]> git.ipfire.org Git - thirdparty/kernel/stable-queue.git/commitdiff
fixes for 4.19
authorSasha Levin <sashal@kernel.org>
Sun, 9 Feb 2020 22:18:07 +0000 (17:18 -0500)
committerSasha Levin <sashal@kernel.org>
Sun, 9 Feb 2020 22:18:07 +0000 (17:18 -0500)
Signed-off-by: Sasha Levin <sashal@kernel.org>
16 files changed:
queue-4.19/btrfs-flush-write-bio-if-we-loop-in-extent_write_cac.patch [new file with mode: 0644]
queue-4.19/btrfs-free-block-groups-after-free-ing-fs-trees.patch [new file with mode: 0644]
queue-4.19/btrfs-use-bool-argument-in-free_root_pointers.patch [new file with mode: 0644]
queue-4.19/drm-atmel-hlcdc-enable-clock-before-configuring-timi.patch [new file with mode: 0644]
queue-4.19/drm-dp_mst-remove-vcpi-while-disabling-topology-mgr.patch [new file with mode: 0644]
queue-4.19/ext4-fix-deadlock-allocating-crypto-bounce-page-from.patch [new file with mode: 0644]
queue-4.19/kvm-nvmx-vmread-should-not-set-rflags-to-specify-suc.patch [new file with mode: 0644]
queue-4.19/kvm-play-nice-with-read-only-memslots-when-querying-.patch [new file with mode: 0644]
queue-4.19/kvm-use-vcpu-specific-gva-hva-translation-when-query.patch [new file with mode: 0644]
queue-4.19/kvm-vmx-add-non-canonical-check-on-writes-to-rtit-ad.patch [new file with mode: 0644]
queue-4.19/kvm-x86-mmu-apply-max-pa-check-for-mmio-sptes-to-32-.patch [new file with mode: 0644]
queue-4.19/kvm-x86-use-gpa_t-for-cr2-gpa-to-fix-tdp-support-on-.patch [new file with mode: 0644]
queue-4.19/mm-page_alloc.c-fix-uninitialized-memmaps-on-a-parti.patch [new file with mode: 0644]
queue-4.19/mm-return-zero_resv_unavail-optimization.patch [new file with mode: 0644]
queue-4.19/mm-zero-remaining-unavailable-struct-pages.patch [new file with mode: 0644]
queue-4.19/series

diff --git a/queue-4.19/btrfs-flush-write-bio-if-we-loop-in-extent_write_cac.patch b/queue-4.19/btrfs-flush-write-bio-if-we-loop-in-extent_write_cac.patch
new file mode 100644 (file)
index 0000000..7168215
--- /dev/null
@@ -0,0 +1,106 @@
+From 05e59fa65b785414ee788bcd91bbb8ca81c7bf59 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Thu, 23 Jan 2020 15:33:02 -0500
+Subject: btrfs: flush write bio if we loop in extent_write_cache_pages
+
+From: Josef Bacik <josef@toxicpanda.com>
+
+[ Upstream commit 96bf313ecb33567af4cb53928b0c951254a02759 ]
+
+There exists a deadlock with range_cyclic that has existed forever.  If
+we loop around with a bio already built we could deadlock with a writer
+who has the page locked that we're attempting to write but is waiting on
+a page in our bio to be written out.  The task traces are as follows
+
+  PID: 1329874  TASK: ffff889ebcdf3800  CPU: 33  COMMAND: "kworker/u113:5"
+   #0 [ffffc900297bb658] __schedule at ffffffff81a4c33f
+   #1 [ffffc900297bb6e0] schedule at ffffffff81a4c6e3
+   #2 [ffffc900297bb6f8] io_schedule at ffffffff81a4ca42
+   #3 [ffffc900297bb708] __lock_page at ffffffff811f145b
+   #4 [ffffc900297bb798] __process_pages_contig at ffffffff814bc502
+   #5 [ffffc900297bb8c8] lock_delalloc_pages at ffffffff814bc684
+   #6 [ffffc900297bb900] find_lock_delalloc_range at ffffffff814be9ff
+   #7 [ffffc900297bb9a0] writepage_delalloc at ffffffff814bebd0
+   #8 [ffffc900297bba18] __extent_writepage at ffffffff814bfbf2
+   #9 [ffffc900297bba98] extent_write_cache_pages at ffffffff814bffbd
+
+  PID: 2167901  TASK: ffff889dc6a59c00  CPU: 14  COMMAND:
+  "aio-dio-invalid"
+   #0 [ffffc9003b50bb18] __schedule at ffffffff81a4c33f
+   #1 [ffffc9003b50bba0] schedule at ffffffff81a4c6e3
+   #2 [ffffc9003b50bbb8] io_schedule at ffffffff81a4ca42
+   #3 [ffffc9003b50bbc8] wait_on_page_bit at ffffffff811f24d6
+   #4 [ffffc9003b50bc60] prepare_pages at ffffffff814b05a7
+   #5 [ffffc9003b50bcd8] btrfs_buffered_write at ffffffff814b1359
+   #6 [ffffc9003b50bdb0] btrfs_file_write_iter at ffffffff814b5933
+   #7 [ffffc9003b50be38] new_sync_write at ffffffff8128f6a8
+   #8 [ffffc9003b50bec8] vfs_write at ffffffff81292b9d
+   #9 [ffffc9003b50bf00] ksys_pwrite64 at ffffffff81293032
+
+I used drgn to find the respective pages we were stuck on
+
+page_entry.page 0xffffea00fbfc7500 index 8148 bit 15 pid 2167901
+page_entry.page 0xffffea00f9bb7400 index 7680 bit 0 pid 1329874
+
+As you can see the kworker is waiting for bit 0 (PG_locked) on index
+7680, and aio-dio-invalid is waiting for bit 15 (PG_writeback) on index
+8148.  aio-dio-invalid has 7680, and the kworker epd looks like the
+following
+
+  crash> struct extent_page_data ffffc900297bbbb0
+  struct extent_page_data {
+    bio = 0xffff889f747ed830,
+    tree = 0xffff889eed6ba448,
+    extent_locked = 0,
+    sync_io = 0
+  }
+
+Probably worth mentioning as well that it waits for writeback of the
+page to complete while holding a lock on it (at prepare_pages()).
+
+Using drgn I walked the bio pages looking for page
+0xffffea00fbfc7500 which is the one we're waiting for writeback on
+
+  bio = Object(prog, 'struct bio', address=0xffff889f747ed830)
+  for i in range(0, bio.bi_vcnt.value_()):
+      bv = bio.bi_io_vec[i]
+      if bv.bv_page.value_() == 0xffffea00fbfc7500:
+         print("FOUND IT")
+
+which validated what I suspected.
+
+The fix for this is simple, flush the epd before we loop back around to
+the beginning of the file during writeout.
+
+Fixes: b293f02e1423 ("Btrfs: Add writepages support")
+CC: stable@vger.kernel.org # 4.4+
+Reviewed-by: Filipe Manana <fdmanana@suse.com>
+Signed-off-by: Josef Bacik <josef@toxicpanda.com>
+Signed-off-by: David Sterba <dsterba@suse.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ fs/btrfs/extent_io.c | 8 ++++++++
+ 1 file changed, 8 insertions(+)
+
+diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c
+index fed44390c0492..11efb4f5041c7 100644
+--- a/fs/btrfs/extent_io.c
++++ b/fs/btrfs/extent_io.c
+@@ -4014,6 +4014,14 @@ static int extent_write_cache_pages(struct address_space *mapping,
+                */
+               scanned = 1;
+               index = 0;
++
++              /*
++               * If we're looping we could run into a page that is locked by a
++               * writer and that writer could be waiting on writeback for a
++               * page in our current bio, and thus deadlock, so flush the
++               * write bio here.
++               */
++              flush_write_bio(epd);
+               goto retry;
+       }
+-- 
+2.20.1
+
diff --git a/queue-4.19/btrfs-free-block-groups-after-free-ing-fs-trees.patch b/queue-4.19/btrfs-free-block-groups-after-free-ing-fs-trees.patch
new file mode 100644 (file)
index 0000000..b4e0105
--- /dev/null
@@ -0,0 +1,57 @@
+From c0ff51f97e8a0af5c9b27a0a54496f2a372da6ca Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Tue, 21 Jan 2020 09:17:06 -0500
+Subject: btrfs: free block groups after free'ing fs trees
+
+From: Josef Bacik <josef@toxicpanda.com>
+
+[ Upstream commit 4e19443da1941050b346f8fc4c368aa68413bc88 ]
+
+Sometimes when running generic/475 we would trip the
+WARN_ON(cache->reserved) check when free'ing the block groups on umount.
+This is because sometimes we don't commit the transaction because of IO
+errors and thus do not cleanup the tree logs until at umount time.
+
+These blocks are still reserved until they are cleaned up, but they
+aren't cleaned up until _after_ we do the free block groups work.  Fix
+this by moving the free after free'ing the fs roots, that way all of the
+tree logs are cleaned up and we have a properly cleaned fs.  A bunch of
+loops of generic/475 confirmed this fixes the problem.
+
+CC: stable@vger.kernel.org # 4.9+
+Signed-off-by: Josef Bacik <josef@toxicpanda.com>
+Reviewed-by: David Sterba <dsterba@suse.com>
+Signed-off-by: David Sterba <dsterba@suse.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ fs/btrfs/disk-io.c | 11 +++++++++--
+ 1 file changed, 9 insertions(+), 2 deletions(-)
+
+diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
+index d296ea329bd4e..9e467e8a8cb5d 100644
+--- a/fs/btrfs/disk-io.c
++++ b/fs/btrfs/disk-io.c
+@@ -3983,11 +3983,18 @@ void close_ctree(struct btrfs_fs_info *fs_info)
+       invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+       btrfs_stop_all_workers(fs_info);
+-      btrfs_free_block_groups(fs_info);
+-
+       clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
+       free_root_pointers(fs_info, true);
++      /*
++       * We must free the block groups after dropping the fs_roots as we could
++       * have had an IO error and have left over tree log blocks that aren't
++       * cleaned up until the fs roots are freed.  This makes the block group
++       * accounting appear to be wrong because there's pending reserved bytes,
++       * so make sure we do the block group cleanup afterwards.
++       */
++      btrfs_free_block_groups(fs_info);
++
+       iput(fs_info->btree_inode);
+ #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+-- 
+2.20.1
+
diff --git a/queue-4.19/btrfs-use-bool-argument-in-free_root_pointers.patch b/queue-4.19/btrfs-use-bool-argument-in-free_root_pointers.patch
new file mode 100644 (file)
index 0000000..d259162
--- /dev/null
@@ -0,0 +1,73 @@
+From e1cfefdaf2a2da953ab10452f17492e4ca286758 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Thu, 10 Oct 2019 10:39:25 +0800
+Subject: btrfs: use bool argument in free_root_pointers()
+
+From: Anand Jain <anand.jain@oracle.com>
+
+[ Upstream commit 4273eaff9b8d5e141113a5bdf9628c02acf3afe5 ]
+
+We don't need int argument bool shall do in free_root_pointers().  And
+rename the argument as it confused two people.
+
+Reviewed-by: Qu Wenruo <wqu@suse.com>
+Signed-off-by: Anand Jain <anand.jain@oracle.com>
+Reviewed-by: David Sterba <dsterba@suse.com>
+Signed-off-by: David Sterba <dsterba@suse.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ fs/btrfs/disk-io.c | 10 +++++-----
+ 1 file changed, 5 insertions(+), 5 deletions(-)
+
+diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
+index 15212e835e02c..d296ea329bd4e 100644
+--- a/fs/btrfs/disk-io.c
++++ b/fs/btrfs/disk-io.c
+@@ -2031,7 +2031,7 @@ static void free_root_extent_buffers(struct btrfs_root *root)
+ }
+ /* helper to cleanup tree roots */
+-static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
++static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
+ {
+       free_root_extent_buffers(info->tree_root);
+@@ -2040,7 +2040,7 @@ static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
+       free_root_extent_buffers(info->csum_root);
+       free_root_extent_buffers(info->quota_root);
+       free_root_extent_buffers(info->uuid_root);
+-      if (chunk_root)
++      if (free_chunk_root)
+               free_root_extent_buffers(info->chunk_root);
+       free_root_extent_buffers(info->free_space_root);
+ }
+@@ -3273,7 +3273,7 @@ int open_ctree(struct super_block *sb,
+       btrfs_put_block_group_cache(fs_info);
+ fail_tree_roots:
+-      free_root_pointers(fs_info, 1);
++      free_root_pointers(fs_info, true);
+       invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+ fail_sb_buffer:
+@@ -3301,7 +3301,7 @@ int open_ctree(struct super_block *sb,
+       if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
+               goto fail_tree_roots;
+-      free_root_pointers(fs_info, 0);
++      free_root_pointers(fs_info, false);
+       /* don't use the log in recovery mode, it won't be valid */
+       btrfs_set_super_log_root(disk_super, 0);
+@@ -3986,7 +3986,7 @@ void close_ctree(struct btrfs_fs_info *fs_info)
+       btrfs_free_block_groups(fs_info);
+       clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
+-      free_root_pointers(fs_info, 1);
++      free_root_pointers(fs_info, true);
+       iput(fs_info->btree_inode);
+-- 
+2.20.1
+
diff --git a/queue-4.19/drm-atmel-hlcdc-enable-clock-before-configuring-timi.patch b/queue-4.19/drm-atmel-hlcdc-enable-clock-before-configuring-timi.patch
new file mode 100644 (file)
index 0000000..318a7ee
--- /dev/null
@@ -0,0 +1,57 @@
+From b4cf6dd9f5e0a3c4786e7f0e32da6e32fb54eddf Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Wed, 18 Dec 2019 14:28:25 +0200
+Subject: drm: atmel-hlcdc: enable clock before configuring timing engine
+
+From: Claudiu Beznea <claudiu.beznea@microchip.com>
+
+[ Upstream commit 2c1fb9d86f6820abbfaa38a6836157c76ccb4e7b ]
+
+Changing pixel clock source without having this clock source enabled
+will block the timing engine and the next operations after (in this case
+setting ATMEL_HLCDC_CFG(5) settings in atmel_hlcdc_crtc_mode_set_nofb()
+will fail). It is recomended (although in datasheet this is not present)
+to actually enabled pixel clock source before doing any changes on timing
+enginge (only SAM9X60 datasheet specifies that the peripheral clock and
+pixel clock must be enabled before using LCD controller).
+
+Fixes: 1a396789f65a ("drm: add Atmel HLCDC Display Controller support")
+Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
+Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
+Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
+Cc: <stable@vger.kernel.org> # v4.0+
+Link: https://patchwork.freedesktop.org/patch/msgid/1576672109-22707-3-git-send-email-claudiu.beznea@microchip.com
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c | 8 +++++++-
+ 1 file changed, 7 insertions(+), 1 deletion(-)
+
+diff --git a/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c b/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c
+index d73281095faca..976109c20d493 100644
+--- a/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c
++++ b/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c
+@@ -79,7 +79,11 @@ static void atmel_hlcdc_crtc_mode_set_nofb(struct drm_crtc *c)
+       struct videomode vm;
+       unsigned long prate;
+       unsigned int cfg;
+-      int div;
++      int div, ret;
++
++      ret = clk_prepare_enable(crtc->dc->hlcdc->sys_clk);
++      if (ret)
++              return;
+       vm.vfront_porch = adj->crtc_vsync_start - adj->crtc_vdisplay;
+       vm.vback_porch = adj->crtc_vtotal - adj->crtc_vsync_end;
+@@ -138,6 +142,8 @@ static void atmel_hlcdc_crtc_mode_set_nofb(struct drm_crtc *c)
+                          ATMEL_HLCDC_VSPSU | ATMEL_HLCDC_VSPHO |
+                          ATMEL_HLCDC_GUARDTIME_MASK | ATMEL_HLCDC_MODE_MASK,
+                          cfg);
++
++      clk_disable_unprepare(crtc->dc->hlcdc->sys_clk);
+ }
+ static enum drm_mode_status
+-- 
+2.20.1
+
diff --git a/queue-4.19/drm-dp_mst-remove-vcpi-while-disabling-topology-mgr.patch b/queue-4.19/drm-dp_mst-remove-vcpi-while-disabling-topology-mgr.patch
new file mode 100644 (file)
index 0000000..dd9a21f
--- /dev/null
@@ -0,0 +1,92 @@
+From c19cb3d568ce82045c493e6c9bde3f4f6ac4a62c Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Thu, 5 Dec 2019 17:00:43 +0800
+Subject: drm/dp_mst: Remove VCPI while disabling topology mgr
+
+From: Wayne Lin <Wayne.Lin@amd.com>
+
+[ Upstream commit 64e62bdf04ab8529f45ed0a85122c703035dec3a ]
+
+[Why]
+
+This patch is trying to address the issue observed when hotplug DP
+daisy chain monitors.
+
+e.g.
+src-mstb-mstb-sst -> src (unplug) mstb-mstb-sst -> src-mstb-mstb-sst
+(plug in again)
+
+Once unplug a DP MST capable device, driver will call
+drm_dp_mst_topology_mgr_set_mst() to disable MST. In this function,
+it cleans data of topology manager while disabling mst_state. However,
+it doesn't clean up the proposed_vcpis of topology manager.
+If proposed_vcpi is not reset, once plug in MST daisy chain monitors
+later, code will fail at checking port validation while trying to
+allocate payloads.
+
+When MST capable device is plugged in again and try to allocate
+payloads by calling drm_dp_update_payload_part1(), this
+function will iterate over all proposed virtual channels to see if
+any proposed VCPI's num_slots is greater than 0. If any proposed
+VCPI's num_slots is greater than 0 and the port which the
+specific virtual channel directed to is not in the topology, code then
+fails at the port validation. Since there are stale VCPI allocations
+from the previous topology enablement in proposed_vcpi[], code will fail
+at port validation and reurn EINVAL.
+
+[How]
+
+Clean up the data of stale proposed_vcpi[] and reset mgr->proposed_vcpis
+to NULL while disabling mst in drm_dp_mst_topology_mgr_set_mst().
+
+Changes since v1:
+*Add on more details in commit message to describe the issue which the
+patch is trying to fix
+
+Signed-off-by: Wayne Lin <Wayne.Lin@amd.com>
+[added cc to stable]
+Signed-off-by: Lyude Paul <lyude@redhat.com>
+Link: https://patchwork.freedesktop.org/patch/msgid/20191205090043.7580-1-Wayne.Lin@amd.com
+Cc: <stable@vger.kernel.org> # v3.17+
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ drivers/gpu/drm/drm_dp_mst_topology.c | 12 ++++++++++++
+ 1 file changed, 12 insertions(+)
+
+diff --git a/drivers/gpu/drm/drm_dp_mst_topology.c b/drivers/gpu/drm/drm_dp_mst_topology.c
+index 58fe3945494cf..bf4eed5f6a7ee 100644
+--- a/drivers/gpu/drm/drm_dp_mst_topology.c
++++ b/drivers/gpu/drm/drm_dp_mst_topology.c
+@@ -2125,6 +2125,7 @@ static bool drm_dp_get_vc_payload_bw(int dp_link_bw,
+ int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
+ {
+       int ret = 0;
++      int i = 0;
+       struct drm_dp_mst_branch *mstb = NULL;
+       mutex_lock(&mgr->lock);
+@@ -2185,10 +2186,21 @@ int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool ms
+               /* this can fail if the device is gone */
+               drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
+               ret = 0;
++              mutex_lock(&mgr->payload_lock);
+               memset(mgr->payloads, 0, mgr->max_payloads * sizeof(struct drm_dp_payload));
+               mgr->payload_mask = 0;
+               set_bit(0, &mgr->payload_mask);
++              for (i = 0; i < mgr->max_payloads; i++) {
++                      struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
++
++                      if (vcpi) {
++                              vcpi->vcpi = 0;
++                              vcpi->num_slots = 0;
++                      }
++                      mgr->proposed_vcpis[i] = NULL;
++              }
+               mgr->vcpi_mask = 0;
++              mutex_unlock(&mgr->payload_lock);
+       }
+ out_unlock:
+-- 
+2.20.1
+
diff --git a/queue-4.19/ext4-fix-deadlock-allocating-crypto-bounce-page-from.patch b/queue-4.19/ext4-fix-deadlock-allocating-crypto-bounce-page-from.patch
new file mode 100644 (file)
index 0000000..e33553c
--- /dev/null
@@ -0,0 +1,81 @@
+From 08012d2b3ed6cbe8759c47eeb32c81ca52a4c9c9 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Tue, 31 Dec 2019 12:11:49 -0600
+Subject: ext4: fix deadlock allocating crypto bounce page from mempool
+
+From: Eric Biggers <ebiggers@google.com>
+
+[ Upstream commit 547c556f4db7c09447ecf5f833ab6aaae0c5ab58 ]
+
+ext4_writepages() on an encrypted file has to encrypt the data, but it
+can't modify the pagecache pages in-place, so it encrypts the data into
+bounce pages and writes those instead.  All bounce pages are allocated
+from a mempool using GFP_NOFS.
+
+This is not correct use of a mempool, and it can deadlock.  This is
+because GFP_NOFS includes __GFP_DIRECT_RECLAIM, which enables the "never
+fail" mode for mempool_alloc() where a failed allocation will fall back
+to waiting for one of the preallocated elements in the pool.
+
+But since this mode is used for all a bio's pages and not just the
+first, it can deadlock waiting for pages already in the bio to be freed.
+
+This deadlock can be reproduced by patching mempool_alloc() to pretend
+that pool->alloc() always fails (so that it always falls back to the
+preallocations), and then creating an encrypted file of size > 128 KiB.
+
+Fix it by only using GFP_NOFS for the first page in the bio.  For
+subsequent pages just use GFP_NOWAIT, and if any of those fail, just
+submit the bio and start a new one.
+
+This will need to be fixed in f2fs too, but that's less straightforward.
+
+Fixes: c9af28fdd449 ("ext4 crypto: don't let data integrity writebacks fail with ENOMEM")
+Cc: stable@vger.kernel.org
+Signed-off-by: Eric Biggers <ebiggers@google.com>
+Link: https://lore.kernel.org/r/20191231181149.47619-1-ebiggers@kernel.org
+Signed-off-by: Theodore Ts'o <tytso@mit.edu>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ fs/ext4/page-io.c | 19 ++++++++++++++-----
+ 1 file changed, 14 insertions(+), 5 deletions(-)
+
+diff --git a/fs/ext4/page-io.c b/fs/ext4/page-io.c
+index db7590178dfcf..9cc79b7b0df11 100644
+--- a/fs/ext4/page-io.c
++++ b/fs/ext4/page-io.c
+@@ -481,17 +481,26 @@ int ext4_bio_write_page(struct ext4_io_submit *io,
+           nr_to_submit) {
+               gfp_t gfp_flags = GFP_NOFS;
++              /*
++               * Since bounce page allocation uses a mempool, we can only use
++               * a waiting mask (i.e. request guaranteed allocation) on the
++               * first page of the bio.  Otherwise it can deadlock.
++               */
++              if (io->io_bio)
++                      gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
+       retry_encrypt:
+               data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
+                                               page->index, gfp_flags);
+               if (IS_ERR(data_page)) {
+                       ret = PTR_ERR(data_page);
+-                      if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
+-                              if (io->io_bio) {
++                      if (ret == -ENOMEM &&
++                          (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
++                              gfp_flags = GFP_NOFS;
++                              if (io->io_bio)
+                                       ext4_io_submit(io);
+-                                      congestion_wait(BLK_RW_ASYNC, HZ/50);
+-                              }
+-                              gfp_flags |= __GFP_NOFAIL;
++                              else
++                                      gfp_flags |= __GFP_NOFAIL;
++                              congestion_wait(BLK_RW_ASYNC, HZ/50);
+                               goto retry_encrypt;
+                       }
+                       data_page = NULL;
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-nvmx-vmread-should-not-set-rflags-to-specify-suc.patch b/queue-4.19/kvm-nvmx-vmread-should-not-set-rflags-to-specify-suc.patch
new file mode 100644 (file)
index 0000000..ce2fe02
--- /dev/null
@@ -0,0 +1,43 @@
+From 5ae7e1b06e6d3b0c931817a1ee99b1b3bd386ded Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Sat, 28 Dec 2019 14:25:24 +0800
+Subject: KVM: nVMX: vmread should not set rflags to specify success in case of
+ #PF
+
+From: Miaohe Lin <linmiaohe@huawei.com>
+
+[ Upstream commit a4d956b9390418623ae5d07933e2679c68b6f83c ]
+
+In case writing to vmread destination operand result in a #PF, vmread
+should not call nested_vmx_succeed() to set rflags to specify success.
+Similar to as done in VMPTRST (See handle_vmptrst()).
+
+Reviewed-by: Liran Alon <liran.alon@oracle.com>
+Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
+Cc: stable@vger.kernel.org
+Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ arch/x86/kvm/vmx.c | 4 +++-
+ 1 file changed, 3 insertions(+), 1 deletion(-)
+
+diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
+index fa2abed1a14da..2660c01eadaeb 100644
+--- a/arch/x86/kvm/vmx.c
++++ b/arch/x86/kvm/vmx.c
+@@ -8793,8 +8793,10 @@ static int handle_vmread(struct kvm_vcpu *vcpu)
+               /* _system ok, nested_vmx_check_permission has verified cpl=0 */
+               if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
+                                               (is_long_mode(vcpu) ? 8 : 4),
+-                                              &e))
++                                              &e)) {
+                       kvm_inject_page_fault(vcpu, &e);
++                      return 1;
++              }
+       }
+       nested_vmx_succeed(vcpu);
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-play-nice-with-read-only-memslots-when-querying-.patch b/queue-4.19/kvm-play-nice-with-read-only-memslots-when-querying-.patch
new file mode 100644 (file)
index 0000000..f097071
--- /dev/null
@@ -0,0 +1,46 @@
+From 8a28515d53bd0b36eb53d8a25b8f2f7f5c16bc83 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Wed, 8 Jan 2020 12:24:38 -0800
+Subject: KVM: Play nice with read-only memslots when querying host page size
+
+From: Sean Christopherson <sean.j.christopherson@intel.com>
+
+[ Upstream commit 42cde48b2d39772dba47e680781a32a6c4b7dc33 ]
+
+Avoid the "writable" check in __gfn_to_hva_many(), which will always fail
+on read-only memslots due to gfn_to_hva() assuming writes.  Functionally,
+this allows x86 to create large mappings for read-only memslots that
+are backed by HugeTLB mappings.
+
+Note, the changelog for commit 05da45583de9 ("KVM: MMU: large page
+support") states "If the largepage contains write-protected pages, a
+large pte is not used.", but "write-protected" refers to pages that are
+temporarily read-only, e.g. read-only memslots didn't even exist at the
+time.
+
+Fixes: 4d8b81abc47b ("KVM: introduce readonly memslot")
+Cc: stable@vger.kernel.org
+Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
+[Redone using kvm_vcpu_gfn_to_memslot_prot. - Paolo]
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ virt/kvm/kvm_main.c | 2 +-
+ 1 file changed, 1 insertion(+), 1 deletion(-)
+
+diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
+index df7ece0bfcbd3..beec19fcf8cdb 100644
+--- a/virt/kvm/kvm_main.c
++++ b/virt/kvm/kvm_main.c
+@@ -1301,7 +1301,7 @@ unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
+       size = PAGE_SIZE;
+-      addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
++      addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
+       if (kvm_is_error_hva(addr))
+               return PAGE_SIZE;
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-use-vcpu-specific-gva-hva-translation-when-query.patch b/queue-4.19/kvm-use-vcpu-specific-gva-hva-translation-when-query.patch
new file mode 100644 (file)
index 0000000..6f337a5
--- /dev/null
@@ -0,0 +1,89 @@
+From 6c5d3aa5b504f7eead1d05d20714ec1bcbdcdd18 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Wed, 8 Jan 2020 12:24:37 -0800
+Subject: KVM: Use vcpu-specific gva->hva translation when querying host page
+ size
+
+From: Sean Christopherson <sean.j.christopherson@intel.com>
+
+[ Upstream commit f9b84e19221efc5f493156ee0329df3142085f28 ]
+
+Use kvm_vcpu_gfn_to_hva() when retrieving the host page size so that the
+correct set of memslots is used when handling x86 page faults in SMM.
+
+Fixes: 54bf36aac520 ("KVM: x86: use vcpu-specific functions to read/write/translate GFNs")
+Cc: stable@vger.kernel.org
+Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ arch/x86/kvm/mmu.c       | 6 +++---
+ include/linux/kvm_host.h | 2 +-
+ virt/kvm/kvm_main.c      | 4 ++--
+ 3 files changed, 6 insertions(+), 6 deletions(-)
+
+diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
+index e878b4cc8359d..62f1e4663bc3c 100644
+--- a/arch/x86/kvm/mmu.c
++++ b/arch/x86/kvm/mmu.c
+@@ -1184,12 +1184,12 @@ static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
+       return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
+ }
+-static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
++static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
+ {
+       unsigned long page_size;
+       int i, ret = 0;
+-      page_size = kvm_host_page_size(kvm, gfn);
++      page_size = kvm_host_page_size(vcpu, gfn);
+       for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
+               if (page_size >= KVM_HPAGE_SIZE(i))
+@@ -1239,7 +1239,7 @@ static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
+       if (unlikely(*force_pt_level))
+               return PT_PAGE_TABLE_LEVEL;
+-      host_level = host_mapping_level(vcpu->kvm, large_gfn);
++      host_level = host_mapping_level(vcpu, large_gfn);
+       if (host_level == PT_PAGE_TABLE_LEVEL)
+               return host_level;
+diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
+index f6394fd4b284b..0f99ecc01bc7d 100644
+--- a/include/linux/kvm_host.h
++++ b/include/linux/kvm_host.h
+@@ -704,7 +704,7 @@ int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
+ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
+ struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
+ bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
+-unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
++unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
+ void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
+ struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
+diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
+index 9502b1a44232c..df7ece0bfcbd3 100644
+--- a/virt/kvm/kvm_main.c
++++ b/virt/kvm/kvm_main.c
+@@ -1294,14 +1294,14 @@ bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
+ }
+ EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
+-unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
++unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
+ {
+       struct vm_area_struct *vma;
+       unsigned long addr, size;
+       size = PAGE_SIZE;
+-      addr = gfn_to_hva(kvm, gfn);
++      addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
+       if (kvm_is_error_hva(addr))
+               return PAGE_SIZE;
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-vmx-add-non-canonical-check-on-writes-to-rtit-ad.patch b/queue-4.19/kvm-vmx-add-non-canonical-check-on-writes-to-rtit-ad.patch
new file mode 100644 (file)
index 0000000..a34bb7f
--- /dev/null
@@ -0,0 +1,8065 @@
+From 68f2b9f7755771390c7de12d2978c23551a9052a Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Tue, 10 Dec 2019 15:24:32 -0800
+Subject: KVM: VMX: Add non-canonical check on writes to RTIT address MSRs
+
+From: Sean Christopherson <sean.j.christopherson@intel.com>
+
+[ Upstream commit fe6ed369fca98e99df55c932b85782a5687526b5 ]
+
+Reject writes to RTIT address MSRs if the data being written is a
+non-canonical address as the MSRs are subject to canonical checks, e.g.
+KVM will trigger an unchecked #GP when loading the values to hardware
+during pt_guest_enter().
+
+Cc: stable@vger.kernel.org
+Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ arch/x86/kvm/vmx/vmx.c | 8033 ++++++++++++++++++++++++++++++++++++++++
+ 1 file changed, 8033 insertions(+)
+ create mode 100644 arch/x86/kvm/vmx/vmx.c
+
+diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
+new file mode 100644
+index 0000000000000..3791ce8d269e0
+--- /dev/null
++++ b/arch/x86/kvm/vmx/vmx.c
+@@ -0,0 +1,8033 @@
++// SPDX-License-Identifier: GPL-2.0-only
++/*
++ * Kernel-based Virtual Machine driver for Linux
++ *
++ * This module enables machines with Intel VT-x extensions to run virtual
++ * machines without emulation or binary translation.
++ *
++ * Copyright (C) 2006 Qumranet, Inc.
++ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
++ *
++ * Authors:
++ *   Avi Kivity   <avi@qumranet.com>
++ *   Yaniv Kamay  <yaniv@qumranet.com>
++ */
++
++#include <linux/frame.h>
++#include <linux/highmem.h>
++#include <linux/hrtimer.h>
++#include <linux/kernel.h>
++#include <linux/kvm_host.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/mod_devicetable.h>
++#include <linux/mm.h>
++#include <linux/sched.h>
++#include <linux/sched/smt.h>
++#include <linux/slab.h>
++#include <linux/tboot.h>
++#include <linux/trace_events.h>
++
++#include <asm/apic.h>
++#include <asm/asm.h>
++#include <asm/cpu.h>
++#include <asm/debugreg.h>
++#include <asm/desc.h>
++#include <asm/fpu/internal.h>
++#include <asm/io.h>
++#include <asm/irq_remapping.h>
++#include <asm/kexec.h>
++#include <asm/perf_event.h>
++#include <asm/mce.h>
++#include <asm/mmu_context.h>
++#include <asm/mshyperv.h>
++#include <asm/spec-ctrl.h>
++#include <asm/virtext.h>
++#include <asm/vmx.h>
++
++#include "capabilities.h"
++#include "cpuid.h"
++#include "evmcs.h"
++#include "irq.h"
++#include "kvm_cache_regs.h"
++#include "lapic.h"
++#include "mmu.h"
++#include "nested.h"
++#include "ops.h"
++#include "pmu.h"
++#include "trace.h"
++#include "vmcs.h"
++#include "vmcs12.h"
++#include "vmx.h"
++#include "x86.h"
++
++MODULE_AUTHOR("Qumranet");
++MODULE_LICENSE("GPL");
++
++static const struct x86_cpu_id vmx_cpu_id[] = {
++      X86_FEATURE_MATCH(X86_FEATURE_VMX),
++      {}
++};
++MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
++
++bool __read_mostly enable_vpid = 1;
++module_param_named(vpid, enable_vpid, bool, 0444);
++
++static bool __read_mostly enable_vnmi = 1;
++module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
++
++bool __read_mostly flexpriority_enabled = 1;
++module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
++
++bool __read_mostly enable_ept = 1;
++module_param_named(ept, enable_ept, bool, S_IRUGO);
++
++bool __read_mostly enable_unrestricted_guest = 1;
++module_param_named(unrestricted_guest,
++                      enable_unrestricted_guest, bool, S_IRUGO);
++
++bool __read_mostly enable_ept_ad_bits = 1;
++module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
++
++static bool __read_mostly emulate_invalid_guest_state = true;
++module_param(emulate_invalid_guest_state, bool, S_IRUGO);
++
++static bool __read_mostly fasteoi = 1;
++module_param(fasteoi, bool, S_IRUGO);
++
++static bool __read_mostly enable_apicv = 1;
++module_param(enable_apicv, bool, S_IRUGO);
++
++/*
++ * If nested=1, nested virtualization is supported, i.e., guests may use
++ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
++ * use VMX instructions.
