
+ if (upper_bound > 1) {
+ /* More than one repetition is allowed, so
+ * append a backward jump to the `succeed_n'
+ * that starts this interval.
+ *
+ * When we've reached this during matching,
+ * we'll have matched the interval once, so
+ * jump back only `upper_bound - 1' times. */
+ STORE_JUMP2(jump_n, b, laststart + 5,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ * parameter of the `jump_n'; that is `b-2' as
+ * an absolute address. `laststart' will be
+ * the `set_number_at' we're about to insert;
+ * `laststart+3' the number to set, the source
+ * for the relative address. But we are
+ * inserting into the middle of the pattern --
+ * so everything is getting moved up by 5.
+ * Conclusion: (b - 2) - (laststart + 3) + 5,
+ * i.e., b - laststart.
+ *
+ * We insert this at the beginning of the loop
+ * so that if we fail during matching, we'll
+ * reinitialize the bounds. */
+ insert_op2(set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ assert(beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ PATFETCH(c);
+
+ if (!(syntax & RE_NO_BK_BRACES)) {
+ if (p > pattern && p[-1] == '\\')
+ goto normal_backslash;
+ }
+ goto normal_char;
+
+ case 'w':
+ laststart = b;
+ BUF_PUSH(wordchar);
+ break;
+
+ case 'W':
+ laststart = b;
+ BUF_PUSH(notwordchar);
+ break;
+
+ case '<':
+ BUF_PUSH(wordbeg);
+ break;
+
+ case '>':
+ BUF_PUSH(wordend);
+ break;
+
+ case 'b':
+ BUF_PUSH(wordbound);
+ break;
+
+ case 'B':
+ BUF_PUSH(notwordbound);
+ break;
+
+ case '`':
+ BUF_PUSH(begbuf);
+ break;
+
+ case '\'':
+ BUF_PUSH(endbuf);
+ break;
+
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ if (syntax & RE_NO_BK_REFS)
+ goto normal_char;
+
+ c1 = c - '0';
+
+ if (c1 > regnum)
+ return REG_ESUBREG;
+
+ /* Can't back reference to a subexpression if inside of it. */
+ if (group_in_compile_stack(compile_stack, c1))
+ goto normal_char;
+
+ laststart = b;
+ BUF_PUSH_2(duplicate, c1);
+ break;
+
+ case '+':
+ case '?':
+ if (syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backslash;
+
+ default:
+normal_backslash:
+ /* You might think it would be useful for \ to mean
+ * not to translate; but if we don't translate it
+ * it will never match anything. */
+ c = TRANSLATE(c);
+ goto normal_char;
+ }
+ break;
+
+ default:
+ /* Expects the character in `c'. */
+normal_char:
+ /* If no exactn currently being built. */
+ if (!pending_exact
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* We have only one byte following the exactn for the count. */
+ || *pending_exact == (1 << BYTEWIDTH) - 1
+
+ /* If followed by a repetition operator. */
+ || *p == '*' || *p == '^'
+ || ((syntax & RE_BK_PLUS_QM)
+ ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+ : (*p == '+' || *p == '?'))
+ || ((syntax & RE_INTERVALS)
+ && ((syntax & RE_NO_BK_BRACES)
+ ? *p == '{'
+ : (p[0] == '\\' && p[1] == '{')))) {
+ /* Start building a new exactn. */
+
+ laststart = b;
+
+ BUF_PUSH_2(exactn, 0);
+ pending_exact = b - 1;
+ }
+ BUF_PUSH(c);
+ (*pending_exact)++;
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+ /* Through the pattern now. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
+
+ if (compile_stack.avail != 0)
+ return REG_EPAREN;
+
+ free(compile_stack.stack);
+
+ /* We have succeeded; set the length of the buffer. */
+ bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+ if (debug) {
+ DEBUG_PRINT1("\nCompiled pattern: ");
+ print_compiled_pattern(bufp);
+ }
+#endif /* DEBUG */
+
+ return REG_NOERROR;
+} /* regex_compile */
+\f
+/* Subroutines for `regex_compile'. */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
+
+void store_op1(re_opcode_t op, unsigned char *loc, int arg)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER(loc + 1, arg);
+}
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+void
+store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER(loc + 1, arg1);
+ STORE_NUMBER(loc + 3, arg2);
+}
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ * for OP followed by two-byte integer parameter ARG. */
+
+void
+insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 3;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op1(op, loc, arg);
+}
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+void
+insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 5;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op2(op, loc, arg1, arg2);
+}
+
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ * after an alternative or a begin-subexpression. We assume there is at
+ * least one character before the ^. */
+
+boolean
+at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax)
+{
+ const char *prev = p - 2;
+ boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+ return
+ /* After a subexpression? */
+ (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+ /* After an alternative? */
+ || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
+
+/* The dual of at_begline_loc_p. This one is for $. We assume there is
+ * at least one character after the $, i.e., `P < PEND'. */
+
+boolean
+at_endline_loc_p(const char *p, const char *pend, int syntax)
+{
+ const char *next = p;
+ boolean next_backslash = *next == '\\';
+ const char *next_next = p + 1 < pend ? p + 1 : NULL;
+
+ return
+ /* Before a subexpression? */
+ (syntax & RE_NO_BK_PARENS ? *next == ')'
+ : next_backslash && next_next && *next_next == ')')
+ /* Before an alternative? */
+ || (syntax & RE_NO_BK_VBAR ? *next == '|'
+ : next_backslash && next_next && *next_next == '|');
+}
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ * false if it's not. */
+
+boolean
+group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum)
+{
+ int this_element;
+
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--)
+ if (compile_stack.stack[this_element].regnum == regnum)
+ return true;
+
+ return false;
+}
+
+/* Read the ending character of a range (in a bracket expression) from the
+ * uncompiled pattern *P_PTR (which ends at PEND). We assume the
+ * starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
+ * Then we set the translation of all bits between the starting and
+ * ending characters (inclusive) in the compiled pattern B.
+ *
+ * Return an error code.
+ *
+ * We use these short variable names so we can use the same macros as
+ * `regex_compile' itself. */
+
+reg_errcode_t
+compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b)
+{
+ unsigned this_char;
+
+ const char *p = *p_ptr;
+ int range_start, range_end;
+
+ if (p == pend)
+ return REG_ERANGE;
+
+ /* Even though the pattern is a signed `char *', we need to fetch
+ * with unsigned char *'s; if the high bit of the pattern character
+ * is set, the range endpoints will be negative if we fetch using a
+ * signed char *.
+ *
+ * We also want to fetch the endpoints without translating them; the
+ * appropriate translation is done in the bit-setting loop below. */
+ range_start = ((unsigned char *) p)[-2];
+ range_end = ((unsigned char *) p)[0];
+
+ /* Have to increment the pointer into the pattern string, so the
+ * caller isn't still at the ending character. */
+ (*p_ptr)++;
+
+ /* If the start is after the end, the range is empty. */
+ if (range_start > range_end)
+ return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+
+ /* Here we see why `this_char' has to be larger than an `unsigned
+ * char' -- the range is inclusive, so if `range_end' == 0xff
+ * (assuming 8-bit characters), we would otherwise go into an infinite
+ * loop, since all characters <= 0xff. */
+ for (this_char = range_start; this_char <= range_end; this_char++) {
+ SET_LIST_BIT(TRANSLATE(this_char));
+ }
+
+ return REG_NOERROR;
+}
+\f
+/* Failure stack declarations and macros; both re_compile_fastmap and
+ * re_match_2 use a failure stack. These have to be macros because of
+ * REGEX_ALLOCATE. */
+
+/* Number of failure points for which to initially allocate space
+ * when matching. If this number is exceeded, we allocate more
+ * space, so it is not a hard limit. */
+#ifndef INIT_FAILURE_ALLOC
+#define INIT_FAILURE_ALLOC 5
+#endif
+
+/* Roughly the maximum number of failure points on the stack. Would be
+ * exactly that if always used MAX_FAILURE_SPACE each time we failed.
+ * This is a variable only so users of regex can assign to it; we never
+ * change it ourselves. */
+int re_max_failures = 2000;
+
+typedef const unsigned char *fail_stack_elt_t;
+
+typedef struct {
+ fail_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} fail_stack_type;
+
+#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
+#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
+#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
+
+/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
+
+#define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = (fail_stack_elt_t *) \
+ REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
+ \
+ if (fail_stack.stack == NULL) \
+ return -2; \
+ \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ } while (0)
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+ *
+ * Return 1 if succeeds, and 0 if either ran out of memory
+ * allocating space for it or it was already too large.
+ *
+ * REGEX_REALLOCATE requires `destination' be declared. */
+
+#define DOUBLE_FAIL_STACK(fail_stack) \
+ ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
+ ? 0 \
+ : ((fail_stack).stack = (fail_stack_elt_t *) \
+ REGEX_REALLOCATE ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ \
+ (fail_stack).stack == NULL \
+ ? 0 \
+ : ((fail_stack).size <<= 1, \
+ 1)))
+
+/* Push PATTERN_OP on FAIL_STACK.
