/*************** Type resolution of array constructors ***************/
+
+/* The symbol expr_is_sought_symbol_ref will try to find. */
+static const gfc_symbol *sought_symbol = NULL;
+
+
+/* Tells whether the expression E is a variable reference to the symbol
+ in the static variable SOUGHT_SYMBOL, and sets the locus pointer WHERE
+ accordingly.
+ To be used with gfc_expr_walker: if a reference is found we don't need
+ to look further so we return 1 to skip any further walk. */
+
+static int
+expr_is_sought_symbol_ref (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
+ void *where)
+{
+ gfc_expr *expr = *e;
+ locus *sym_loc = (locus *)where;
+
+ if (expr->expr_type == EXPR_VARIABLE
+ && expr->symtree->n.sym == sought_symbol)
+ {
+ *sym_loc = expr->where;
+ return 1;
+ }
+
+ return 0;
+}
+
+
+/* Tells whether the expression EXPR contains a reference to the symbol
+ SYM and in that case sets the position SYM_LOC where the reference is. */
+
+static bool
+find_symbol_in_expr (gfc_symbol *sym, gfc_expr *expr, locus *sym_loc)
+{
+ int ret;
+
+ sought_symbol = sym;
+ ret = gfc_expr_walker (&expr, &expr_is_sought_symbol_ref, sym_loc);
+ sought_symbol = NULL;
+ return ret;
+}
+
+
/* Recursive array list resolution function. All of the elements must
be of the same type. */
{
gfc_try t;
gfc_constructor *c;
+ gfc_iterator *iter;
t = SUCCESS;
for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
{
- if (c->iterator != NULL
- && gfc_resolve_iterator (c->iterator, false) == FAILURE)
- t = FAILURE;
+ iter = c->iterator;
+ if (iter != NULL)
+ {
+ gfc_symbol *iter_var;
+ locus iter_var_loc;
+
+ if (gfc_resolve_iterator (iter, false) == FAILURE)
+ t = FAILURE;
+
+ /* Check for bounds referencing the iterator variable. */
+ gcc_assert (iter->var->expr_type == EXPR_VARIABLE);
+ iter_var = iter->var->symtree->n.sym;
+ if (find_symbol_in_expr (iter_var, iter->start, &iter_var_loc))
+ {
+ if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO initial "
+ "expression references control variable "
+ "at %L", &iter_var_loc) == FAILURE)
+ t = FAILURE;
+ }
+ if (find_symbol_in_expr (iter_var, iter->end, &iter_var_loc))
+ {
+ if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO final "
+ "expression references control variable "
+ "at %L", &iter_var_loc) == FAILURE)
+ t = FAILURE;
+ }
+ if (find_symbol_in_expr (iter_var, iter->step, &iter_var_loc))
+ {
+ if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO step "
+ "expression references control variable "
+ "at %L", &iter_var_loc) == FAILURE)
+ t = FAILURE;
+ }
+ }
if (gfc_resolve_expr (c->expr) == FAILURE)
t = FAILURE;
--- /dev/null
+! { dg-do compile }
+! { dg-options "-std=f95" }
+!
+! PR fortran/44354
+! array constructors were giving unexpected results when the ac-implied-do
+! variable was used in one of the ac-implied-do bounds.
+!
+! Original testcase by Vittorio Zecca <zeccav@gmail.com>
+!
+ I=5
+ print *,(/(i,i=I,8)/) ! { dg-error "initial expression references control variable" }
+ print *,(/(i,i=1,I)/) ! { dg-error "final expression references control variable" }
+ print *,(/(i,i=1,50,I)/) ! { dg-error "step expression references control variable" }
+ end
+
+