++ */
++static bool __read_mostly nested = 1;
++module_param(nested, bool, S_IRUGO);
++
++bool __read_mostly enable_pml = 1;
++module_param_named(pml, enable_pml, bool, S_IRUGO);
++
++static bool __read_mostly dump_invalid_vmcs = 0;
++module_param(dump_invalid_vmcs, bool, 0644);
++
++#define MSR_BITMAP_MODE_X2APIC                1
++#define MSR_BITMAP_MODE_X2APIC_APICV  2
++
++#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
++
++/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
++static int __read_mostly cpu_preemption_timer_multi;
++static bool __read_mostly enable_preemption_timer = 1;
++#ifdef CONFIG_X86_64
++module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
++#endif
++
++#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
++#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
++#define KVM_VM_CR0_ALWAYS_ON                          \
++      (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
++       X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
++#define KVM_CR4_GUEST_OWNED_BITS                                    \
++      (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
++       | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
++
++#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
++#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
++#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
++
++#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
++
++#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
++      RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
++      RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
++      RTIT_STATUS_BYTECNT))
++
++#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
++      (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
++
++/*
++ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
++ * ple_gap:    upper bound on the amount of time between two successive
++ *             executions of PAUSE in a loop. Also indicate if ple enabled.
++ *             According to test, this time is usually smaller than 128 cycles.
++ * ple_window: upper bound on the amount of time a guest is allowed to execute
++ *             in a PAUSE loop. Tests indicate that most spinlocks are held for
++ *             less than 2^12 cycles
++ * Time is measured based on a counter that runs at the same rate as the TSC,
++ * refer SDM volume 3b section 21.6.13 & 22.1.3.
++ */
++static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
++module_param(ple_gap, uint, 0444);
++
++static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
++module_param(ple_window, uint, 0444);
++
++/* Default doubles per-vcpu window every exit. */
++static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
++module_param(ple_window_grow, uint, 0444);
++
++/* Default resets per-vcpu window every exit to ple_window. */
++static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
++module_param(ple_window_shrink, uint, 0444);
++
++/* Default is to compute the maximum so we can never overflow. */
++static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
++module_param(ple_window_max, uint, 0444);
++
++/* Default is SYSTEM mode, 1 for host-guest mode */
++int __read_mostly pt_mode = PT_MODE_SYSTEM;
++module_param(pt_mode, int, S_IRUGO);
++
++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
++static DEFINE_MUTEX(vmx_l1d_flush_mutex);
++
++/* Storage for pre module init parameter parsing */
++static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
++
++static const struct {
++      const char *option;
++      bool for_parse;
++} vmentry_l1d_param[] = {
++      [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
++      [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
++      [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
++      [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
++      [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
++      [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
++};
++
++#define L1D_CACHE_ORDER 4
++static void *vmx_l1d_flush_pages;
++
++static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
++{
++      struct page *page;
++      unsigned int i;
++
++      if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
++              l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
++              return 0;
++      }
++
++      if (!enable_ept) {
++              l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
++              return 0;
++      }
++
++      if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
++              u64 msr;
++
++              rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
++              if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
++                      l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
++                      return 0;
++              }
++      }
++
++      /* If set to auto use the default l1tf mitigation method */
++      if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
++              switch (l1tf_mitigation) {
++              case L1TF_MITIGATION_OFF:
++                      l1tf = VMENTER_L1D_FLUSH_NEVER;
++                      break;
++              case L1TF_MITIGATION_FLUSH_NOWARN:
++              case L1TF_MITIGATION_FLUSH:
++              case L1TF_MITIGATION_FLUSH_NOSMT:
++                      l1tf = VMENTER_L1D_FLUSH_COND;
++                      break;
++              case L1TF_MITIGATION_FULL:
++              case L1TF_MITIGATION_FULL_FORCE:
++                      l1tf = VMENTER_L1D_FLUSH_ALWAYS;
++                      break;
++              }
++      } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
++              l1tf = VMENTER_L1D_FLUSH_ALWAYS;
++      }
++
++      if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
++          !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
++              /*
++               * This allocation for vmx_l1d_flush_pages is not tied to a VM
++               * lifetime and so should not be charged to a memcg.
++               */
++              page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
++              if (!page)
++                      return -ENOMEM;
++              vmx_l1d_flush_pages = page_address(page);
++
++              /*
++               * Initialize each page with a different pattern in
++               * order to protect against KSM in the nested
++               * virtualization case.
++               */
++              for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
++                      memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
++                             PAGE_SIZE);
++              }
++      }
++
++      l1tf_vmx_mitigation = l1tf;
++
++      if (l1tf != VMENTER_L1D_FLUSH_NEVER)
++              static_branch_enable(&vmx_l1d_should_flush);
++      else
++              static_branch_disable(&vmx_l1d_should_flush);
++
++      if (l1tf == VMENTER_L1D_FLUSH_COND)
++              static_branch_enable(&vmx_l1d_flush_cond);
++      else
++              static_branch_disable(&vmx_l1d_flush_cond);
++      return 0;
++}
++
++static int vmentry_l1d_flush_parse(const char *s)
++{
++      unsigned int i;
++
++      if (s) {
++              for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
++                      if (vmentry_l1d_param[i].for_parse &&
++                          sysfs_streq(s, vmentry_l1d_param[i].option))
++                              return i;
++              }
++      }
++      return -EINVAL;
++}
++
++static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
++{
++      int l1tf, ret;
++
++      l1tf = vmentry_l1d_flush_parse(s);
++      if (l1tf < 0)
++              return l1tf;
++
++      if (!boot_cpu_has(X86_BUG_L1TF))
++              return 0;
++
++      /*
++       * Has vmx_init() run already? If not then this is the pre init
++       * parameter parsing. In that case just store the value and let
++       * vmx_init() do the proper setup after enable_ept has been
++       * established.
++       */
++      if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
++              vmentry_l1d_flush_param = l1tf;
++              return 0;
++      }
++
++      mutex_lock(&vmx_l1d_flush_mutex);
++      ret = vmx_setup_l1d_flush(l1tf);
++      mutex_unlock(&vmx_l1d_flush_mutex);
++      return ret;
++}
++
++static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
++{
++      if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
++              return sprintf(s, "???\n");
++
++      return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
++}
++
++static const struct kernel_param_ops vmentry_l1d_flush_ops = {
++      .set = vmentry_l1d_flush_set,
++      .get = vmentry_l1d_flush_get,
++};
++module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
++
++static bool guest_state_valid(struct kvm_vcpu *vcpu);
++static u32 vmx_segment_access_rights(struct kvm_segment *var);
++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
++                                                        u32 msr, int type);
++
++void vmx_vmexit(void);
++
++#define vmx_insn_failed(fmt...)               \
++do {                                  \
++      WARN_ONCE(1, fmt);              \
++      pr_warn_ratelimited(fmt);       \
++} while (0)
++
++asmlinkage void vmread_error(unsigned long field, bool fault)
++{
++      if (fault)
++              kvm_spurious_fault();
++      else
++              vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
++}
++
++noinline void vmwrite_error(unsigned long field, unsigned long value)
++{
++      vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
++                      field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
++}
++
++noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
++{
++      vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
++}
++
++noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
++{
++      vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
++}
++
++noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
++{
++      vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
++                      ext, vpid, gva);
++}
++
++noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
++{
++      vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
++                      ext, eptp, gpa);
++}
++
++static DEFINE_PER_CPU(struct vmcs *, vmxarea);
++DEFINE_PER_CPU(struct vmcs *, current_vmcs);
++/*
++ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
++ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
++ */
++static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
++
++/*
++ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
++ * can find which vCPU should be waken up.
++ */
++static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
++static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
++
++static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
++static DEFINE_SPINLOCK(vmx_vpid_lock);
++
++struct vmcs_config vmcs_config;
++struct vmx_capability vmx_capability;
++
++#define VMX_SEGMENT_FIELD(seg)                                        \
++      [VCPU_SREG_##seg] = {                                   \
++              .selector = GUEST_##seg##_SELECTOR,             \
++              .base = GUEST_##seg##_BASE,                     \
++              .limit = GUEST_##seg##_LIMIT,                   \
++              .ar_bytes = GUEST_##seg##_AR_BYTES,             \
++      }
++
++static const struct kvm_vmx_segment_field {
++      unsigned selector;
++      unsigned base;
++      unsigned limit;
++      unsigned ar_bytes;
++} kvm_vmx_segment_fields[] = {
++      VMX_SEGMENT_FIELD(CS),
++      VMX_SEGMENT_FIELD(DS),
++      VMX_SEGMENT_FIELD(ES),
++      VMX_SEGMENT_FIELD(FS),
++      VMX_SEGMENT_FIELD(GS),
++      VMX_SEGMENT_FIELD(SS),
++      VMX_SEGMENT_FIELD(TR),
++      VMX_SEGMENT_FIELD(LDTR),
++};
++
++u64 host_efer;
++static unsigned long host_idt_base;
++
++/*
++ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
++ * will emulate SYSCALL in legacy mode if the vendor string in guest
++ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
++ * support this emulation, IA32_STAR must always be included in
++ * vmx_msr_index[], even in i386 builds.
++ */
++const u32 vmx_msr_index[] = {
++#ifdef CONFIG_X86_64
++      MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
++#endif
++      MSR_EFER, MSR_TSC_AUX, MSR_STAR,
++      MSR_IA32_TSX_CTRL,
++};
++
++#if IS_ENABLED(CONFIG_HYPERV)
++static bool __read_mostly enlightened_vmcs = true;
++module_param(enlightened_vmcs, bool, 0444);
++
++/* check_ept_pointer() should be under protection of ept_pointer_lock. */
++static void check_ept_pointer_match(struct kvm *kvm)
++{
++      struct kvm_vcpu *vcpu;
++      u64 tmp_eptp = INVALID_PAGE;
++      int i;
++
++      kvm_for_each_vcpu(i, vcpu, kvm) {
++              if (!VALID_PAGE(tmp_eptp)) {
++                      tmp_eptp = to_vmx(vcpu)->ept_pointer;
++              } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
++                      to_kvm_vmx(kvm)->ept_pointers_match
++                              = EPT_POINTERS_MISMATCH;
++                      return;
++              }
++      }
++
++      to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
++}
++
++static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
++              void *data)
++{
++      struct kvm_tlb_range *range = data;
++
++      return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
++                      range->pages);
++}
++
++static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
++              struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
++{
++      u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
++
++      /*
++       * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
++       * of the base of EPT PML4 table, strip off EPT configuration
++       * information.
++       */
++      if (range)
++              return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
++                              kvm_fill_hv_flush_list_func, (void *)range);
++      else
++              return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
++}
++
++static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
++              struct kvm_tlb_range *range)
++{
++      struct kvm_vcpu *vcpu;
++      int ret = 0, i;
++
++      spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++
++      if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
++              check_ept_pointer_match(kvm);
++
++      if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
++              kvm_for_each_vcpu(i, vcpu, kvm) {
++                      /* If ept_pointer is invalid pointer, bypass flush request. */
++                      if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
++                              ret |= __hv_remote_flush_tlb_with_range(
++                                      kvm, vcpu, range);
++              }
++      } else {
++              ret = __hv_remote_flush_tlb_with_range(kvm,
++                              kvm_get_vcpu(kvm, 0), range);
++      }
++
++      spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++      return ret;
++}
++static int hv_remote_flush_tlb(struct kvm *kvm)
++{
++      return hv_remote_flush_tlb_with_range(kvm, NULL);
++}
++
++static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
++{
++      struct hv_enlightened_vmcs *evmcs;
++      struct hv_partition_assist_pg **p_hv_pa_pg =
++                      &vcpu->kvm->arch.hyperv.hv_pa_pg;
++      /*
++       * Synthetic VM-Exit is not enabled in current code and so All
++       * evmcs in singe VM shares same assist page.
++       */
++      if (!*p_hv_pa_pg)
++              *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
++
++      if (!*p_hv_pa_pg)
++              return -ENOMEM;
++
++      evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
++
++      evmcs->partition_assist_page =
++              __pa(*p_hv_pa_pg);
++      evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
++      evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
++
++      return 0;
++}
++
++#endif /* IS_ENABLED(CONFIG_HYPERV) */
++
++/*
++ * Comment's format: document - errata name - stepping - processor name.
++ * Refer from
++ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
++ */
++static u32 vmx_preemption_cpu_tfms[] = {
++/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
++0x000206E6,
++/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
++/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
++/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
++0x00020652,
++/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
++0x00020655,
++/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
++/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
++/*
++ * 320767.pdf - AAP86  - B1 -
++ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
++ */
++0x000106E5,
++/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
++0x000106A0,
++/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
++0x000106A1,
++/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
++0x000106A4,
++ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
++ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
++ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
++0x000106A5,
++ /* Xeon E3-1220 V2 */
++0x000306A8,
++};
++
++static inline bool cpu_has_broken_vmx_preemption_timer(void)
++{
++      u32 eax = cpuid_eax(0x00000001), i;
++
++      /* Clear the reserved bits */
++      eax &= ~(0x3U << 14 | 0xfU << 28);
++      for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
++              if (eax == vmx_preemption_cpu_tfms[i])
++                      return true;
++
++      return false;
++}
++
++static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
++{
++      return flexpriority_enabled && lapic_in_kernel(vcpu);
++}
++
++static inline bool report_flexpriority(void)
++{
++      return flexpriority_enabled;
++}
++
++static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
++{
++      int i;
++
++      for (i = 0; i < vmx->nmsrs; ++i)
++              if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
++                      return i;
++      return -1;
++}
++
++struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
++{
++      int i;
++
++      i = __find_msr_index(vmx, msr);
++      if (i >= 0)
++              return &vmx->guest_msrs[i];
++      return NULL;
++}
++
++static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
++{
++      int ret = 0;
++
++      u64 old_msr_data = msr->data;
++      msr->data = data;
++      if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
++              preempt_disable();
++              ret = kvm_set_shared_msr(msr->index, msr->data,
++                                       msr->mask);
++              preempt_enable();
++              if (ret)
++                      msr->data = old_msr_data;
++      }
++      return ret;
++}
++
++void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
++{
++      vmcs_clear(loaded_vmcs->vmcs);
++      if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
++              vmcs_clear(loaded_vmcs->shadow_vmcs);
++      loaded_vmcs->cpu = -1;
++      loaded_vmcs->launched = 0;
++}
++
++#ifdef CONFIG_KEXEC_CORE
++/*
++ * This bitmap is used to indicate whether the vmclear
++ * operation is enabled on all cpus. All disabled by
++ * default.
++ */
++static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
++
++static inline void crash_enable_local_vmclear(int cpu)
++{
++      cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
++}
++
++static inline void crash_disable_local_vmclear(int cpu)
++{
++      cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
++}
++
++static inline int crash_local_vmclear_enabled(int cpu)
++{
++      return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
++}
++
++static void crash_vmclear_local_loaded_vmcss(void)
++{
++      int cpu = raw_smp_processor_id();
++      struct loaded_vmcs *v;
++
++      if (!crash_local_vmclear_enabled(cpu))
++              return;
++
++      list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
++                          loaded_vmcss_on_cpu_link)
++              vmcs_clear(v->vmcs);
++}
++#else
++static inline void crash_enable_local_vmclear(int cpu) { }
++static inline void crash_disable_local_vmclear(int cpu) { }
++#endif /* CONFIG_KEXEC_CORE */
++
++static void __loaded_vmcs_clear(void *arg)
++{
++      struct loaded_vmcs *loaded_vmcs = arg;
++      int cpu = raw_smp_processor_id();
++
++      if (loaded_vmcs->cpu != cpu)
++              return; /* vcpu migration can race with cpu offline */
++      if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
++              per_cpu(current_vmcs, cpu) = NULL;
++      crash_disable_local_vmclear(cpu);
++      list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
++
++      /*
++       * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
++       * is before setting loaded_vmcs->vcpu to -1 which is done in
++       * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
++       * then adds the vmcs into percpu list before it is deleted.
++       */
++      smp_wmb();
++
++      loaded_vmcs_init(loaded_vmcs);
++      crash_enable_local_vmclear(cpu);
++}
++
++void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
++{
++      int cpu = loaded_vmcs->cpu;
++
++      if (cpu != -1)
++              smp_call_function_single(cpu,
++                       __loaded_vmcs_clear, loaded_vmcs, 1);
++}
++
++static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
++                                     unsigned field)
++{
++      bool ret;
++      u32 mask = 1 << (seg * SEG_FIELD_NR + field);
++
++      if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
++              kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
++              vmx->segment_cache.bitmask = 0;
++      }
++      ret = vmx->segment_cache.bitmask & mask;
++      vmx->segment_cache.bitmask |= mask;
++      return ret;
++}
++
++static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
++{
++      u16 *p = &vmx->segment_cache.seg[seg].selector;
++
++      if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
++              *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
++      return *p;
++}
++
++static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
++{
++      ulong *p = &vmx->segment_cache.seg[seg].base;
++
++      if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
++              *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
++      return *p;
++}
++
++static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
++{
++      u32 *p = &vmx->segment_cache.seg[seg].limit;
++
++      if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
++              *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
++      return *p;
++}
++
++static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
++{
++      u32 *p = &vmx->segment_cache.seg[seg].ar;
++
++      if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
++              *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
++      return *p;
++}
++
++void update_exception_bitmap(struct kvm_vcpu *vcpu)
++{
++      u32 eb;
++
++      eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
++           (1u << DB_VECTOR) | (1u << AC_VECTOR);
++      /*
++       * Guest access to VMware backdoor ports could legitimately
++       * trigger #GP because of TSS I/O permission bitmap.
++       * We intercept those #GP and allow access to them anyway
++       * as VMware does.
++       */
++      if (enable_vmware_backdoor)
++              eb |= (1u << GP_VECTOR);
++      if ((vcpu->guest_debug &
++           (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
++          (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
++              eb |= 1u << BP_VECTOR;
++      if (to_vmx(vcpu)->rmode.vm86_active)
++              eb = ~0;
++      if (enable_ept)
++              eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
++
++      /* When we are running a nested L2 guest and L1 specified for it a
++       * certain exception bitmap, we must trap the same exceptions and pass
++       * them to L1. When running L2, we will only handle the exceptions
++       * specified above if L1 did not want them.
++       */
++      if (is_guest_mode(vcpu))
++              eb |= get_vmcs12(vcpu)->exception_bitmap;
++
++      vmcs_write32(EXCEPTION_BITMAP, eb);
++}
++
++/*
++ * Check if MSR is intercepted for currently loaded MSR bitmap.
++ */
++static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
++{
++      unsigned long *msr_bitmap;
++      int f = sizeof(unsigned long);
++
++      if (!cpu_has_vmx_msr_bitmap())
++              return true;
++
++      msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
++
++      if (msr <= 0x1fff) {
++              return !!test_bit(msr, msr_bitmap + 0x800 / f);
++      } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++              msr &= 0x1fff;
++              return !!test_bit(msr, msr_bitmap + 0xc00 / f);
++      }
++
++      return true;
++}
++
++static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
++              unsigned long entry, unsigned long exit)
++{
++      vm_entry_controls_clearbit(vmx, entry);
++      vm_exit_controls_clearbit(vmx, exit);
++}
++
++int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
++{
++      unsigned int i;
++
++      for (i = 0; i < m->nr; ++i) {
++              if (m->val[i].index == msr)
++                      return i;
++      }
++      return -ENOENT;
++}
++
++static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
++{
++      int i;
++      struct msr_autoload *m = &vmx->msr_autoload;
++
++      switch (msr) {
++      case MSR_EFER:
++              if (cpu_has_load_ia32_efer()) {
++                      clear_atomic_switch_msr_special(vmx,
++                                      VM_ENTRY_LOAD_IA32_EFER,
++                                      VM_EXIT_LOAD_IA32_EFER);
++                      return;
++              }
++              break;
++      case MSR_CORE_PERF_GLOBAL_CTRL:
++              if (cpu_has_load_perf_global_ctrl()) {
++                      clear_atomic_switch_msr_special(vmx,
++                                      VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
++                                      VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
++                      return;
++              }
++              break;
++      }
++      i = vmx_find_msr_index(&m->guest, msr);
++      if (i < 0)
++              goto skip_guest;
++      --m->guest.nr;
++      m->guest.val[i] = m->guest.val[m->guest.nr];
++      vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
++
++skip_guest:
++      i = vmx_find_msr_index(&m->host, msr);
++      if (i < 0)
++              return;
++
++      --m->host.nr;
++      m->host.val[i] = m->host.val[m->host.nr];
++      vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
++}
++
++static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
++              unsigned long entry, unsigned long exit,
++              unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
++              u64 guest_val, u64 host_val)
++{
++      vmcs_write64(guest_val_vmcs, guest_val);
++      if (host_val_vmcs != HOST_IA32_EFER)
++              vmcs_write64(host_val_vmcs, host_val);
++      vm_entry_controls_setbit(vmx, entry);
++      vm_exit_controls_setbit(vmx, exit);
++}
++
++static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
++                                u64 guest_val, u64 host_val, bool entry_only)
++{
++      int i, j = 0;
++      struct msr_autoload *m = &vmx->msr_autoload;
++
++      switch (msr) {
++      case MSR_EFER:
++              if (cpu_has_load_ia32_efer()) {
++                      add_atomic_switch_msr_special(vmx,
++                                      VM_ENTRY_LOAD_IA32_EFER,
++                                      VM_EXIT_LOAD_IA32_EFER,
++                                      GUEST_IA32_EFER,
++                                      HOST_IA32_EFER,
++                                      guest_val, host_val);
++                      return;
++              }
++              break;
++      case MSR_CORE_PERF_GLOBAL_CTRL:
++              if (cpu_has_load_perf_global_ctrl()) {
++                      add_atomic_switch_msr_special(vmx,
++                                      VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
++                                      VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
++                                      GUEST_IA32_PERF_GLOBAL_CTRL,
++                                      HOST_IA32_PERF_GLOBAL_CTRL,
++                                      guest_val, host_val);
++                      return;
++              }
++              break;
++      case MSR_IA32_PEBS_ENABLE:
++              /* PEBS needs a quiescent period after being disabled (to write
++               * a record).  Disabling PEBS through VMX MSR swapping doesn't
++               * provide that period, so a CPU could write host's record into
++               * guest's memory.
++               */
++              wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
++      }
++
++      i = vmx_find_msr_index(&m->guest, msr);
++      if (!entry_only)
++              j = vmx_find_msr_index(&m->host, msr);
++
++      if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
++              (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
++              printk_once(KERN_WARNING "Not enough msr switch entries. "
++                              "Can't add msr %x\n", msr);
++              return;
++      }
++      if (i < 0) {
++              i = m->guest.nr++;
++              vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
++      }
++      m->guest.val[i].index = msr;
++      m->guest.val[i].value = guest_val;
++
++      if (entry_only)
++              return;
++
++      if (j < 0) {
++              j = m->host.nr++;
++              vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
++      }
++      m->host.val[j].index = msr;
++      m->host.val[j].value = host_val;
++}
++
++static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
++{
++      u64 guest_efer = vmx->vcpu.arch.efer;
++      u64 ignore_bits = 0;
++
++      /* Shadow paging assumes NX to be available.  */
++      if (!enable_ept)
++              guest_efer |= EFER_NX;
++
++      /*
++       * LMA and LME handled by hardware; SCE meaningless outside long mode.
++       */
++      ignore_bits |= EFER_SCE;
++#ifdef CONFIG_X86_64
++      ignore_bits |= EFER_LMA | EFER_LME;
++      /* SCE is meaningful only in long mode on Intel */
++      if (guest_efer & EFER_LMA)
++              ignore_bits &= ~(u64)EFER_SCE;
++#endif
++
++      /*
++       * On EPT, we can't emulate NX, so we must switch EFER atomically.
++       * On CPUs that support "load IA32_EFER", always switch EFER
++       * atomically, since it's faster than switching it manually.
++       */
++      if (cpu_has_load_ia32_efer() ||
++          (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
++              if (!(guest_efer & EFER_LMA))
++                      guest_efer &= ~EFER_LME;
++              if (guest_efer != host_efer)
++                      add_atomic_switch_msr(vmx, MSR_EFER,
++                                            guest_efer, host_efer, false);
++              else
++                      clear_atomic_switch_msr(vmx, MSR_EFER);
++              return false;
++      } else {
++              clear_atomic_switch_msr(vmx, MSR_EFER);
++
++              guest_efer &= ~ignore_bits;
++              guest_efer |= host_efer & ignore_bits;
++
++              vmx->guest_msrs[efer_offset].data = guest_efer;
++              vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
++
++              return true;
++      }
++}
++
++#ifdef CONFIG_X86_32
++/*
++ * On 32-bit kernels, VM exits still load the FS and GS bases from the
++ * VMCS rather than the segment table.  KVM uses this helper to figure
++ * out the current bases to poke them into the VMCS before entry.
++ */
++static unsigned long segment_base(u16 selector)
++{
++      struct desc_struct *table;
++      unsigned long v;
++
++      if (!(selector & ~SEGMENT_RPL_MASK))
++              return 0;
++
++      table = get_current_gdt_ro();
++
++      if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
++              u16 ldt_selector = kvm_read_ldt();
++
++              if (!(ldt_selector & ~SEGMENT_RPL_MASK))
++                      return 0;
++
++              table = (struct desc_struct *)segment_base(ldt_selector);
++      }
++      v = get_desc_base(&table[selector >> 3]);
++      return v;
++}
++#endif
++
++static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
++{
++      u32 i;
++
++      wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
++      wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
++      wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
++      wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
++      for (i = 0; i < addr_range; i++) {
++              wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
++              wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
++      }
++}
++
++static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
++{
++      u32 i;
++
++      rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
++      rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
++      rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
++      rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
++      for (i = 0; i < addr_range; i++) {
++              rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
++              rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
++      }
++}
++
++static void pt_guest_enter(struct vcpu_vmx *vmx)
++{
++      if (pt_mode == PT_MODE_SYSTEM)
++              return;
++
++      /*
++       * GUEST_IA32_RTIT_CTL is already set in the VMCS.
++       * Save host state before VM entry.
++       */
++      rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
++      if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
++              wrmsrl(MSR_IA32_RTIT_CTL, 0);
++              pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
++              pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
++      }
++}
++
++static void pt_guest_exit(struct vcpu_vmx *vmx)
++{
++      if (pt_mode == PT_MODE_SYSTEM)
++              return;
++
++      if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
++              pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
++              pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
++      }
++
++      /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
++      wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
++}
++
++void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
++                      unsigned long fs_base, unsigned long gs_base)
++{
++      if (unlikely(fs_sel != host->fs_sel)) {
++              if (!(fs_sel & 7))
++                      vmcs_write16(HOST_FS_SELECTOR, fs_sel);
++              else
++                      vmcs_write16(HOST_FS_SELECTOR, 0);
++              host->fs_sel = fs_sel;
++      }
++      if (unlikely(gs_sel != host->gs_sel)) {
++              if (!(gs_sel & 7))
++                      vmcs_write16(HOST_GS_SELECTOR, gs_sel);
++              else
++                      vmcs_write16(HOST_GS_SELECTOR, 0);
++              host->gs_sel = gs_sel;
++      }
++      if (unlikely(fs_base != host->fs_base)) {
++              vmcs_writel(HOST_FS_BASE, fs_base);
++              host->fs_base = fs_base;
++      }
++      if (unlikely(gs_base != host->gs_base)) {
++              vmcs_writel(HOST_GS_BASE, gs_base);
++              host->gs_base = gs_base;
++      }
++}
++
++void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct vmcs_host_state *host_state;
++#ifdef CONFIG_X86_64
++      int cpu = raw_smp_processor_id();
++#endif
++      unsigned long fs_base, gs_base;
++      u16 fs_sel, gs_sel;
++      int i;
++
++      vmx->req_immediate_exit = false;
++
++      /*
++       * Note that guest MSRs to be saved/restored can also be changed
++       * when guest state is loaded. This happens when guest transitions
++       * to/from long-mode by setting MSR_EFER.LMA.
++       */
++      if (!vmx->guest_msrs_ready) {
++              vmx->guest_msrs_ready = true;
++              for (i = 0; i < vmx->save_nmsrs; ++i)
++                      kvm_set_shared_msr(vmx->guest_msrs[i].index,
++                                         vmx->guest_msrs[i].data,
++                                         vmx->guest_msrs[i].mask);
++
++      }
++      if (vmx->guest_state_loaded)
++              return;
++
++      host_state = &vmx->loaded_vmcs->host_state;
++
++      /*
++       * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
++       * allow segment selectors with cpl > 0 or ti == 1.
++       */
++      host_state->ldt_sel = kvm_read_ldt();
++
++#ifdef CONFIG_X86_64
++      savesegment(ds, host_state->ds_sel);
++      savesegment(es, host_state->es_sel);
++
++      gs_base = cpu_kernelmode_gs_base(cpu);
++      if (likely(is_64bit_mm(current->mm))) {
++              save_fsgs_for_kvm();
++              fs_sel = current->thread.fsindex;
++              gs_sel = current->thread.gsindex;
++              fs_base = current->thread.fsbase;
++              vmx->msr_host_kernel_gs_base = current->thread.gsbase;
++      } else {
++              savesegment(fs, fs_sel);
++              savesegment(gs, gs_sel);
++              fs_base = read_msr(MSR_FS_BASE);
++              vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
++      }
++
++      wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++#else
++      savesegment(fs, fs_sel);
++      savesegment(gs, gs_sel);
++      fs_base = segment_base(fs_sel);
++      gs_base = segment_base(gs_sel);
++#endif
++
++      vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
++      vmx->guest_state_loaded = true;
++}
++
++static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
++{
++      struct vmcs_host_state *host_state;
++
++      if (!vmx->guest_state_loaded)
++              return;
++
++      host_state = &vmx->loaded_vmcs->host_state;
++
++      ++vmx->vcpu.stat.host_state_reload;
++
++#ifdef CONFIG_X86_64
++      rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++#endif
++      if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
++              kvm_load_ldt(host_state->ldt_sel);
++#ifdef CONFIG_X86_64
++              load_gs_index(host_state->gs_sel);
++#else
++              loadsegment(gs, host_state->gs_sel);
++#endif
++      }
++      if (host_state->fs_sel & 7)
++              loadsegment(fs, host_state->fs_sel);
++#ifdef CONFIG_X86_64
++      if (unlikely(host_state->ds_sel | host_state->es_sel)) {
++              loadsegment(ds, host_state->ds_sel);
++              loadsegment(es, host_state->es_sel);
++      }
++#endif
++      invalidate_tss_limit();
++#ifdef CONFIG_X86_64
++      wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
++#endif
++      load_fixmap_gdt(raw_smp_processor_id());
++      vmx->guest_state_loaded = false;
++      vmx->guest_msrs_ready = false;
++}
++
++#ifdef CONFIG_X86_64
++static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
++{
++      preempt_disable();
++      if (vmx->guest_state_loaded)
++              rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
++      preempt_enable();
++      return vmx->msr_guest_kernel_gs_base;
++}
++
++static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
++{
++      preempt_disable();
++      if (vmx->guest_state_loaded)
++              wrmsrl(MSR_KERNEL_GS_BASE, data);
++      preempt_enable();
++      vmx->msr_guest_kernel_gs_base = data;
++}
++#endif
++
++static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
++{
++      struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++      struct pi_desc old, new;
++      unsigned int dest;
++
++      /*
++       * In case of hot-plug or hot-unplug, we may have to undo
++       * vmx_vcpu_pi_put even if there is no assigned device.  And we
++       * always keep PI.NDST up to date for simplicity: it makes the
++       * code easier, and CPU migration is not a fast path.
++       */
++      if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
++              return;
++
++      /*
++       * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
++       * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
++       * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
++       * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
++       * correctly.
++       */
++      if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
++              pi_clear_sn(pi_desc);
++              goto after_clear_sn;
++      }
++
++      /* The full case.  */
++      do {
++              old.control = new.control = pi_desc->control;
++
++              dest = cpu_physical_id(cpu);
++
++              if (x2apic_enabled())
++                      new.ndst = dest;
++              else
++                      new.ndst = (dest << 8) & 0xFF00;
++
++              new.sn = 0;
++      } while (cmpxchg64(&pi_desc->control, old.control,
++                         new.control) != old.control);
++
++after_clear_sn:
++
++      /*
++       * Clear SN before reading the bitmap.  The VT-d firmware
++       * writes the bitmap and reads SN atomically (5.2.3 in the
++       * spec), so it doesn't really have a memory barrier that
++       * pairs with this, but we cannot do that and we need one.
++       */
++      smp_mb__after_atomic();
++
++      if (!pi_is_pir_empty(pi_desc))
++              pi_set_on(pi_desc);
++}
++
++void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
++
++      if (!already_loaded) {
++              loaded_vmcs_clear(vmx->loaded_vmcs);
++              local_irq_disable();
++              crash_disable_local_vmclear(cpu);
++
++              /*
++               * Read loaded_vmcs->cpu should be before fetching
++               * loaded_vmcs->loaded_vmcss_on_cpu_link.