+ *
+ * Return 1 if was able to do so and 0 if ran out of memory allocating
+ * space to do so. */
+#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
+ ((FAIL_STACK_FULL () \
+ && !DOUBLE_FAIL_STACK (fail_stack)) \
+ ? 0 \
+ : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
+ 1))
+
+/* This pushes an item onto the failure stack. Must be a four-byte
+ * value. Assumes the variable `fail_stack'. Probably should only
+ * be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_ITEM(item) \
+ fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
+
+/* The complement operation. Assumes `fail_stack' is nonempty. */
+#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
+
+/* Used to omit pushing failure point id's when we're not debugging. */
+#ifdef DEBUG
+#define DEBUG_PUSH PUSH_FAILURE_ITEM
+#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
+#else
+#define DEBUG_PUSH(item)
+#define DEBUG_POP(item_addr)
+#endif
+
+/* Push the information about the state we will need
+ * if we ever fail back to it.
+ *
+ * Requires variables fail_stack, regstart, regend, reg_info, and
+ * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
+ * declared.
+ *
+ * Does `return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
+ do { \
+ char *destination; \
+ /* Must be int, so when we don't save any registers, the arithmetic \
+ of 0 + -1 isn't done as unsigned. */ \
+ int this_reg; \
+ \
+ DEBUG_STATEMENT (failure_id++); \
+ DEBUG_STATEMENT (nfailure_points_pushed++); \
+ DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
+ DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
+ DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
+ \
+ DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
+ DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
+ \
+ /* Ensure we have enough space allocated for what we will push. */ \
+ while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
+ { \
+ if (!DOUBLE_FAIL_STACK (fail_stack)) \
+ return failure_code; \
+ \
+ DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
+ (fail_stack).size); \
+ DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+ } \
+ \
+ /* Push the info, starting with the registers. */ \
+ DEBUG_PRINT1 ("\n"); \
+ \
+ for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+ this_reg++) \
+ { \
+ DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
+ DEBUG_STATEMENT (num_regs_pushed++); \
+ \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ PUSH_FAILURE_ITEM (regstart[this_reg]); \
+ \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ PUSH_FAILURE_ITEM (regend[this_reg]); \
+ \
+ DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
+ DEBUG_PRINT2 (" match_null=%d", \
+ REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" matched_something=%d", \
+ MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" ever_matched=%d", \
+ EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT1 ("\n"); \
+ PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
+ } \
+ \
+ DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
+ PUSH_FAILURE_ITEM (lowest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
+ PUSH_FAILURE_ITEM (highest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
+ PUSH_FAILURE_ITEM (pattern_place); \
+ \
+ DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
+ size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ PUSH_FAILURE_ITEM (string_place); \
+ \
+ DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
+ DEBUG_PUSH (failure_id); \
+ } while (0)
+
+/* This is the number of items that are pushed and popped on the stack
+ * for each register. */
+#define NUM_REG_ITEMS 3
+
+/* Individual items aside from the registers. */
+#ifdef DEBUG
+#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
+#else
+#define NUM_NONREG_ITEMS 4
+#endif
+
+/* We push at most this many items on the stack. */
+#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items. */
+#define NUM_FAILURE_ITEMS \
+ ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
+ + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+/* Pops what PUSH_FAIL_STACK pushes.
+ *
+ * We restore into the parameters, all of which should be lvalues:
+ * STR -- the saved data position.
+ * PAT -- the saved pattern position.
+ * LOW_REG, HIGH_REG -- the highest and lowest active registers.
+ * REGSTART, REGEND -- arrays of string positions.
+ * REG_INFO -- array of information about each subexpression.
+ *
+ * Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ * `pend', `string1', `size1', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
+{ \
+ DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
+ int this_reg; \
+ const unsigned char *string_temp; \
+ \
+ assert (!FAIL_STACK_EMPTY ()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
+ DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
+ DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
+ \
+ assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
+ \
+ DEBUG_POP (&failure_id); \
+ DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ string_temp = POP_FAILURE_ITEM (); \
+ if (string_temp != NULL) \
+ str = (const char *) string_temp; \
+ \
+ DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
+ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ \
+ pat = (unsigned char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ \
+ /* Restore register info. */ \
+ high_reg = (unsigned long) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
+ \
+ low_reg = (unsigned long) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
+ \
+ for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
+ { \
+ DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
+ \
+ reg_info[this_reg].word = POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
+ \
+ regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ \
+ regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ } \
+ \
+ DEBUG_STATEMENT (nfailure_points_popped++); \
+} /* POP_FAILURE_POINT */
+\f
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+ * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
+ * characters can start a string that matches the pattern. This fastmap
+ * is used by re_search to skip quickly over impossible starting points.
+ *
+ * The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ * area as BUFP->fastmap.
+ *
+ * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+ * the pattern buffer.
+ *
+ * Returns 0 if we succeed, -2 if an internal error. */
+#ifdef STDC_HEADERS
+int
+re_compile_fastmap(struct re_pattern_buffer *bufp)
+#else
+int
+re_compile_fastmap(bufp)
+struct re_pattern_buffer *bufp;
+#endif
+{
+ int j, k;
+ fail_stack_type fail_stack;
+#ifndef REGEX_MALLOC
+ char *destination;
+#endif
+ /* We don't push any register information onto the failure stack. */
+ unsigned num_regs = 0;
+
+ register char *fastmap = bufp->fastmap;
+ unsigned char *pattern = bufp->buffer;
+ unsigned long size = bufp->used;
+ const unsigned char *p = pattern;
+ register unsigned char *pend = pattern + size;
+
+ /* Assume that each path through the pattern can be null until
+ * proven otherwise. We set this false at the bottom of switch
+ * statement, to which we get only if a particular path doesn't
+ * match the empty string. */
+ boolean path_can_be_null = true;
+
+ /* We aren't doing a `succeed_n' to begin with. */
+ boolean succeed_n_p = false;
+
+ assert(fastmap != NULL && p != NULL);
+
+ INIT_FAIL_STACK();
+ memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ bufp->fastmap_accurate = 1; /* It will be when we're done. */
+ bufp->can_be_null = 0;
+
+ while (p != pend || !FAIL_STACK_EMPTY()) {
+ if (p == pend) {
+ bufp->can_be_null |= path_can_be_null;
+
+ /* Reset for next path. */
+ path_can_be_null = true;
+
+ p = fail_stack.stack[--fail_stack.avail];
+ }
+ /* We should never be about to go beyond the end of the pattern. */
+ assert(p < pend);
+
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((re_opcode_t) * p++))
+#else
+ switch ((re_opcode_t) * p++)
+#endif
+ {
+
+ /* I guess the idea here is to simply not bother with a fastmap
+ * if a backreference is used, since it's too hard to figure out
+ * the fastmap for the corresponding group. Setting
+ * `can_be_null' stops `re_search_2' from using the fastmap, so
+ * that is all we do. */
+ case duplicate:
+ bufp->can_be_null = 1;
+ return 0;
+
+ /* Following are the cases which match a character. These end
+ * with `break'. */
+
+ case exactn:
+ fastmap[p[1]] = 1;
+ break;
+
+ case charset:
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ fastmap[j] = 1;
+ break;
+
+ case charset_not:
+ /* Chars beyond end of map must be allowed. */
+ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ fastmap[j] = 1;
+ break;
+
+ case wordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (re_syntax_table[j] == Sword)
+ fastmap[j] = 1;
+ break;
+
+ case notwordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (re_syntax_table[j] != Sword)
+ fastmap[j] = 1;
+ break;
+
+ case anychar:
+ /* `.' matches anything ... */
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ /* ... except perhaps newline. */
+ if (!(bufp->syntax & RE_DOT_NEWLINE))
+ fastmap['\n'] = 0;
+
+ /* Return if we have already set `can_be_null'; if we have,
+ * then the fastmap is irrelevant. Something's wrong here. */
+ else if (bufp->can_be_null)
+ return 0;
+
+ /* Otherwise, have to check alternative paths. */
+ break;
+
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ case push_dummy_failure:
+ continue;
+
+ case jump_n:
+ case pop_failure_jump:
+ case maybe_pop_jump:
+ case jump:
+ case jump_past_alt:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(j, p);
+ p += j;
+ if (j > 0)
+ continue;
+
+ /* Jump backward implies we just went through the body of a
+ * loop and matched nothing. Opcode jumped to should be
+ * `on_failure_jump' or `succeed_n'. Just treat it like an
+ * ordinary jump. For a * loop, it has pushed its failure
+ * point already; if so, discard that as redundant. */
+ if ((re_opcode_t) * p != on_failure_jump
+ && (re_opcode_t) * p != succeed_n)
+ continue;
+
+ p++;
+ EXTRACT_NUMBER_AND_INCR(j, p);
+ p += j;
+
+ /* If what's on the stack is where we are now, pop it. */
+ if (!FAIL_STACK_EMPTY()
+ && fail_stack.stack[fail_stack.avail - 1] == p)
+ fail_stack.avail--;
+
+ continue;
+
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+handle_on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(j, p);
+
+ /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+ * end of the pattern. We don't want to push such a point,
+ * since when we restore it above, entering the switch will
+ * increment `p' past the end of the pattern. We don't need
+ * to push such a point since we obviously won't find any more
+ * fastmap entries beyond `pend'. Such a pattern can match
+ * the null string, though. */
+ if (p + j < pend) {
+ if (!PUSH_PATTERN_OP(p + j, fail_stack))
+ return -2;
+ } else
+ bufp->can_be_null = 1;
+
+ if (succeed_n_p) {
+ EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
+ succeed_n_p = false;
+ }
+ continue;
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p += 2;
+
+ /* Increment p past the n for when k != 0. */
+ EXTRACT_NUMBER_AND_INCR(k, p);
+ if (k == 0) {
+ p -= 4;
+ succeed_n_p = true; /* Spaghetti code alert. */
+ goto handle_on_failure_jump;
+ }
+ continue;
+
+ case set_number_at:
+ p += 4;
+ continue;
+
+ case start_memory:
+ case stop_memory:
+ p += 2;
+ continue;
+
+ default:
+ abort(); /* We have listed all the cases. */
+ } /* switch *p++ */
+
+ /* Getting here means we have found the possible starting
+ * characters for one path of the pattern -- and that the empty
+ * string does not match. We need not follow this path further.
