/******************************************************************************/
-static void mpi_export(void *buf, size_t buflen, const gcry_mpi_t x) {
+static void mpi_export(void *buf, size_t buflen, gcry_mpi_t x) {
unsigned len;
size_t nwritten;
}
/* deterministically generate from seed/idx a quadratic residue (mod n) */
-static gcry_mpi_t gensquare(const gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) {
+static gcry_mpi_t gensquare(gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) {
size_t buflen = secpar / 8;
uint8_t buf[buflen];
gcry_mpi_t x;
}
/* compute 2^m (mod phi(p)), for a prime p */
-static gcry_mpi_t twopowmodphi(uint64_t m, const gcry_mpi_t p) {
+static gcry_mpi_t twopowmodphi(uint64_t m, gcry_mpi_t p) {
gcry_mpi_t phi, r;
int n;
}
/* Decompose $x \in Z_n$ into $(xp,xq) \in Z_p \times Z_q$ using Chinese Remainder Theorem */
-static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, const gcry_mpi_t x, const gcry_mpi_t p, const gcry_mpi_t q) {
+static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, gcry_mpi_t x, gcry_mpi_t p, gcry_mpi_t q) {
*xp = sym_gcry_mpi_new(0);
*xq = sym_gcry_mpi_new(0);
sym_gcry_mpi_mod(*xp, x, p);
}
/* Compose $(xp,xq) \in Z_p \times Z_q$ into $x \in Z_n$ using Chinese Remainder Theorem */
-static void CRT_compose(gcry_mpi_t *x, const gcry_mpi_t xp, const gcry_mpi_t xq, const gcry_mpi_t p, const gcry_mpi_t q) {
+static void CRT_compose(gcry_mpi_t *x, gcry_mpi_t xp, gcry_mpi_t xq, gcry_mpi_t p, gcry_mpi_t q) {
gcry_mpi_t a, u;
a = sym_gcry_mpi_new(0);