++               * See the comments in __loaded_vmcs_clear().
++               */
++              smp_rmb();
++
++              list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
++                       &per_cpu(loaded_vmcss_on_cpu, cpu));
++              crash_enable_local_vmclear(cpu);
++              local_irq_enable();
++      }
++
++      if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
++              per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
++              vmcs_load(vmx->loaded_vmcs->vmcs);
++              indirect_branch_prediction_barrier();
++      }
++
++      if (!already_loaded) {
++              void *gdt = get_current_gdt_ro();
++              unsigned long sysenter_esp;
++
++              kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++
++              /*
++               * Linux uses per-cpu TSS and GDT, so set these when switching
++               * processors.  See 22.2.4.
++               */
++              vmcs_writel(HOST_TR_BASE,
++                          (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
++              vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
++
++              rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
++              vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
++
++              vmx->loaded_vmcs->cpu = cpu;
++      }
++
++      /* Setup TSC multiplier */
++      if (kvm_has_tsc_control &&
++          vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
++              decache_tsc_multiplier(vmx);
++}
++
++/*
++ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
++ * vcpu mutex is already taken.
++ */
++void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      vmx_vcpu_load_vmcs(vcpu, cpu);
++
++      vmx_vcpu_pi_load(vcpu, cpu);
++
++      vmx->host_pkru = read_pkru();
++      vmx->host_debugctlmsr = get_debugctlmsr();
++}
++
++static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
++{
++      struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++      if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
++              !irq_remapping_cap(IRQ_POSTING_CAP)  ||
++              !kvm_vcpu_apicv_active(vcpu))
++              return;
++
++      /* Set SN when the vCPU is preempted */
++      if (vcpu->preempted)
++              pi_set_sn(pi_desc);
++}
++
++static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
++{
++      vmx_vcpu_pi_put(vcpu);
++
++      vmx_prepare_switch_to_host(to_vmx(vcpu));
++}
++
++static bool emulation_required(struct kvm_vcpu *vcpu)
++{
++      return emulate_invalid_guest_state && !guest_state_valid(vcpu);
++}
++
++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
++
++unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long rflags, save_rflags;
++
++      if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
++              kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
++              rflags = vmcs_readl(GUEST_RFLAGS);
++              if (vmx->rmode.vm86_active) {
++                      rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
++                      save_rflags = vmx->rmode.save_rflags;
++                      rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
++              }
++              vmx->rflags = rflags;
++      }
++      return vmx->rflags;
++}
++
++void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long old_rflags;
++
++      if (enable_unrestricted_guest) {
++              kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
++              vmx->rflags = rflags;
++              vmcs_writel(GUEST_RFLAGS, rflags);
++              return;
++      }
++
++      old_rflags = vmx_get_rflags(vcpu);
++      vmx->rflags = rflags;
++      if (vmx->rmode.vm86_active) {
++              vmx->rmode.save_rflags = rflags;
++              rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
++      }
++      vmcs_writel(GUEST_RFLAGS, rflags);
++
++      if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
++              vmx->emulation_required = emulation_required(vcpu);
++}
++
++u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
++{
++      u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
++      int ret = 0;
++
++      if (interruptibility & GUEST_INTR_STATE_STI)
++              ret |= KVM_X86_SHADOW_INT_STI;
++      if (interruptibility & GUEST_INTR_STATE_MOV_SS)
++              ret |= KVM_X86_SHADOW_INT_MOV_SS;
++
++      return ret;
++}
++
++void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
++{
++      u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
++      u32 interruptibility = interruptibility_old;
++
++      interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
++
++      if (mask & KVM_X86_SHADOW_INT_MOV_SS)
++              interruptibility |= GUEST_INTR_STATE_MOV_SS;
++      else if (mask & KVM_X86_SHADOW_INT_STI)
++              interruptibility |= GUEST_INTR_STATE_STI;
++
++      if ((interruptibility != interruptibility_old))
++              vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
++}
++
++static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long value;
++
++      /*
++       * Any MSR write that attempts to change bits marked reserved will
++       * case a #GP fault.
++       */
++      if (data & vmx->pt_desc.ctl_bitmask)
++              return 1;
++
++      /*
++       * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
++       * result in a #GP unless the same write also clears TraceEn.
++       */
++      if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
++              ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
++              return 1;
++
++      /*
++       * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
++       * and FabricEn would cause #GP, if
++       * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
++       */
++      if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
++              !(data & RTIT_CTL_FABRIC_EN) &&
++              !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_single_range_output))
++              return 1;
++
++      /*
++       * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
++       * utilize encodings marked reserved will casue a #GP fault.
++       */
++      value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
++                      !test_bit((data & RTIT_CTL_MTC_RANGE) >>
++                      RTIT_CTL_MTC_RANGE_OFFSET, &value))
++              return 1;
++      value = intel_pt_validate_cap(vmx->pt_desc.caps,
++                                              PT_CAP_cycle_thresholds);
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
++                      !test_bit((data & RTIT_CTL_CYC_THRESH) >>
++                      RTIT_CTL_CYC_THRESH_OFFSET, &value))
++              return 1;
++      value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
++                      !test_bit((data & RTIT_CTL_PSB_FREQ) >>
++                      RTIT_CTL_PSB_FREQ_OFFSET, &value))
++              return 1;
++
++      /*
++       * If ADDRx_CFG is reserved or the encodings is >2 will
++       * cause a #GP fault.
++       */
++      value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
++      if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
++              return 1;
++      value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
++      if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
++              return 1;
++      value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
++      if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
++              return 1;
++      value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
++      if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
++              return 1;
++
++      return 0;
++}
++
++static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
++{
++      unsigned long rip;
++
++      /*
++       * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
++       * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
++       * set when EPT misconfig occurs.  In practice, real hardware updates
++       * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
++       * (namely Hyper-V) don't set it due to it being undefined behavior,
++       * i.e. we end up advancing IP with some random value.
++       */
++      if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
++          to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
++              rip = kvm_rip_read(vcpu);
++              rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++              kvm_rip_write(vcpu, rip);
++      } else {
++              if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
++                      return 0;
++      }
++
++      /* skipping an emulated instruction also counts */
++      vmx_set_interrupt_shadow(vcpu, 0);
++
++      return 1;
++}
++
++static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
++{
++      /*
++       * Ensure that we clear the HLT state in the VMCS.  We don't need to
++       * explicitly skip the instruction because if the HLT state is set,
++       * then the instruction is already executing and RIP has already been
++       * advanced.
++       */
++      if (kvm_hlt_in_guest(vcpu->kvm) &&
++                      vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
++              vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
++}
++
++static void vmx_queue_exception(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned nr = vcpu->arch.exception.nr;
++      bool has_error_code = vcpu->arch.exception.has_error_code;
++      u32 error_code = vcpu->arch.exception.error_code;
++      u32 intr_info = nr | INTR_INFO_VALID_MASK;
++
++      kvm_deliver_exception_payload(vcpu);
++
++      if (has_error_code) {
++              vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
++              intr_info |= INTR_INFO_DELIVER_CODE_MASK;
++      }
++
++      if (vmx->rmode.vm86_active) {
++              int inc_eip = 0;
++              if (kvm_exception_is_soft(nr))
++                      inc_eip = vcpu->arch.event_exit_inst_len;
++              kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
++              return;
++      }
++
++      WARN_ON_ONCE(vmx->emulation_required);
++
++      if (kvm_exception_is_soft(nr)) {
++              vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
++                           vmx->vcpu.arch.event_exit_inst_len);
++              intr_info |= INTR_TYPE_SOFT_EXCEPTION;
++      } else
++              intr_info |= INTR_TYPE_HARD_EXCEPTION;
++
++      vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
++
++      vmx_clear_hlt(vcpu);
++}
++
++static bool vmx_rdtscp_supported(void)
++{
++      return cpu_has_vmx_rdtscp();
++}
++
++static bool vmx_invpcid_supported(void)
++{
++      return cpu_has_vmx_invpcid();
++}
++
++/*
++ * Swap MSR entry in host/guest MSR entry array.
++ */
++static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
++{
++      struct shared_msr_entry tmp;
++
++      tmp = vmx->guest_msrs[to];
++      vmx->guest_msrs[to] = vmx->guest_msrs[from];
++      vmx->guest_msrs[from] = tmp;
++}
++
++/*
++ * Set up the vmcs to automatically save and restore system
++ * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
++ * mode, as fiddling with msrs is very expensive.
++ */
++static void setup_msrs(struct vcpu_vmx *vmx)
++{
++      int save_nmsrs, index;
++
++      save_nmsrs = 0;
++#ifdef CONFIG_X86_64
++      /*
++       * The SYSCALL MSRs are only needed on long mode guests, and only
++       * when EFER.SCE is set.
++       */
++      if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
++              index = __find_msr_index(vmx, MSR_STAR);
++              if (index >= 0)
++                      move_msr_up(vmx, index, save_nmsrs++);
++              index = __find_msr_index(vmx, MSR_LSTAR);
++              if (index >= 0)
++                      move_msr_up(vmx, index, save_nmsrs++);
++              index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
++              if (index >= 0)
++                      move_msr_up(vmx, index, save_nmsrs++);
++      }
++#endif
++      index = __find_msr_index(vmx, MSR_EFER);
++      if (index >= 0 && update_transition_efer(vmx, index))
++              move_msr_up(vmx, index, save_nmsrs++);
++      index = __find_msr_index(vmx, MSR_TSC_AUX);
++      if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
++              move_msr_up(vmx, index, save_nmsrs++);
++      index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
++      if (index >= 0)
++              move_msr_up(vmx, index, save_nmsrs++);
++
++      vmx->save_nmsrs = save_nmsrs;
++      vmx->guest_msrs_ready = false;
++
++      if (cpu_has_vmx_msr_bitmap())
++              vmx_update_msr_bitmap(&vmx->vcpu);
++}
++
++static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
++{
++      struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++
++      if (is_guest_mode(vcpu) &&
++          (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
++              return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
++
++      return vcpu->arch.tsc_offset;
++}
++
++static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
++{
++      struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++      u64 g_tsc_offset = 0;
++
++      /*
++       * We're here if L1 chose not to trap WRMSR to TSC. According
++       * to the spec, this should set L1's TSC; The offset that L1
++       * set for L2 remains unchanged, and still needs to be added
++       * to the newly set TSC to get L2's TSC.
++       */
++      if (is_guest_mode(vcpu) &&
++          (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
++              g_tsc_offset = vmcs12->tsc_offset;
++
++      trace_kvm_write_tsc_offset(vcpu->vcpu_id,
++                                 vcpu->arch.tsc_offset - g_tsc_offset,
++                                 offset);
++      vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
++      return offset + g_tsc_offset;
++}
++
++/*
++ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
++ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
++ * all guests if the "nested" module option is off, and can also be disabled
++ * for a single guest by disabling its VMX cpuid bit.
++ */
++bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
++{
++      return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
++}
++
++static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
++                                               uint64_t val)
++{
++      uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
++
++      return !(val & ~valid_bits);
++}
++
++static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
++{
++      switch (msr->index) {
++      case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++              if (!nested)
++                      return 1;
++              return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
++      default:
++              return 1;
++      }
++}
++
++/*
++ * Reads an msr value (of 'msr_index') into 'pdata'.
++ * Returns 0 on success, non-0 otherwise.
++ * Assumes vcpu_load() was already called.
++ */
++static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct shared_msr_entry *msr;
++      u32 index;
++
++      switch (msr_info->index) {
++#ifdef CONFIG_X86_64
++      case MSR_FS_BASE:
++              msr_info->data = vmcs_readl(GUEST_FS_BASE);
++              break;
++      case MSR_GS_BASE:
++              msr_info->data = vmcs_readl(GUEST_GS_BASE);
++              break;
++      case MSR_KERNEL_GS_BASE:
++              msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
++              break;
++#endif
++      case MSR_EFER:
++              return kvm_get_msr_common(vcpu, msr_info);
++      case MSR_IA32_TSX_CTRL:
++              if (!msr_info->host_initiated &&
++                  !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
++                      return 1;
++              goto find_shared_msr;
++      case MSR_IA32_UMWAIT_CONTROL:
++              if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
++                      return 1;
++
++              msr_info->data = vmx->msr_ia32_umwait_control;
++              break;
++      case MSR_IA32_SPEC_CTRL:
++              if (!msr_info->host_initiated &&
++                  !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
++                      return 1;
++
++              msr_info->data = to_vmx(vcpu)->spec_ctrl;
++              break;
++      case MSR_IA32_SYSENTER_CS:
++              msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
++              break;
++      case MSR_IA32_SYSENTER_EIP:
++              msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
++              break;
++      case MSR_IA32_SYSENTER_ESP:
++              msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
++              break;
++      case MSR_IA32_BNDCFGS:
++              if (!kvm_mpx_supported() ||
++                  (!msr_info->host_initiated &&
++                   !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
++                      return 1;
++              msr_info->data = vmcs_read64(GUEST_BNDCFGS);
++              break;
++      case MSR_IA32_MCG_EXT_CTL:
++              if (!msr_info->host_initiated &&
++                  !(vmx->msr_ia32_feature_control &
++                    FEATURE_CONTROL_LMCE))
++                      return 1;
++              msr_info->data = vcpu->arch.mcg_ext_ctl;
++              break;
++      case MSR_IA32_FEATURE_CONTROL:
++              msr_info->data = vmx->msr_ia32_feature_control;
++              break;
++      case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++              if (!nested_vmx_allowed(vcpu))
++                      return 1;
++              return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
++                                     &msr_info->data);
++      case MSR_IA32_RTIT_CTL:
++              if (pt_mode != PT_MODE_HOST_GUEST)
++                      return 1;
++              msr_info->data = vmx->pt_desc.guest.ctl;
++              break;
++      case MSR_IA32_RTIT_STATUS:
++              if (pt_mode != PT_MODE_HOST_GUEST)
++                      return 1;
++              msr_info->data = vmx->pt_desc.guest.status;
++              break;
++      case MSR_IA32_RTIT_CR3_MATCH:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                              PT_CAP_cr3_filtering))
++                      return 1;
++              msr_info->data = vmx->pt_desc.guest.cr3_match;
++              break;
++      case MSR_IA32_RTIT_OUTPUT_BASE:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (!intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_topa_output) &&
++                       !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_single_range_output)))
++                      return 1;
++              msr_info->data = vmx->pt_desc.guest.output_base;
++              break;
++      case MSR_IA32_RTIT_OUTPUT_MASK:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (!intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_topa_output) &&
++                       !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_single_range_output)))
++                      return 1;
++              msr_info->data = vmx->pt_desc.guest.output_mask;
++              break;
++      case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
++              index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_num_address_ranges)))
++                      return 1;
++              if (is_noncanonical_address(data, vcpu))
++                      return 1;
++              if (index % 2)
++                      msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
++              else
++                      msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
++              break;
++      case MSR_TSC_AUX:
++              if (!msr_info->host_initiated &&
++                  !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
++                      return 1;
++              goto find_shared_msr;
++      default:
++      find_shared_msr:
++              msr = find_msr_entry(vmx, msr_info->index);
++              if (msr) {
++                      msr_info->data = msr->data;
++                      break;
++              }
++              return kvm_get_msr_common(vcpu, msr_info);
++      }
++
++      return 0;
++}
++
++/*
++ * Writes msr value into the appropriate "register".
++ * Returns 0 on success, non-0 otherwise.
++ * Assumes vcpu_load() was already called.
++ */
++static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct shared_msr_entry *msr;
++      int ret = 0;
++      u32 msr_index = msr_info->index;
++      u64 data = msr_info->data;
++      u32 index;
++
++      switch (msr_index) {
++      case MSR_EFER:
++              ret = kvm_set_msr_common(vcpu, msr_info);
++              break;
++#ifdef CONFIG_X86_64
++      case MSR_FS_BASE:
++              vmx_segment_cache_clear(vmx);
++              vmcs_writel(GUEST_FS_BASE, data);
++              break;
++      case MSR_GS_BASE:
++              vmx_segment_cache_clear(vmx);
++              vmcs_writel(GUEST_GS_BASE, data);
++              break;
++      case MSR_KERNEL_GS_BASE:
++              vmx_write_guest_kernel_gs_base(vmx, data);
++              break;
++#endif
++      case MSR_IA32_SYSENTER_CS:
++              if (is_guest_mode(vcpu))
++                      get_vmcs12(vcpu)->guest_sysenter_cs = data;
++              vmcs_write32(GUEST_SYSENTER_CS, data);
++              break;
++      case MSR_IA32_SYSENTER_EIP:
++              if (is_guest_mode(vcpu))
++                      get_vmcs12(vcpu)->guest_sysenter_eip = data;
++              vmcs_writel(GUEST_SYSENTER_EIP, data);
++              break;
++      case MSR_IA32_SYSENTER_ESP:
++              if (is_guest_mode(vcpu))
++                      get_vmcs12(vcpu)->guest_sysenter_esp = data;
++              vmcs_writel(GUEST_SYSENTER_ESP, data);
++              break;
++      case MSR_IA32_DEBUGCTLMSR:
++              if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
++                                              VM_EXIT_SAVE_DEBUG_CONTROLS)
++                      get_vmcs12(vcpu)->guest_ia32_debugctl = data;
++
++              ret = kvm_set_msr_common(vcpu, msr_info);
++              break;
++
++      case MSR_IA32_BNDCFGS:
++              if (!kvm_mpx_supported() ||
++                  (!msr_info->host_initiated &&
++                   !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
++                      return 1;
++              if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
++                  (data & MSR_IA32_BNDCFGS_RSVD))
++                      return 1;
++              vmcs_write64(GUEST_BNDCFGS, data);
++              break;
++      case MSR_IA32_UMWAIT_CONTROL:
++              if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
++                      return 1;
++
++              /* The reserved bit 1 and non-32 bit [63:32] should be zero */
++              if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
++                      return 1;
++
++              vmx->msr_ia32_umwait_control = data;
++              break;
++      case MSR_IA32_SPEC_CTRL:
++              if (!msr_info->host_initiated &&
++                  !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
++                      return 1;
++
++              /* The STIBP bit doesn't fault even if it's not advertised */
++              if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
++                      return 1;
++
++              vmx->spec_ctrl = data;
++
++              if (!data)
++                      break;
++
++              /*
++               * For non-nested:
++               * When it's written (to non-zero) for the first time, pass
++               * it through.
++               *
++               * For nested:
++               * The handling of the MSR bitmap for L2 guests is done in
++               * nested_vmx_prepare_msr_bitmap. We should not touch the
++               * vmcs02.msr_bitmap here since it gets completely overwritten
++               * in the merging. We update the vmcs01 here for L1 as well
++               * since it will end up touching the MSR anyway now.
++               */
++              vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
++                                            MSR_IA32_SPEC_CTRL,
++                                            MSR_TYPE_RW);
++              break;
++      case MSR_IA32_TSX_CTRL:
++              if (!msr_info->host_initiated &&
++                  !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
++                      return 1;
++              if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
++                      return 1;
++              goto find_shared_msr;
++      case MSR_IA32_PRED_CMD:
++              if (!msr_info->host_initiated &&
++                  !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
++                      return 1;
++
++              if (data & ~PRED_CMD_IBPB)
++                      return 1;
++
++              if (!data)
++                      break;
++
++              wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
++
++              /*
++               * For non-nested:
++               * When it's written (to non-zero) for the first time, pass
++               * it through.
++               *
++               * For nested:
++               * The handling of the MSR bitmap for L2 guests is done in
++               * nested_vmx_prepare_msr_bitmap. We should not touch the
++               * vmcs02.msr_bitmap here since it gets completely overwritten
++               * in the merging.
++               */
++              vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
++                                            MSR_TYPE_W);
++              break;
++      case MSR_IA32_CR_PAT:
++              if (!kvm_pat_valid(data))
++                      return 1;
++
++              if (is_guest_mode(vcpu) &&
++                  get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
++                      get_vmcs12(vcpu)->guest_ia32_pat = data;
++
++              if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
++                      vmcs_write64(GUEST_IA32_PAT, data);
++                      vcpu->arch.pat = data;
++                      break;
++              }
++              ret = kvm_set_msr_common(vcpu, msr_info);
++              break;
++      case MSR_IA32_TSC_ADJUST:
++              ret = kvm_set_msr_common(vcpu, msr_info);
++              break;
++      case MSR_IA32_MCG_EXT_CTL:
++              if ((!msr_info->host_initiated &&
++                   !(to_vmx(vcpu)->msr_ia32_feature_control &
++                     FEATURE_CONTROL_LMCE)) ||
++                  (data & ~MCG_EXT_CTL_LMCE_EN))
++                      return 1;
++              vcpu->arch.mcg_ext_ctl = data;
++              break;
++      case MSR_IA32_FEATURE_CONTROL:
++              if (!vmx_feature_control_msr_valid(vcpu, data) ||
++                  (to_vmx(vcpu)->msr_ia32_feature_control &
++                   FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
++                      return 1;
++              vmx->msr_ia32_feature_control = data;
++              if (msr_info->host_initiated && data == 0)
++                      vmx_leave_nested(vcpu);
++              break;
++      case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++              if (!msr_info->host_initiated)
++                      return 1; /* they are read-only */
++              if (!nested_vmx_allowed(vcpu))
++                      return 1;
++              return vmx_set_vmx_msr(vcpu, msr_index, data);
++      case MSR_IA32_RTIT_CTL:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      vmx_rtit_ctl_check(vcpu, data) ||
++                      vmx->nested.vmxon)
++                      return 1;
++              vmcs_write64(GUEST_IA32_RTIT_CTL, data);
++              vmx->pt_desc.guest.ctl = data;
++              pt_update_intercept_for_msr(vmx);
++              break;
++      case MSR_IA32_RTIT_STATUS:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
++                      (data & MSR_IA32_RTIT_STATUS_MASK))
++                      return 1;
++              vmx->pt_desc.guest.status = data;
++              break;
++      case MSR_IA32_RTIT_CR3_MATCH:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
++                      !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                              PT_CAP_cr3_filtering))
++                      return 1;
++              vmx->pt_desc.guest.cr3_match = data;
++              break;
++      case MSR_IA32_RTIT_OUTPUT_BASE:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
++                      (!intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_topa_output) &&
++                       !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_single_range_output)) ||
++                      (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
++                      return 1;
++              vmx->pt_desc.guest.output_base = data;
++              break;
++      case MSR_IA32_RTIT_OUTPUT_MASK:
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
++                      (!intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_topa_output) &&
++                       !intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_single_range_output)))
++                      return 1;
++              vmx->pt_desc.guest.output_mask = data;
++              break;
++      case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
++              index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
++              if ((pt_mode != PT_MODE_HOST_GUEST) ||
++                      (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
++                      (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
++                                      PT_CAP_num_address_ranges)))
++                      return 1;
++              if (is_noncanonical_address(data, vcpu))
++                      return 1;
++              if (index % 2)
++                      vmx->pt_desc.guest.addr_b[index / 2] = data;
++              else
++                      vmx->pt_desc.guest.addr_a[index / 2] = data;
++              break;
++      case MSR_TSC_AUX:
++              if (!msr_info->host_initiated &&
++                  !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
++                      return 1;
++              /* Check reserved bit, higher 32 bits should be zero */
++              if ((data >> 32) != 0)
++                      return 1;
++              goto find_shared_msr;
++
++      default:
++      find_shared_msr:
++              msr = find_msr_entry(vmx, msr_index);
++              if (msr)
++                      ret = vmx_set_guest_msr(vmx, msr, data);
++              else
++                      ret = kvm_set_msr_common(vcpu, msr_info);
++      }
++
++      return ret;
++}
++
++static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
++{
++      kvm_register_mark_available(vcpu, reg);
++
++      switch (reg) {
++      case VCPU_REGS_RSP:
++              vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
++              break;
++      case VCPU_REGS_RIP:
++              vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
++              break;
++      case VCPU_EXREG_PDPTR:
++              if (enable_ept)
++                      ept_save_pdptrs(vcpu);
++              break;
++      case VCPU_EXREG_CR3:
++              if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
++                      vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
++              break;
++      default:
++              WARN_ON_ONCE(1);
++              break;
++      }
++}
++
++static __init int cpu_has_kvm_support(void)
++{
++      return cpu_has_vmx();
++}
++
++static __init int vmx_disabled_by_bios(void)
++{
++      u64 msr;
++
++      rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
++      if (msr & FEATURE_CONTROL_LOCKED) {
++              /* launched w/ TXT and VMX disabled */
++              if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
++                      && tboot_enabled())
++                      return 1;
++              /* launched w/o TXT and VMX only enabled w/ TXT */
++              if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
++                      && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
++                      && !tboot_enabled()) {
++                      printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
++                              "activate TXT before enabling KVM\n");
++                      return 1;
++              }
++              /* launched w/o TXT and VMX disabled */
++              if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
++                      && !tboot_enabled())
++                      return 1;
++      }
++
++      return 0;
++}
++
++static void kvm_cpu_vmxon(u64 addr)
++{
++      cr4_set_bits(X86_CR4_VMXE);
++      intel_pt_handle_vmx(1);
++
++      asm volatile ("vmxon %0" : : "m"(addr));
++}
++
++static int hardware_enable(void)
++{
++      int cpu = raw_smp_processor_id();
++      u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
++      u64 old, test_bits;
++
++      if (cr4_read_shadow() & X86_CR4_VMXE)
++              return -EBUSY;
++
++      /*
++       * This can happen if we hot-added a CPU but failed to allocate
++       * VP assist page for it.
++       */
++      if (static_branch_unlikely(&enable_evmcs) &&
++          !hv_get_vp_assist_page(cpu))
++              return -EFAULT;
++
++      INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
++      INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
++      spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++
++      /*
++       * Now we can enable the vmclear operation in kdump
++       * since the loaded_vmcss_on_cpu list on this cpu
++       * has been initialized.
++       *
++       * Though the cpu is not in VMX operation now, there
++       * is no problem to enable the vmclear operation
++       * for the loaded_vmcss_on_cpu list is empty!
++       */
++      crash_enable_local_vmclear(cpu);
++
++      rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
++
++      test_bits = FEATURE_CONTROL_LOCKED;
++      test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++      if (tboot_enabled())
++              test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
++
++      if ((old & test_bits) != test_bits) {
++              /* enable and lock */
++              wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
++      }
++      kvm_cpu_vmxon(phys_addr);
++      if (enable_ept)
++              ept_sync_global();
++
++      return 0;
++}
++
++static void vmclear_local_loaded_vmcss(void)
++{
++      int cpu = raw_smp_processor_id();
++      struct loaded_vmcs *v, *n;
++
++      list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
++                               loaded_vmcss_on_cpu_link)
++              __loaded_vmcs_clear(v);
++}
++
++
++/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
++ * tricks.
++ */
++static void kvm_cpu_vmxoff(void)
++{
++      asm volatile (__ex("vmxoff"));
++
++      intel_pt_handle_vmx(0);
++      cr4_clear_bits(X86_CR4_VMXE);
++}
++
++static void hardware_disable(void)
++{
++      vmclear_local_loaded_vmcss();
++      kvm_cpu_vmxoff();
++}
++
++static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
++                                    u32 msr, u32 *result)
++{
++      u32 vmx_msr_low, vmx_msr_high;
++      u32 ctl = ctl_min | ctl_opt;
++
++      rdmsr(msr, vmx_msr_low, vmx_msr_high);
++
++      ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
++      ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
++
++      /* Ensure minimum (required) set of control bits are supported. */
++      if (ctl_min & ~ctl)
++              return -EIO;
++
++      *result = ctl;
++      return 0;
++}
++
++static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
++                                  struct vmx_capability *vmx_cap)
++{
++      u32 vmx_msr_low, vmx_msr_high;
++      u32 min, opt, min2, opt2;
++      u32 _pin_based_exec_control = 0;
++      u32 _cpu_based_exec_control = 0;
++      u32 _cpu_based_2nd_exec_control = 0;
++      u32 _vmexit_control = 0;
++      u32 _vmentry_control = 0;
++
++      memset(vmcs_conf, 0, sizeof(*vmcs_conf));
++      min = CPU_BASED_HLT_EXITING |
++#ifdef CONFIG_X86_64
++            CPU_BASED_CR8_LOAD_EXITING |
++            CPU_BASED_CR8_STORE_EXITING |
++#endif
++            CPU_BASED_CR3_LOAD_EXITING |
++            CPU_BASED_CR3_STORE_EXITING |
++            CPU_BASED_UNCOND_IO_EXITING |
++            CPU_BASED_MOV_DR_EXITING |
++            CPU_BASED_USE_TSC_OFFSETTING |
++            CPU_BASED_MWAIT_EXITING |
++            CPU_BASED_MONITOR_EXITING |
++            CPU_BASED_INVLPG_EXITING |
++            CPU_BASED_RDPMC_EXITING;
++
++      opt = CPU_BASED_TPR_SHADOW |
++            CPU_BASED_USE_MSR_BITMAPS |
++            CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
++      if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
++                              &_cpu_based_exec_control) < 0)
++              return -EIO;
++#ifdef CONFIG_X86_64
++      if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
++              _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
++                                         ~CPU_BASED_CR8_STORE_EXITING;
++#endif
++      if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
++              min2 = 0;
++              opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++                      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++                      SECONDARY_EXEC_WBINVD_EXITING |
++                      SECONDARY_EXEC_ENABLE_VPID |
++                      SECONDARY_EXEC_ENABLE_EPT |
++                      SECONDARY_EXEC_UNRESTRICTED_GUEST |
++                      SECONDARY_EXEC_PAUSE_LOOP_EXITING |
++                      SECONDARY_EXEC_DESC |
++                      SECONDARY_EXEC_RDTSCP |
++                      SECONDARY_EXEC_ENABLE_INVPCID |
++                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
++                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
++                      SECONDARY_EXEC_SHADOW_VMCS |
++                      SECONDARY_EXEC_XSAVES |
++                      SECONDARY_EXEC_RDSEED_EXITING |
++                      SECONDARY_EXEC_RDRAND_EXITING |
++                      SECONDARY_EXEC_ENABLE_PML |
++                      SECONDARY_EXEC_TSC_SCALING |
++                      SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
++                      SECONDARY_EXEC_PT_USE_GPA |
++                      SECONDARY_EXEC_PT_CONCEAL_VMX |
++                      SECONDARY_EXEC_ENABLE_VMFUNC |
++                      SECONDARY_EXEC_ENCLS_EXITING;
++              if (adjust_vmx_controls(min2, opt2,
++                                      MSR_IA32_VMX_PROCBASED_CTLS2,
++                                      &_cpu_based_2nd_exec_control) < 0)
++                      return -EIO;
++      }
++#ifndef CONFIG_X86_64
++      if (!(_cpu_based_2nd_exec_control &
++                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
++              _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
++#endif
++
++      if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
++              _cpu_based_2nd_exec_control &= ~(
++                              SECONDARY_EXEC_APIC_REGISTER_VIRT |
++                              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++                              SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++
++      rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
++              &vmx_cap->ept, &vmx_cap->vpid);
++
++      if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
++              /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
++                 enabled */
++              _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
++                                           CPU_BASED_CR3_STORE_EXITING |
++                                           CPU_BASED_INVLPG_EXITING);
++      } else if (vmx_cap->ept) {
++              vmx_cap->ept = 0;
++              pr_warn_once("EPT CAP should not exist if not support "
++                              "1-setting enable EPT VM-execution control\n");
++      }
++      if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
++              vmx_cap->vpid) {
++              vmx_cap->vpid = 0;
++              pr_warn_once("VPID CAP should not exist if not support "
++                              "1-setting enable VPID VM-execution control\n");
++      }
++
++      min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
++#ifdef CONFIG_X86_64
++      min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
++#endif
++      opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
++            VM_EXIT_LOAD_IA32_PAT |
++            VM_EXIT_LOAD_IA32_EFER |
++            VM_EXIT_CLEAR_BNDCFGS |
++            VM_EXIT_PT_CONCEAL_PIP |
++            VM_EXIT_CLEAR_IA32_RTIT_CTL;
++      if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
++                              &_vmexit_control) < 0)
++              return -EIO;
++
++      min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
++      opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
++               PIN_BASED_VMX_PREEMPTION_TIMER;
++      if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
++                              &_pin_based_exec_control) < 0)
++              return -EIO;
++
++      if (cpu_has_broken_vmx_preemption_timer())
++              _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++      if (!(_cpu_based_2nd_exec_control &
++              SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
++              _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
++
++      min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
++      opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
++            VM_ENTRY_LOAD_IA32_PAT |
++            VM_ENTRY_LOAD_IA32_EFER |
++            VM_ENTRY_LOAD_BNDCFGS |
++            VM_ENTRY_PT_CONCEAL_PIP |
++            VM_ENTRY_LOAD_IA32_RTIT_CTL;
++      if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
++                              &_vmentry_control) < 0)
++              return -EIO;
++
++      /*
++       * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
++       * can't be used due to an errata where VM Exit may incorrectly clear
++       * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
++       * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
++       */
++      if (boot_cpu_data.x86 == 0x6) {
++              switch (boot_cpu_data.x86_model) {
++              case 26: /* AAK155 */
++              case 30: /* AAP115 */
++              case 37: /* AAT100 */
++              case 44: /* BC86,AAY89,BD102 */
++              case 46: /* BA97 */
++                      _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
++                      _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
++                      pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
++                                      "does not work properly. Using workaround\n");
++                      break;
++              default:
++                      break;
++              }
++      }
++
++
++      rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
++
++      /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
++      if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
++              return -EIO;
++
++#ifdef CONFIG_X86_64
++      /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
++      if (vmx_msr_high & (1u<<16))
++              return -EIO;
++#endif
++
++      /* Require Write-Back (WB) memory type for VMCS accesses. */
++      if (((vmx_msr_high >> 18) & 15) != 6)
++              return -EIO;
++
++      vmcs_conf->size = vmx_msr_high & 0x1fff;
++      vmcs_conf->order = get_order(vmcs_conf->size);
++      vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
++
++      vmcs_conf->revision_id = vmx_msr_low;
++
++      vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
++      vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
++      vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
++      vmcs_conf->vmexit_ctrl         = _vmexit_control;
++      vmcs_conf->vmentry_ctrl        = _vmentry_control;
++
++      if (static_branch_unlikely(&enable_evmcs))
++              evmcs_sanitize_exec_ctrls(vmcs_conf);
++
++      return 0;
++}
++
++struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
++{
++      int node = cpu_to_node(cpu);
++      struct page *pages;
++      struct vmcs *vmcs;
++
++      pages = __alloc_pages_node(node, flags, vmcs_config.order);
++      if (!pages)
++              return NULL;
++      vmcs = page_address(pages);
++      memset(vmcs, 0, vmcs_config.size);
++
++      /* KVM supports Enlightened VMCS v1 only */
++      if (static_branch_unlikely(&enable_evmcs))
++              vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
++      else
++              vmcs->hdr.revision_id = vmcs_config.revision_id;
++
++      if (shadow)
++              vmcs->hdr.shadow_vmcs = 1;
++      return vmcs;
++}
++
++void free_vmcs(struct vmcs *vmcs)
++{
++      free_pages((unsigned long)vmcs, vmcs_config.order);
++}
++
++/*
++ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
++ */
++void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
++{
++      if (!loaded_vmcs->vmcs)
++              return;
++      loaded_vmcs_clear(loaded_vmcs);
++      free_vmcs(loaded_vmcs->vmcs);
++      loaded_vmcs->vmcs = NULL;
++      if (loaded_vmcs->msr_bitmap)
++              free_page((unsigned long)loaded_vmcs->msr_bitmap);
++      WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
++}
++
++int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
++{
++      loaded_vmcs->vmcs = alloc_vmcs(false);
++      if (!loaded_vmcs->vmcs)
++              return -ENOMEM;
++
++      loaded_vmcs->shadow_vmcs = NULL;
++      loaded_vmcs->hv_timer_soft_disabled = false;
++      loaded_vmcs_init(loaded_vmcs);
++
++      if (cpu_has_vmx_msr_bitmap()) {
++              loaded_vmcs->msr_bitmap = (unsigned long *)
++                              __get_free_page(GFP_KERNEL_ACCOUNT);
++              if (!loaded_vmcs->msr_bitmap)
++                      goto out_vmcs;
++              memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
++
++              if (IS_ENABLED(CONFIG_HYPERV) &&
++                  static_branch_unlikely(&enable_evmcs) &&
++                  (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
++                      struct hv_enlightened_vmcs *evmcs =
++                              (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
++
++                      evmcs->hv_enlightenments_control.msr_bitmap = 1;
++              }
++      }
++
++      memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
++      memset(&loaded_vmcs->controls_shadow, 0,
++              sizeof(struct vmcs_controls_shadow));
++
++      return 0;
++
++out_vmcs:
++      free_loaded_vmcs(loaded_vmcs);
++      return -ENOMEM;
++}
++
++static void free_kvm_area(void)
++{
++      int cpu;
++
++      for_each_possible_cpu(cpu) {
++              free_vmcs(per_cpu(vmxarea, cpu));
++              per_cpu(vmxarea, cpu) = NULL;
++      }
++}
++
++static __init int alloc_kvm_area(void)
++{
++      int cpu;
++
++      for_each_possible_cpu(cpu) {
++              struct vmcs *vmcs;
++
++              vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
++              if (!vmcs) {
++                      free_kvm_area();
++                      return -ENOMEM;
++              }
++
++              /*
++               * When eVMCS is enabled, alloc_vmcs_cpu() sets
++               * vmcs->revision_id to KVM_EVMCS_VERSION instead of
++               * revision_id reported by MSR_IA32_VMX_BASIC.