+ * Instead, look at the next alternative (remembered on the
+ * stack), or quit if no more. The test at the top of the loop
+ * does these things. */
+ path_can_be_null = false;
+ p = pend;
+ } /* while p */
+
+ /* Set `can_be_null' for the last path (also the first path, if the
+ * pattern is empty). */
+ bufp->can_be_null |= path_can_be_null;
+ return 0;
+} /* re_compile_fastmap */
+\f
+/* Searching routines. */
+
+/* Like re_search_2, below, but only one string is specified, and
+ * doesn't let you say where to stop matching. */
+
+static int
+re_search(bufp, string, size, startpos, range, regs)
+struct re_pattern_buffer *bufp;
+const char *string;
+int size, startpos, range;
+struct re_registers *regs;
+{
+ return re_search_2(bufp, NULL, 0, string, size, startpos, range,
+ regs, size);
+}
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+ * virtual concatenation of STRING1 and STRING2, starting first at index
+ * STARTPOS, then at STARTPOS + 1, and so on.
+ *
+ * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+ *
+ * RANGE is how far to scan while trying to match. RANGE = 0 means try
+ * only at STARTPOS; in general, the last start tried is STARTPOS +
+ * RANGE.
+ *
+ * In REGS, return the indices of the virtual concatenation of STRING1
+ * and STRING2 that matched the entire BUFP->buffer and its contained
+ * subexpressions.
+ *
+ * Do not consider matching one past the index STOP in the virtual
+ * concatenation of STRING1 and STRING2.
+ *
+ * We return either the position in the strings at which the match was
+ * found, -1 if no match, or -2 if error (such as failure
+ * stack overflow). */
+
+static int
+re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop)
+struct re_pattern_buffer *bufp;
+const char *string1, *string2;
+int size1, size2;
+int startpos;
+int range;
+struct re_registers *regs;
+int stop;
+{
+ int val;
+ register char *fastmap = bufp->fastmap;
+ register char *translate = bufp->translate;
+ int total_size = size1 + size2;
+ int endpos = startpos + range;
+
+ /* Check for out-of-range STARTPOS. */
+ if (startpos < 0 || startpos > total_size)
+ return -1;
+
+ /* Fix up RANGE if it might eventually take us outside
+ * the virtual concatenation of STRING1 and STRING2. */
+ if (endpos < -1)
+ range = -1 - startpos;
+ else if (endpos > total_size)
+ range = total_size - startpos;
+
+ /* If the search isn't to be a backwards one, don't waste time in a
+ * search for a pattern that must be anchored. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
+ if (startpos > 0)
+ return -1;
+ else
+ range = 1;
+ }
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate)
+ if (re_compile_fastmap(bufp) == -2)
+ return -2;
+
+ /* Loop through the string, looking for a place to start matching. */
+ for (;;) {
+ /* If a fastmap is supplied, skip quickly over characters that
+ * cannot be the start of a match. If the pattern can match the
+ * null string, however, we don't need to skip characters; we want
+ * the first null string. */
+ if (fastmap && startpos < total_size && !bufp->can_be_null) {
+ if (range > 0) { /* Searching forwards. */
+ register const char *d;
+ register int lim = 0;
+ int irange = range;
+
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
+
+ /* Written out as an if-else to avoid testing `translate'
+ * inside the loop. */
+ if (translate)
+ while (range > lim
+ && !fastmap[(unsigned char)
+ translate[(unsigned char) *d++]])
+ range--;
+ else
+ while (range > lim && !fastmap[(unsigned char) *d++])
+ range--;
+
+ startpos += irange - range;
+ } else { /* Searching backwards. */
+ register char c = (size1 == 0 || startpos >= size1
+ ? string2[startpos - size1]
+ : string1[startpos]);
+
+ if (!fastmap[(unsigned char) TRANSLATE(c)])
+ goto advance;
+ }
+ }
+ /* If can't match the null string, and that's all we have left, fail. */
+ if (range >= 0 && startpos == total_size && fastmap
+ && !bufp->can_be_null)
+ return -1;
+
+ val = re_match_2(bufp, string1, size1, string2, size2,
+ startpos, regs, stop);
+ if (val >= 0)
+ return startpos;
+
+ if (val == -2)
+ return -2;
+
+advance:
+ if (!range)
+ break;
+ else if (range > 0) {
+ range--;
+ startpos++;
+ } else {
+ range++;
+ startpos--;
+ }
+ }
+ return -1;
+} /* re_search_2 */
+\f
+/* Declarations and macros for re_match_2. */
+
+/* Structure for per-register (a.k.a. per-group) information.
+ * This must not be longer than one word, because we push this value
+ * onto the failure stack. Other register information, such as the
+ * starting and ending positions (which are addresses), and the list of
+ * inner groups (which is a bits list) are maintained in separate
+ * variables.
+ *
+ * We are making a (strictly speaking) nonportable assumption here: that
+ * the compiler will pack our bit fields into something that fits into
+ * the type of `word', i.e., is something that fits into one item on the
+ * failure stack. */
+typedef union {
+ fail_stack_elt_t word;
+ struct {
+ /* This field is one if this group can match the empty string,
+ * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+#define MATCH_NULL_UNSET_VALUE 3
+ unsigned match_null_string_p:2;
+ unsigned is_active:1;
+ unsigned matched_something:1;
+ unsigned ever_matched_something:1;
+ } bits;
+} register_info_type;
+static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info);
+static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info);
+static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate);
+static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info);
+
+#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R) ((R).bits.is_active)
+#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
+
+/* Call this when have matched a real character; it sets `matched' flags
+ * for the subexpressions which we are currently inside. Also records
+ * that those subexprs have matched. */
+#define SET_REGS_MATCHED() \
+ do \
+ { \
+ unsigned r; \
+ for (r = lowest_active_reg; r <= highest_active_reg; r++) \
+ { \
+ MATCHED_SOMETHING (reg_info[r]) \
+ = EVER_MATCHED_SOMETHING (reg_info[r]) \
+ = 1; \
+ } \
+ } \
+ while (0)
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+ * and `string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) \
+ (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
+
+/* Registers are set to a sentinel when they haven't yet matched. */
+#define REG_UNSET_VALUE ((char *) -1)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+
+/* Macros for dealing with the split strings in re_match_2. */
+
+#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
+
+/* Call before fetching a character with *d. This switches over to
+ * string2 if necessary. */
+#define PREFETCH() \
+ while (d == dend) \
+ { \
+ /* End of string2 => fail. */ \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
+ dend = end_match_2; \
+ }
+
+/* Test if at very beginning or at very end of the virtual concatenation
+ * of `string1' and `string2'. If only one string, it's `string2'. */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+static int at_strings_end(const char *d, const char *end2)
+{
+ return d == end2;
+}
+
+/* Test if D points to a character which is word-constituent. We have
+ * two special cases to check for: if past the end of string1, look at
+ * the first character in string2; and if before the beginning of
+ * string2, look at the last character in string1. */
+#define WORDCHAR_P(d) \
+ (re_syntax_table[(d) == end1 ? *string2 \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \
+ == Sword)
+static int
+wordchar_p(const char *d, const char *end1, const char *string2)
+{
+ return re_syntax_table[(d) == end1 ? *string2
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)]
+ == Sword;
+}
+
+/* Test if the character before D and the one at D differ with respect
+ * to being word-constituent. */
+#define AT_WORD_BOUNDARY(d) \
+ (AT_STRINGS_BEG (d) || at_strings_end(d,end2) \
+ || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+
+/* Free everything we malloc. */
+#ifdef REGEX_MALLOC
+#define FREE_VAR(var) if (var) free (var); var = NULL
+#define FREE_VARIABLES() \
+ do { \
+ FREE_VAR (fail_stack.stack); \
+ FREE_VAR (regstart); \
+ FREE_VAR (regend); \
+ FREE_VAR (old_regstart); \
+ FREE_VAR (old_regend); \
+ FREE_VAR (best_regstart); \
+ FREE_VAR (best_regend); \
+ FREE_VAR (reg_info); \
+ FREE_VAR (reg_dummy); \
+ FREE_VAR (reg_info_dummy); \
+ } while (0)
+#else /* not REGEX_MALLOC */
+/* Some MIPS systems (at least) want this to free alloca'd storage. */
+#define FREE_VARIABLES() alloca (0)
+#endif /* not REGEX_MALLOC */
+
+/* These values must meet several constraints. They must not be valid
+ * register values; since we have a limit of 255 registers (because
+ * we use only one byte in the pattern for the register number), we can
+ * use numbers larger than 255. They must differ by 1, because of
+ * NUM_FAILURE_ITEMS above. And the value for the lowest register must
+ * be larger than the value for the highest register, so we do not try
+ * to actually save any registers when none are active. */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+\f
+/* Matching routines. */
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+ * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ * and SIZE2, respectively). We start matching at POS, and stop
+ * matching at STOP.