++               *
++               * However, even though not explicitly documented by
++               * TLFS, VMXArea passed as VMXON argument should
++               * still be marked with revision_id reported by
++               * physical CPU.
++               */
++              if (static_branch_unlikely(&enable_evmcs))
++                      vmcs->hdr.revision_id = vmcs_config.revision_id;
++
++              per_cpu(vmxarea, cpu) = vmcs;
++      }
++      return 0;
++}
++
++static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
++              struct kvm_segment *save)
++{
++      if (!emulate_invalid_guest_state) {
++              /*
++               * CS and SS RPL should be equal during guest entry according
++               * to VMX spec, but in reality it is not always so. Since vcpu
++               * is in the middle of the transition from real mode to
++               * protected mode it is safe to assume that RPL 0 is a good
++               * default value.
++               */
++              if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
++                      save->selector &= ~SEGMENT_RPL_MASK;
++              save->dpl = save->selector & SEGMENT_RPL_MASK;
++              save->s = 1;
++      }
++      vmx_set_segment(vcpu, save, seg);
++}
++
++static void enter_pmode(struct kvm_vcpu *vcpu)
++{
++      unsigned long flags;
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      /*
++       * Update real mode segment cache. It may be not up-to-date if sement
++       * register was written while vcpu was in a guest mode.
++       */
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
++
++      vmx->rmode.vm86_active = 0;
++
++      vmx_segment_cache_clear(vmx);
++
++      vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
++
++      flags = vmcs_readl(GUEST_RFLAGS);
++      flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
++      flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
++      vmcs_writel(GUEST_RFLAGS, flags);
++
++      vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
++                      (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
++
++      update_exception_bitmap(vcpu);
++
++      fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
++      fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
++      fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
++      fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
++      fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
++      fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
++}
++
++static void fix_rmode_seg(int seg, struct kvm_segment *save)
++{
++      const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++      struct kvm_segment var = *save;
++
++      var.dpl = 0x3;
++      if (seg == VCPU_SREG_CS)
++              var.type = 0x3;
++
++      if (!emulate_invalid_guest_state) {
++              var.selector = var.base >> 4;
++              var.base = var.base & 0xffff0;
++              var.limit = 0xffff;
++              var.g = 0;
++              var.db = 0;
++              var.present = 1;
++              var.s = 1;
++              var.l = 0;
++              var.unusable = 0;
++              var.type = 0x3;
++              var.avl = 0;
++              if (save->base & 0xf)
++                      printk_once(KERN_WARNING "kvm: segment base is not "
++                                      "paragraph aligned when entering "
++                                      "protected mode (seg=%d)", seg);
++      }
++
++      vmcs_write16(sf->selector, var.selector);
++      vmcs_writel(sf->base, var.base);
++      vmcs_write32(sf->limit, var.limit);
++      vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
++}
++
++static void enter_rmode(struct kvm_vcpu *vcpu)
++{
++      unsigned long flags;
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
++
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
++      vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
++
++      vmx->rmode.vm86_active = 1;
++
++      /*
++       * Very old userspace does not call KVM_SET_TSS_ADDR before entering
++       * vcpu. Warn the user that an update is overdue.
++       */
++      if (!kvm_vmx->tss_addr)
++              printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
++                           "called before entering vcpu\n");
++
++      vmx_segment_cache_clear(vmx);
++
++      vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
++      vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
++      vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
++
++      flags = vmcs_readl(GUEST_RFLAGS);
++      vmx->rmode.save_rflags = flags;
++
++      flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
++
++      vmcs_writel(GUEST_RFLAGS, flags);
++      vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
++      update_exception_bitmap(vcpu);
++
++      fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
++      fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
++      fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
++      fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
++      fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
++      fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
++
++      kvm_mmu_reset_context(vcpu);
++}
++
++void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
++
++      if (!msr)
++              return;
++
++      vcpu->arch.efer = efer;
++      if (efer & EFER_LMA) {
++              vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++              msr->data = efer;
++      } else {
++              vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++
++              msr->data = efer & ~EFER_LME;
++      }
++      setup_msrs(vmx);
++}
++
++#ifdef CONFIG_X86_64
++
++static void enter_lmode(struct kvm_vcpu *vcpu)
++{
++      u32 guest_tr_ar;
++
++      vmx_segment_cache_clear(to_vmx(vcpu));
++
++      guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
++      if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
++              pr_debug_ratelimited("%s: tss fixup for long mode. \n",
++                                   __func__);
++              vmcs_write32(GUEST_TR_AR_BYTES,
++                           (guest_tr_ar & ~VMX_AR_TYPE_MASK)
++                           | VMX_AR_TYPE_BUSY_64_TSS);
++      }
++      vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
++}
++
++static void exit_lmode(struct kvm_vcpu *vcpu)
++{
++      vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
++      vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
++}
++
++#endif
++
++static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
++{
++      int vpid = to_vmx(vcpu)->vpid;
++
++      if (!vpid_sync_vcpu_addr(vpid, addr))
++              vpid_sync_context(vpid);
++
++      /*
++       * If VPIDs are not supported or enabled, then the above is a no-op.
++       * But we don't really need a TLB flush in that case anyway, because
++       * each VM entry/exit includes an implicit flush when VPID is 0.
++       */
++}
++
++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
++{
++      ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
++
++      vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
++      vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
++}
++
++static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
++{
++      ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
++
++      vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
++      vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
++}
++
++static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
++{
++      struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
++
++      if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
++              return;
++
++      if (is_pae_paging(vcpu)) {
++              vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
++              vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
++              vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
++              vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
++      }
++}
++
++void ept_save_pdptrs(struct kvm_vcpu *vcpu)
++{
++      struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
++
++      if (is_pae_paging(vcpu)) {
++              mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
++              mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
++              mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
++              mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
++      }
++
++      kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
++}
++
++static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
++                                      unsigned long cr0,
++                                      struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
++              vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
++      if (!(cr0 & X86_CR0_PG)) {
++              /* From paging/starting to nonpaging */
++              exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
++                                        CPU_BASED_CR3_STORE_EXITING);
++              vcpu->arch.cr0 = cr0;
++              vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
++      } else if (!is_paging(vcpu)) {
++              /* From nonpaging to paging */
++              exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
++                                          CPU_BASED_CR3_STORE_EXITING);
++              vcpu->arch.cr0 = cr0;
++              vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
++      }
++
++      if (!(cr0 & X86_CR0_WP))
++              *hw_cr0 &= ~X86_CR0_WP;
++}
++
++void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long hw_cr0;
++
++      hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
++      if (enable_unrestricted_guest)
++              hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
++      else {
++              hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
++
++              if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
++                      enter_pmode(vcpu);
++
++              if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
++                      enter_rmode(vcpu);
++      }
++
++#ifdef CONFIG_X86_64
++      if (vcpu->arch.efer & EFER_LME) {
++              if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
++                      enter_lmode(vcpu);
++              if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
++                      exit_lmode(vcpu);
++      }
++#endif
++
++      if (enable_ept && !enable_unrestricted_guest)
++              ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
++
++      vmcs_writel(CR0_READ_SHADOW, cr0);
++      vmcs_writel(GUEST_CR0, hw_cr0);
++      vcpu->arch.cr0 = cr0;
++
++      /* depends on vcpu->arch.cr0 to be set to a new value */
++      vmx->emulation_required = emulation_required(vcpu);
++}
++
++static int get_ept_level(struct kvm_vcpu *vcpu)
++{
++      if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
++              return 5;
++      return 4;
++}
++
++u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
++{
++      u64 eptp = VMX_EPTP_MT_WB;
++
++      eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
++
++      if (enable_ept_ad_bits &&
++          (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
++              eptp |= VMX_EPTP_AD_ENABLE_BIT;
++      eptp |= (root_hpa & PAGE_MASK);
++
++      return eptp;
++}
++
++void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
++{
++      struct kvm *kvm = vcpu->kvm;
++      bool update_guest_cr3 = true;
++      unsigned long guest_cr3;
++      u64 eptp;
++
++      guest_cr3 = cr3;
++      if (enable_ept) {
++              eptp = construct_eptp(vcpu, cr3);
++              vmcs_write64(EPT_POINTER, eptp);
++
++              if (kvm_x86_ops->tlb_remote_flush) {
++                      spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++                      to_vmx(vcpu)->ept_pointer = eptp;
++                      to_kvm_vmx(kvm)->ept_pointers_match
++                              = EPT_POINTERS_CHECK;
++                      spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
++              }
++
++              /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
++              if (is_guest_mode(vcpu))
++                      update_guest_cr3 = false;
++              else if (!enable_unrestricted_guest && !is_paging(vcpu))
++                      guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
++              else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
++                      guest_cr3 = vcpu->arch.cr3;
++              else /* vmcs01.GUEST_CR3 is already up-to-date. */
++                      update_guest_cr3 = false;
++              ept_load_pdptrs(vcpu);
++      }
++
++      if (update_guest_cr3)
++              vmcs_writel(GUEST_CR3, guest_cr3);
++}
++
++int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      /*
++       * Pass through host's Machine Check Enable value to hw_cr4, which
++       * is in force while we are in guest mode.  Do not let guests control
++       * this bit, even if host CR4.MCE == 0.
++       */
++      unsigned long hw_cr4;
++
++      hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
++      if (enable_unrestricted_guest)
++              hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
++      else if (vmx->rmode.vm86_active)
++              hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
++      else
++              hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
++
++      if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
++              if (cr4 & X86_CR4_UMIP) {
++                      secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
++                      hw_cr4 &= ~X86_CR4_UMIP;
++              } else if (!is_guest_mode(vcpu) ||
++                      !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
++                      secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
++              }
++      }
++
++      if (cr4 & X86_CR4_VMXE) {
++              /*
++               * To use VMXON (and later other VMX instructions), a guest
++               * must first be able to turn on cr4.VMXE (see handle_vmon()).
++               * So basically the check on whether to allow nested VMX
++               * is here.  We operate under the default treatment of SMM,
++               * so VMX cannot be enabled under SMM.
++               */
++              if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
++                      return 1;
++      }
++
++      if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
++              return 1;
++
++      vcpu->arch.cr4 = cr4;
++
++      if (!enable_unrestricted_guest) {
++              if (enable_ept) {
++                      if (!is_paging(vcpu)) {
++                              hw_cr4 &= ~X86_CR4_PAE;
++                              hw_cr4 |= X86_CR4_PSE;
++                      } else if (!(cr4 & X86_CR4_PAE)) {
++                              hw_cr4 &= ~X86_CR4_PAE;
++                      }
++              }
++
++              /*
++               * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
++               * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
++               * to be manually disabled when guest switches to non-paging
++               * mode.
++               *
++               * If !enable_unrestricted_guest, the CPU is always running
++               * with CR0.PG=1 and CR4 needs to be modified.
++               * If enable_unrestricted_guest, the CPU automatically
++               * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
++               */
++              if (!is_paging(vcpu))
++                      hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
++      }
++
++      vmcs_writel(CR4_READ_SHADOW, cr4);
++      vmcs_writel(GUEST_CR4, hw_cr4);
++      return 0;
++}
++
++void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      u32 ar;
++
++      if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
++              *var = vmx->rmode.segs[seg];
++              if (seg == VCPU_SREG_TR
++                  || var->selector == vmx_read_guest_seg_selector(vmx, seg))
++                      return;
++              var->base = vmx_read_guest_seg_base(vmx, seg);
++              var->selector = vmx_read_guest_seg_selector(vmx, seg);
++              return;
++      }
++      var->base = vmx_read_guest_seg_base(vmx, seg);
++      var->limit = vmx_read_guest_seg_limit(vmx, seg);
++      var->selector = vmx_read_guest_seg_selector(vmx, seg);
++      ar = vmx_read_guest_seg_ar(vmx, seg);
++      var->unusable = (ar >> 16) & 1;
++      var->type = ar & 15;
++      var->s = (ar >> 4) & 1;
++      var->dpl = (ar >> 5) & 3;
++      /*
++       * Some userspaces do not preserve unusable property. Since usable
++       * segment has to be present according to VMX spec we can use present
++       * property to amend userspace bug by making unusable segment always
++       * nonpresent. vmx_segment_access_rights() already marks nonpresent
++       * segment as unusable.
++       */
++      var->present = !var->unusable;
++      var->avl = (ar >> 12) & 1;
++      var->l = (ar >> 13) & 1;
++      var->db = (ar >> 14) & 1;
++      var->g = (ar >> 15) & 1;
++}
++
++static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
++{
++      struct kvm_segment s;
++
++      if (to_vmx(vcpu)->rmode.vm86_active) {
++              vmx_get_segment(vcpu, &s, seg);
++              return s.base;
++      }
++      return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
++}
++
++int vmx_get_cpl(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (unlikely(vmx->rmode.vm86_active))
++              return 0;
++      else {
++              int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
++              return VMX_AR_DPL(ar);
++      }
++}
++
++static u32 vmx_segment_access_rights(struct kvm_segment *var)
++{
++      u32 ar;
++
++      if (var->unusable || !var->present)
++              ar = 1 << 16;
++      else {
++              ar = var->type & 15;
++              ar |= (var->s & 1) << 4;
++              ar |= (var->dpl & 3) << 5;
++              ar |= (var->present & 1) << 7;
++              ar |= (var->avl & 1) << 12;
++              ar |= (var->l & 1) << 13;
++              ar |= (var->db & 1) << 14;
++              ar |= (var->g & 1) << 15;
++      }
++
++      return ar;
++}
++
++void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++
++      vmx_segment_cache_clear(vmx);
++
++      if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
++              vmx->rmode.segs[seg] = *var;
++              if (seg == VCPU_SREG_TR)
++                      vmcs_write16(sf->selector, var->selector);
++              else if (var->s)
++                      fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
++              goto out;
++      }
++
++      vmcs_writel(sf->base, var->base);
++      vmcs_write32(sf->limit, var->limit);
++      vmcs_write16(sf->selector, var->selector);
++
++      /*
++       *   Fix the "Accessed" bit in AR field of segment registers for older
++       * qemu binaries.
++       *   IA32 arch specifies that at the time of processor reset the
++       * "Accessed" bit in the AR field of segment registers is 1. And qemu
++       * is setting it to 0 in the userland code. This causes invalid guest
++       * state vmexit when "unrestricted guest" mode is turned on.
++       *    Fix for this setup issue in cpu_reset is being pushed in the qemu
++       * tree. Newer qemu binaries with that qemu fix would not need this
++       * kvm hack.
++       */
++      if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
++              var->type |= 0x1; /* Accessed */
++
++      vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
++
++out:
++      vmx->emulation_required = emulation_required(vcpu);
++}
++
++static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
++{
++      u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
++
++      *db = (ar >> 14) & 1;
++      *l = (ar >> 13) & 1;
++}
++
++static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++      dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
++      dt->address = vmcs_readl(GUEST_IDTR_BASE);
++}
++
++static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++      vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
++      vmcs_writel(GUEST_IDTR_BASE, dt->address);
++}
++
++static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++      dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
++      dt->address = vmcs_readl(GUEST_GDTR_BASE);
++}
++
++static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
++{
++      vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
++      vmcs_writel(GUEST_GDTR_BASE, dt->address);
++}
++
++static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
++{
++      struct kvm_segment var;
++      u32 ar;
++
++      vmx_get_segment(vcpu, &var, seg);
++      var.dpl = 0x3;
++      if (seg == VCPU_SREG_CS)
++              var.type = 0x3;
++      ar = vmx_segment_access_rights(&var);
++
++      if (var.base != (var.selector << 4))
++              return false;
++      if (var.limit != 0xffff)
++              return false;
++      if (ar != 0xf3)
++              return false;
++
++      return true;
++}
++
++static bool code_segment_valid(struct kvm_vcpu *vcpu)
++{
++      struct kvm_segment cs;
++      unsigned int cs_rpl;
++
++      vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
++      cs_rpl = cs.selector & SEGMENT_RPL_MASK;
++
++      if (cs.unusable)
++              return false;
++      if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
++              return false;
++      if (!cs.s)
++              return false;
++      if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
++              if (cs.dpl > cs_rpl)
++                      return false;
++      } else {
++              if (cs.dpl != cs_rpl)
++                      return false;
++      }
++      if (!cs.present)
++              return false;
++
++      /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
++      return true;
++}
++
++static bool stack_segment_valid(struct kvm_vcpu *vcpu)
++{
++      struct kvm_segment ss;
++      unsigned int ss_rpl;
++
++      vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
++      ss_rpl = ss.selector & SEGMENT_RPL_MASK;
++
++      if (ss.unusable)
++              return true;
++      if (ss.type != 3 && ss.type != 7)
++              return false;
++      if (!ss.s)
++              return false;
++      if (ss.dpl != ss_rpl) /* DPL != RPL */
++              return false;
++      if (!ss.present)
++              return false;
++
++      return true;
++}
++
++static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
++{
++      struct kvm_segment var;
++      unsigned int rpl;
++
++      vmx_get_segment(vcpu, &var, seg);
++      rpl = var.selector & SEGMENT_RPL_MASK;
++
++      if (var.unusable)
++              return true;
++      if (!var.s)
++              return false;
++      if (!var.present)
++              return false;
++      if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
++              if (var.dpl < rpl) /* DPL < RPL */
++                      return false;
++      }
++
++      /* TODO: Add other members to kvm_segment_field to allow checking for other access
++       * rights flags
++       */
++      return true;
++}
++
++static bool tr_valid(struct kvm_vcpu *vcpu)
++{
++      struct kvm_segment tr;
++
++      vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
++
++      if (tr.unusable)
++              return false;
++      if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
++              return false;
++      if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
++              return false;
++      if (!tr.present)
++              return false;
++
++      return true;
++}
++
++static bool ldtr_valid(struct kvm_vcpu *vcpu)
++{
++      struct kvm_segment ldtr;
++
++      vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
++
++      if (ldtr.unusable)
++              return true;
++      if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
++              return false;
++      if (ldtr.type != 2)
++              return false;
++      if (!ldtr.present)
++              return false;
++
++      return true;
++}
++
++static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
++{
++      struct kvm_segment cs, ss;
++
++      vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
++      vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
++
++      return ((cs.selector & SEGMENT_RPL_MASK) ==
++               (ss.selector & SEGMENT_RPL_MASK));
++}
++
++/*
++ * Check if guest state is valid. Returns true if valid, false if
++ * not.
++ * We assume that registers are always usable
++ */
++static bool guest_state_valid(struct kvm_vcpu *vcpu)
++{
++      if (enable_unrestricted_guest)
++              return true;
++
++      /* real mode guest state checks */
++      if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
++                      return false;
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
++                      return false;
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
++                      return false;
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
++                      return false;
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
++                      return false;
++              if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
++                      return false;
++      } else {
++      /* protected mode guest state checks */
++              if (!cs_ss_rpl_check(vcpu))
++                      return false;
++              if (!code_segment_valid(vcpu))
++                      return false;
++              if (!stack_segment_valid(vcpu))
++                      return false;
++              if (!data_segment_valid(vcpu, VCPU_SREG_DS))
++                      return false;
++              if (!data_segment_valid(vcpu, VCPU_SREG_ES))
++                      return false;
++              if (!data_segment_valid(vcpu, VCPU_SREG_FS))
++                      return false;
++              if (!data_segment_valid(vcpu, VCPU_SREG_GS))
++                      return false;
++              if (!tr_valid(vcpu))
++                      return false;
++              if (!ldtr_valid(vcpu))
++                      return false;
++      }
++      /* TODO:
++       * - Add checks on RIP
++       * - Add checks on RFLAGS
++       */
++
++      return true;
++}
++
++static int init_rmode_tss(struct kvm *kvm)
++{
++      gfn_t fn;
++      u16 data = 0;
++      int idx, r;
++
++      idx = srcu_read_lock(&kvm->srcu);
++      fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
++      r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
++      if (r < 0)
++              goto out;
++      data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
++      r = kvm_write_guest_page(kvm, fn++, &data,
++                      TSS_IOPB_BASE_OFFSET, sizeof(u16));
++      if (r < 0)
++              goto out;
++      r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
++      if (r < 0)
++              goto out;
++      r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
++      if (r < 0)
++              goto out;
++      data = ~0;
++      r = kvm_write_guest_page(kvm, fn, &data,
++                               RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
++                               sizeof(u8));
++out:
++      srcu_read_unlock(&kvm->srcu, idx);
++      return r;
++}
++
++static int init_rmode_identity_map(struct kvm *kvm)
++{
++      struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
++      int i, idx, r = 0;
++      kvm_pfn_t identity_map_pfn;
++      u32 tmp;
++
++      /* Protect kvm_vmx->ept_identity_pagetable_done. */
++      mutex_lock(&kvm->slots_lock);
++
++      if (likely(kvm_vmx->ept_identity_pagetable_done))
++              goto out2;
++
++      if (!kvm_vmx->ept_identity_map_addr)
++              kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
++      identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
++
++      r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
++                                  kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
++      if (r < 0)
++              goto out2;
++
++      idx = srcu_read_lock(&kvm->srcu);
++      r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
++      if (r < 0)
++              goto out;
++      /* Set up identity-mapping pagetable for EPT in real mode */
++      for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
++              tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
++                      _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
++              r = kvm_write_guest_page(kvm, identity_map_pfn,
++                              &tmp, i * sizeof(tmp), sizeof(tmp));
++              if (r < 0)
++                      goto out;
++      }
++      kvm_vmx->ept_identity_pagetable_done = true;
++
++out:
++      srcu_read_unlock(&kvm->srcu, idx);
++
++out2:
++      mutex_unlock(&kvm->slots_lock);
++      return r;
++}
++
++static void seg_setup(int seg)
++{
++      const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
++      unsigned int ar;
++
++      vmcs_write16(sf->selector, 0);
++      vmcs_writel(sf->base, 0);
++      vmcs_write32(sf->limit, 0xffff);
++      ar = 0x93;
++      if (seg == VCPU_SREG_CS)
++              ar |= 0x08; /* code segment */
++
++      vmcs_write32(sf->ar_bytes, ar);
++}
++
++static int alloc_apic_access_page(struct kvm *kvm)
++{
++      struct page *page;
++      int r = 0;
++
++      mutex_lock(&kvm->slots_lock);
++      if (kvm->arch.apic_access_page_done)
++              goto out;
++      r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
++                                  APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
++      if (r)
++              goto out;
++
++      page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
++      if (is_error_page(page)) {
++              r = -EFAULT;
++              goto out;
++      }
++
++      /*
++       * Do not pin the page in memory, so that memory hot-unplug
++       * is able to migrate it.
++       */
++      put_page(page);
++      kvm->arch.apic_access_page_done = true;
++out:
++      mutex_unlock(&kvm->slots_lock);
++      return r;
++}
++
++int allocate_vpid(void)
++{
++      int vpid;
++
++      if (!enable_vpid)
++              return 0;
++      spin_lock(&vmx_vpid_lock);
++      vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
++      if (vpid < VMX_NR_VPIDS)
++              __set_bit(vpid, vmx_vpid_bitmap);
++      else
++              vpid = 0;
++      spin_unlock(&vmx_vpid_lock);
++      return vpid;
++}
++
++void free_vpid(int vpid)
++{
++      if (!enable_vpid || vpid == 0)
++              return;
++      spin_lock(&vmx_vpid_lock);
++      __clear_bit(vpid, vmx_vpid_bitmap);
++      spin_unlock(&vmx_vpid_lock);
++}
++
++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
++                                                        u32 msr, int type)
++{
++      int f = sizeof(unsigned long);
++
++      if (!cpu_has_vmx_msr_bitmap())
++              return;
++
++      if (static_branch_unlikely(&enable_evmcs))
++              evmcs_touch_msr_bitmap();
++
++      /*
++       * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
++       * have the write-low and read-high bitmap offsets the wrong way round.
++       * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
++       */
++      if (msr <= 0x1fff) {
++              if (type & MSR_TYPE_R)
++                      /* read-low */
++                      __clear_bit(msr, msr_bitmap + 0x000 / f);
++
++              if (type & MSR_TYPE_W)
++                      /* write-low */
++                      __clear_bit(msr, msr_bitmap + 0x800 / f);
++
++      } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++              msr &= 0x1fff;
++              if (type & MSR_TYPE_R)
++                      /* read-high */
++                      __clear_bit(msr, msr_bitmap + 0x400 / f);
++
++              if (type & MSR_TYPE_W)
++                      /* write-high */
++                      __clear_bit(msr, msr_bitmap + 0xc00 / f);
++
++      }
++}
++
++static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
++                                                       u32 msr, int type)
++{
++      int f = sizeof(unsigned long);
++
++      if (!cpu_has_vmx_msr_bitmap())
++              return;
++
++      if (static_branch_unlikely(&enable_evmcs))
++              evmcs_touch_msr_bitmap();
++
++      /*
++       * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
++       * have the write-low and read-high bitmap offsets the wrong way round.
++       * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
++       */
++      if (msr <= 0x1fff) {
++              if (type & MSR_TYPE_R)
++                      /* read-low */
++                      __set_bit(msr, msr_bitmap + 0x000 / f);
++
++              if (type & MSR_TYPE_W)
++                      /* write-low */
++                      __set_bit(msr, msr_bitmap + 0x800 / f);
++
++      } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
++              msr &= 0x1fff;
++              if (type & MSR_TYPE_R)
++                      /* read-high */
++                      __set_bit(msr, msr_bitmap + 0x400 / f);
++
++              if (type & MSR_TYPE_W)
++                      /* write-high */
++                      __set_bit(msr, msr_bitmap + 0xc00 / f);
++
++      }
++}
++
++static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
++                                                    u32 msr, int type, bool value)
++{
++      if (value)
++              vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
++      else
++              vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
++}
++
++static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
++{
++      u8 mode = 0;
++
++      if (cpu_has_secondary_exec_ctrls() &&
++          (secondary_exec_controls_get(to_vmx(vcpu)) &
++           SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
++              mode |= MSR_BITMAP_MODE_X2APIC;
++              if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
++                      mode |= MSR_BITMAP_MODE_X2APIC_APICV;
++      }
++
++      return mode;
++}
++
++static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
++                                       u8 mode)
++{
++      int msr;
++
++      for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
++              unsigned word = msr / BITS_PER_LONG;
++              msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
++              msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
++      }
++
++      if (mode & MSR_BITMAP_MODE_X2APIC) {
++              /*
++               * TPR reads and writes can be virtualized even if virtual interrupt
++               * delivery is not in use.
++               */
++              vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
++              if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
++                      vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
++                      vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
++                      vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
++              }
++      }
++}
++
++void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
++      u8 mode = vmx_msr_bitmap_mode(vcpu);
++      u8 changed = mode ^ vmx->msr_bitmap_mode;
++
++      if (!changed)
++              return;
++
++      if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
++              vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
++
++      vmx->msr_bitmap_mode = mode;
++}
++
++void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
++{
++      unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
++      bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
++      u32 i;
++
++      vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
++                                                      MSR_TYPE_RW, flag);
++      vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
++                                                      MSR_TYPE_RW, flag);
++      vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
++                                                      MSR_TYPE_RW, flag);
++      vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
++                                                      MSR_TYPE_RW, flag);
++      for (i = 0; i < vmx->pt_desc.addr_range; i++) {
++              vmx_set_intercept_for_msr(msr_bitmap,
++                      MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
++              vmx_set_intercept_for_msr(msr_bitmap,
++                      MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
++      }
++}
++
++static bool vmx_get_enable_apicv(struct kvm *kvm)
++{
++      return enable_apicv;
++}
++
++static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      void *vapic_page;
++      u32 vppr;
++      int rvi;
++
++      if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
++              !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
++              WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
++              return false;
++
++      rvi = vmx_get_rvi();
++
++      vapic_page = vmx->nested.virtual_apic_map.hva;
++      vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
++
++      return ((rvi & 0xf0) > (vppr & 0xf0));
++}
++
++static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
++                                                   bool nested)
++{
++#ifdef CONFIG_SMP
++      int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
++
++      if (vcpu->mode == IN_GUEST_MODE) {
++              /*
++               * The vector of interrupt to be delivered to vcpu had
++               * been set in PIR before this function.
++               *
++               * Following cases will be reached in this block, and
++               * we always send a notification event in all cases as
++               * explained below.
++               *
++               * Case 1: vcpu keeps in non-root mode. Sending a
++               * notification event posts the interrupt to vcpu.
++               *
++               * Case 2: vcpu exits to root mode and is still
++               * runnable. PIR will be synced to vIRR before the
++               * next vcpu entry. Sending a notification event in
++               * this case has no effect, as vcpu is not in root
++               * mode.
++               *
++               * Case 3: vcpu exits to root mode and is blocked.
++               * vcpu_block() has already synced PIR to vIRR and
++               * never blocks vcpu if vIRR is not cleared. Therefore,
++               * a blocked vcpu here does not wait for any requested
++               * interrupts in PIR, and sending a notification event
++               * which has no effect is safe here.
++               */
++
++              apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
++              return true;
++      }
++#endif
++      return false;
++}
++
++static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
++                                              int vector)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (is_guest_mode(vcpu) &&
++          vector == vmx->nested.posted_intr_nv) {
++              /*
++               * If a posted intr is not recognized by hardware,
++               * we will accomplish it in the next vmentry.
++               */
++              vmx->nested.pi_pending = true;
++              kvm_make_request(KVM_REQ_EVENT, vcpu);
++              /* the PIR and ON have been set by L1. */
++              if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
++                      kvm_vcpu_kick(vcpu);
++              return 0;
++      }
++      return -1;
++}
++/*
++ * Send interrupt to vcpu via posted interrupt way.
++ * 1. If target vcpu is running(non-root mode), send posted interrupt
++ * notification to vcpu and hardware will sync PIR to vIRR atomically.
++ * 2. If target vcpu isn't running(root mode), kick it to pick up the
++ * interrupt from PIR in next vmentry.
++ */
++static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      int r;
++
++      r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
++      if (!r)
++              return;
++
++      if (pi_test_and_set_pir(vector, &vmx->pi_desc))
++              return;
++
++      /* If a previous notification has sent the IPI, nothing to do.  */
++      if (pi_test_and_set_on(&vmx->pi_desc))
++              return;
++
++      if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
++              kvm_vcpu_kick(vcpu);
++}
++
++/*
++ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
++ * will not change in the lifetime of the guest.
++ * Note that host-state that does change is set elsewhere. E.g., host-state
++ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
++ */
++void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
++{
++      u32 low32, high32;
++      unsigned long tmpl;
++      unsigned long cr0, cr3, cr4;
++
++      cr0 = read_cr0();
++      WARN_ON(cr0 & X86_CR0_TS);
++      vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
++
++      /*
++       * Save the most likely value for this task's CR3 in the VMCS.
++       * We can't use __get_current_cr3_fast() because we're not atomic.
++       */
++      cr3 = __read_cr3();
++      vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
++      vmx->loaded_vmcs->host_state.cr3 = cr3;
++
++      /* Save the most likely value for this task's CR4 in the VMCS. */
++      cr4 = cr4_read_shadow();
++      vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
++      vmx->loaded_vmcs->host_state.cr4 = cr4;
++
++      vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
++#ifdef CONFIG_X86_64
++      /*
++       * Load null selectors, so we can avoid reloading them in
++       * vmx_prepare_switch_to_host(), in case userspace uses
++       * the null selectors too (the expected case).
++       */
++      vmcs_write16(HOST_DS_SELECTOR, 0);
++      vmcs_write16(HOST_ES_SELECTOR, 0);
++#else
++      vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++      vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++#endif
++      vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
++      vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
++
++      vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
++
++      vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
++
++      rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
++      vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
++      rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
++      vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
++
++      if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
++              rdmsr(MSR_IA32_CR_PAT, low32, high32);
++              vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
++      }
++
++      if (cpu_has_load_ia32_efer())
++              vmcs_write64(HOST_IA32_EFER, host_efer);
++}
++
++void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
++{
++      vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
++      if (enable_ept)
++              vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
++      if (is_guest_mode(&vmx->vcpu))
++              vmx->vcpu.arch.cr4_guest_owned_bits &=
++                      ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
++      vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
++}
++
++u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
++{
++      u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
++
++      if (!kvm_vcpu_apicv_active(&vmx->vcpu))
++              pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
++
++      if (!enable_vnmi)
++              pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
++
++      if (!enable_preemption_timer)
++              pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
++
++      return pin_based_exec_ctrl;
++}
++
++static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
++      if (cpu_has_secondary_exec_ctrls()) {
++              if (kvm_vcpu_apicv_active(vcpu))
++                      secondary_exec_controls_setbit(vmx,
++                                    SECONDARY_EXEC_APIC_REGISTER_VIRT |
++                                    SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++              else
++                      secondary_exec_controls_clearbit(vmx,
++                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
++                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++      }
++
++      if (cpu_has_vmx_msr_bitmap())
++              vmx_update_msr_bitmap(vcpu);
++}
++
++u32 vmx_exec_control(struct vcpu_vmx *vmx)
++{
++      u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
++
++      if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
++              exec_control &= ~CPU_BASED_MOV_DR_EXITING;
++
++      if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
++              exec_control &= ~CPU_BASED_TPR_SHADOW;
++#ifdef CONFIG_X86_64
++              exec_control |= CPU_BASED_CR8_STORE_EXITING |
++                              CPU_BASED_CR8_LOAD_EXITING;
++#endif
++      }
++      if (!enable_ept)
++              exec_control |= CPU_BASED_CR3_STORE_EXITING |
++                              CPU_BASED_CR3_LOAD_EXITING  |
++                              CPU_BASED_INVLPG_EXITING;
++      if (kvm_mwait_in_guest(vmx->vcpu.kvm))
++              exec_control &= ~(CPU_BASED_MWAIT_EXITING |
++                              CPU_BASED_MONITOR_EXITING);
++      if (kvm_hlt_in_guest(vmx->vcpu.kvm))
++              exec_control &= ~CPU_BASED_HLT_EXITING;
++      return exec_control;
++}
++
++
++static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
++{
++      struct kvm_vcpu *vcpu = &vmx->vcpu;
++
++      u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
++
++      if (pt_mode == PT_MODE_SYSTEM)
++              exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
++      if (!cpu_need_virtualize_apic_accesses(vcpu))
++              exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++      if (vmx->vpid == 0)
++              exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
++      if (!enable_ept) {
++              exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
++              enable_unrestricted_guest = 0;
++      }
++      if (!enable_unrestricted_guest)
++              exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
++      if (kvm_pause_in_guest(vmx->vcpu.kvm))
++              exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
++      if (!kvm_vcpu_apicv_active(vcpu))
++              exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
++                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
++      exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
++
++      /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
++       * in vmx_set_cr4.  */
++      exec_control &= ~SECONDARY_EXEC_DESC;
++
++      /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
++         (handle_vmptrld).
++         We can NOT enable shadow_vmcs here because we don't have yet
++         a current VMCS12
++      */
++      exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
++
++      if (!enable_pml)
++              exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
++
++      if (vmx_xsaves_supported()) {
++              /* Exposing XSAVES only when XSAVE is exposed */
++              bool xsaves_enabled =
++                      guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
++                      guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
++
++              vcpu->arch.xsaves_enabled = xsaves_enabled;
++
++              if (!xsaves_enabled)
++                      exec_control &= ~SECONDARY_EXEC_XSAVES;
++
++              if (nested) {
++                      if (xsaves_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_XSAVES;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_XSAVES;
++              }
++      }
++
++      if (vmx_rdtscp_supported()) {
++              bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
++              if (!rdtscp_enabled)
++                      exec_control &= ~SECONDARY_EXEC_RDTSCP;
++
++              if (nested) {
++                      if (rdtscp_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_RDTSCP;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_RDTSCP;
++              }
++      }
++
++      if (vmx_invpcid_supported()) {
++              /* Exposing INVPCID only when PCID is exposed */
++              bool invpcid_enabled =
++                      guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
++                      guest_cpuid_has(vcpu, X86_FEATURE_PCID);
++
++              if (!invpcid_enabled) {
++                      exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
++                      guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
++              }
++
++              if (nested) {
++                      if (invpcid_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_ENABLE_INVPCID;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_ENABLE_INVPCID;
++              }
++      }
++
++      if (vmx_rdrand_supported()) {
++              bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
++              if (rdrand_enabled)
++                      exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
++
++              if (nested) {
++                      if (rdrand_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_RDRAND_EXITING;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_RDRAND_EXITING;
++              }
++      }
++
++      if (vmx_rdseed_supported()) {
++              bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
++              if (rdseed_enabled)
++                      exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
++
++              if (nested) {
++                      if (rdseed_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_RDSEED_EXITING;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_RDSEED_EXITING;
++              }
++      }
++
++      if (vmx_waitpkg_supported()) {
++              bool waitpkg_enabled =
++                      guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
++
++              if (!waitpkg_enabled)
++                      exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
++
++              if (nested) {
++                      if (waitpkg_enabled)
++                              vmx->nested.msrs.secondary_ctls_high |=
++                                      SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
++                      else
++                              vmx->nested.msrs.secondary_ctls_high &=
++                                      ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
++              }
++      }
++
++      vmx->secondary_exec_control = exec_control;
++}
++
++static void ept_set_mmio_spte_mask(void)
++{
++      /*
++       * EPT Misconfigurations can be generated if the value of bits 2:0
++       * of an EPT paging-structure entry is 110b (write/execute).
++       */
++      kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
++                                 VMX_EPT_MISCONFIG_WX_VALUE, 0);
++}
++
++#define VMX_XSS_EXIT_BITMAP 0
++
++/*
++ * Noting that the initialization of Guest-state Area of VMCS is in
++ * vmx_vcpu_reset().
++ */
++static void init_vmcs(struct vcpu_vmx *vmx)
++{
++      if (nested)
++              nested_vmx_set_vmcs_shadowing_bitmap();
++
++      if (cpu_has_vmx_msr_bitmap())
++              vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
++
++      vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
++
++      /* Control */
++      pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
++
++      exec_controls_set(vmx, vmx_exec_control(vmx));
++
++      if (cpu_has_secondary_exec_ctrls()) {
++              vmx_compute_secondary_exec_control(vmx);
++              secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
++      }
++
++      if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
++              vmcs_write64(EOI_EXIT_BITMAP0, 0);
++              vmcs_write64(EOI_EXIT_BITMAP1, 0);
++              vmcs_write64(EOI_EXIT_BITMAP2, 0);
++              vmcs_write64(EOI_EXIT_BITMAP3, 0);
++
++              vmcs_write16(GUEST_INTR_STATUS, 0);
++
++              vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
++              vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
++      }
++
++      if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
++              vmcs_write32(PLE_GAP, ple_gap);
++              vmx->ple_window = ple_window;
++              vmx->ple_window_dirty = true;
++      }
++
++      vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
++      vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
++      vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
++
++      vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
++      vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
++      vmx_set_constant_host_state(vmx);
++      vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
++      vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
++
++      if (cpu_has_vmx_vmfunc())
++              vmcs_write64(VM_FUNCTION_CONTROL, 0);
++
++      vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
++      vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
++      vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
++      vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
++      vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
++
++      if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
++              vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
++
++      vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
++
++      /* 22.2.1, 20.8.1 */
++      vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
++
++      vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
++      vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
++
++      set_cr4_guest_host_mask(vmx);
++
++      if (vmx->vpid != 0)
++              vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
++
++      if (vmx_xsaves_supported())
++              vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
++
++      if (enable_pml) {
++              vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
++              vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
++      }
++
++      if (cpu_has_vmx_encls_vmexit())
++              vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
++
++      if (pt_mode == PT_MODE_HOST_GUEST) {
++              memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
++              /* Bit[6~0] are forced to 1, writes are ignored. */
++              vmx->pt_desc.guest.output_mask = 0x7F;
++              vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
++      }
++}
++
++static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct msr_data apic_base_msr;
++      u64 cr0;
++
++      vmx->rmode.vm86_active = 0;
++      vmx->spec_ctrl = 0;
++
++      vmx->msr_ia32_umwait_control = 0;
++
++      vcpu->arch.microcode_version = 0x100000000ULL;
++      vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
++      vmx->hv_deadline_tsc = -1;
++      kvm_set_cr8(vcpu, 0);
++
++      if (!init_event) {
++              apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
++                                   MSR_IA32_APICBASE_ENABLE;
++              if (kvm_vcpu_is_reset_bsp(vcpu))
++                      apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
++              apic_base_msr.host_initiated = true;
++              kvm_set_apic_base(vcpu, &apic_base_msr);
++      }
++
++      vmx_segment_cache_clear(vmx);
++
++      seg_setup(VCPU_SREG_CS);
++      vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
++      vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
++
++      seg_setup(VCPU_SREG_DS);
++      seg_setup(VCPU_SREG_ES);
++      seg_setup(VCPU_SREG_FS);
++      seg_setup(VCPU_SREG_GS);
++      seg_setup(VCPU_SREG_SS);
++
++      vmcs_write16(GUEST_TR_SELECTOR, 0);
++      vmcs_writel(GUEST_TR_BASE, 0);
++      vmcs_write32(GUEST_TR_LIMIT, 0xffff);
++      vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
++
++      vmcs_write16(GUEST_LDTR_SELECTOR, 0);
++      vmcs_writel(GUEST_LDTR_BASE, 0);
++      vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
++      vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
++
++      if (!init_event) {
++              vmcs_write32(GUEST_SYSENTER_CS, 0);
++              vmcs_writel(GUEST_SYSENTER_ESP, 0);
++              vmcs_writel(GUEST_SYSENTER_EIP, 0);
++              vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
++      }
++
++      kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
++      kvm_rip_write(vcpu, 0xfff0);
++
++      vmcs_writel(GUEST_GDTR_BASE, 0);
++      vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
++
++      vmcs_writel(GUEST_IDTR_BASE, 0);
++      vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
++
++      vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
++      vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
++      vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
++      if (kvm_mpx_supported())
++              vmcs_write64(GUEST_BNDCFGS, 0);
++
++      setup_msrs(vmx);
++
++      vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
++
++      if (cpu_has_vmx_tpr_shadow() && !init_event) {
++              vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
++              if (cpu_need_tpr_shadow(vcpu))
++                      vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
++                                   __pa(vcpu->arch.apic->regs));
++              vmcs_write32(TPR_THRESHOLD, 0);
++      }
++
++      kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
++
++      cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
++      vmx->vcpu.arch.cr0 = cr0;
++      vmx_set_cr0(vcpu, cr0); /* enter rmode */
++      vmx_set_cr4(vcpu, 0);
++      vmx_set_efer(vcpu, 0);
++
++      update_exception_bitmap(vcpu);
++
++      vpid_sync_context(vmx->vpid);
++      if (init_event)
++              vmx_clear_hlt(vcpu);
++}
++
++static void enable_irq_window(struct kvm_vcpu *vcpu)
++{
++      exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
++}
++
++static void enable_nmi_window(struct kvm_vcpu *vcpu)
++{
++      if (!enable_vnmi ||
++          vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
++              enable_irq_window(vcpu);
++              return;
++      }
++
++      exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
++}
++
++static void vmx_inject_irq(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      uint32_t intr;
++      int irq = vcpu->arch.interrupt.nr;
++
++      trace_kvm_inj_virq(irq);
++
++      ++vcpu->stat.irq_injections;
++      if (vmx->rmode.vm86_active) {
++              int inc_eip = 0;
++              if (vcpu->arch.interrupt.soft)
++                      inc_eip = vcpu->arch.event_exit_inst_len;
++              kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
++              return;
++      }
++      intr = irq | INTR_INFO_VALID_MASK;
++      if (vcpu->arch.interrupt.soft) {
++              intr |= INTR_TYPE_SOFT_INTR;
++              vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
++                           vmx->vcpu.arch.event_exit_inst_len);
++      } else
++              intr |= INTR_TYPE_EXT_INTR;
++      vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
++
++      vmx_clear_hlt(vcpu);
++}
++
++static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (!enable_vnmi) {
++              /*
++               * Tracking the NMI-blocked state in software is built upon
++               * finding the next open IRQ window. This, in turn, depends on
++               * well-behaving guests: They have to keep IRQs disabled at
++               * least as long as the NMI handler runs. Otherwise we may
++               * cause NMI nesting, maybe breaking the guest. But as this is
++               * highly unlikely, we can live with the residual risk.
++               */
++              vmx->loaded_vmcs->soft_vnmi_blocked = 1;
++              vmx->loaded_vmcs->vnmi_blocked_time = 0;
++      }
++
++      ++vcpu->stat.nmi_injections;
++      vmx->loaded_vmcs->nmi_known_unmasked = false;
++
++      if (vmx->rmode.vm86_active) {
++              kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
++              return;
++      }
++
++      vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
++                      INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
++
++      vmx_clear_hlt(vcpu);
++}
++
++bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      bool masked;
++
++      if (!enable_vnmi)
++              return vmx->loaded_vmcs->soft_vnmi_blocked;
++      if (vmx->loaded_vmcs->nmi_known_unmasked)
++              return false;
++      masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
++      vmx->loaded_vmcs->nmi_known_unmasked = !masked;
++      return masked;
++}
++
++void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (!enable_vnmi) {
++              if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
++                      vmx->loaded_vmcs->soft_vnmi_blocked = masked;
++                      vmx->loaded_vmcs->vnmi_blocked_time = 0;
++              }
++      } else {
++              vmx->loaded_vmcs->nmi_known_unmasked = !masked;
++              if (masked)
++                      vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++                                    GUEST_INTR_STATE_NMI);
++              else
++                      vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
++                                      GUEST_INTR_STATE_NMI);
++      }
++}
++
++static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
++{
++      if (to_vmx(vcpu)->nested.nested_run_pending)
++              return 0;
++
++      if (!enable_vnmi &&
++          to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
++              return 0;
++
++      return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
++                (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
++                 | GUEST_INTR_STATE_NMI));
++}
++
++static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
++{
++      return (!to_vmx(vcpu)->nested.nested_run_pending &&
++              vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
++              !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
++                      (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
++}
++
++static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
++{
++      int ret;
++
++      if (enable_unrestricted_guest)
++              return 0;
++
++      ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
++                                  PAGE_SIZE * 3);
++      if (ret)
++              return ret;
++      to_kvm_vmx(kvm)->tss_addr = addr;
++      return init_rmode_tss(kvm);
++}
++
++static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
++{
++      to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
++      return 0;
++}
++
++static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
++{
++      switch (vec) {
++      case BP_VECTOR:
++              /*
++               * Update instruction length as we may reinject the exception
++               * from user space while in guest debugging mode.
++               */
++              to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
++                      vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++              if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
++                      return false;
++              /* fall through */
++      case DB_VECTOR:
++              if (vcpu->guest_debug &
++                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
++                      return false;
++              /* fall through */
++      case DE_VECTOR:
++      case OF_VECTOR:
++      case BR_VECTOR:
++      case UD_VECTOR:
++      case DF_VECTOR:
++      case SS_VECTOR:
++      case GP_VECTOR:
++      case MF_VECTOR:
++              return true;
++      break;
++      }
++      return false;
++}
++
++static int handle_rmode_exception(struct kvm_vcpu *vcpu,
++                                int vec, u32 err_code)
++{
++      /*
++       * Instruction with address size override prefix opcode 0x67
++       * Cause the #SS fault with 0 error code in VM86 mode.
++       */
++      if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
++              if (kvm_emulate_instruction(vcpu, 0)) {
++                      if (vcpu->arch.halt_request) {
++                              vcpu->arch.halt_request = 0;
++                              return kvm_vcpu_halt(vcpu);
++                      }
++                      return 1;
++              }
++              return 0;
++      }
++
++      /*
++       * Forward all other exceptions that are valid in real mode.
++       * FIXME: Breaks guest debugging in real mode, needs to be fixed with
++       *        the required debugging infrastructure rework.
++       */
++      kvm_queue_exception(vcpu, vec);
++      return 1;
++}
++
++/*
++ * Trigger machine check on the host. We assume all the MSRs are already set up
++ * by the CPU and that we still run on the same CPU as the MCE occurred on.
++ * We pass a fake environment to the machine check handler because we want
++ * the guest to be always treated like user space, no matter what context
++ * it used internally.
++ */
++static void kvm_machine_check(void)
++{
++#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
++      struct pt_regs regs = {
++              .cs = 3, /* Fake ring 3 no matter what the guest ran on */
++              .flags = X86_EFLAGS_IF,
++      };
++
++      do_machine_check(&regs, 0);
++#endif
++}
++
++static int handle_machine_check(struct kvm_vcpu *vcpu)
++{
++      /* handled by vmx_vcpu_run() */
++      return 1;
++}
++
++static int handle_exception_nmi(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct kvm_run *kvm_run = vcpu->run;
++      u32 intr_info, ex_no, error_code;
++      unsigned long cr2, rip, dr6;
++      u32 vect_info;
++
++      vect_info = vmx->idt_vectoring_info;
++      intr_info = vmx->exit_intr_info;
++
++      if (is_machine_check(intr_info) || is_nmi(intr_info))
++              return 1; /* handled by handle_exception_nmi_irqoff() */
++
++      if (is_invalid_opcode(intr_info))
++              return handle_ud(vcpu);
++
++      error_code = 0;
++      if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
++              error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
++
++      if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
++              WARN_ON_ONCE(!enable_vmware_backdoor);
++
++              /*
++               * VMware backdoor emulation on #GP interception only handles
++               * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
++               * error code on #GP.
++               */
++              if (error_code) {
++                      kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
++                      return 1;
++              }
++              return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
++      }
++
++      /*
++       * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
++       * MMIO, it is better to report an internal error.
++       * See the comments in vmx_handle_exit.
++       */
++      if ((vect_info & VECTORING_INFO_VALID_MASK) &&
++          !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
++              vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++              vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
++              vcpu->run->internal.ndata = 3;
++              vcpu->run->internal.data[0] = vect_info;
++              vcpu->run->internal.data[1] = intr_info;
++              vcpu->run->internal.data[2] = error_code;
++              return 0;
++      }
++
++      if (is_page_fault(intr_info)) {
++              cr2 = vmcs_readl(EXIT_QUALIFICATION);
++              /* EPT won't cause page fault directly */
++              WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
++              return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
++      }
++
++      ex_no = intr_info & INTR_INFO_VECTOR_MASK;
++
++      if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
++              return handle_rmode_exception(vcpu, ex_no, error_code);
++
++      switch (ex_no) {
++      case AC_VECTOR:
++              kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
++              return 1;
++      case DB_VECTOR:
++              dr6 = vmcs_readl(EXIT_QUALIFICATION);
++              if (!(vcpu->guest_debug &
++                    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
++                      vcpu->arch.dr6 &= ~DR_TRAP_BITS;
++                      vcpu->arch.dr6 |= dr6 | DR6_RTM;
++                      if (is_icebp(intr_info))
++                              WARN_ON(!skip_emulated_instruction(vcpu));
++
++                      kvm_queue_exception(vcpu, DB_VECTOR);
++                      return 1;
++              }
++              kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
++              kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
++              /* fall through */
++      case BP_VECTOR:
++              /*
++               * Update instruction length as we may reinject #BP from
++               * user space while in guest debugging mode. Reading it for
++               * #DB as well causes no harm, it is not used in that case.
++               */
++              vmx->vcpu.arch.event_exit_inst_len =
++                      vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
++              kvm_run->exit_reason = KVM_EXIT_DEBUG;
++              rip = kvm_rip_read(vcpu);
++              kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
++              kvm_run->debug.arch.exception = ex_no;
++              break;
++      default:
++              kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
++              kvm_run->ex.exception = ex_no;
++              kvm_run->ex.error_code = error_code;
++              break;
++      }
++      return 0;
++}
++
++static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
++{
++      ++vcpu->stat.irq_exits;
++      return 1;
++}
++
++static int handle_triple_fault(struct kvm_vcpu *vcpu)
++{
++      vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
++      vcpu->mmio_needed = 0;
++      return 0;
++}
++
++static int handle_io(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification;
++      int size, in, string;
++      unsigned port;
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++      string = (exit_qualification & 16) != 0;
++
++      ++vcpu->stat.io_exits;
++
++      if (string)
++              return kvm_emulate_instruction(vcpu, 0);
++
++      port = exit_qualification >> 16;
++      size = (exit_qualification & 7) + 1;
++      in = (exit_qualification & 8) != 0;
++
++      return kvm_fast_pio(vcpu, size, port, in);
++}
++
++static void
++vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
++{
++      /*
++       * Patch in the VMCALL instruction:
++       */
++      hypercall[0] = 0x0f;
++      hypercall[1] = 0x01;
++      hypercall[2] = 0xc1;
++}
++
++/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
++static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
++{
++      if (is_guest_mode(vcpu)) {
++              struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++              unsigned long orig_val = val;
++
++              /*
++               * We get here when L2 changed cr0 in a way that did not change
++               * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
++               * but did change L0 shadowed bits. So we first calculate the
++               * effective cr0 value that L1 would like to write into the
++               * hardware. It consists of the L2-owned bits from the new
++               * value combined with the L1-owned bits from L1's guest_cr0.
++               */
++              val = (val & ~vmcs12->cr0_guest_host_mask) |
++                      (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
++
++              if (!nested_guest_cr0_valid(vcpu, val))
++                      return 1;
++
++              if (kvm_set_cr0(vcpu, val))
++                      return 1;
++              vmcs_writel(CR0_READ_SHADOW, orig_val);
++              return 0;
++      } else {
++              if (to_vmx(vcpu)->nested.vmxon &&
++                  !nested_host_cr0_valid(vcpu, val))
++                      return 1;
++
++              return kvm_set_cr0(vcpu, val);
++      }
++}
++
++static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
++{
++      if (is_guest_mode(vcpu)) {
++              struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++              unsigned long orig_val = val;
++
++              /* analogously to handle_set_cr0 */
++              val = (val & ~vmcs12->cr4_guest_host_mask) |
++                      (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
++              if (kvm_set_cr4(vcpu, val))
++                      return 1;
++              vmcs_writel(CR4_READ_SHADOW, orig_val);
++              return 0;
++      } else
++              return kvm_set_cr4(vcpu, val);
++}
++
++static int handle_desc(struct kvm_vcpu *vcpu)
++{
++      WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
++      return kvm_emulate_instruction(vcpu, 0);
++}
++
++static int handle_cr(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification, val;
++      int cr;
++      int reg;
++      int err;
++      int ret;
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++      cr = exit_qualification & 15;
++      reg = (exit_qualification >> 8) & 15;
++      switch ((exit_qualification >> 4) & 3) {
++      case 0: /* mov to cr */
++              val = kvm_register_readl(vcpu, reg);
++              trace_kvm_cr_write(cr, val);
++              switch (cr) {
++              case 0:
++                      err = handle_set_cr0(vcpu, val);
++                      return kvm_complete_insn_gp(vcpu, err);
++              case 3:
++                      WARN_ON_ONCE(enable_unrestricted_guest);
++                      err = kvm_set_cr3(vcpu, val);
++                      return kvm_complete_insn_gp(vcpu, err);
++              case 4:
++                      err = handle_set_cr4(vcpu, val);
++                      return kvm_complete_insn_gp(vcpu, err);
++              case 8: {
++                              u8 cr8_prev = kvm_get_cr8(vcpu);
++                              u8 cr8 = (u8)val;
++                              err = kvm_set_cr8(vcpu, cr8);
++                              ret = kvm_complete_insn_gp(vcpu, err);
++                              if (lapic_in_kernel(vcpu))
++                                      return ret;
++                              if (cr8_prev <= cr8)
++                                      return ret;
++                              /*
++                               * TODO: we might be squashing a
++                               * KVM_GUESTDBG_SINGLESTEP-triggered
++                               * KVM_EXIT_DEBUG here.
++                               */
++                              vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
++                              return 0;
++                      }
++              }
++              break;
++      case 2: /* clts */
++              WARN_ONCE(1, "Guest should always own CR0.TS");
++              vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
++              trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
++              return kvm_skip_emulated_instruction(vcpu);
++      case 1: /*mov from cr*/
++              switch (cr) {
++              case 3:
++                      WARN_ON_ONCE(enable_unrestricted_guest);
++                      val = kvm_read_cr3(vcpu);
++                      kvm_register_write(vcpu, reg, val);
++                      trace_kvm_cr_read(cr, val);
++                      return kvm_skip_emulated_instruction(vcpu);
++              case 8:
++                      val = kvm_get_cr8(vcpu);
++                      kvm_register_write(vcpu, reg, val);
++                      trace_kvm_cr_read(cr, val);
++                      return kvm_skip_emulated_instruction(vcpu);
++              }
++              break;
++      case 3: /* lmsw */
++              val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
++              trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
++              kvm_lmsw(vcpu, val);
++
++              return kvm_skip_emulated_instruction(vcpu);
++      default:
++              break;
++      }
++      vcpu->run->exit_reason = 0;
++      vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
++             (int)(exit_qualification >> 4) & 3, cr);
++      return 0;
++}
++
++static int handle_dr(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification;
++      int dr, dr7, reg;
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++      dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
++
++      /* First, if DR does not exist, trigger UD */
++      if (!kvm_require_dr(vcpu, dr))
++              return 1;
++
++      /* Do not handle if the CPL > 0, will trigger GP on re-entry */
++      if (!kvm_require_cpl(vcpu, 0))
++              return 1;
++      dr7 = vmcs_readl(GUEST_DR7);
++      if (dr7 & DR7_GD) {
++              /*
++               * As the vm-exit takes precedence over the debug trap, we
++               * need to emulate the latter, either for the host or the
++               * guest debugging itself.
++               */
++              if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
++                      vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
++                      vcpu->run->debug.arch.dr7 = dr7;
++                      vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
++                      vcpu->run->debug.arch.exception = DB_VECTOR;
++                      vcpu->run->exit_reason = KVM_EXIT_DEBUG;
++                      return 0;
++              } else {
++                      vcpu->arch.dr6 &= ~DR_TRAP_BITS;
++                      vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
++                      kvm_queue_exception(vcpu, DB_VECTOR);
++                      return 1;
++              }
++      }
++
++      if (vcpu->guest_debug == 0) {
++              exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
++
++              /*
++               * No more DR vmexits; force a reload of the debug registers
++               * and reenter on this instruction.  The next vmexit will
++               * retrieve the full state of the debug registers.
++               */
++              vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
++              return 1;
++      }
++
++      reg = DEBUG_REG_ACCESS_REG(exit_qualification);
++      if (exit_qualification & TYPE_MOV_FROM_DR) {
++              unsigned long val;
++
++              if (kvm_get_dr(vcpu, dr, &val))
++                      return 1;
++              kvm_register_write(vcpu, reg, val);
++      } else
++              if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
++                      return 1;
++
++      return kvm_skip_emulated_instruction(vcpu);
++}
++
++static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
++{
++      return vcpu->arch.dr6;
++}
++
++static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
++{
++}
++
++static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
++{
++      get_debugreg(vcpu->arch.db[0], 0);
++      get_debugreg(vcpu->arch.db[1], 1);
++      get_debugreg(vcpu->arch.db[2], 2);
++      get_debugreg(vcpu->arch.db[3], 3);
++      get_debugreg(vcpu->arch.dr6, 6);
++      vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
++
++      vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
++      exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
++}
++
++static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
++{
++      vmcs_writel(GUEST_DR7, val);
++}
++
++static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
++{
++      kvm_apic_update_ppr(vcpu);
++      return 1;
++}
++
++static int handle_interrupt_window(struct kvm_vcpu *vcpu)
++{
++      exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
++
++      kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++      ++vcpu->stat.irq_window_exits;
++      return 1;
++}
++
++static int handle_vmcall(struct kvm_vcpu *vcpu)
++{
++      return kvm_emulate_hypercall(vcpu);
++}
++
++static int handle_invd(struct kvm_vcpu *vcpu)
++{
++      return kvm_emulate_instruction(vcpu, 0);
++}
++
++static int handle_invlpg(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++      kvm_mmu_invlpg(vcpu, exit_qualification);
++      return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_rdpmc(struct kvm_vcpu *vcpu)
++{
++      int err;
++
++      err = kvm_rdpmc(vcpu);
++      return kvm_complete_insn_gp(vcpu, err);
++}
++
++static int handle_wbinvd(struct kvm_vcpu *vcpu)
++{
++      return kvm_emulate_wbinvd(vcpu);
++}
++
++static int handle_xsetbv(struct kvm_vcpu *vcpu)
++{
++      u64 new_bv = kvm_read_edx_eax(vcpu);
++      u32 index = kvm_rcx_read(vcpu);
++
++      if (kvm_set_xcr(vcpu, index, new_bv) == 0)
++              return kvm_skip_emulated_instruction(vcpu);
++      return 1;
++}
++
++static int handle_apic_access(struct kvm_vcpu *vcpu)
++{
++      if (likely(fasteoi)) {
++              unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++              int access_type, offset;
++
++              access_type = exit_qualification & APIC_ACCESS_TYPE;
++              offset = exit_qualification & APIC_ACCESS_OFFSET;
++              /*
++               * Sane guest uses MOV to write EOI, with written value
++               * not cared. So make a short-circuit here by avoiding
++               * heavy instruction emulation.
++               */
++              if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
++                  (offset == APIC_EOI)) {
++                      kvm_lapic_set_eoi(vcpu);
++                      return kvm_skip_emulated_instruction(vcpu);
++              }
++      }
++      return kvm_emulate_instruction(vcpu, 0);
++}
++
++static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++      int vector = exit_qualification & 0xff;
++
++      /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
++      kvm_apic_set_eoi_accelerated(vcpu, vector);
++      return 1;
++}
++
++static int handle_apic_write(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++      u32 offset = exit_qualification & 0xfff;
++
++      /* APIC-write VM exit is trap-like and thus no need to adjust IP */
++      kvm_apic_write_nodecode(vcpu, offset);
++      return 1;
++}
++
++static int handle_task_switch(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long exit_qualification;
++      bool has_error_code = false;
++      u32 error_code = 0;
++      u16 tss_selector;
++      int reason, type, idt_v, idt_index;
++
++      idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
++      idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
++      type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++      reason = (u32)exit_qualification >> 30;
++      if (reason == TASK_SWITCH_GATE && idt_v) {
++              switch (type) {
++              case INTR_TYPE_NMI_INTR:
++                      vcpu->arch.nmi_injected = false;
++                      vmx_set_nmi_mask(vcpu, true);
++                      break;
++              case INTR_TYPE_EXT_INTR:
++              case INTR_TYPE_SOFT_INTR:
++                      kvm_clear_interrupt_queue(vcpu);
++                      break;
++              case INTR_TYPE_HARD_EXCEPTION:
++                      if (vmx->idt_vectoring_info &
++                          VECTORING_INFO_DELIVER_CODE_MASK) {
++                              has_error_code = true;
++                              error_code =
++                                      vmcs_read32(IDT_VECTORING_ERROR_CODE);
++                      }
++                      /* fall through */
++              case INTR_TYPE_SOFT_EXCEPTION:
++                      kvm_clear_exception_queue(vcpu);
++                      break;
++              default:
++                      break;
++              }
++      }
++      tss_selector = exit_qualification;
++
++      if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
++                     type != INTR_TYPE_EXT_INTR &&
++                     type != INTR_TYPE_NMI_INTR))
++              WARN_ON(!skip_emulated_instruction(vcpu));
++
++      /*
++       * TODO: What about debug traps on tss switch?
++       *       Are we supposed to inject them and update dr6?
++       */
++      return kvm_task_switch(vcpu, tss_selector,
++                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
++                             reason, has_error_code, error_code);
++}
++
++static int handle_ept_violation(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification;
++      gpa_t gpa;
++      u64 error_code;
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++      /*
++       * EPT violation happened while executing iret from NMI,
++       * "blocked by NMI" bit has to be set before next VM entry.
++       * There are errata that may cause this bit to not be set:
++       * AAK134, BY25.
++       */
++      if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
++                      enable_vnmi &&
++                      (exit_qualification & INTR_INFO_UNBLOCK_NMI))
++              vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
++
++      gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++      trace_kvm_page_fault(gpa, exit_qualification);
++
++      /* Is it a read fault? */
++      error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
++                   ? PFERR_USER_MASK : 0;
++      /* Is it a write fault? */
++      error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
++                    ? PFERR_WRITE_MASK : 0;
++      /* Is it a fetch fault? */
++      error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
++                    ? PFERR_FETCH_MASK : 0;
++      /* ept page table entry is present? */
++      error_code |= (exit_qualification &
++                     (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
++                      EPT_VIOLATION_EXECUTABLE))
++                    ? PFERR_PRESENT_MASK : 0;
++
++      error_code |= (exit_qualification & 0x100) != 0 ?