+ *
+ * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ * store offsets for the substring each group matched in REGS. See the
+ * documentation for exactly how many groups we fill.
+ *
+ * We return -1 if no match, -2 if an internal error (such as the
+ * failure stack overflowing). Otherwise, we return the length of the
+ * matched substring. */
+
+int
+re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
+struct re_pattern_buffer *bufp;
+const char *string1, *string2;
+int size1, size2;
+int pos;
+struct re_registers *regs;
+int stop;
+{
+ /* General temporaries. */
+ int mcnt;
+ unsigned char *p1;
+
+ /* Just past the end of the corresponding string. */
+ const char *end1, *end2;
+
+ /* Pointers into string1 and string2, just past the last characters in
+ * each to consider matching. */
+ const char *end_match_1, *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ const char *d, *dend;
+
+ /* Where we are in the pattern, and the end of the pattern. */
+ unsigned char *p = bufp->buffer;
+ register unsigned char *pend = p + bufp->used;
+
+ /* We use this to map every character in the string. */
+ char *translate = bufp->translate;
+
+ /* Failure point stack. Each place that can handle a failure further
+ * down the line pushes a failure point on this stack. It consists of
+ * restart, regend, and reg_info for all registers corresponding to
+ * the subexpressions we're currently inside, plus the number of such
+ * registers, and, finally, two char *'s. The first char * is where
+ * to resume scanning the pattern; the second one is where to resume
+ * scanning the strings. If the latter is zero, the failure point is
+ * a ``dummy''; if a failure happens and the failure point is a dummy,
+ * it gets discarded and the next next one is tried. */
+ fail_stack_type fail_stack;
+#ifdef DEBUG
+ static unsigned failure_id = 0;
+ unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+ /* We fill all the registers internally, independent of what we
+ * return, for use in backreferences. The number here includes
+ * an element for register zero. */
+ unsigned num_regs = bufp->re_nsub + 1;
+
+ /* The currently active registers. */
+ unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+
+ /* Information on the contents of registers. These are pointers into
+ * the input strings; they record just what was matched (on this
+ * attempt) by a subexpression part of the pattern, that is, the
+ * regnum-th regstart pointer points to where in the pattern we began
+ * matching and the regnum-th regend points to right after where we
+ * stopped matching the regnum-th subexpression. (The zeroth register
+ * keeps track of what the whole pattern matches.) */
+ const char **regstart = NULL, **regend = NULL;
+
+ /* If a group that's operated upon by a repetition operator fails to
+ * match anything, then the register for its start will need to be
+ * restored because it will have been set to wherever in the string we
+ * are when we last see its open-group operator. Similarly for a
+ * register's end. */
+ const char **old_regstart = NULL, **old_regend = NULL;
+
+ /* The is_active field of reg_info helps us keep track of which (possibly
+ * nested) subexpressions we are currently in. The matched_something
+ * field of reg_info[reg_num] helps us tell whether or not we have
+ * matched any of the pattern so far this time through the reg_num-th
+ * subexpression. These two fields get reset each time through any
+ * loop their register is in. */
+ register_info_type *reg_info = NULL;
+
+ /* The following record the register info as found in the above
+ * variables when we find a match better than any we've seen before.
+ * This happens as we backtrack through the failure points, which in
+ * turn happens only if we have not yet matched the entire string. */
+ unsigned best_regs_set = false;
+ const char **best_regstart = NULL, **best_regend = NULL;
+
+ /* Logically, this is `best_regend[0]'. But we don't want to have to
+ * allocate space for that if we're not allocating space for anything
+ * else (see below). Also, we never need info about register 0 for
+ * any of the other register vectors, and it seems rather a kludge to
+ * treat `best_regend' differently than the rest. So we keep track of
+ * the end of the best match so far in a separate variable. We
+ * initialize this to NULL so that when we backtrack the first time
+ * and need to test it, it's not garbage. */
+ const char *match_end = NULL;
+
+ /* Used when we pop values we don't care about. */
+ const char **reg_dummy = NULL;
+ register_info_type *reg_info_dummy = NULL;
+
+#ifdef DEBUG
+ /* Counts the total number of registers pushed. */
+ unsigned num_regs_pushed = 0;
+#endif
+
+ DEBUG_PRINT1("\n\nEntering re_match_2.\n");
+
+ INIT_FAIL_STACK();
+
+ /* Do not bother to initialize all the register variables if there are
+ * no groups in the pattern, as it takes a fair amount of time. If
+ * there are groups, we include space for register 0 (the whole
+ * pattern), even though we never use it, since it simplifies the
+ * array indexing. We should fix this. */
+ if (bufp->re_nsub) {
+ regstart = REGEX_TALLOC(num_regs, const char *);
+ regend = REGEX_TALLOC(num_regs, const char *);
+ old_regstart = REGEX_TALLOC(num_regs, const char *);
+ old_regend = REGEX_TALLOC(num_regs, const char *);
+ best_regstart = REGEX_TALLOC(num_regs, const char *);
+ best_regend = REGEX_TALLOC(num_regs, const char *);
+ reg_info = REGEX_TALLOC(num_regs, register_info_type);
+ reg_dummy = REGEX_TALLOC(num_regs, const char *);
+ reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
+
+ if (!(regstart && regend && old_regstart && old_regend && reg_info
+ && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
+ FREE_VARIABLES();
+ return -2;
+ }
+ }
+#ifdef REGEX_MALLOC
+ else {
+ /* We must initialize all our variables to NULL, so that
+ * `FREE_VARIABLES' doesn't try to free them. */
+ regstart = regend = old_regstart = old_regend = best_regstart
+ = best_regend = reg_dummy = NULL;
+ reg_info = reg_info_dummy = (register_info_type *) NULL;
+ }
+#endif /* REGEX_MALLOC */
+
+ /* The starting position is bogus. */
+ if (pos < 0 || pos > size1 + size2) {
+ FREE_VARIABLES();
+ return -1;
+ }
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ * start_memory/stop_memory has been seen for. Also initialize the
+ * register information struct. */
+ for (mcnt = 1; mcnt < num_regs; mcnt++) {
+ regstart[mcnt] = regend[mcnt]
+ = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+ REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+ IS_ACTIVE(reg_info[mcnt]) = 0;
+ MATCHED_SOMETHING(reg_info[mcnt]) = 0;
+ EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
+ }
+
+ /* We move `string1' into `string2' if the latter's empty -- but not if
+ * `string1' is null. */
+ if (size2 == 0 && string1 != NULL) {
+ string2 = string1;
+ size2 = size1;
+ string1 = 0;
+ size1 = 0;
+ }
+ end1 = string1 + size1;
+ end2 = string2 + size2;
+
+ /* Compute where to stop matching, within the two strings. */
+ if (stop <= size1) {
+ end_match_1 = string1 + stop;
+ end_match_2 = string2;
+ } else {
+ end_match_1 = end1;
+ end_match_2 = string2 + stop - size1;
+ }
+
+ /* `p' scans through the pattern as `d' scans through the data.