++             PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
++
++      vcpu->arch.exit_qualification = exit_qualification;
++      return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
++}
++
++static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
++{
++      gpa_t gpa;
++
++      /*
++       * A nested guest cannot optimize MMIO vmexits, because we have an
++       * nGPA here instead of the required GPA.
++       */
++      gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++      if (!is_guest_mode(vcpu) &&
++          !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
++              trace_kvm_fast_mmio(gpa);
++              return kvm_skip_emulated_instruction(vcpu);
++      }
++
++      return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
++}
++
++static int handle_nmi_window(struct kvm_vcpu *vcpu)
++{
++      WARN_ON_ONCE(!enable_vnmi);
++      exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
++      ++vcpu->stat.nmi_window_exits;
++      kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++      return 1;
++}
++
++static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      bool intr_window_requested;
++      unsigned count = 130;
++
++      /*
++       * We should never reach the point where we are emulating L2
++       * due to invalid guest state as that means we incorrectly
++       * allowed a nested VMEntry with an invalid vmcs12.
++       */
++      WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
++
++      intr_window_requested = exec_controls_get(vmx) &
++                              CPU_BASED_INTR_WINDOW_EXITING;
++
++      while (vmx->emulation_required && count-- != 0) {
++              if (intr_window_requested && vmx_interrupt_allowed(vcpu))
++                      return handle_interrupt_window(&vmx->vcpu);
++
++              if (kvm_test_request(KVM_REQ_EVENT, vcpu))
++                      return 1;
++
++              if (!kvm_emulate_instruction(vcpu, 0))
++                      return 0;
++
++              if (vmx->emulation_required && !vmx->rmode.vm86_active &&
++                  vcpu->arch.exception.pending) {
++                      vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++                      vcpu->run->internal.suberror =
++                                              KVM_INTERNAL_ERROR_EMULATION;
++                      vcpu->run->internal.ndata = 0;
++                      return 0;
++              }
++
++              if (vcpu->arch.halt_request) {
++                      vcpu->arch.halt_request = 0;
++                      return kvm_vcpu_halt(vcpu);
++              }
++
++              /*
++               * Note, return 1 and not 0, vcpu_run() is responsible for
++               * morphing the pending signal into the proper return code.
++               */
++              if (signal_pending(current))
++                      return 1;
++
++              if (need_resched())
++                      schedule();
++      }
++
++      return 1;
++}
++
++static void grow_ple_window(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned int old = vmx->ple_window;
++
++      vmx->ple_window = __grow_ple_window(old, ple_window,
++                                          ple_window_grow,
++                                          ple_window_max);
++
++      if (vmx->ple_window != old) {
++              vmx->ple_window_dirty = true;
++              trace_kvm_ple_window_update(vcpu->vcpu_id,
++                                          vmx->ple_window, old);
++      }
++}
++
++static void shrink_ple_window(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned int old = vmx->ple_window;
++
++      vmx->ple_window = __shrink_ple_window(old, ple_window,
++                                            ple_window_shrink,
++                                            ple_window);
++
++      if (vmx->ple_window != old) {
++              vmx->ple_window_dirty = true;
++              trace_kvm_ple_window_update(vcpu->vcpu_id,
++                                          vmx->ple_window, old);
++      }
++}
++
++/*
++ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
++ */
++static void wakeup_handler(void)
++{
++      struct kvm_vcpu *vcpu;
++      int cpu = smp_processor_id();
++
++      spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++      list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
++                      blocked_vcpu_list) {
++              struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++              if (pi_test_on(pi_desc) == 1)
++                      kvm_vcpu_kick(vcpu);
++      }
++      spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
++}
++
++static void vmx_enable_tdp(void)
++{
++      kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
++              enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
++              enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
++              0ull, VMX_EPT_EXECUTABLE_MASK,
++              cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
++              VMX_EPT_RWX_MASK, 0ull);
++
++      ept_set_mmio_spte_mask();
++      kvm_enable_tdp();
++}
++
++/*
++ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
++ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
++ */
++static int handle_pause(struct kvm_vcpu *vcpu)
++{
++      if (!kvm_pause_in_guest(vcpu->kvm))
++              grow_ple_window(vcpu);
++
++      /*
++       * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
++       * VM-execution control is ignored if CPL > 0. OTOH, KVM
++       * never set PAUSE_EXITING and just set PLE if supported,
++       * so the vcpu must be CPL=0 if it gets a PAUSE exit.
++       */
++      kvm_vcpu_on_spin(vcpu, true);
++      return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_nop(struct kvm_vcpu *vcpu)
++{
++      return kvm_skip_emulated_instruction(vcpu);
++}
++
++static int handle_mwait(struct kvm_vcpu *vcpu)
++{
++      printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
++      return handle_nop(vcpu);
++}
++
++static int handle_invalid_op(struct kvm_vcpu *vcpu)
++{
++      kvm_queue_exception(vcpu, UD_VECTOR);
++      return 1;
++}
++
++static int handle_monitor_trap(struct kvm_vcpu *vcpu)
++{
++      return 1;
++}
++
++static int handle_monitor(struct kvm_vcpu *vcpu)
++{
++      printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
++      return handle_nop(vcpu);
++}
++
++static int handle_invpcid(struct kvm_vcpu *vcpu)
++{
++      u32 vmx_instruction_info;
++      unsigned long type;
++      bool pcid_enabled;
++      gva_t gva;
++      struct x86_exception e;
++      unsigned i;
++      unsigned long roots_to_free = 0;
++      struct {
++              u64 pcid;
++              u64 gla;
++      } operand;
++
++      if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
++              kvm_queue_exception(vcpu, UD_VECTOR);
++              return 1;
++      }
++
++      vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
++      type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
++
++      if (type > 3) {
++              kvm_inject_gp(vcpu, 0);
++              return 1;
++      }
++
++      /* According to the Intel instruction reference, the memory operand
++       * is read even if it isn't needed (e.g., for type==all)
++       */
++      if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
++                              vmx_instruction_info, false,
++                              sizeof(operand), &gva))
++              return 1;
++
++      if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
++              kvm_inject_page_fault(vcpu, &e);
++              return 1;
++      }
++
++      if (operand.pcid >> 12 != 0) {
++              kvm_inject_gp(vcpu, 0);
++              return 1;
++      }
++
++      pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
++
++      switch (type) {
++      case INVPCID_TYPE_INDIV_ADDR:
++              if ((!pcid_enabled && (operand.pcid != 0)) ||
++                  is_noncanonical_address(operand.gla, vcpu)) {
++                      kvm_inject_gp(vcpu, 0);
++                      return 1;
++              }
++              kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
++              return kvm_skip_emulated_instruction(vcpu);
++
++      case INVPCID_TYPE_SINGLE_CTXT:
++              if (!pcid_enabled && (operand.pcid != 0)) {
++                      kvm_inject_gp(vcpu, 0);
++                      return 1;
++              }
++
++              if (kvm_get_active_pcid(vcpu) == operand.pcid) {
++                      kvm_mmu_sync_roots(vcpu);
++                      kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++              }
++
++              for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
++                      if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
++                          == operand.pcid)
++                              roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
++
++              kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
++              /*
++               * If neither the current cr3 nor any of the prev_roots use the
++               * given PCID, then nothing needs to be done here because a
++               * resync will happen anyway before switching to any other CR3.
++               */
++
++              return kvm_skip_emulated_instruction(vcpu);
++
++      case INVPCID_TYPE_ALL_NON_GLOBAL:
++              /*
++               * Currently, KVM doesn't mark global entries in the shadow
++               * page tables, so a non-global flush just degenerates to a
++               * global flush. If needed, we could optimize this later by
++               * keeping track of global entries in shadow page tables.
++               */
++
++              /* fall-through */
++      case INVPCID_TYPE_ALL_INCL_GLOBAL:
++              kvm_mmu_unload(vcpu);
++              return kvm_skip_emulated_instruction(vcpu);
++
++      default:
++              BUG(); /* We have already checked above that type <= 3 */
++      }
++}
++
++static int handle_pml_full(struct kvm_vcpu *vcpu)
++{
++      unsigned long exit_qualification;
++
++      trace_kvm_pml_full(vcpu->vcpu_id);
++
++      exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
++
++      /*
++       * PML buffer FULL happened while executing iret from NMI,
++       * "blocked by NMI" bit has to be set before next VM entry.
++       */
++      if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
++                      enable_vnmi &&
++                      (exit_qualification & INTR_INFO_UNBLOCK_NMI))
++              vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++                              GUEST_INTR_STATE_NMI);
++
++      /*
++       * PML buffer already flushed at beginning of VMEXIT. Nothing to do
++       * here.., and there's no userspace involvement needed for PML.
++       */
++      return 1;
++}
++
++static int handle_preemption_timer(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (!vmx->req_immediate_exit &&
++          !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
++              kvm_lapic_expired_hv_timer(vcpu);
++
++      return 1;
++}
++
++/*
++ * When nested=0, all VMX instruction VM Exits filter here.  The handlers
++ * are overwritten by nested_vmx_setup() when nested=1.
++ */
++static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
++{
++      kvm_queue_exception(vcpu, UD_VECTOR);
++      return 1;
++}
++
++static int handle_encls(struct kvm_vcpu *vcpu)
++{
++      /*
++       * SGX virtualization is not yet supported.  There is no software
++       * enable bit for SGX, so we have to trap ENCLS and inject a #UD
++       * to prevent the guest from executing ENCLS.
++       */
++      kvm_queue_exception(vcpu, UD_VECTOR);
++      return 1;
++}
++
++/*
++ * The exit handlers return 1 if the exit was handled fully and guest execution
++ * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
++ * to be done to userspace and return 0.
++ */
++static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
++      [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
++      [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
++      [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
++      [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
++      [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
++      [EXIT_REASON_CR_ACCESS]               = handle_cr,
++      [EXIT_REASON_DR_ACCESS]               = handle_dr,
++      [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
++      [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
++      [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
++      [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
++      [EXIT_REASON_HLT]                     = kvm_emulate_halt,
++      [EXIT_REASON_INVD]                    = handle_invd,
++      [EXIT_REASON_INVLPG]                  = handle_invlpg,
++      [EXIT_REASON_RDPMC]                   = handle_rdpmc,
++      [EXIT_REASON_VMCALL]                  = handle_vmcall,
++      [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
++      [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
++      [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
++      [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
++      [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
++      [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
++      [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
++      [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
++      [EXIT_REASON_VMON]                    = handle_vmx_instruction,
++      [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
++      [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
++      [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
++      [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
++      [EXIT_REASON_WBINVD]                  = handle_wbinvd,
++      [EXIT_REASON_XSETBV]                  = handle_xsetbv,
++      [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
++      [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
++      [EXIT_REASON_GDTR_IDTR]               = handle_desc,
++      [EXIT_REASON_LDTR_TR]                 = handle_desc,
++      [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
++      [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
++      [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
++      [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
++      [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
++      [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
++      [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
++      [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
++      [EXIT_REASON_RDRAND]                  = handle_invalid_op,
++      [EXIT_REASON_RDSEED]                  = handle_invalid_op,
++      [EXIT_REASON_PML_FULL]                = handle_pml_full,
++      [EXIT_REASON_INVPCID]                 = handle_invpcid,
++      [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
++      [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
++      [EXIT_REASON_ENCLS]                   = handle_encls,
++};
++
++static const int kvm_vmx_max_exit_handlers =
++      ARRAY_SIZE(kvm_vmx_exit_handlers);
++
++static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
++{
++      *info1 = vmcs_readl(EXIT_QUALIFICATION);
++      *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
++}
++
++static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
++{
++      if (vmx->pml_pg) {
++              __free_page(vmx->pml_pg);
++              vmx->pml_pg = NULL;
++      }
++}
++
++static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      u64 *pml_buf;
++      u16 pml_idx;
++
++      pml_idx = vmcs_read16(GUEST_PML_INDEX);
++
++      /* Do nothing if PML buffer is empty */
++      if (pml_idx == (PML_ENTITY_NUM - 1))
++              return;
++
++      /* PML index always points to next available PML buffer entity */
++      if (pml_idx >= PML_ENTITY_NUM)
++              pml_idx = 0;
++      else
++              pml_idx++;
++
++      pml_buf = page_address(vmx->pml_pg);
++      for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
++              u64 gpa;
++
++              gpa = pml_buf[pml_idx];
++              WARN_ON(gpa & (PAGE_SIZE - 1));
++              kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
++      }
++
++      /* reset PML index */
++      vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
++}
++
++/*
++ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
++ * Called before reporting dirty_bitmap to userspace.
++ */
++static void kvm_flush_pml_buffers(struct kvm *kvm)
++{
++      int i;
++      struct kvm_vcpu *vcpu;
++      /*
++       * We only need to kick vcpu out of guest mode here, as PML buffer
++       * is flushed at beginning of all VMEXITs, and it's obvious that only
++       * vcpus running in guest are possible to have unflushed GPAs in PML
++       * buffer.
++       */
++      kvm_for_each_vcpu(i, vcpu, kvm)
++              kvm_vcpu_kick(vcpu);
++}
++
++static void vmx_dump_sel(char *name, uint32_t sel)
++{
++      pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
++             name, vmcs_read16(sel),
++             vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
++             vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
++             vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
++}
++
++static void vmx_dump_dtsel(char *name, uint32_t limit)
++{
++      pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
++             name, vmcs_read32(limit),
++             vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
++}
++
++void dump_vmcs(void)
++{
++      u32 vmentry_ctl, vmexit_ctl;
++      u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
++      unsigned long cr4;
++      u64 efer;
++      int i, n;
++
++      if (!dump_invalid_vmcs) {
++              pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
++              return;
++      }
++
++      vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
++      vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
++      cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
++      pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
++      cr4 = vmcs_readl(GUEST_CR4);
++      efer = vmcs_read64(GUEST_IA32_EFER);
++      secondary_exec_control = 0;
++      if (cpu_has_secondary_exec_ctrls())
++              secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
++
++      pr_err("*** Guest State ***\n");
++      pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
++             vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
++             vmcs_readl(CR0_GUEST_HOST_MASK));
++      pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
++             cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
++      pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
++      if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
++          (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
++      {
++              pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
++                     vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
++              pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
++                     vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
++      }
++      pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
++             vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
++      pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
++             vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
++      pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
++             vmcs_readl(GUEST_SYSENTER_ESP),
++             vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
++      vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
++      vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
++      vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
++      vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
++      vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
++      vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
++      vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
++      vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
++      vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
++      vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
++      if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
++          (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
++              pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
++                     efer, vmcs_read64(GUEST_IA32_PAT));
++      pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
++             vmcs_read64(GUEST_IA32_DEBUGCTL),
++             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
++      if (cpu_has_load_perf_global_ctrl() &&
++          vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
++              pr_err("PerfGlobCtl = 0x%016llx\n",
++                     vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
++      if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
++              pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
++      pr_err("Interruptibility = %08x  ActivityState = %08x\n",
++             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
++             vmcs_read32(GUEST_ACTIVITY_STATE));
++      if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
++              pr_err("InterruptStatus = %04x\n",
++                     vmcs_read16(GUEST_INTR_STATUS));
++
++      pr_err("*** Host State ***\n");
++      pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
++             vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
++      pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
++             vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
++             vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
++             vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
++             vmcs_read16(HOST_TR_SELECTOR));
++      pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
++             vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
++             vmcs_readl(HOST_TR_BASE));
++      pr_err("GDTBase=%016lx IDTBase=%016lx\n",
++             vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
++      pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
++             vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
++             vmcs_readl(HOST_CR4));
++      pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
++             vmcs_readl(HOST_IA32_SYSENTER_ESP),
++             vmcs_read32(HOST_IA32_SYSENTER_CS),
++             vmcs_readl(HOST_IA32_SYSENTER_EIP));
++      if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
++              pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
++                     vmcs_read64(HOST_IA32_EFER),
++                     vmcs_read64(HOST_IA32_PAT));
++      if (cpu_has_load_perf_global_ctrl() &&
++          vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
++              pr_err("PerfGlobCtl = 0x%016llx\n",
++                     vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
++
++      pr_err("*** Control State ***\n");
++      pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
++             pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
++      pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
++      pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
++             vmcs_read32(EXCEPTION_BITMAP),
++             vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
++             vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
++      pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
++             vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
++             vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
++             vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
++      pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
++             vmcs_read32(VM_EXIT_INTR_INFO),
++             vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
++             vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
++      pr_err("        reason=%08x qualification=%016lx\n",
++             vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
++      pr_err("IDTVectoring: info=%08x errcode=%08x\n",
++             vmcs_read32(IDT_VECTORING_INFO_FIELD),
++             vmcs_read32(IDT_VECTORING_ERROR_CODE));
++      pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
++      if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
++              pr_err("TSC Multiplier = 0x%016llx\n",
++                     vmcs_read64(TSC_MULTIPLIER));
++      if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
++              if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
++                      u16 status = vmcs_read16(GUEST_INTR_STATUS);
++                      pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
++              }
++              pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
++              if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
++                      pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
++              pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
++      }
++      if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
++              pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
++      if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
++              pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
++      n = vmcs_read32(CR3_TARGET_COUNT);
++      for (i = 0; i + 1 < n; i += 4)
++              pr_err("CR3 target%u=%016lx target%u=%016lx\n",
++                     i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
++                     i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
++      if (i < n)
++              pr_err("CR3 target%u=%016lx\n",
++                     i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
++      if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
++              pr_err("PLE Gap=%08x Window=%08x\n",
++                     vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
++      if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
++              pr_err("Virtual processor ID = 0x%04x\n",
++                     vmcs_read16(VIRTUAL_PROCESSOR_ID));
++}
++
++/*
++ * The guest has exited.  See if we can fix it or if we need userspace
++ * assistance.
++ */
++static int vmx_handle_exit(struct kvm_vcpu *vcpu,
++      enum exit_fastpath_completion exit_fastpath)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      u32 exit_reason = vmx->exit_reason;
++      u32 vectoring_info = vmx->idt_vectoring_info;
++
++      trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
++
++      /*
++       * Flush logged GPAs PML buffer, this will make dirty_bitmap more
++       * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
++       * querying dirty_bitmap, we only need to kick all vcpus out of guest
++       * mode as if vcpus is in root mode, the PML buffer must has been
++       * flushed already.
++       */
++      if (enable_pml)
++              vmx_flush_pml_buffer(vcpu);
++
++      /* If guest state is invalid, start emulating */
++      if (vmx->emulation_required)
++              return handle_invalid_guest_state(vcpu);
++
++      if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
++              return nested_vmx_reflect_vmexit(vcpu, exit_reason);
++
++      if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
++              dump_vmcs();
++              vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
++              vcpu->run->fail_entry.hardware_entry_failure_reason
++                      = exit_reason;
++              return 0;
++      }
++
++      if (unlikely(vmx->fail)) {
++              dump_vmcs();
++              vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
++              vcpu->run->fail_entry.hardware_entry_failure_reason
++                      = vmcs_read32(VM_INSTRUCTION_ERROR);
++              return 0;
++      }
++
++      /*
++       * Note:
++       * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
++       * delivery event since it indicates guest is accessing MMIO.
++       * The vm-exit can be triggered again after return to guest that
++       * will cause infinite loop.
++       */
++      if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
++                      (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
++                      exit_reason != EXIT_REASON_EPT_VIOLATION &&
++                      exit_reason != EXIT_REASON_PML_FULL &&
++                      exit_reason != EXIT_REASON_TASK_SWITCH)) {
++              vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++              vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
++              vcpu->run->internal.ndata = 3;
++              vcpu->run->internal.data[0] = vectoring_info;
++              vcpu->run->internal.data[1] = exit_reason;
++              vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
++              if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
++                      vcpu->run->internal.ndata++;
++                      vcpu->run->internal.data[3] =
++                              vmcs_read64(GUEST_PHYSICAL_ADDRESS);
++              }
++              return 0;
++      }
++
++      if (unlikely(!enable_vnmi &&
++                   vmx->loaded_vmcs->soft_vnmi_blocked)) {
++              if (vmx_interrupt_allowed(vcpu)) {
++                      vmx->loaded_vmcs->soft_vnmi_blocked = 0;
++              } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
++                         vcpu->arch.nmi_pending) {
++                      /*
++                       * This CPU don't support us in finding the end of an
++                       * NMI-blocked window if the guest runs with IRQs
++                       * disabled. So we pull the trigger after 1 s of
++                       * futile waiting, but inform the user about this.
++                       */
++                      printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
++                             "state on VCPU %d after 1 s timeout\n",
++                             __func__, vcpu->vcpu_id);
++                      vmx->loaded_vmcs->soft_vnmi_blocked = 0;
++              }
++      }
++
++      if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
++              kvm_skip_emulated_instruction(vcpu);
++              return 1;
++      } else if (exit_reason < kvm_vmx_max_exit_handlers
++          && kvm_vmx_exit_handlers[exit_reason]) {
++#ifdef CONFIG_RETPOLINE
++              if (exit_reason == EXIT_REASON_MSR_WRITE)
++                      return kvm_emulate_wrmsr(vcpu);
++              else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
++                      return handle_preemption_timer(vcpu);
++              else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
++                      return handle_interrupt_window(vcpu);
++              else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
++                      return handle_external_interrupt(vcpu);
++              else if (exit_reason == EXIT_REASON_HLT)
++                      return kvm_emulate_halt(vcpu);
++              else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
++                      return handle_ept_misconfig(vcpu);
++#endif
++              return kvm_vmx_exit_handlers[exit_reason](vcpu);
++      } else {
++              vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
++                              exit_reason);
++              dump_vmcs();
++              vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
++              vcpu->run->internal.suberror =
++                      KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
++              vcpu->run->internal.ndata = 1;
++              vcpu->run->internal.data[0] = exit_reason;
++              return 0;
++      }
++}
++
++/*
++ * Software based L1D cache flush which is used when microcode providing
++ * the cache control MSR is not loaded.
++ *
++ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
++ * flush it is required to read in 64 KiB because the replacement algorithm
++ * is not exactly LRU. This could be sized at runtime via topology
++ * information but as all relevant affected CPUs have 32KiB L1D cache size
++ * there is no point in doing so.
++ */
++static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
++{
++      int size = PAGE_SIZE << L1D_CACHE_ORDER;
++
++      /*
++       * This code is only executed when the the flush mode is 'cond' or
++       * 'always'
++       */
++      if (static_branch_likely(&vmx_l1d_flush_cond)) {
++              bool flush_l1d;
++
++              /*
++               * Clear the per-vcpu flush bit, it gets set again
++               * either from vcpu_run() or from one of the unsafe
++               * VMEXIT handlers.
++               */
++              flush_l1d = vcpu->arch.l1tf_flush_l1d;
++              vcpu->arch.l1tf_flush_l1d = false;
++
++              /*
++               * Clear the per-cpu flush bit, it gets set again from
++               * the interrupt handlers.
++               */
++              flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
++              kvm_clear_cpu_l1tf_flush_l1d();
++
++              if (!flush_l1d)
++                      return;
++      }
++
++      vcpu->stat.l1d_flush++;
++
++      if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
++              wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
++              return;
++      }
++
++      asm volatile(
++              /* First ensure the pages are in the TLB */
++              "xorl   %%eax, %%eax\n"
++              ".Lpopulate_tlb:\n\t"
++              "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
++              "addl   $4096, %%eax\n\t"
++              "cmpl   %%eax, %[size]\n\t"
++              "jne    .Lpopulate_tlb\n\t"
++              "xorl   %%eax, %%eax\n\t"
++              "cpuid\n\t"
++              /* Now fill the cache */
++              "xorl   %%eax, %%eax\n"
++              ".Lfill_cache:\n"
++              "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
++              "addl   $64, %%eax\n\t"
++              "cmpl   %%eax, %[size]\n\t"
++              "jne    .Lfill_cache\n\t"
++              "lfence\n"
++              :: [flush_pages] "r" (vmx_l1d_flush_pages),
++                  [size] "r" (size)
++              : "eax", "ebx", "ecx", "edx");
++}
++
++static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
++{
++      struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++      int tpr_threshold;
++
++      if (is_guest_mode(vcpu) &&
++              nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
++              return;
++
++      tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
++      if (is_guest_mode(vcpu))
++              to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
++      else
++              vmcs_write32(TPR_THRESHOLD, tpr_threshold);
++}
++
++void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      u32 sec_exec_control;
++
++      if (!lapic_in_kernel(vcpu))
++              return;
++
++      if (!flexpriority_enabled &&
++          !cpu_has_vmx_virtualize_x2apic_mode())
++              return;
++
++      /* Postpone execution until vmcs01 is the current VMCS. */
++      if (is_guest_mode(vcpu)) {
++              vmx->nested.change_vmcs01_virtual_apic_mode = true;
++              return;
++      }
++
++      sec_exec_control = secondary_exec_controls_get(vmx);
++      sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++                            SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
++
++      switch (kvm_get_apic_mode(vcpu)) {
++      case LAPIC_MODE_INVALID:
++              WARN_ONCE(true, "Invalid local APIC state");
++      case LAPIC_MODE_DISABLED:
++              break;
++      case LAPIC_MODE_XAPIC:
++              if (flexpriority_enabled) {
++                      sec_exec_control |=
++                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
++                      vmx_flush_tlb(vcpu, true);
++              }
++              break;
++      case LAPIC_MODE_X2APIC:
++              if (cpu_has_vmx_virtualize_x2apic_mode())
++                      sec_exec_control |=
++                              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
++              break;
++      }
++      secondary_exec_controls_set(vmx, sec_exec_control);
++
++      vmx_update_msr_bitmap(vcpu);
++}
++
++static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
++{
++      if (!is_guest_mode(vcpu)) {
++              vmcs_write64(APIC_ACCESS_ADDR, hpa);
++              vmx_flush_tlb(vcpu, true);
++      }
++}
++
++static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
++{
++      u16 status;
++      u8 old;
++
++      if (max_isr == -1)
++              max_isr = 0;
++
++      status = vmcs_read16(GUEST_INTR_STATUS);
++      old = status >> 8;
++      if (max_isr != old) {
++              status &= 0xff;
++              status |= max_isr << 8;
++              vmcs_write16(GUEST_INTR_STATUS, status);
++      }
++}
++
++static void vmx_set_rvi(int vector)
++{
++      u16 status;
++      u8 old;
++
++      if (vector == -1)
++              vector = 0;
++
++      status = vmcs_read16(GUEST_INTR_STATUS);
++      old = (u8)status & 0xff;
++      if ((u8)vector != old) {
++              status &= ~0xff;
++              status |= (u8)vector;
++              vmcs_write16(GUEST_INTR_STATUS, status);
++      }
++}
++
++static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
++{
++      /*
++       * When running L2, updating RVI is only relevant when
++       * vmcs12 virtual-interrupt-delivery enabled.
++       * However, it can be enabled only when L1 also
++       * intercepts external-interrupts and in that case
++       * we should not update vmcs02 RVI but instead intercept
++       * interrupt. Therefore, do nothing when running L2.
++       */
++      if (!is_guest_mode(vcpu))
++              vmx_set_rvi(max_irr);
++}
++
++static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      int max_irr;
++      bool max_irr_updated;
++
++      WARN_ON(!vcpu->arch.apicv_active);
++      if (pi_test_on(&vmx->pi_desc)) {
++              pi_clear_on(&vmx->pi_desc);
++              /*
++               * IOMMU can write to PID.ON, so the barrier matters even on UP.
++               * But on x86 this is just a compiler barrier anyway.
++               */
++              smp_mb__after_atomic();
++              max_irr_updated =
++                      kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
++
++              /*
++               * If we are running L2 and L1 has a new pending interrupt
++               * which can be injected, we should re-evaluate
++               * what should be done with this new L1 interrupt.
++               * If L1 intercepts external-interrupts, we should
++               * exit from L2 to L1. Otherwise, interrupt should be
++               * delivered directly to L2.
++               */
++              if (is_guest_mode(vcpu) && max_irr_updated) {
++                      if (nested_exit_on_intr(vcpu))
++                              kvm_vcpu_exiting_guest_mode(vcpu);
++                      else
++                              kvm_make_request(KVM_REQ_EVENT, vcpu);
++              }
++      } else {
++              max_irr = kvm_lapic_find_highest_irr(vcpu);
++      }
++      vmx_hwapic_irr_update(vcpu, max_irr);
++      return max_irr;
++}
++
++static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
++{
++      struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++      return pi_test_on(pi_desc) ||
++              (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
++}
++
++static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
++{
++      if (!kvm_vcpu_apicv_active(vcpu))
++              return;
++
++      vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
++      vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
++      vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
++      vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
++}
++
++static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      pi_clear_on(&vmx->pi_desc);
++      memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
++}
++
++static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
++{
++      vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++
++      /* if exit due to PF check for async PF */
++      if (is_page_fault(vmx->exit_intr_info))
++              vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
++
++      /* Handle machine checks before interrupts are enabled */
++      if (is_machine_check(vmx->exit_intr_info))
++              kvm_machine_check();
++
++      /* We need to handle NMIs before interrupts are enabled */
++      if (is_nmi(vmx->exit_intr_info)) {
++              kvm_before_interrupt(&vmx->vcpu);
++              asm("int $2");
++              kvm_after_interrupt(&vmx->vcpu);
++      }
++}
++
++static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
++{
++      unsigned int vector;
++      unsigned long entry;
++#ifdef CONFIG_X86_64
++      unsigned long tmp;
++#endif
++      gate_desc *desc;
++      u32 intr_info;
++
++      intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++      if (WARN_ONCE(!is_external_intr(intr_info),
++          "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
++              return;
++
++      vector = intr_info & INTR_INFO_VECTOR_MASK;
++      desc = (gate_desc *)host_idt_base + vector;
++      entry = gate_offset(desc);
++
++      kvm_before_interrupt(vcpu);
++
++      asm volatile(
++#ifdef CONFIG_X86_64
++              "mov %%" _ASM_SP ", %[sp]\n\t"
++              "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
++              "push $%c[ss]\n\t"
++              "push %[sp]\n\t"
++#endif
++              "pushf\n\t"
++              __ASM_SIZE(push) " $%c[cs]\n\t"
++              CALL_NOSPEC
++              :
++#ifdef CONFIG_X86_64
++              [sp]"=&r"(tmp),
++#endif
++              ASM_CALL_CONSTRAINT
++              :
++              THUNK_TARGET(entry),
++              [ss]"i"(__KERNEL_DS),
++              [cs]"i"(__KERNEL_CS)
++      );
++
++      kvm_after_interrupt(vcpu);
++}
++STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
++
++static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
++      enum exit_fastpath_completion *exit_fastpath)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
++              handle_external_interrupt_irqoff(vcpu);
++      else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
++              handle_exception_nmi_irqoff(vmx);
++      else if (!is_guest_mode(vcpu) &&
++              vmx->exit_reason == EXIT_REASON_MSR_WRITE)
++              *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
++}
++
++static bool vmx_has_emulated_msr(int index)
++{
++      switch (index) {
++      case MSR_IA32_SMBASE:
++              /*
++               * We cannot do SMM unless we can run the guest in big
++               * real mode.
++               */
++              return enable_unrestricted_guest || emulate_invalid_guest_state;
++      case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
++              return nested;
++      case MSR_AMD64_VIRT_SPEC_CTRL:
++              /* This is AMD only.  */
++              return false;
++      default:
++              return true;
++      }
++}
++
++static bool vmx_pt_supported(void)
++{
++      return pt_mode == PT_MODE_HOST_GUEST;
++}
++
++static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
++{
++      u32 exit_intr_info;
++      bool unblock_nmi;
++      u8 vector;
++      bool idtv_info_valid;
++
++      idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
++
++      if (enable_vnmi) {
++              if (vmx->loaded_vmcs->nmi_known_unmasked)
++                      return;
++              /*
++               * Can't use vmx->exit_intr_info since we're not sure what
++               * the exit reason is.
++               */
++              exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
++              unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
++              vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
++              /*
++               * SDM 3: 27.7.1.2 (September 2008)
++               * Re-set bit "block by NMI" before VM entry if vmexit caused by
++               * a guest IRET fault.
++               * SDM 3: 23.2.2 (September 2008)
++               * Bit 12 is undefined in any of the following cases:
++               *  If the VM exit sets the valid bit in the IDT-vectoring
++               *   information field.
++               *  If the VM exit is due to a double fault.
++               */
++              if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
++                  vector != DF_VECTOR && !idtv_info_valid)
++                      vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
++                                    GUEST_INTR_STATE_NMI);
++              else
++                      vmx->loaded_vmcs->nmi_known_unmasked =
++                              !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
++                                & GUEST_INTR_STATE_NMI);
++      } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
++              vmx->loaded_vmcs->vnmi_blocked_time +=
++                      ktime_to_ns(ktime_sub(ktime_get(),
++                                            vmx->loaded_vmcs->entry_time));
++}
++
++static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
++                                    u32 idt_vectoring_info,
++                                    int instr_len_field,
++                                    int error_code_field)
++{
++      u8 vector;
++      int type;
++      bool idtv_info_valid;
++
++      idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
++
++      vcpu->arch.nmi_injected = false;
++      kvm_clear_exception_queue(vcpu);
++      kvm_clear_interrupt_queue(vcpu);
++
++      if (!idtv_info_valid)
++              return;
++
++      kvm_make_request(KVM_REQ_EVENT, vcpu);
++
++      vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
++      type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
++
++      switch (type) {
++      case INTR_TYPE_NMI_INTR:
++              vcpu->arch.nmi_injected = true;
++              /*
++               * SDM 3: 27.7.1.2 (September 2008)
++               * Clear bit "block by NMI" before VM entry if a NMI
++               * delivery faulted.
++               */
++              vmx_set_nmi_mask(vcpu, false);
++              break;
++      case INTR_TYPE_SOFT_EXCEPTION:
++              vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
++              /* fall through */
++      case INTR_TYPE_HARD_EXCEPTION:
++              if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
++                      u32 err = vmcs_read32(error_code_field);
++                      kvm_requeue_exception_e(vcpu, vector, err);
++              } else
++                      kvm_requeue_exception(vcpu, vector);
++              break;
++      case INTR_TYPE_SOFT_INTR:
++              vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
++              /* fall through */
++      case INTR_TYPE_EXT_INTR:
++              kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
++              break;
++      default:
++              break;
++      }
++}
++
++static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
++{
++      __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
++                                VM_EXIT_INSTRUCTION_LEN,
++                                IDT_VECTORING_ERROR_CODE);
++}
++
++static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
++{
++      __vmx_complete_interrupts(vcpu,
++                                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
++                                VM_ENTRY_INSTRUCTION_LEN,
++                                VM_ENTRY_EXCEPTION_ERROR_CODE);
++
++      vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
++}
++
++static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
++{
++      int i, nr_msrs;
++      struct perf_guest_switch_msr *msrs;
++
++      msrs = perf_guest_get_msrs(&nr_msrs);
++
++      if (!msrs)
++              return;
++
++      for (i = 0; i < nr_msrs; i++)
++              if (msrs[i].host == msrs[i].guest)
++                      clear_atomic_switch_msr(vmx, msrs[i].msr);
++              else
++                      add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
++                                      msrs[i].host, false);
++}
++
++static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
++{
++      u32 host_umwait_control;
++
++      if (!vmx_has_waitpkg(vmx))
++              return;
++
++      host_umwait_control = get_umwait_control_msr();
++
++      if (vmx->msr_ia32_umwait_control != host_umwait_control)
++              add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
++                      vmx->msr_ia32_umwait_control,
++                      host_umwait_control, false);
++      else
++              clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
++}
++
++static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      u64 tscl;
++      u32 delta_tsc;
++
++      if (vmx->req_immediate_exit) {
++              vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
++              vmx->loaded_vmcs->hv_timer_soft_disabled = false;
++      } else if (vmx->hv_deadline_tsc != -1) {
++              tscl = rdtsc();
++              if (vmx->hv_deadline_tsc > tscl)
++                      /* set_hv_timer ensures the delta fits in 32-bits */
++                      delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
++                              cpu_preemption_timer_multi);
++              else
++                      delta_tsc = 0;
++
++              vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
++              vmx->loaded_vmcs->hv_timer_soft_disabled = false;
++      } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
++              vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
++              vmx->loaded_vmcs->hv_timer_soft_disabled = true;
++      }
++}
++
++void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
++{
++      if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
++              vmx->loaded_vmcs->host_state.rsp = host_rsp;
++              vmcs_writel(HOST_RSP, host_rsp);
++      }
++}
++
++bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
++
++static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      unsigned long cr3, cr4;
++
++      /* Record the guest's net vcpu time for enforced NMI injections. */
++      if (unlikely(!enable_vnmi &&
++                   vmx->loaded_vmcs->soft_vnmi_blocked))
++              vmx->loaded_vmcs->entry_time = ktime_get();
++
++      /* Don't enter VMX if guest state is invalid, let the exit handler
++         start emulation until we arrive back to a valid state */
++      if (vmx->emulation_required)
++              return;
++
++      if (vmx->ple_window_dirty) {
++              vmx->ple_window_dirty = false;
++              vmcs_write32(PLE_WINDOW, vmx->ple_window);
++      }
++
++      if (vmx->nested.need_vmcs12_to_shadow_sync)
++              nested_sync_vmcs12_to_shadow(vcpu);
++
++      if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
++              vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
++      if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
++              vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
++
++      cr3 = __get_current_cr3_fast();
++      if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
++              vmcs_writel(HOST_CR3, cr3);
++              vmx->loaded_vmcs->host_state.cr3 = cr3;
++      }
++
++      cr4 = cr4_read_shadow();
++      if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
++              vmcs_writel(HOST_CR4, cr4);
++              vmx->loaded_vmcs->host_state.cr4 = cr4;
++      }
++
++      /* When single-stepping over STI and MOV SS, we must clear the
++       * corresponding interruptibility bits in the guest state. Otherwise
++       * vmentry fails as it then expects bit 14 (BS) in pending debug
++       * exceptions being set, but that's not correct for the guest debugging
++       * case. */
++      if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
++              vmx_set_interrupt_shadow(vcpu, 0);
++
++      kvm_load_guest_xsave_state(vcpu);
++
++      if (static_cpu_has(X86_FEATURE_PKU) &&
++          kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
++          vcpu->arch.pkru != vmx->host_pkru)
++              __write_pkru(vcpu->arch.pkru);
++
++      pt_guest_enter(vmx);
++
++      atomic_switch_perf_msrs(vmx);
++      atomic_switch_umwait_control_msr(vmx);
++
++      if (enable_preemption_timer)
++              vmx_update_hv_timer(vcpu);
++
++      if (lapic_in_kernel(vcpu) &&
++              vcpu->arch.apic->lapic_timer.timer_advance_ns)
++              kvm_wait_lapic_expire(vcpu);
++
++      /*
++       * If this vCPU has touched SPEC_CTRL, restore the guest's value if
++       * it's non-zero. Since vmentry is serialising on affected CPUs, there
++       * is no need to worry about the conditional branch over the wrmsr
++       * being speculatively taken.
++       */
++      x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
++
++      /* L1D Flush includes CPU buffer clear to mitigate MDS */
++      if (static_branch_unlikely(&vmx_l1d_should_flush))
++              vmx_l1d_flush(vcpu);
++      else if (static_branch_unlikely(&mds_user_clear))
++              mds_clear_cpu_buffers();
++
++      if (vcpu->arch.cr2 != read_cr2())
++              write_cr2(vcpu->arch.cr2);
++
++      vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
++                                 vmx->loaded_vmcs->launched);
++
++      vcpu->arch.cr2 = read_cr2();
++
++      /*
++       * We do not use IBRS in the kernel. If this vCPU has used the
++       * SPEC_CTRL MSR it may have left it on; save the value and
++       * turn it off. This is much more efficient than blindly adding
++       * it to the atomic save/restore list. Especially as the former
++       * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
++       *
++       * For non-nested case:
++       * If the L01 MSR bitmap does not intercept the MSR, then we need to
++       * save it.
++       *
++       * For nested case:
++       * If the L02 MSR bitmap does not intercept the MSR, then we need to
++       * save it.
++       */
++      if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
++              vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
++
++      x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
++
++      /* All fields are clean at this point */
++      if (static_branch_unlikely(&enable_evmcs))
++              current_evmcs->hv_clean_fields |=
++                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
++
++      if (static_branch_unlikely(&enable_evmcs))
++              current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
++
++      /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
++      if (vmx->host_debugctlmsr)
++              update_debugctlmsr(vmx->host_debugctlmsr);
++
++#ifndef CONFIG_X86_64
++      /*
++       * The sysexit path does not restore ds/es, so we must set them to
++       * a reasonable value ourselves.
++       *
++       * We can't defer this to vmx_prepare_switch_to_host() since that
++       * function may be executed in interrupt context, which saves and
++       * restore segments around it, nullifying its effect.
++       */
++      loadsegment(ds, __USER_DS);
++      loadsegment(es, __USER_DS);
++#endif
++
++      vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
++                                | (1 << VCPU_EXREG_RFLAGS)
++                                | (1 << VCPU_EXREG_PDPTR)
++                                | (1 << VCPU_EXREG_SEGMENTS)
++                                | (1 << VCPU_EXREG_CR3));
++      vcpu->arch.regs_dirty = 0;
++
++      pt_guest_exit(vmx);
++
++      /*
++       * eager fpu is enabled if PKEY is supported and CR4 is switched
++       * back on host, so it is safe to read guest PKRU from current
++       * XSAVE.
++       */
++      if (static_cpu_has(X86_FEATURE_PKU) &&
++          kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
++              vcpu->arch.pkru = rdpkru();
++              if (vcpu->arch.pkru != vmx->host_pkru)
++                      __write_pkru(vmx->host_pkru);
++      }
++
++      kvm_load_host_xsave_state(vcpu);
++
++      vmx->nested.nested_run_pending = 0;
++      vmx->idt_vectoring_info = 0;
++
++      vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
++      if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
++              kvm_machine_check();
++
++      if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
++              return;
++
++      vmx->loaded_vmcs->launched = 1;
++      vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
++
++      vmx_recover_nmi_blocking(vmx);
++      vmx_complete_interrupts(vmx);
++}
++
++static struct kvm *vmx_vm_alloc(void)
++{
++      struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
++                                          GFP_KERNEL_ACCOUNT | __GFP_ZERO,
++                                          PAGE_KERNEL);
++      return &kvm_vmx->kvm;
++}
++
++static void vmx_vm_free(struct kvm *kvm)
++{
++      kfree(kvm->arch.hyperv.hv_pa_pg);
++      vfree(to_kvm_vmx(kvm));
++}
++
++static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (enable_pml)
++              vmx_destroy_pml_buffer(vmx);
++      free_vpid(vmx->vpid);
++      nested_vmx_free_vcpu(vcpu);
++      free_loaded_vmcs(vmx->loaded_vmcs);
++      kvm_vcpu_uninit(vcpu);
++      kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
++      kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
++      kmem_cache_free(kvm_vcpu_cache, vmx);
++}
++
++static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
++{
++      int err;
++      struct vcpu_vmx *vmx;
++      unsigned long *msr_bitmap;
++      int i, cpu;
++
++      BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
++              "struct kvm_vcpu must be at offset 0 for arch usercopy region");
++
++      vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
++      if (!vmx)
++              return ERR_PTR(-ENOMEM);
++
++      vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
++                      GFP_KERNEL_ACCOUNT);
++      if (!vmx->vcpu.arch.user_fpu) {
++              printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
++              err = -ENOMEM;
++              goto free_partial_vcpu;
++      }
++
++      vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
++                      GFP_KERNEL_ACCOUNT);
++      if (!vmx->vcpu.arch.guest_fpu) {
++              printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
++              err = -ENOMEM;
++              goto free_user_fpu;
++      }
++
++      vmx->vpid = allocate_vpid();
++
++      err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
++      if (err)
++              goto free_vcpu;
++
++      err = -ENOMEM;
++
++      /*
++       * If PML is turned on, failure on enabling PML just results in failure
++       * of creating the vcpu, therefore we can simplify PML logic (by
++       * avoiding dealing with cases, such as enabling PML partially on vcpus
++       * for the guest), etc.
++       */
++      if (enable_pml) {
++              vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
++              if (!vmx->pml_pg)
++                      goto uninit_vcpu;
++      }
++
++      BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
++
++      for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
++              u32 index = vmx_msr_index[i];
++              u32 data_low, data_high;
++              int j = vmx->nmsrs;
++
++              if (rdmsr_safe(index, &data_low, &data_high) < 0)
++                      continue;
++              if (wrmsr_safe(index, data_low, data_high) < 0)
++                      continue;
++
++              vmx->guest_msrs[j].index = i;
++              vmx->guest_msrs[j].data = 0;
++              switch (index) {
++              case MSR_IA32_TSX_CTRL:
++                      /*
++                       * No need to pass TSX_CTRL_CPUID_CLEAR through, so
++                       * let's avoid changing CPUID bits under the host
++                       * kernel's feet.
++                       */
++                      vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
++                      break;
++              default:
++                      vmx->guest_msrs[j].mask = -1ull;
++                      break;
++              }
++              ++vmx->nmsrs;
++      }
++
++      err = alloc_loaded_vmcs(&vmx->vmcs01);
++      if (err < 0)
++              goto free_pml;
++
++      msr_bitmap = vmx->vmcs01.msr_bitmap;
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
++      vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
++      if (kvm_cstate_in_guest(kvm)) {
++              vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
++              vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
++              vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
++              vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
++      }
++      vmx->msr_bitmap_mode = 0;
++
++      vmx->loaded_vmcs = &vmx->vmcs01;
++      cpu = get_cpu();
++      vmx_vcpu_load(&vmx->vcpu, cpu);
++      vmx->vcpu.cpu = cpu;
++      init_vmcs(vmx);
++      vmx_vcpu_put(&vmx->vcpu);
++      put_cpu();
++      if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
++              err = alloc_apic_access_page(kvm);
++              if (err)
++                      goto free_vmcs;
++      }
++
++      if (enable_ept && !enable_unrestricted_guest) {
++              err = init_rmode_identity_map(kvm);
++              if (err)
++                      goto free_vmcs;
++      }
++
++      if (nested)
++              nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
++                                         vmx_capability.ept,
++                                         kvm_vcpu_apicv_active(&vmx->vcpu));
++      else
++              memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
++
++      vmx->nested.posted_intr_nv = -1;
++      vmx->nested.current_vmptr = -1ull;
++
++      vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
++
++      /*
++       * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
++       * or POSTED_INTR_WAKEUP_VECTOR.
++       */
++      vmx->pi_desc.nv = POSTED_INTR_VECTOR;
++      vmx->pi_desc.sn = 1;
++
++      vmx->ept_pointer = INVALID_PAGE;
++
++      return &vmx->vcpu;
++
++free_vmcs:
++      free_loaded_vmcs(vmx->loaded_vmcs);
++free_pml:
++      vmx_destroy_pml_buffer(vmx);
++uninit_vcpu:
++      kvm_vcpu_uninit(&vmx->vcpu);
++free_vcpu:
++      free_vpid(vmx->vpid);
++      kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
++free_user_fpu:
++      kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
++free_partial_vcpu:
++      kmem_cache_free(kvm_vcpu_cache, vmx);
++      return ERR_PTR(err);
++}
++
++#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
++#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
++
++static int vmx_vm_init(struct kvm *kvm)
++{
++      spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
++
++      if (!ple_gap)
++              kvm->arch.pause_in_guest = true;
++
++      if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
++              switch (l1tf_mitigation) {
++              case L1TF_MITIGATION_OFF:
++              case L1TF_MITIGATION_FLUSH_NOWARN:
++                      /* 'I explicitly don't care' is set */
++                      break;
++              case L1TF_MITIGATION_FLUSH:
++              case L1TF_MITIGATION_FLUSH_NOSMT:
++              case L1TF_MITIGATION_FULL:
++                      /*
++                       * Warn upon starting the first VM in a potentially
++                       * insecure environment.
++                       */
++                      if (sched_smt_active())
++                              pr_warn_once(L1TF_MSG_SMT);
++                      if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
++                              pr_warn_once(L1TF_MSG_L1D);
++                      break;
++              case L1TF_MITIGATION_FULL_FORCE:
++                      /* Flush is enforced */
++                      break;
++              }
++      }
++      return 0;
++}
++
++static int __init vmx_check_processor_compat(void)
++{
++      struct vmcs_config vmcs_conf;
++      struct vmx_capability vmx_cap;
++
++      if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
++              return -EIO;
++      if (nested)
++              nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
++                                         enable_apicv);
++      if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
++              printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
++                              smp_processor_id());
++              return -EIO;
++      }
++      return 0;
++}
++
++static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
++{
++      u8 cache;
++      u64 ipat = 0;
++
++      /* For VT-d and EPT combination
++       * 1. MMIO: always map as UC
++       * 2. EPT with VT-d:
++       *   a. VT-d without snooping control feature: can't guarantee the
++       *      result, try to trust guest.
++       *   b. VT-d with snooping control feature: snooping control feature of
++       *      VT-d engine can guarantee the cache correctness. Just set it
++       *      to WB to keep consistent with host. So the same as item 3.
++       * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
++       *    consistent with host MTRR
++       */
++      if (is_mmio) {
++              cache = MTRR_TYPE_UNCACHABLE;
++              goto exit;
++      }
++
++      if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
++              ipat = VMX_EPT_IPAT_BIT;
++              cache = MTRR_TYPE_WRBACK;
++              goto exit;
++      }
++
++      if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
++              ipat = VMX_EPT_IPAT_BIT;
++              if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
++                      cache = MTRR_TYPE_WRBACK;
++              else
++                      cache = MTRR_TYPE_UNCACHABLE;
++              goto exit;
++      }
++
++      cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
++
++exit:
++      return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
++}
++
++static int vmx_get_lpage_level(void)
++{
++      if (enable_ept && !cpu_has_vmx_ept_1g_page())
++              return PT_DIRECTORY_LEVEL;
++      else
++              /* For shadow and EPT supported 1GB page */
++              return PT_PDPE_LEVEL;
++}
++
++static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
++{
++      /*
++       * These bits in the secondary execution controls field
++       * are dynamic, the others are mostly based on the hypervisor
++       * architecture and the guest's CPUID.  Do not touch the
++       * dynamic bits.
++       */
++      u32 mask =
++              SECONDARY_EXEC_SHADOW_VMCS |
++              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
++              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
++              SECONDARY_EXEC_DESC;
++
++      u32 new_ctl = vmx->secondary_exec_control;
++      u32 cur_ctl = secondary_exec_controls_get(vmx);
++
++      secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
++}
++
++/*
++ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
++ * (indicating "allowed-1") if they are supported in the guest's CPUID.
++ */
++static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct kvm_cpuid_entry2 *entry;
++
++      vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
++      vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
++
++#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {          \
++      if (entry && (entry->_reg & (_cpuid_mask)))                     \
++              vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
++} while (0)
++
++      entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
++      cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
++      cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
++      cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
++      cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
++      cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
++      cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
++      cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
++      cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
++      cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
++      cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
++      cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
++      cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
++      cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
++      cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
++
++      entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
++      cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
++      cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
++      cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
++      cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
++      cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
++      cr4_fixed1_update(X86_CR4_LA57,       ecx, bit(X86_FEATURE_LA57));
++
++#undef cr4_fixed1_update
++}
++
++static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      if (kvm_mpx_supported()) {
++              bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
++
++              if (mpx_enabled) {
++                      vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
++                      vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
++              } else {
++                      vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
++                      vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
++              }
++      }
++}
++
++static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      struct kvm_cpuid_entry2 *best = NULL;
++      int i;
++
++      for (i = 0; i < PT_CPUID_LEAVES; i++) {
++              best = kvm_find_cpuid_entry(vcpu, 0x14, i);
++              if (!best)
++                      return;
++              vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
++              vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
++              vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
++              vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
++      }
++
++      /* Get the number of configurable Address Ranges for filtering */
++      vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
++                                              PT_CAP_num_address_ranges);
++
++      /* Initialize and clear the no dependency bits */
++      vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
++                      RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
++
++      /*
++       * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
++       * will inject an #GP
++       */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
++              vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
++
++      /*
++       * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
++       * PSBFreq can be set
++       */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
++              vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
++                              RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
++
++      /*
++       * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
++       * MTCFreq can be set
++       */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
++              vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
++                              RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
++
++      /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
++              vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
++                                                      RTIT_CTL_PTW_EN);
++
++      /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
++              vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
++
++      /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
++              vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
++
++      /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
++      if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
++              vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
++
++      /* unmask address range configure area */
++      for (i = 0; i < vmx->pt_desc.addr_range; i++)
++              vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
++}
++
++static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
++      vcpu->arch.xsaves_enabled = false;
++
++      if (cpu_has_secondary_exec_ctrls()) {
++              vmx_compute_secondary_exec_control(vmx);
++              vmcs_set_secondary_exec_control(vmx);
++      }
++
++      if (nested_vmx_allowed(vcpu))
++              to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
++                      FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
++                      FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
++      else
++              to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
++                      ~(FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
++                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX);
++
++      if (nested_vmx_allowed(vcpu)) {
++              nested_vmx_cr_fixed1_bits_update(vcpu);
++              nested_vmx_entry_exit_ctls_update(vcpu);
++      }
++
++      if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
++                      guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
++              update_intel_pt_cfg(vcpu);
++
++      if (boot_cpu_has(X86_FEATURE_RTM)) {
++              struct shared_msr_entry *msr;
++              msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
++              if (msr) {
++                      bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
++                      vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
++              }
++      }
++}
++
++static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
++{
++      if (func == 1 && nested)
++              entry->ecx |= bit(X86_FEATURE_VMX);
++}
++
++static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
++{
++      to_vmx(vcpu)->req_immediate_exit = true;
++}
++
++static int vmx_check_intercept(struct kvm_vcpu *vcpu,
++                             struct x86_instruction_info *info,
++                             enum x86_intercept_stage stage)
++{
++      struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
++      struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
++
++      /*
++       * RDPID causes #UD if disabled through secondary execution controls.
++       * Because it is marked as EmulateOnUD, we need to intercept it here.
++       */
++      if (info->intercept == x86_intercept_rdtscp &&
++          !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
++              ctxt->exception.vector = UD_VECTOR;
++              ctxt->exception.error_code_valid = false;
++              return X86EMUL_PROPAGATE_FAULT;
++      }
++
++      /* TODO: check more intercepts... */
++      return X86EMUL_CONTINUE;
++}
++
++#ifdef CONFIG_X86_64
++/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
++static inline int u64_shl_div_u64(u64 a, unsigned int shift,
++                                u64 divisor, u64 *result)
++{
++      u64 low = a << shift, high = a >> (64 - shift);
++
++      /* To avoid the overflow on divq */
++      if (high >= divisor)
++              return 1;
++
++      /* Low hold the result, high hold rem which is discarded */
++      asm("divq %2\n\t" : "=a" (low), "=d" (high) :
++          "rm" (divisor), "0" (low), "1" (high));
++      *result = low;
++
++      return 0;
++}
++
++static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
++                          bool *expired)
++{
++      struct vcpu_vmx *vmx;
++      u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
++      struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
++
++      if (kvm_mwait_in_guest(vcpu->kvm) ||
++              kvm_can_post_timer_interrupt(vcpu))
++              return -EOPNOTSUPP;
++
++      vmx = to_vmx(vcpu);
++      tscl = rdtsc();
++      guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
++      delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
++      lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
++                                                  ktimer->timer_advance_ns);
++
++      if (delta_tsc > lapic_timer_advance_cycles)
++              delta_tsc -= lapic_timer_advance_cycles;
++      else
++              delta_tsc = 0;
++
++      /* Convert to host delta tsc if tsc scaling is enabled */
++      if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
++          delta_tsc && u64_shl_div_u64(delta_tsc,
++                              kvm_tsc_scaling_ratio_frac_bits,
++                              vcpu->arch.tsc_scaling_ratio, &delta_tsc))
++              return -ERANGE;
++
++      /*
++       * If the delta tsc can't fit in the 32 bit after the multi shift,
++       * we can't use the preemption timer.
++       * It's possible that it fits on later vmentries, but checking
++       * on every vmentry is costly so we just use an hrtimer.
++       */
++      if (delta_tsc >> (cpu_preemption_timer_multi + 32))
++              return -ERANGE;
++
++      vmx->hv_deadline_tsc = tscl + delta_tsc;
++      *expired = !delta_tsc;
++      return 0;
++}
++
++static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
++{
++      to_vmx(vcpu)->hv_deadline_tsc = -1;
++}
++#endif
++
++static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
++{
++      if (!kvm_pause_in_guest(vcpu->kvm))
++              shrink_ple_window(vcpu);
++}
++
++static void vmx_slot_enable_log_dirty(struct kvm *kvm,
++                                   struct kvm_memory_slot *slot)
++{
++      kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
++      kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
++}
++
++static void vmx_slot_disable_log_dirty(struct kvm *kvm,
++                                     struct kvm_memory_slot *slot)
++{
++      kvm_mmu_slot_set_dirty(kvm, slot);
++}
++
++static void vmx_flush_log_dirty(struct kvm *kvm)
++{
++      kvm_flush_pml_buffers(kvm);
++}
++
++static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
++{
++      struct vmcs12 *vmcs12;
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      gpa_t gpa, dst;
++
++      if (is_guest_mode(vcpu)) {
++              WARN_ON_ONCE(vmx->nested.pml_full);
++
++              /*
++               * Check if PML is enabled for the nested guest.
++               * Whether eptp bit 6 is set is already checked
++               * as part of A/D emulation.
++               */
++              vmcs12 = get_vmcs12(vcpu);
++              if (!nested_cpu_has_pml(vmcs12))
++                      return 0;
++
++              if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
++                      vmx->nested.pml_full = true;
++                      return 1;
++              }
++
++              gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
++              dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
++
++              if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
++                                       offset_in_page(dst), sizeof(gpa)))
++                      return 0;
++
++              vmcs12->guest_pml_index--;
++      }
++
++      return 0;
++}
++
++static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
++                                         struct kvm_memory_slot *memslot,
++                                         gfn_t offset, unsigned long mask)
++{
++      kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
++}
++
++static void __pi_post_block(struct kvm_vcpu *vcpu)
++{
++      struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++      struct pi_desc old, new;
++      unsigned int dest;
++
++      do {
++              old.control = new.control = pi_desc->control;
++              WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
++                   "Wakeup handler not enabled while the VCPU is blocked\n");
++
++              dest = cpu_physical_id(vcpu->cpu);
++
++              if (x2apic_enabled())
++                      new.ndst = dest;
++              else
++                      new.ndst = (dest << 8) & 0xFF00;
++
++              /* set 'NV' to 'notification vector' */
++              new.nv = POSTED_INTR_VECTOR;
++      } while (cmpxchg64(&pi_desc->control, old.control,
++                         new.control) != old.control);
++
++      if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
++              spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++              list_del(&vcpu->blocked_vcpu_list);
++              spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++              vcpu->pre_pcpu = -1;
++      }
++}
++
++/*
++ * This routine does the following things for vCPU which is going
++ * to be blocked if VT-d PI is enabled.
++ * - Store the vCPU to the wakeup list, so when interrupts happen
++ *   we can find the right vCPU to wake up.
++ * - Change the Posted-interrupt descriptor as below:
++ *      'NDST' <-- vcpu->pre_pcpu
++ *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
++ * - If 'ON' is set during this process, which means at least one
++ *   interrupt is posted for this vCPU, we cannot block it, in
++ *   this case, return 1, otherwise, return 0.
++ *
++ */
++static int pi_pre_block(struct kvm_vcpu *vcpu)
++{
++      unsigned int dest;
++      struct pi_desc old, new;
++      struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
++
++      if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
++              !irq_remapping_cap(IRQ_POSTING_CAP)  ||
++              !kvm_vcpu_apicv_active(vcpu))
++              return 0;
++
++      WARN_ON(irqs_disabled());
++      local_irq_disable();
++      if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
++              vcpu->pre_pcpu = vcpu->cpu;
++              spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++              list_add_tail(&vcpu->blocked_vcpu_list,
++                            &per_cpu(blocked_vcpu_on_cpu,
++                                     vcpu->pre_pcpu));
++              spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
++      }
++
++      do {
++              old.control = new.control = pi_desc->control;
++
++              WARN((pi_desc->sn == 1),
++                   "Warning: SN field of posted-interrupts "
++                   "is set before blocking\n");
++
++              /*
++               * Since vCPU can be preempted during this process,
++               * vcpu->cpu could be different with pre_pcpu, we
++               * need to set pre_pcpu as the destination of wakeup
++               * notification event, then we can find the right vCPU
++               * to wakeup in wakeup handler if interrupts happen
++               * when the vCPU is in blocked state.
++               */
++              dest = cpu_physical_id(vcpu->pre_pcpu);
++
++              if (x2apic_enabled())
++                      new.ndst = dest;
++              else
++                      new.ndst = (dest << 8) & 0xFF00;
++
++              /* set 'NV' to 'wakeup vector' */
++              new.nv = POSTED_INTR_WAKEUP_VECTOR;
++      } while (cmpxchg64(&pi_desc->control, old.control,
++                         new.control) != old.control);
++
++      /* We should not block the vCPU if an interrupt is posted for it.  */
++      if (pi_test_on(pi_desc) == 1)
++              __pi_post_block(vcpu);
++
++      local_irq_enable();
++      return (vcpu->pre_pcpu == -1);
++}
++
++static int vmx_pre_block(struct kvm_vcpu *vcpu)
++{
++      if (pi_pre_block(vcpu))
++              return 1;
++
++      if (kvm_lapic_hv_timer_in_use(vcpu))
++              kvm_lapic_switch_to_sw_timer(vcpu);
++
++      return 0;
++}
++
++static void pi_post_block(struct kvm_vcpu *vcpu)
++{
++      if (vcpu->pre_pcpu == -1)
++              return;
++
++      WARN_ON(irqs_disabled());
++      local_irq_disable();
++      __pi_post_block(vcpu);
++      local_irq_enable();
++}
++
++static void vmx_post_block(struct kvm_vcpu *vcpu)
++{
++      if (kvm_x86_ops->set_hv_timer)
++              kvm_lapic_switch_to_hv_timer(vcpu);
++
++      pi_post_block(vcpu);
++}
++
++/*
++ * vmx_update_pi_irte - set IRTE for Posted-Interrupts
++ *
++ * @kvm: kvm
++ * @host_irq: host irq of the interrupt
++ * @guest_irq: gsi of the interrupt
++ * @set: set or unset PI
++ * returns 0 on success, < 0 on failure
++ */
++static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
++                            uint32_t guest_irq, bool set)
++{
++      struct kvm_kernel_irq_routing_entry *e;
++      struct kvm_irq_routing_table *irq_rt;
++      struct kvm_lapic_irq irq;
++      struct kvm_vcpu *vcpu;
++      struct vcpu_data vcpu_info;
++      int idx, ret = 0;
++
++      if (!kvm_arch_has_assigned_device(kvm) ||
++              !irq_remapping_cap(IRQ_POSTING_CAP) ||
++              !kvm_vcpu_apicv_active(kvm->vcpus[0]))
++              return 0;
++
++      idx = srcu_read_lock(&kvm->irq_srcu);
++      irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
++      if (guest_irq >= irq_rt->nr_rt_entries ||
++          hlist_empty(&irq_rt->map[guest_irq])) {
++              pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
++                           guest_irq, irq_rt->nr_rt_entries);
++              goto out;
++      }
++
++      hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
++              if (e->type != KVM_IRQ_ROUTING_MSI)
++                      continue;
++              /*
++               * VT-d PI cannot support posting multicast/broadcast
++               * interrupts to a vCPU, we still use interrupt remapping
++               * for these kind of interrupts.
++               *
++               * For lowest-priority interrupts, we only support
++               * those with single CPU as the destination, e.g. user
++               * configures the interrupts via /proc/irq or uses
++               * irqbalance to make the interrupts single-CPU.
++               *
++               * We will support full lowest-priority interrupt later.
++               *
++               * In addition, we can only inject generic interrupts using
++               * the PI mechanism, refuse to route others through it.
++               */
++
++              kvm_set_msi_irq(kvm, e, &irq);
++              if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
++                  !kvm_irq_is_postable(&irq)) {
++                      /*
++                       * Make sure the IRTE is in remapped mode if
++                       * we don't handle it in posted mode.
++                       */
++                      ret = irq_set_vcpu_affinity(host_irq, NULL);
++                      if (ret < 0) {
++                              printk(KERN_INFO
++                                 "failed to back to remapped mode, irq: %u\n",
++                                 host_irq);
++                              goto out;
++                      }
++
++                      continue;
++              }
++
++              vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
++              vcpu_info.vector = irq.vector;
++
++              trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
++                              vcpu_info.vector, vcpu_info.pi_desc_addr, set);
++
++              if (set)
++                      ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
++              else
++                      ret = irq_set_vcpu_affinity(host_irq, NULL);
++
++              if (ret < 0) {
++                      printk(KERN_INFO "%s: failed to update PI IRTE\n",
++                                      __func__);
++                      goto out;
++              }
++      }
++
++      ret = 0;
++out:
++      srcu_read_unlock(&kvm->irq_srcu, idx);
++      return ret;
++}
++
++static void vmx_setup_mce(struct kvm_vcpu *vcpu)
++{
++      if (vcpu->arch.mcg_cap & MCG_LMCE_P)
++              to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
++                      FEATURE_CONTROL_LMCE;
++      else
++              to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
++                      ~FEATURE_CONTROL_LMCE;
++}
++
++static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
++{
++      /* we need a nested vmexit to enter SMM, postpone if run is pending */
++      if (to_vmx(vcpu)->nested.nested_run_pending)
++              return 0;
++      return 1;
++}
++
++static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++
++      vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
++      if (vmx->nested.smm.guest_mode)
++              nested_vmx_vmexit(vcpu, -1, 0, 0);
++
++      vmx->nested.smm.vmxon = vmx->nested.vmxon;
++      vmx->nested.vmxon = false;
++      vmx_clear_hlt(vcpu);
++      return 0;
++}
++
++static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
++{
++      struct vcpu_vmx *vmx = to_vmx(vcpu);
++      int ret;
++
++      if (vmx->nested.smm.vmxon) {
++              vmx->nested.vmxon = true;
++              vmx->nested.smm.vmxon = false;
++      }
++
++      if (vmx->nested.smm.guest_mode) {
++              ret = nested_vmx_enter_non_root_mode(vcpu, false);
++              if (ret)
++                      return ret;
++
++              vmx->nested.smm.guest_mode = false;
++      }
++      return 0;
++}
++
++static int enable_smi_window(struct kvm_vcpu *vcpu)
++{
++      return 0;
++}
++
++static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
++{
++      return false;
++}
++
++static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
++{
++      return to_vmx(vcpu)->nested.vmxon;
++}
++
++static __init int hardware_setup(void)
++{
++      unsigned long host_bndcfgs;
++      struct desc_ptr dt;
++      int r, i;
++
++      rdmsrl_safe(MSR_EFER, &host_efer);
++
++      store_idt(&dt);
++      host_idt_base = dt.address;
++
++      for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
++              kvm_define_shared_msr(i, vmx_msr_index[i]);
++
++      if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
++              return -EIO;
++
++      if (boot_cpu_has(X86_FEATURE_NX))
++              kvm_enable_efer_bits(EFER_NX);
++
++      if (boot_cpu_has(X86_FEATURE_MPX)) {
++              rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
++              WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
++      }
++
++      if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
++          !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
++              enable_vpid = 0;
++
++      if (!cpu_has_vmx_ept() ||
++          !cpu_has_vmx_ept_4levels() ||
++          !cpu_has_vmx_ept_mt_wb() ||
++          !cpu_has_vmx_invept_global())
++              enable_ept = 0;
++
++      if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
++              enable_ept_ad_bits = 0;
++
++      if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
++              enable_unrestricted_guest = 0;
++
++      if (!cpu_has_vmx_flexpriority())
++              flexpriority_enabled = 0;
++
++      if (!cpu_has_virtual_nmis())
++              enable_vnmi = 0;
++
++      /*
++       * set_apic_access_page_addr() is used to reload apic access
++       * page upon invalidation.  No need to do anything if not
++       * using the APIC_ACCESS_ADDR VMCS field.