+ * `dend' is the end of the input string that `d' points within. `d'
+ * is advanced into the following input string whenever necessary, but
+ * this happens before fetching; therefore, at the beginning of the
+ * loop, `d' can be pointing at the end of a string, but it cannot
+ * equal `string2'. */
+ if (size1 > 0 && pos <= size1) {
+ d = string1 + pos;
+ dend = end_match_1;
+ } else {
+ d = string2 + pos - size1;
+ dend = end_match_2;
+ }
+
+ DEBUG_PRINT1("The compiled pattern is: ");
+ DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
+ DEBUG_PRINT1("The string to match is: `");
+ DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
+ DEBUG_PRINT1("'\n");
+
+ /* This loops over pattern commands. It exits by returning from the
+ * function if the match is complete, or it drops through if the match
+ * fails at this starting point in the input data. */
+ for (;;) {
+ DEBUG_PRINT2("\n0x%x: ", p);
+
+ if (p == pend) { /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT1("end of pattern ... ");
+
+ /* If we haven't matched the entire string, and we want the
+ * longest match, try backtracking. */
+ if (d != end_match_2) {
+ DEBUG_PRINT1("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
+ boolean same_str_p = (FIRST_STRING_P(match_end)
+ == MATCHING_IN_FIRST_STRING);
+
+ /* If exceeds best match so far, save it. */
+ if (!best_regs_set
+ || (same_str_p && d > match_end)
+ || (!same_str_p && !MATCHING_IN_FIRST_STRING)) {
+ best_regs_set = true;
+ match_end = d;
+
+ DEBUG_PRINT1("\nSAVING match as best so far.\n");
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++) {
+ best_regstart[mcnt] = regstart[mcnt];
+ best_regend[mcnt] = regend[mcnt];
+ }
+ }
+ goto fail;
+ }
+ /* If no failure points, don't restore garbage. */
+ else if (best_regs_set) {
+restore_best_regs:
+ /* Restore best match. It may happen that `dend ==
+ * end_match_1' while the restored d is in string2.
+ * For example, the pattern `x.*y.*z' against the
+ * strings `x-' and `y-z-', if the two strings are
+ * not consecutive in memory. */
+ DEBUG_PRINT1("Restoring best registers.\n");
+
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++) {
+ regstart[mcnt] = best_regstart[mcnt];
+ regend[mcnt] = best_regend[mcnt];
+ }
+ }
+ } /* d != end_match_2 */
+ DEBUG_PRINT1("Accepting match.\n");
+
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub) {
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED) {
+ /* No. So allocate them with malloc. We need one
+ * extra element beyond `num_regs' for the `-1' marker
+ * GNU code uses. */
+ regs->num_regs = max(RE_NREGS, num_regs + 1);
+ regs->start = TALLOC(regs->num_regs, regoff_t);
+ regs->end = TALLOC(regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ bufp->regs_allocated = REGS_REALLOCATE;
+ } else if (bufp->regs_allocated == REGS_REALLOCATE) {
+ /* Yes. If we need more elements than were already
+ * allocated, reallocate them. If we need fewer, just
+ * leave it alone. */
+ if (regs->num_regs < num_regs + 1) {
+ regs->num_regs = num_regs + 1;
+ RETALLOC(regs->start, regs->num_regs, regoff_t);
+ RETALLOC(regs->end, regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ }
+ } else
+ assert(bufp->regs_allocated == REGS_FIXED);
+
+ /* Convert the pointer data in `regstart' and `regend' to
+ * indices. Register zero has to be set differently,
+ * since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0) {
+ regs->start[0] = pos;
+ regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
+ : d - string2 + size1);
+ }
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ * registers, since that is all we initialized. */
+ for (mcnt = 1; mcnt < min(num_regs, regs->num_regs); mcnt++) {
+ if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ else {
+ regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]);
+ regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ * were in the pattern, set the extra elements to -1. If
+ * we (re)allocated the registers, this is the case,
+ * because we always allocate enough to have at least one
+ * -1 at the end. */
+ for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ } /* regs && !bufp->no_sub */
+ FREE_VARIABLES();
+ DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
+
+ mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+ ? string1
+ : string2 - size1);
+
+ DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
+
+ return mcnt;
+ }
+ /* Otherwise match next pattern command. */
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((re_opcode_t) * p++))
+#else
+ switch ((re_opcode_t) * p++)
+#endif
+ {
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ * currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT1("EXECUTING no_op.\n");
+ break;
+
+ /* Match the next n pattern characters exactly. The following
+ * byte in the pattern defines n, and the n bytes after that
+ * are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+ DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
+
+ /* This is written out as an if-else so we don't waste time
+ * testing `translate' inside the loop. */
+ if (translate) {
+ do {
+ PREFETCH();
+ if (translate[(unsigned char) *d++] != (char) *p++)
+ goto fail;
+ } while (--mcnt);
+ } else {
+ do {
+ PREFETCH();
+ if (*d++ != (char) *p++)
+ goto fail;
+ } while (--mcnt);
+ }
+ SET_REGS_MATCHED();
+ break;
+
+ /* Match any character except possibly a newline or a null. */
+ case anychar:
+ DEBUG_PRINT1("EXECUTING anychar.\n");
+
+ PREFETCH();
+
+ if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
+ || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000'))
+ goto fail;
+
+ SET_REGS_MATCHED();
+ DEBUG_PRINT2(" Matched `%d'.\n", *d);
+ d++;
+ break;
+
+ case charset:
+ case charset_not: {
+ register unsigned char c;
+ boolean not = (re_opcode_t) * (p - 1) == charset_not;
+
+ DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
+
+ PREFETCH();
+ c = TRANSLATE(*d); /* The character to match. */
+
+ /* Cast to `unsigned' instead of `unsigned char' in case the
+ * bit list is a full 32 bytes long. */
+ if (c < (unsigned) (*p * BYTEWIDTH)
+ && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ p += 1 + *p;
+
+ if (!not)
+ goto fail;
+
+ SET_REGS_MATCHED();
+ d++;
+ break;
+ }
+
+ /* The beginning of a group is represented by start_memory.
+ * The arguments are the register number in the next byte, and the
+ * number of groups inner to this one in the next. The text
+ * matched within the group is recorded (in the internal
+ * registers data structure) under the register number. */
+ case start_memory:
+ DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+
+ /* Find out if this group can match the empty string. */
+ p1 = p; /* To send to group_match_null_string_p. */
+
+ if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P(reg_info[*p])
+ = group_match_null_string_p(&p1, pend, reg_info);
+
+ /* Save the position in the string where we were the last time
+ * we were at this open-group operator in case the group is
+ * operated upon by a repetition operator, e.g., with `(a*)*b'
+ * against `ab'; then we want to ignore where we are now in
+ * the string in case this attempt to match fails. */
+ old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
+ ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
+ : regstart[*p];
+ DEBUG_PRINT2(" old_regstart: %d\n",
+ POINTER_TO_OFFSET(old_regstart[*p]));
+
+ regstart[*p] = d;
+ DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p]));
+
+ IS_ACTIVE(reg_info[*p]) = 1;
+ MATCHED_SOMETHING(reg_info[*p]) = 0;
+
+ /* This is the new highest active register. */
+ highest_active_reg = *p;
+
+ /* If nothing was active before, this is the new lowest active
+ * register. */
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *p;
+
+ /* Move past the register number and inner group count. */
+ p += 2;
+ break;
+
+ /* The stop_memory opcode represents the end of a group. Its
+ * arguments are the same as start_memory's: the register
+ * number, and the number of inner groups. */
+ case stop_memory:
+ DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+
+ /* We need to save the string position the last time we were at
+ * this close-group operator in case the group is operated
+ * upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ * against `aba'; then we want to ignore where we are now in
+ * the string in case this attempt to match fails. */
+ old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
+ ? REG_UNSET(regend[*p]) ? d : regend[*p]
+ : regend[*p];
+ DEBUG_PRINT2(" old_regend: %d\n",
+ POINTER_TO_OFFSET(old_regend[*p]));
+
+ regend[*p] = d;
+ DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p]));
+
+ /* This register isn't active anymore. */
+ IS_ACTIVE(reg_info[*p]) = 0;
+
+ /* If this was the only register active, nothing is active
+ * anymore. */
+ if (lowest_active_reg == highest_active_reg) {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ } else {
+ /* We must scan for the new highest active register, since
+ * it isn't necessarily one less than now: consider
+ * (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ * new highest active register is 1. */
+ unsigned char r = *p - 1;
+ while (r > 0 && !IS_ACTIVE(reg_info[r]))
+ r--;
+
+ /* If we end up at register zero, that means that we saved
+ * the registers as the result of an `on_failure_jump', not
+ * a `start_memory', and we jumped to past the innermost
+ * `stop_memory'. For example, in ((.)*) we save
+ * registers 1 and 2 as a result of the *, but when we pop
+ * back to the second ), we are at the stop_memory 1.
+ * Thus, nothing is active. */
+ if (r == 0) {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ } else
+ highest_active_reg = r;
+ }
+
+ /* If just failed to match something this time around with a
+ * group that's operated on by a repetition operator, try to
+ * force exit from the ``loop'', and restore the register
+ * information for this group that we had before trying this
+ * last match. */
+ if ((!MATCHED_SOMETHING(reg_info[*p])
+ || (re_opcode_t) p[-3] == start_memory)
+ && (p + 2) < pend) {
+ boolean is_a_jump_n = false;
+
+ p1 = p + 2;
+ mcnt = 0;
+ switch ((re_opcode_t) * p1++) {
+ case jump_n:
+ is_a_jump_n = true;
+ case pop_failure_jump:
+ case maybe_pop_jump:
+ case jump:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ if (is_a_jump_n)
+ p1 += 2;
+ break;
+
+ default:
+ /* do nothing */
+ ;
+ }
+ p1 += mcnt;
+
+ /* If the next operation is a jump backwards in the pattern
+ * to an on_failure_jump right before the start_memory
+ * corresponding to this stop_memory, exit from the loop
+ * by forcing a failure after pushing on the stack the
+ * on_failure_jump's jump in the pattern, and d. */
+ if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
+ && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
+ /* If this group ever matched anything, then restore
+ * what its registers were before trying this last
+ * failed match, e.g., with `(a*)*b' against `ab' for
+ * regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ * against `aba' for regend[3].
+ *
+ * Also restore the registers for inner groups for,
+ * e.g., `((a*)(b*))*' against `aba' (register 3 would
+ * otherwise get trashed). */
+
+ if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
+ unsigned r;
+
+ EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
+
+ /* Restore this and inner groups' (if any) registers. */
+ for (r = *p; r < *p + *(p + 1); r++) {
+ regstart[r] = old_regstart[r];
+
+ /* xx why this test? */
+ if ((long) old_regend[r] >= (long) regstart[r])
+ regend[r] = old_regend[r];
+ }
+ }
+ p1++;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
+
+ goto fail;
+ }
+ }
+ /* Move past the register number and the inner group count. */
+ p += 2;
+ break;
+
+ /* \<digit> has been turned into a `duplicate' command which is
+ * followed by the numeric value of <digit> as the register number. */
+ case duplicate: {
+ register const char *d2, *dend2;
+ int regno = *p++; /* Get which register to match against. */
+ DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
+
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
+ goto fail;
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Where to stop matching; if both the place to start and
+ * the place to stop matching are in the same string, then
+ * set to the place to stop, otherwise, for now have to use
+ * the end of the first string. */
+
+ dend2 = ((FIRST_STRING_P(regstart[regno])
+ == FIRST_STRING_P(regend[regno]))
+ ? regend[regno] : end_match_1);
+ for (;;) {
+ /* If necessary, advance to next segment in register
+ * contents. */
+ while (d2 == dend2) {
+ if (dend2 == end_match_2)
+ break;
+ if (dend2 == regend[regno])
+ break;
+
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2)
+ break;
+
+ /* If necessary, advance to next segment in data. */
+ PREFETCH();
+
+ /* How many characters left in this segment to match. */
+ mcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ * one shot, so, if necessary, adjust the count. */
+ if (mcnt > dend2 - d2)
+ mcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ * past them. */
+ if (translate
+ ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate)
+ : memcmp(d, d2, mcnt))
+ goto fail;
+ d += mcnt, d2 += mcnt;
+ }
+ }
+ break;
+
+ /* begline matches the empty string at the beginning of the string
+ * (unless `not_bol' is set in `bufp'), and, if
+ * `newline_anchor' is set, after newlines. */
+ case begline:
+ DEBUG_PRINT1("EXECUTING begline.\n");
+
+ if (AT_STRINGS_BEG(d)) {
+ if (!bufp->not_bol)
+ break;
+ } else if (d[-1] == '\n' && bufp->newline_anchor) {
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
+
+ /* endline is the dual of begline. */
+ case endline:
+ DEBUG_PRINT1("EXECUTING endline.\n");
+
+ if (at_strings_end(d,end2)) {
+ if (!bufp->not_eol)
+ break;
+ }
+ /* We have to ``prefetch'' the next character. */
+ else if ((d == end1 ? *string2 : *d) == '\n'
+ && bufp->newline_anchor) {
+ break;
+ }
+ goto fail;
+
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ DEBUG_PRINT1("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG(d))
+ break;
+ goto fail;
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ DEBUG_PRINT1("EXECUTING endbuf.\n");
+ if (at_strings_end(d,end2))
+ break;
+ goto fail;
+
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ * pushes NULL as the value for the string on the stack. Then
+ * `pop_failure_point' will keep the current value for the
+ * string, instead of restoring it. To see why, consider
+ * matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ * then the . fails against the \n. But the next thing we want
+ * to do is match the \n against the \n; if we restored the
+ * string value, we would be back at the foo.
+ *
+ * Because this is used only in specific cases, we don't need to
+ * check all the things that `on_failure_jump' does, to make
+ * sure the right things get saved on the stack. Hence we don't
+ * share its code. The only reason to push anything on the
+ * stack at all is that otherwise we would have to change
+ * `anychar's code to do something besides goto fail in this
+ * case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
+
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
+ break;
+
+ /* Uses of on_failure_jump:
+ *
+ * Each alternative starts with an on_failure_jump that points
+ * to the beginning of the next alternative. Each alternative
+ * except the last ends with a jump that in effect jumps past
+ * the rest of the alternatives. (They really jump to the
+ * ending jump of the following alternative, because tensioning
+ * these jumps is a hassle.)
+ *
+ * Repeats start with an on_failure_jump that points past both
+ * the repetition text and either the following jump or
+ * pop_failure_jump back to this on_failure_jump. */
+ case on_failure_jump:
+on_failure:
+ DEBUG_PRINT1("EXECUTING on_failure_jump");
+
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
+
+ /* If this on_failure_jump comes right before a group (i.e.,
+ * the original * applied to a group), save the information
+ * for that group and all inner ones, so that if we fail back
+ * to this point, the group's information will be correct.
+ * For example, in \(a*\)*\1, we need the preceding group,
+ * and in \(\(a*\)b*\)\2, we need the inner group. */
+
+ /* We can't use `p' to check ahead because we push
+ * a failure point to `p + mcnt' after we do this. */
+ p1 = p;
+
+ /* We need to skip no_op's before we look for the
+ * start_memory in case this on_failure_jump is happening as
+ * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ * against aba. */
+ while (p1 < pend && (re_opcode_t) * p1 == no_op)
+ p1++;
+
+ if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
+ /* We have a new highest active register now. This will
+ * get reset at the start_memory we are about to get to,
+ * but we will have saved all the registers relevant to
+ * this repetition op, as described above. */
+ highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *(p1 + 1);
+ }
+ DEBUG_PRINT1(":\n");
+ PUSH_FAILURE_POINT(p + mcnt, d, -2);
+ break;
+
+ /* A smart repeat ends with `maybe_pop_jump'.
+ * We change it to either `pop_failure_jump' or `jump'. */
+ case maybe_pop_jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
+ {
+ register unsigned char *p2 = p;
+
+ /* Compare the beginning of the repeat with what in the
+ * pattern follows its end. If we can establish that there
+ * is nothing that they would both match, i.e., that we
+ * would have to backtrack because of (as in, e.g., `a*a')
+ * then we can change to pop_failure_jump, because we'll
+ * never have to backtrack.
+ *
+ * This is not true in the case of alternatives: in
+ * `(a|ab)*' we do need to backtrack to the `ab' alternative
+ * (e.g., if the string was `ab'). But instead of trying to
+ * detect that here, the alternative has put on a dummy
+ * failure point which is what we will end up popping. */
+
+ /* Skip over open/close-group commands. */
+ while (p2 + 2 < pend
+ && ((re_opcode_t) * p2 == stop_memory
+ || (re_opcode_t) * p2 == start_memory))
+ p2 += 3; /* Skip over args, too. */
+
+ /* If we're at the end of the pattern, we can change. */
+ if (p2 == pend) {
+ /* Consider what happens when matching ":\(.*\)"
+ * against ":/". I don't really understand this code
+ * yet. */
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1
+ (" End of pattern: change to `pop_failure_jump'.\n");
+ } else if ((re_opcode_t) * p2 == exactn
+ || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
+ register unsigned char c
+ = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ p1 = p + mcnt;
+
+ /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+ * to the `maybe_finalize_jump' of this case. Examine what
+ * follows. */
+ if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n",
+ c, p1[5]);
+ } else if ((re_opcode_t) p1[3] == charset
+ || (re_opcode_t) p1[3] == charset_not) {
+ int not = (re_opcode_t) p1[3] == charset_not;
+
+ if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+ && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ /* `not' is equal to 1 if c would match, which means
+ * that we can't change to pop_failure_jump. */
+ if (!not) {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1(" No match => pop_failure_jump.\n");
+ }
+ }
+ }
+ }
+ p -= 2; /* Point at relative address again. */
+ if ((re_opcode_t) p[-1] != pop_failure_jump) {
+ p[-1] = (unsigned char) jump;
+ DEBUG_PRINT1(" Match => jump.\n");
+ goto unconditional_jump;
+ }
+ /* Note fall through. */
+
+ /* The end of a simple repeat has a pop_failure_jump back to
+ * its matching on_failure_jump, where the latter will push a
+ * failure point. The pop_failure_jump takes off failure
+ * points put on by this pop_failure_jump's matching
+ * on_failure_jump; we got through the pattern to here from the
+ * matching on_failure_jump, so didn't fail. */
+ case pop_failure_jump: {
+ /* We need to pass separate storage for the lowest and
+ * highest registers, even though we don't care about the
+ * actual values. Otherwise, we will restore only one
+ * register from the stack, since lowest will == highest in
+ * `pop_failure_point'. */
+ unsigned long dummy_low_reg, dummy_high_reg;
+ unsigned char *pdummy;
+ const char *sdummy;
+
+ DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
+ POP_FAILURE_POINT(sdummy, pdummy,
+ dummy_low_reg, dummy_high_reg,
+ reg_dummy, reg_dummy, reg_info_dummy);
+ /* avoid GCC 4.6 set but unused variables warning. Does not matter here. */
+ if (pdummy || sdummy)
+ (void)0;
+ }
+ /* Note fall through. */
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
+unconditional_jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
+ DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT2("(to 0x%x).\n", p);
+ break;
+
+ /* We need this opcode so we can detect where alternatives end
+ * in `group_match_null_string_p' et al. */
+ case jump_past_alt:
+ DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
+ goto unconditional_jump;
+
+ /* Normally, the on_failure_jump pushes a failure point, which
+ * then gets popped at pop_failure_jump. We will end up at
+ * pop_failure_jump, also, and with a pattern of, say, `a+', we
+ * are skipping over the on_failure_jump, so we have to push
+ * something meaningless for pop_failure_jump to pop. */
+ case dummy_failure_jump:
+ DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
+ /* It doesn't matter what we push for the string here. What
+ * the code at `fail' tests is the value for the pattern. */
+ PUSH_FAILURE_POINT(0, 0, -2);
+ goto unconditional_jump;
+
+ /* At the end of an alternative, we need to push a dummy failure
+ * point in case we are followed by a `pop_failure_jump', because
+ * we don't want the failure point for the alternative to be
+ * popped. For example, matching `(a|ab)*' against `aab'
+ * requires that we match the `ab' alternative. */
+ case push_dummy_failure:
+ DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
+ /* See comments just above at `dummy_failure_jump' about the
+ * two zeroes. */
+ PUSH_FAILURE_POINT(0, 0, -2);
+ break;
+
+ /* Have to succeed matching what follows at least n times.
+ * After that, handle like `on_failure_jump'. */
+ case succeed_n:
+ EXTRACT_NUMBER(mcnt, p + 2);
+ DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
+
+ assert(mcnt >= 0);
+ /* Originally, this is how many times we HAVE to succeed. */
+ if (mcnt > 0) {
+ mcnt--;
+ p += 2;
+ STORE_NUMBER_AND_INCR(p, mcnt);
+ DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt);
+ } else if (mcnt == 0) {
+ DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2);
+ p[2] = (unsigned char) no_op;
+ p[3] = (unsigned char) no_op;
+ goto on_failure;
+ }
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER(mcnt, p + 2);
+ DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt) {
+ mcnt--;
+ STORE_NUMBER(p + 2, mcnt);
+ goto unconditional_jump;
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at: {
+ DEBUG_PRINT1("EXECUTING set_number_at.\n");
+
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ p1 = p + mcnt;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt);
+ STORE_NUMBER(p1, mcnt);
+ break;
+ }
+
+ case wordbound:
+ DEBUG_PRINT1("EXECUTING wordbound.\n");
+ if (AT_WORD_BOUNDARY(d))
+ break;
+ goto fail;
+
+ case notwordbound:
+ DEBUG_PRINT1("EXECUTING notwordbound.\n");
+ if (AT_WORD_BOUNDARY(d))
+ goto fail;
+ break;
+
+ case wordbeg:
+ DEBUG_PRINT1("EXECUTING wordbeg.\n");
+ if (wordchar_p(d,end1,string2) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
+ break;
+ goto fail;
+
+ case wordend:
+ DEBUG_PRINT1("EXECUTING wordend.\n");
+ if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
+ && (!wordchar_p(d,end1,string2) || at_strings_end(d,end2)))
+ break;
+ goto fail;
+
+ case wordchar:
+ DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
+ PREFETCH();
+ if (!wordchar_p(d,end1,string2))
+ goto fail;
+ SET_REGS_MATCHED();
+ d++;
+ break;
+
+ case notwordchar:
+ DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
+ PREFETCH();
+ if (wordchar_p(d,end1,string2))
+ goto fail;
+ SET_REGS_MATCHED();
+ d++;
+ break;
+
+ default:
+ abort();
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+ /* We goto here if a matching operation fails. */
+fail:
+ if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT1("\nFAIL:\n");
+ POP_FAILURE_POINT(d, p,
+ lowest_active_reg, highest_active_reg,
+ regstart, regend, reg_info);
+
+ /* If this failure point is a dummy, try the next one. */
+ if (!p)
+ goto fail;
+
+ /* If we failed to the end of the pattern, don't examine *p. */
+ assert(p <= pend);
+ if (p < pend) {
+ boolean is_a_jump_n = false;
+
+ /* If failed to a backwards jump that's part of a repetition
+ * loop, need to pop this failure point and use the next one. */
+ switch ((re_opcode_t) * p) {
+ case jump_n:
+ is_a_jump_n = true;
+ case maybe_pop_jump:
+ case pop_failure_jump:
+ case jump:
+ p1 = p + 1;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ p1 += mcnt;
+
+ if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
+ || (!is_a_jump_n
+ && (re_opcode_t) * p1 == on_failure_jump))
+ goto fail;
+ break;
+ default:
+ /* do nothing */
+ ;
+ }
+ }
+ if (d >= string1 && d <= end1)
+ dend = end_match_1;
+ } else
+ break; /* Matching at this starting point really fails. */
+ } /* for (;;) */
+
+ if (best_regs_set)
+ goto restore_best_regs;
+
+ FREE_VARIABLES();
+
+ return -1; /* Failure to match. */
+} /* re_match_2 */
+\f
+/* Subroutine definitions for re_match_2. */
+
+/* We are passed P pointing to a register number after a start_memory.
+ *
+ * Return true if the pattern up to the corresponding stop_memory can
+ * match the empty string, and false otherwise.
+ *
+ * If we find the matching stop_memory, sets P to point to one past its number.
+ * Otherwise, sets P to an undefined byte less than or equal to END.
+ *
+ * We don't handle duplicates properly (yet). */
+
+boolean
+group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info)
+{
+ int mcnt;
+ /* Point to after the args to the start_memory. */
+ unsigned char *p1 = *p + 2;
+
+ while (p1 < end) {
+ /* Skip over opcodes that can match nothing, and return true or
+ * false, as appropriate, when we get to one that can't, or to the
+ * matching stop_memory. */
+
+ switch ((re_opcode_t) * p1) {
+ /* Could be either a loop or a series of alternatives. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+
+ /* If the next operation is not a jump backwards in the
+ * pattern. */
+
+ if (mcnt >= 0) {
+ /* Go through the on_failure_jumps of the alternatives,
+ * seeing if any of the alternatives cannot match nothing.
+ * The last alternative starts with only a jump,
+ * whereas the rest start with on_failure_jump and end
+ * with a jump, e.g., here is the pattern for `a|b|c':
+ *
+ * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ * /exactn/1/c
+ *
+ * So, we have to first go through the first (n-1)
+ * alternatives and then deal with the last one separately. */
+
+ /* Deal with the first (n-1) alternatives, which start
+ * with an on_failure_jump (see above) that jumps to right
+ * past a jump_past_alt. */
+
+ while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
+ /* `mcnt' holds how many bytes long the alternative
+ * is, including the ending `jump_past_alt' and
+ * its number. */
+
+ if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
+ reg_info))
+ return false;
+
+ /* Move to right after this alternative, including the
+ * jump_past_alt. */
+ p1 += mcnt;
+
+ /* Break if it's the beginning of an n-th alternative
+ * that doesn't begin with an on_failure_jump. */
+ if ((re_opcode_t) * p1 != on_failure_jump)
+ break;
+
+ /* Still have to check that it's not an n-th
+ * alternative that starts with an on_failure_jump. */
+ p1++;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
+ /* Get to the beginning of the n-th alternative. */
+ p1 -= 3;
+ break;
+ }
+ }
+
+ /* Deal with the last alternative: go back and get number
+ * of the `jump_past_alt' just before it. `mcnt' contains
+ * the length of the alternative. */
+ EXTRACT_NUMBER(mcnt, p1 - 2);
+
+ if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
+ return false;
+
+ p1 += mcnt; /* Get past the n-th alternative. */
+ } /* if mcnt > 0 */
+ break;
+
+ case stop_memory:
+ assert(p1[1] == **p);
+ *p = p1 + 2;
+ return true;
+
+ default:
+ if (!common_op_match_null_string_p(&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return false;
+} /* group_match_null_string_p */
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+ * It expects P to be the first byte of a single alternative and END one
+ * byte past the last. The alternative can contain groups. */
+
+boolean
+alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info)
+{
+ int mcnt;
+ unsigned char *p1 = p;
+
+ while (p1 < end) {
+ /* Skip over opcodes that can match nothing, and break when we get
+ * to one that can't. */
+
+ switch ((re_opcode_t) * p1) {
+ /* It's a loop. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ p1 += mcnt;
+ break;
+
+ default:
+ if (!common_op_match_null_string_p(&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return true;
+} /* alt_match_null_string_p */
+
+/* Deals with the ops common to group_match_null_string_p and
+ * alt_match_null_string_p.
+ *
+ * Sets P to one after the op and its arguments, if any. */
+
+boolean
+common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info)
+{
+ int mcnt;
+ boolean ret;
+ int reg_no;
+ unsigned char *p1 = *p;
+
+ switch ((re_opcode_t) * p1++) {
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbeg:
+ case wordend:
+ case wordbound:
+ case notwordbound:
+ break;
+
+ case start_memory:
+ reg_no = *p1;
+ assert(reg_no > 0 && reg_no <= MAX_REGNUM);
+ ret = group_match_null_string_p(&p1, end, reg_info);
+
+ /* Have to set this here in case we're checking a group which
+ * contains a group and a back reference to it. */
+
+ if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
+
+ if (!ret)
+ return false;
+ break;
+
+ /* If this is an optimized succeed_n for zero times, make the jump. */
+ case jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ if (mcnt >= 0)
+ p1 += mcnt;
+ else
+ return false;
+ break;
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p1 += 2;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+
+ if (mcnt == 0) {
+ p1 -= 4;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p1);
+ p1 += mcnt;
+ } else
+ return false;
+ break;
+
+ case duplicate:
+ if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
+ return false;
+ break;
+
+ case set_number_at:
+ p1 += 4;
+
+ default:
+ /* All other opcodes mean we cannot match the empty string. */
+ return false;
+ }
+
+ *p = p1;
+ return true;
+} /* common_op_match_null_string_p */
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ * bytes; nonzero otherwise. */
+
+int
+bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate)
+{
+ register unsigned char const *p1 = s1, *p2 = s2;
+ while (len) {
+ if (translate[*p1++] != translate[*p2++])
+ return 1;
+ len--;
+ }
+ return 0;
+}
+\f
+/* Entry points for GNU code. */
+
+/* POSIX.2 functions */
+
+/* regcomp takes a regular expression as a string and compiles it.
+ *
+ * PREG is a regex_t *. We do not expect any fields to be initialized,
+ * since POSIX says we shouldn't. Thus, we set
+ *
+ * `buffer' to the compiled pattern;
+ * `used' to the length of the compiled pattern;
+ * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+ * REG_EXTENDED bit in CFLAGS is set; otherwise, to
+ * RE_SYNTAX_POSIX_BASIC;
+ * `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+ * `fastmap' and `fastmap_accurate' to zero;
+ * `re_nsub' to the number of subexpressions in PATTERN.
+ *
+ * PATTERN is the address of the pattern string.
+ *
+ * CFLAGS is a series of bits which affect compilation.
+ *
+ * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+ * use POSIX basic syntax.
+ *
+ * If REG_NEWLINE is set, then . and [^...] don't match newline.
+ * Also, regexec will try a match beginning after every newline.
+ *
+ * If REG_ICASE is set, then we considers upper- and lowercase
+ * versions of letters to be equivalent when matching.
+ *
+ * If REG_NOSUB is set, then when PREG is passed to regexec, that
+ * routine will report only success or failure, and nothing about the
+ * registers.
+ *
+ * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
+ * the return codes and their meanings.) */
+
+int
+regcomp(preg, pattern, cflags)
+regex_t *preg;
+const char *pattern;
+int cflags;
+{
+ reg_errcode_t ret;
+ unsigned syntax
+ = (cflags & REG_EXTENDED) ?
+ RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+ /* regex_compile will allocate the space for the compiled pattern. */
+ preg->buffer = 0;
+ preg->allocated = 0;
+
+ /* Don't bother to use a fastmap when searching. This simplifies the
+ * REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+ * characters after newlines into the fastmap. This way, we just try
+ * every character. */
+ preg->fastmap = 0;
+
+ if (cflags & REG_ICASE) {
+ unsigned i;
+
+ preg->translate = (char *) malloc(CHAR_SET_SIZE);
+ if (preg->translate == NULL)
+ return (int) REG_ESPACE;
+
+ /* Map uppercase characters to corresponding lowercase ones. */
+ for (i = 0; i < CHAR_SET_SIZE; i++)
+ preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
+ } else
+ preg->translate = NULL;
+
+ /* If REG_NEWLINE is set, newlines are treated differently. */
+ if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
+ syntax &= ~RE_DOT_NEWLINE;
+ syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+ /* It also changes the matching behavior. */
+ preg->newline_anchor = 1;
+ } else
+ preg->newline_anchor = 0;
+
+ preg->no_sub = !!(cflags & REG_NOSUB);
+
+ /* POSIX says a null character in the pattern terminates it, so we
+ * can use strlen here in compiling the pattern. */
+ ret = regex_compile(pattern, strlen(pattern), syntax, preg);
+
+ /* POSIX doesn't distinguish between an unmatched open-group and an
+ * unmatched close-group: both are REG_EPAREN. */
+ if (ret == REG_ERPAREN)
+ ret = REG_EPAREN;
+
+ return (int) ret;
+}
+
+/* regexec searches for a given pattern, specified by PREG, in the
+ * string STRING.
+ *
+ * If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ * least NMATCH elements, and we set them to the offsets of the
+ * corresponding matched substrings.
+ *
+ * EFLAGS specifies `execution flags' which affect matching: if
+ * REG_NOTBOL is set, then ^ does not match at the beginning of the
+ * string; if REG_NOTEOL is set, then $ does not match at the end.
+ *
+ * We return 0 if we find a match and REG_NOMATCH if not. */
+
+int
+regexec(preg, string, nmatch, pmatch, eflags)
+const regex_t *preg;
+const char *string;
+size_t nmatch;
+regmatch_t pmatch[];
+int eflags;
+{
+ int ret;
+ struct re_registers regs;
+ regex_t private_preg;
+ int len = strlen(string);
+ boolean want_reg_info = !preg->no_sub && nmatch > 0;
+
+ private_preg = *preg;
+
+ private_preg.not_bol = !!(eflags & REG_NOTBOL);
+ private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+ /* The user has told us exactly how many registers to return
+ * information about, via `nmatch'. We have to pass that on to the
+ * matching routines. */
+ private_preg.regs_allocated = REGS_FIXED;
+
+ if (want_reg_info) {
+ regs.num_regs = nmatch;
+ regs.start = TALLOC(nmatch, regoff_t);
+ regs.end = TALLOC(nmatch, regoff_t);
+ if (regs.start == NULL || regs.end == NULL)
+ return (int) REG_NOMATCH;
+ }
+ /* Perform the searching operation. */
+ ret = re_search(&private_preg, string, len,
+ /* start: */ 0, /* range: */ len,
+ want_reg_info ? ®s : (struct re_registers *) 0);
+
+ /* Copy the register information to the POSIX structure. */
+ if (want_reg_info) {
+ if (ret >= 0) {
+ unsigned r;
+
+ for (r = 0; r < nmatch; r++) {
+ pmatch[r].rm_so = regs.start[r];
+ pmatch[r].rm_eo = regs.end[r];
+ }
+ }
+ /* If we needed the temporary register info, free the space now. */
+ free(regs.start);
+ free(regs.end);
+ }
+ /* We want zero return to mean success, unlike `re_search'. */
+ return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+ * from either regcomp or regexec. We don't use PREG here. */
+
+size_t
+regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
+{
+ const char *msg;
+ size_t msg_size;
+
+ if (errcode < 0
+ || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
+ /* Only error codes returned by the rest of the code should be passed
+ * to this routine. If we are given anything else, or if other regex
+ * code generates an invalid error code, then the program has a bug.
+ * Dump core so we can fix it. */
+ abort();
+
+ msg = re_error_msg[errcode];
+
+ /* POSIX doesn't require that we do anything in this case, but why
+ * not be nice. */
+ if (!msg)
+ msg = "Success";
+
+ msg_size = strlen(msg) + 1; /* Includes the null. */
+
+ if (errbuf_size != 0) {
+ if (msg_size > errbuf_size) {
+ strncpy(errbuf, msg, errbuf_size - 1);
+ errbuf[errbuf_size - 1] = 0;
+ } else
+ strcpy(errbuf, msg);
+ }
+ return msg_size;
+}
+
+/* Free dynamically allocated space used by PREG. */
+
+void
+regfree(preg)
+regex_t *preg;
+{
+ if (preg->buffer != NULL)
+ free(preg->buffer);
+ preg->buffer = NULL;
+
+ preg->allocated = 0;
+ preg->used = 0;
+
+ if (preg->fastmap != NULL)
+ free(preg->fastmap);
+ preg->fastmap = NULL;
+ preg->fastmap_accurate = 0;
+
+ if (preg->translate != NULL)
+ free(preg->translate);
+ preg->translate = NULL;
+}
+#endif /* USE_GNUREGEX */
+
+/*
+ * Local variables:
+ * make-backup-files: t
+ * version-control: t
+ * trim-versions-without-asking: nil
+ * End:
+ */
+