++       */
++      if (!flexpriority_enabled)
++              kvm_x86_ops->set_apic_access_page_addr = NULL;
++
++      if (!cpu_has_vmx_tpr_shadow())
++              kvm_x86_ops->update_cr8_intercept = NULL;
++
++      if (enable_ept && !cpu_has_vmx_ept_2m_page())
++              kvm_disable_largepages();
++
++#if IS_ENABLED(CONFIG_HYPERV)
++      if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
++          && enable_ept) {
++              kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
++              kvm_x86_ops->tlb_remote_flush_with_range =
++                              hv_remote_flush_tlb_with_range;
++      }
++#endif
++
++      if (!cpu_has_vmx_ple()) {
++              ple_gap = 0;
++              ple_window = 0;
++              ple_window_grow = 0;
++              ple_window_max = 0;
++              ple_window_shrink = 0;
++      }
++
++      if (!cpu_has_vmx_apicv()) {
++              enable_apicv = 0;
++              kvm_x86_ops->sync_pir_to_irr = NULL;
++      }
++
++      if (cpu_has_vmx_tsc_scaling()) {
++              kvm_has_tsc_control = true;
++              kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
++              kvm_tsc_scaling_ratio_frac_bits = 48;
++      }
++
++      set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
++
++      if (enable_ept)
++              vmx_enable_tdp();
++      else
++              kvm_disable_tdp();
++
++      /*
++       * Only enable PML when hardware supports PML feature, and both EPT
++       * and EPT A/D bit features are enabled -- PML depends on them to work.
++       */
++      if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
++              enable_pml = 0;
++
++      if (!enable_pml) {
++              kvm_x86_ops->slot_enable_log_dirty = NULL;
++              kvm_x86_ops->slot_disable_log_dirty = NULL;
++              kvm_x86_ops->flush_log_dirty = NULL;
++              kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
++      }
++
++      if (!cpu_has_vmx_preemption_timer())
++              enable_preemption_timer = false;
++
++      if (enable_preemption_timer) {
++              u64 use_timer_freq = 5000ULL * 1000 * 1000;
++              u64 vmx_msr;
++
++              rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
++              cpu_preemption_timer_multi =
++                      vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
++
++              if (tsc_khz)
++                      use_timer_freq = (u64)tsc_khz * 1000;
++              use_timer_freq >>= cpu_preemption_timer_multi;
++
++              /*
++               * KVM "disables" the preemption timer by setting it to its max
++               * value.  Don't use the timer if it might cause spurious exits
++               * at a rate faster than 0.1 Hz (of uninterrupted guest time).
++               */
++              if (use_timer_freq > 0xffffffffu / 10)
++                      enable_preemption_timer = false;
++      }
++
++      if (!enable_preemption_timer) {
++              kvm_x86_ops->set_hv_timer = NULL;
++              kvm_x86_ops->cancel_hv_timer = NULL;
++              kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
++      }
++
++      kvm_set_posted_intr_wakeup_handler(wakeup_handler);
++
++      kvm_mce_cap_supported |= MCG_LMCE_P;
++
++      if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
++              return -EINVAL;
++      if (!enable_ept || !cpu_has_vmx_intel_pt())
++              pt_mode = PT_MODE_SYSTEM;
++
++      if (nested) {
++              nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
++                                         vmx_capability.ept, enable_apicv);
++
++              r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
++              if (r)
++                      return r;
++      }
++
++      r = alloc_kvm_area();
++      if (r)
++              nested_vmx_hardware_unsetup();
++      return r;
++}
++
++static __exit void hardware_unsetup(void)
++{
++      if (nested)
++              nested_vmx_hardware_unsetup();
++
++      free_kvm_area();
++}
++
++static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
++      .cpu_has_kvm_support = cpu_has_kvm_support,
++      .disabled_by_bios = vmx_disabled_by_bios,
++      .hardware_setup = hardware_setup,
++      .hardware_unsetup = hardware_unsetup,
++      .check_processor_compatibility = vmx_check_processor_compat,
++      .hardware_enable = hardware_enable,
++      .hardware_disable = hardware_disable,
++      .cpu_has_accelerated_tpr = report_flexpriority,
++      .has_emulated_msr = vmx_has_emulated_msr,
++
++      .vm_init = vmx_vm_init,
++      .vm_alloc = vmx_vm_alloc,
++      .vm_free = vmx_vm_free,
++
++      .vcpu_create = vmx_create_vcpu,
++      .vcpu_free = vmx_free_vcpu,
++      .vcpu_reset = vmx_vcpu_reset,
++
++      .prepare_guest_switch = vmx_prepare_switch_to_guest,
++      .vcpu_load = vmx_vcpu_load,
++      .vcpu_put = vmx_vcpu_put,
++
++      .update_bp_intercept = update_exception_bitmap,
++      .get_msr_feature = vmx_get_msr_feature,
++      .get_msr = vmx_get_msr,
++      .set_msr = vmx_set_msr,
++      .get_segment_base = vmx_get_segment_base,
++      .get_segment = vmx_get_segment,
++      .set_segment = vmx_set_segment,
++      .get_cpl = vmx_get_cpl,
++      .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
++      .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
++      .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
++      .set_cr0 = vmx_set_cr0,
++      .set_cr3 = vmx_set_cr3,
++      .set_cr4 = vmx_set_cr4,
++      .set_efer = vmx_set_efer,
++      .get_idt = vmx_get_idt,
++      .set_idt = vmx_set_idt,
++      .get_gdt = vmx_get_gdt,
++      .set_gdt = vmx_set_gdt,
++      .get_dr6 = vmx_get_dr6,
++      .set_dr6 = vmx_set_dr6,
++      .set_dr7 = vmx_set_dr7,
++      .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
++      .cache_reg = vmx_cache_reg,
++      .get_rflags = vmx_get_rflags,
++      .set_rflags = vmx_set_rflags,
++
++      .tlb_flush = vmx_flush_tlb,
++      .tlb_flush_gva = vmx_flush_tlb_gva,
++
++      .run = vmx_vcpu_run,
++      .handle_exit = vmx_handle_exit,
++      .skip_emulated_instruction = skip_emulated_instruction,
++      .set_interrupt_shadow = vmx_set_interrupt_shadow,
++      .get_interrupt_shadow = vmx_get_interrupt_shadow,
++      .patch_hypercall = vmx_patch_hypercall,
++      .set_irq = vmx_inject_irq,
++      .set_nmi = vmx_inject_nmi,
++      .queue_exception = vmx_queue_exception,
++      .cancel_injection = vmx_cancel_injection,
++      .interrupt_allowed = vmx_interrupt_allowed,
++      .nmi_allowed = vmx_nmi_allowed,
++      .get_nmi_mask = vmx_get_nmi_mask,
++      .set_nmi_mask = vmx_set_nmi_mask,
++      .enable_nmi_window = enable_nmi_window,
++      .enable_irq_window = enable_irq_window,
++      .update_cr8_intercept = update_cr8_intercept,
++      .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
++      .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
++      .get_enable_apicv = vmx_get_enable_apicv,
++      .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
++      .load_eoi_exitmap = vmx_load_eoi_exitmap,
++      .apicv_post_state_restore = vmx_apicv_post_state_restore,
++      .hwapic_irr_update = vmx_hwapic_irr_update,
++      .hwapic_isr_update = vmx_hwapic_isr_update,
++      .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
++      .sync_pir_to_irr = vmx_sync_pir_to_irr,
++      .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
++      .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
++
++      .set_tss_addr = vmx_set_tss_addr,
++      .set_identity_map_addr = vmx_set_identity_map_addr,
++      .get_tdp_level = get_ept_level,
++      .get_mt_mask = vmx_get_mt_mask,
++
++      .get_exit_info = vmx_get_exit_info,
++
++      .get_lpage_level = vmx_get_lpage_level,
++
++      .cpuid_update = vmx_cpuid_update,
++
++      .rdtscp_supported = vmx_rdtscp_supported,
++      .invpcid_supported = vmx_invpcid_supported,
++
++      .set_supported_cpuid = vmx_set_supported_cpuid,
++
++      .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
++
++      .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
++      .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
++
++      .set_tdp_cr3 = vmx_set_cr3,
++
++      .check_intercept = vmx_check_intercept,
++      .handle_exit_irqoff = vmx_handle_exit_irqoff,
++      .mpx_supported = vmx_mpx_supported,
++      .xsaves_supported = vmx_xsaves_supported,
++      .umip_emulated = vmx_umip_emulated,
++      .pt_supported = vmx_pt_supported,
++
++      .request_immediate_exit = vmx_request_immediate_exit,
++
++      .sched_in = vmx_sched_in,
++
++      .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
++      .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
++      .flush_log_dirty = vmx_flush_log_dirty,
++      .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
++      .write_log_dirty = vmx_write_pml_buffer,
++
++      .pre_block = vmx_pre_block,
++      .post_block = vmx_post_block,
++
++      .pmu_ops = &intel_pmu_ops,
++
++      .update_pi_irte = vmx_update_pi_irte,
++
++#ifdef CONFIG_X86_64
++      .set_hv_timer = vmx_set_hv_timer,
++      .cancel_hv_timer = vmx_cancel_hv_timer,
++#endif
++
++      .setup_mce = vmx_setup_mce,
++
++      .smi_allowed = vmx_smi_allowed,
++      .pre_enter_smm = vmx_pre_enter_smm,
++      .pre_leave_smm = vmx_pre_leave_smm,
++      .enable_smi_window = enable_smi_window,
++
++      .check_nested_events = NULL,
++      .get_nested_state = NULL,
++      .set_nested_state = NULL,
++      .get_vmcs12_pages = NULL,
++      .nested_enable_evmcs = NULL,
++      .nested_get_evmcs_version = NULL,
++      .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
++      .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
++};
++
++static void vmx_cleanup_l1d_flush(void)
++{
++      if (vmx_l1d_flush_pages) {
++              free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
++              vmx_l1d_flush_pages = NULL;
++      }
++      /* Restore state so sysfs ignores VMX */
++      l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
++}
++
++static void vmx_exit(void)
++{
++#ifdef CONFIG_KEXEC_CORE
++      RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
++      synchronize_rcu();
++#endif
++
++      kvm_exit();
++
++#if IS_ENABLED(CONFIG_HYPERV)
++      if (static_branch_unlikely(&enable_evmcs)) {
++              int cpu;
++              struct hv_vp_assist_page *vp_ap;
++              /*
++               * Reset everything to support using non-enlightened VMCS
++               * access later (e.g. when we reload the module with
++               * enlightened_vmcs=0)
++               */
++              for_each_online_cpu(cpu) {
++                      vp_ap = hv_get_vp_assist_page(cpu);
++
++                      if (!vp_ap)
++                              continue;
++
++                      vp_ap->nested_control.features.directhypercall = 0;
++                      vp_ap->current_nested_vmcs = 0;
++                      vp_ap->enlighten_vmentry = 0;
++              }
++
++              static_branch_disable(&enable_evmcs);
++      }
++#endif
++      vmx_cleanup_l1d_flush();
++}
++module_exit(vmx_exit);
++
++static int __init vmx_init(void)
++{
++      int r;
++
++#if IS_ENABLED(CONFIG_HYPERV)
++      /*
++       * Enlightened VMCS usage should be recommended and the host needs
++       * to support eVMCS v1 or above. We can also disable eVMCS support
++       * with module parameter.
++       */
++      if (enlightened_vmcs &&
++          ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
++          (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
++          KVM_EVMCS_VERSION) {
++              int cpu;
++
++              /* Check that we have assist pages on all online CPUs */
++              for_each_online_cpu(cpu) {
++                      if (!hv_get_vp_assist_page(cpu)) {
++                              enlightened_vmcs = false;
++                              break;
++                      }
++              }
++
++              if (enlightened_vmcs) {
++                      pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
++                      static_branch_enable(&enable_evmcs);
++              }
++
++              if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
++                      vmx_x86_ops.enable_direct_tlbflush
++                              = hv_enable_direct_tlbflush;
++
++      } else {
++              enlightened_vmcs = false;
++      }
++#endif
++
++      r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
++                   __alignof__(struct vcpu_vmx), THIS_MODULE);
++      if (r)
++              return r;
++
++      /*
++       * Must be called after kvm_init() so enable_ept is properly set
++       * up. Hand the parameter mitigation value in which was stored in
++       * the pre module init parser. If no parameter was given, it will
++       * contain 'auto' which will be turned into the default 'cond'
++       * mitigation mode.
++       */
++      r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
++      if (r) {
++              vmx_exit();
++              return r;
++      }
++
++#ifdef CONFIG_KEXEC_CORE
++      rcu_assign_pointer(crash_vmclear_loaded_vmcss,
++                         crash_vmclear_local_loaded_vmcss);
++#endif
++      vmx_check_vmcs12_offsets();
++
++      return 0;
++}
++module_init(vmx_init);
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-x86-mmu-apply-max-pa-check-for-mmio-sptes-to-32-.patch b/queue-4.19/kvm-x86-mmu-apply-max-pa-check-for-mmio-sptes-to-32-.patch
new file mode 100644 (file)
index 0000000..f76dd13
--- /dev/null
@@ -0,0 +1,46 @@
+From 01373ee6e03c83fc228611a394a53957b895bfa3 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Tue, 7 Jan 2020 16:12:10 -0800
+Subject: KVM: x86/mmu: Apply max PA check for MMIO sptes to 32-bit KVM
+
+From: Sean Christopherson <sean.j.christopherson@intel.com>
+
+[ Upstream commit e30a7d623dccdb3f880fbcad980b0cb589a1da45 ]
+
+Remove the bogus 64-bit only condition from the check that disables MMIO
+spte optimization when the system supports the max PA, i.e. doesn't have
+any reserved PA bits.  32-bit KVM always uses PAE paging for the shadow
+MMU, and per Intel's SDM:
+
+  PAE paging translates 32-bit linear addresses to 52-bit physical
+  addresses.
+
+The kernel's restrictions on max physical addresses are limits on how
+much memory the kernel can reasonably use, not what physical addresses
+are supported by hardware.
+
+Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support")
+Cc: stable@vger.kernel.org
+Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ arch/x86/kvm/x86.c | 2 +-
+ 1 file changed, 1 insertion(+), 1 deletion(-)
+
+diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
+index f2ef42796f00f..1e7c4022c4b56 100644
+--- a/arch/x86/kvm/x86.c
++++ b/arch/x86/kvm/x86.c
+@@ -6797,7 +6797,7 @@ static void kvm_set_mmio_spte_mask(void)
+        * If reserved bit is not supported, clear the present bit to disable
+        * mmio page fault.
+        */
+-      if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
++      if (maxphyaddr == 52)
+               mask &= ~1ull;
+       kvm_mmu_set_mmio_spte_mask(mask, mask);
+-- 
+2.20.1
+
diff --git a/queue-4.19/kvm-x86-use-gpa_t-for-cr2-gpa-to-fix-tdp-support-on-.patch b/queue-4.19/kvm-x86-use-gpa_t-for-cr2-gpa-to-fix-tdp-support-on-.patch
new file mode 100644 (file)
index 0000000..3acad75
--- /dev/null
@@ -0,0 +1,672 @@
+From 08445b5cfc2c6eeb7f7b9e9596d68b5fef420021 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Fri, 6 Dec 2019 15:57:14 -0800
+Subject: KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
+
+From: Sean Christopherson <sean.j.christopherson@intel.com>
+
+[ Upstream commit 736c291c9f36b07f8889c61764c28edce20e715d ]
+
+Convert a plethora of parameters and variables in the MMU and page fault
+flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM.
+
+Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical
+addresses.  When TDP is enabled, the fault address is a guest physical
+address and thus can be a 64-bit value, even when both KVM and its guest
+are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a
+64-bit field, not a natural width field.
+
+Using a gva_t for the fault address means KVM will incorrectly drop the
+upper 32-bits of the GPA.  Ditto for gva_to_gpa() when it is used to
+translate L2 GPAs to L1 GPAs.
+
+Opportunistically rename variables and parameters to better reflect the
+dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain
+"addr" instead of "vaddr" when the address may be either a GVA or an L2
+GPA.  Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid
+a confusing "gpa_t gva" declaration; this also sets the stage for a
+future patch to combing nonpaging_page_fault() and tdp_page_fault() with
+minimal churn.
+
+Sprinkle in a few comments to document flows where an address is known
+to be a GVA and thus can be safely truncated to a 32-bit value.  Add
+WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help
+document such cases and detect bugs.
+
+Cc: stable@vger.kernel.org
+Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
+Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ arch/x86/include/asm/kvm_host.h |  8 ++--
+ arch/x86/kvm/mmu.c              | 72 +++++++++++++++++++--------------
+ arch/x86/kvm/mmutrace.h         | 12 +++---
+ arch/x86/kvm/paging_tmpl.h      | 25 +++++++-----
+ arch/x86/kvm/x86.c              | 37 ++++++++---------
+ arch/x86/kvm/x86.h              |  2 +-
+ include/linux/kvm_host.h        |  6 +--
+ virt/kvm/async_pf.c             | 10 ++---
+ 8 files changed, 94 insertions(+), 78 deletions(-)
+
+diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
+index 155be8adb934e..21a58fcc3dd47 100644
+--- a/arch/x86/include/asm/kvm_host.h
++++ b/arch/x86/include/asm/kvm_host.h
+@@ -350,12 +350,12 @@ struct kvm_mmu {
+       void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
+       unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
+       u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
+-      int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
++      int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
+                         bool prefault);
+       void (*inject_page_fault)(struct kvm_vcpu *vcpu,
+                                 struct x86_exception *fault);
+-      gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
+-                          struct x86_exception *exception);
++      gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
++                          u32 access, struct x86_exception *exception);
+       gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
+                              struct x86_exception *exception);
+       int (*sync_page)(struct kvm_vcpu *vcpu,
+@@ -1354,7 +1354,7 @@ void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
+ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
+-int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
++int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
+                      void *insn, int insn_len);
+ void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
+ void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
+diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
+index eddf91a0e363e..e878b4cc8359d 100644
+--- a/arch/x86/kvm/mmu.c
++++ b/arch/x86/kvm/mmu.c
+@@ -3390,7 +3390,7 @@ static bool is_access_allowed(u32 fault_err_code, u64 spte)
+  * - true: let the vcpu to access on the same address again.
+  * - false: let the real page fault path to fix it.
+  */
+-static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
++static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
+                           u32 error_code)
+ {
+       struct kvm_shadow_walk_iterator iterator;
+@@ -3410,7 +3410,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+       do {
+               u64 new_spte;
+-              for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
++              for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
+                       if (!is_shadow_present_pte(spte) ||
+                           iterator.level < level)
+                               break;
+@@ -3488,7 +3488,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+       } while (true);
+-      trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
++      trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
+                             spte, fault_handled);
+       walk_shadow_page_lockless_end(vcpu);
+@@ -3496,10 +3496,11 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+ }
+ static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+-                       gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
++                       gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
++                       bool *writable);
+ static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
+-static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
++static int nonpaging_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
+                        gfn_t gfn, bool prefault)
+ {
+       int r;
+@@ -3525,16 +3526,16 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
+               gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+       }
+-      if (fast_page_fault(vcpu, v, level, error_code))
++      if (fast_page_fault(vcpu, gpa, level, error_code))
+               return RET_PF_RETRY;
+       mmu_seq = vcpu->kvm->mmu_notifier_seq;
+       smp_rmb();
+-      if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
++      if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
+               return RET_PF_RETRY;
+-      if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
++      if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
+               return r;
+       r = RET_PF_RETRY;
+@@ -3545,7 +3546,7 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
+               goto out_unlock;
+       if (likely(!force_pt_level))
+               transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
+-      r = __direct_map(vcpu, v, write, map_writable, level, pfn,
++      r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
+                        prefault, false);
+ out_unlock:
+       spin_unlock(&vcpu->kvm->mmu_lock);
+@@ -3838,7 +3839,7 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
+ }
+ EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
+-static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
++static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
+                                 u32 access, struct x86_exception *exception)
+ {
+       if (exception)
+@@ -3846,7 +3847,7 @@ static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
+       return vaddr;
+ }
+-static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
++static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
+                                        u32 access,
+                                        struct x86_exception *exception)
+ {
+@@ -4006,13 +4007,14 @@ static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
+       walk_shadow_page_lockless_end(vcpu);
+ }
+-static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
++static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
+                               u32 error_code, bool prefault)
+ {
+-      gfn_t gfn = gva >> PAGE_SHIFT;
++      gfn_t gfn = gpa >> PAGE_SHIFT;
+       int r;
+-      pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
++      /* Note, paging is disabled, ergo gva == gpa. */
++      pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
+       if (page_fault_handle_page_track(vcpu, error_code, gfn))
+               return RET_PF_EMULATE;
+@@ -4024,11 +4026,12 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
+       MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+-      return nonpaging_map(vcpu, gva & PAGE_MASK,
++      return nonpaging_map(vcpu, gpa & PAGE_MASK,
+                            error_code, gfn, prefault);
+ }
+-static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
++static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
++                                 gfn_t gfn)
+ {
+       struct kvm_arch_async_pf arch;
+@@ -4037,7 +4040,8 @@ static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
+       arch.direct_map = vcpu->arch.mmu.direct_map;
+       arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
+-      return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
++      return kvm_setup_async_pf(vcpu, cr2_or_gpa,
++                                kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
+ }
+ bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
+@@ -4054,7 +4058,8 @@ bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
+ }
+ static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+-                       gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
++                       gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
++                       bool *writable)
+ {
+       struct kvm_memory_slot *slot;
+       bool async;
+@@ -4074,12 +4079,12 @@ static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+               return false; /* *pfn has correct page already */
+       if (!prefault && kvm_can_do_async_pf(vcpu)) {
+-              trace_kvm_try_async_get_page(gva, gfn);
++              trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
+               if (kvm_find_async_pf_gfn(vcpu, gfn)) {
+-                      trace_kvm_async_pf_doublefault(gva, gfn);
++                      trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
+                       kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+                       return true;
+-              } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
++              } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
+                       return true;
+       }
+@@ -4092,6 +4097,12 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
+ {
+       int r = 1;
++#ifndef CONFIG_X86_64
++      /* A 64-bit CR2 should be impossible on 32-bit KVM. */
++      if (WARN_ON_ONCE(fault_address >> 32))
++              return -EFAULT;
++#endif
++
+       vcpu->arch.l1tf_flush_l1d = true;
+       switch (vcpu->arch.apf.host_apf_reason) {
+       default:
+@@ -4129,7 +4140,7 @@ check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
+       return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
+ }
+-static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
++static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
+                         bool prefault)
+ {
+       kvm_pfn_t pfn;
+@@ -5307,7 +5318,7 @@ static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
+       return 0;
+ }
+-int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
++int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
+                      void *insn, int insn_len)
+ {
+       int r, emulation_type = 0;
+@@ -5317,19 +5328,20 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
+       /* With shadow page tables, fault_address contains a GVA or nGPA.  */
+       if (vcpu->arch.mmu.direct_map) {
+               vcpu->arch.gpa_available = true;
+-              vcpu->arch.gpa_val = cr2;
++              vcpu->arch.gpa_val = cr2_or_gpa;
+       }
+       r = RET_PF_INVALID;
+       if (unlikely(error_code & PFERR_RSVD_MASK)) {
+-              r = handle_mmio_page_fault(vcpu, cr2, direct);
++              r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
+               if (r == RET_PF_EMULATE)
+                       goto emulate;
+       }
+       if (r == RET_PF_INVALID) {
+-              r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
+-                                            false);
++              r = vcpu->arch.mmu.page_fault(vcpu, cr2_or_gpa,
++                                             lower_32_bits(error_code),
++                                             false);
+               WARN_ON(r == RET_PF_INVALID);
+       }
+@@ -5347,7 +5359,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
+        */
+       if (vcpu->arch.mmu.direct_map &&
+           (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
+-              kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
++              kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
+               return 1;
+       }
+@@ -5362,7 +5374,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
+        * explicitly shadowing L1's page tables, i.e. unprotecting something
+        * for L1 isn't going to magically fix whatever issue cause L2 to fail.
+        */
+-      if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
++      if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
+               emulation_type = EMULTYPE_ALLOW_RETRY;
+ emulate:
+       /*
+@@ -5375,7 +5387,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
+       if (unlikely(insn && !insn_len))
+               return 1;
+-      er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
++      er = x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, insn_len);
+       switch (er) {
+       case EMULATE_DONE:
+diff --git a/arch/x86/kvm/mmutrace.h b/arch/x86/kvm/mmutrace.h
+index 918b0d5bf2724..cb41b036eb264 100644
+--- a/arch/x86/kvm/mmutrace.h
++++ b/arch/x86/kvm/mmutrace.h
+@@ -249,13 +249,13 @@ TRACE_EVENT(
+ TRACE_EVENT(
+       fast_page_fault,
+-      TP_PROTO(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code,
++      TP_PROTO(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 error_code,
+                u64 *sptep, u64 old_spte, bool retry),
+-      TP_ARGS(vcpu, gva, error_code, sptep, old_spte, retry),
++      TP_ARGS(vcpu, cr2_or_gpa, error_code, sptep, old_spte, retry),
+       TP_STRUCT__entry(
+               __field(int, vcpu_id)
+-              __field(gva_t, gva)
++              __field(gpa_t, cr2_or_gpa)
+               __field(u32, error_code)
+               __field(u64 *, sptep)
+               __field(u64, old_spte)
+@@ -265,7 +265,7 @@ TRACE_EVENT(
+       TP_fast_assign(
+               __entry->vcpu_id = vcpu->vcpu_id;
+-              __entry->gva = gva;
++              __entry->cr2_or_gpa = cr2_or_gpa;
+               __entry->error_code = error_code;
+               __entry->sptep = sptep;
+               __entry->old_spte = old_spte;
+@@ -273,9 +273,9 @@ TRACE_EVENT(
+               __entry->retry = retry;
+       ),
+-      TP_printk("vcpu %d gva %lx error_code %s sptep %p old %#llx"
++      TP_printk("vcpu %d gva %llx error_code %s sptep %p old %#llx"
+                 " new %llx spurious %d fixed %d", __entry->vcpu_id,
+-                __entry->gva, __print_flags(__entry->error_code, "|",
++                __entry->cr2_or_gpa, __print_flags(__entry->error_code, "|",
+                 kvm_mmu_trace_pferr_flags), __entry->sptep,
+                 __entry->old_spte, __entry->new_spte,
+                 __spte_satisfied(old_spte), __spte_satisfied(new_spte)
+diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
+index adf42dc8d38b0..100ae4fabf170 100644
+--- a/arch/x86/kvm/paging_tmpl.h
++++ b/arch/x86/kvm/paging_tmpl.h
+@@ -273,11 +273,11 @@ static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
+ }
+ /*
+- * Fetch a guest pte for a guest virtual address
++ * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
+  */
+ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
+                                   struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+-                                  gva_t addr, u32 access)
++                                  gpa_t addr, u32 access)
+ {
+       int ret;
+       pt_element_t pte;
+@@ -478,7 +478,7 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker,
+ }
+ static int FNAME(walk_addr)(struct guest_walker *walker,
+-                          struct kvm_vcpu *vcpu, gva_t addr, u32 access)
++                          struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
+ {
+       return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
+                                       access);
+@@ -593,7 +593,7 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
+  * If the guest tries to write a write-protected page, we need to
+  * emulate this operation, return 1 to indicate this case.
+  */
+-static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
++static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
+                        struct guest_walker *gw,
+                        int write_fault, int hlevel,
+                        kvm_pfn_t pfn, bool map_writable, bool prefault,
+@@ -747,7 +747,7 @@ FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
+  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
+  *           a negative value on error.
+  */
+-static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
++static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
+                            bool prefault)
+ {
+       int write_fault = error_code & PFERR_WRITE_MASK;
+@@ -926,18 +926,19 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
+       spin_unlock(&vcpu->kvm->mmu_lock);
+ }
+-static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
++/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
++static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
+                              struct x86_exception *exception)
+ {
+       struct guest_walker walker;
+       gpa_t gpa = UNMAPPED_GVA;
+       int r;
+-      r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
++      r = FNAME(walk_addr)(&walker, vcpu, addr, access);
+       if (r) {
+               gpa = gfn_to_gpa(walker.gfn);
+-              gpa |= vaddr & ~PAGE_MASK;
++              gpa |= addr & ~PAGE_MASK;
+       } else if (exception)
+               *exception = walker.fault;
+@@ -945,7 +946,8 @@ static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
+ }
+ #if PTTYPE != PTTYPE_EPT
+-static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
++/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
++static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
+                                     u32 access,
+                                     struct x86_exception *exception)
+ {
+@@ -953,6 +955,11 @@ static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
+       gpa_t gpa = UNMAPPED_GVA;
+       int r;
++#ifndef CONFIG_X86_64
++      /* A 64-bit GVA should be impossible on 32-bit KVM. */
++      WARN_ON_ONCE(vaddr >> 32);
++#endif
++
+       r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
+       if (r) {
+diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
+index 1e7c4022c4b56..ade694f94a49f 100644
+--- a/arch/x86/kvm/x86.c
++++ b/arch/x86/kvm/x86.c
+@@ -6021,11 +6021,11 @@ static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
+       return r;
+ }
+-static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
++static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+                                 bool write_fault_to_shadow_pgtable,
+                                 int emulation_type)
+ {
+-      gpa_t gpa = cr2;
++      gpa_t gpa = cr2_or_gpa;
+       kvm_pfn_t pfn;
+       if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
+@@ -6039,7 +6039,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
+                * Write permission should be allowed since only
+                * write access need to be emulated.
+                */
+-              gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
++              gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
+               /*
+                * If the mapping is invalid in guest, let cpu retry
+@@ -6096,10 +6096,10 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
+ }
+ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
+-                            unsigned long cr2,  int emulation_type)
++                            gpa_t cr2_or_gpa,  int emulation_type)
+ {
+       struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+-      unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
++      unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
+       last_retry_eip = vcpu->arch.last_retry_eip;
+       last_retry_addr = vcpu->arch.last_retry_addr;
+@@ -6128,14 +6128,14 @@ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
+       if (x86_page_table_writing_insn(ctxt))
+               return false;
+-      if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
++      if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
+               return false;
+       vcpu->arch.last_retry_eip = ctxt->eip;
+-      vcpu->arch.last_retry_addr = cr2;
++      vcpu->arch.last_retry_addr = cr2_or_gpa;
+       if (!vcpu->arch.mmu.direct_map)
+-              gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
++              gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
+       kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+@@ -6296,11 +6296,8 @@ static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
+       return false;
+ }
+-int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+-                          unsigned long cr2,
+-                          int emulation_type,
+-                          void *insn,
+-                          int insn_len)
++int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
++                          int emulation_type, void *insn, int insn_len)
+ {
+       int r;
+       struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+@@ -6343,7 +6340,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+               if (r != EMULATION_OK)  {
+                       if (emulation_type & EMULTYPE_TRAP_UD)
+                               return EMULATE_FAIL;
+-                      if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
++                      if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
+                                               emulation_type))
+                               return EMULATE_DONE;
+                       if (ctxt->have_exception) {
+@@ -6373,7 +6370,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+               return EMULATE_DONE;
+       }
+-      if (retry_instruction(ctxt, cr2, emulation_type))
++      if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
+               return EMULATE_DONE;
+       /* this is needed for vmware backdoor interface to work since it
+@@ -6385,7 +6382,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+ restart:
+       /* Save the faulting GPA (cr2) in the address field */
+-      ctxt->exception.address = cr2;
++      ctxt->exception.address = cr2_or_gpa;
+       r = x86_emulate_insn(ctxt);
+@@ -6393,7 +6390,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+               return EMULATE_DONE;
+       if (r == EMULATION_FAILED) {
+-              if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
++              if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
+                                       emulation_type))
+                       return EMULATE_DONE;
+@@ -9555,7 +9552,7 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
+             work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
+               return;
+-      vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
++      vcpu->arch.mmu.page_fault(vcpu, work->cr2_or_gpa, 0, true);
+ }
+ static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
+@@ -9638,7 +9635,7 @@ void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
+ {
+       struct x86_exception fault;
+-      trace_kvm_async_pf_not_present(work->arch.token, work->gva);
++      trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
+       kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
+       if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
+@@ -9666,7 +9663,7 @@ void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
+               work->arch.token = ~0; /* broadcast wakeup */
+       else
+               kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
+-      trace_kvm_async_pf_ready(work->arch.token, work->gva);
++      trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
+       if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
+           !apf_get_user(vcpu, &val)) {
+diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h
+index 608e5f8c5d0a5..422331b257d3a 100644
+--- a/arch/x86/kvm/x86.h
++++ b/arch/x86/kvm/x86.h
+@@ -284,7 +284,7 @@ int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
+ bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
+                                         int page_num);
+ bool kvm_vector_hashing_enabled(void);
+-int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2,
++int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+                           int emulation_type, void *insn, int insn_len);
+ #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
+diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
+index 748016ae01e3a..f6394fd4b284b 100644
+--- a/include/linux/kvm_host.h
++++ b/include/linux/kvm_host.h
+@@ -186,7 +186,7 @@ struct kvm_async_pf {
+       struct list_head queue;
+       struct kvm_vcpu *vcpu;
+       struct mm_struct *mm;
+-      gva_t gva;
++      gpa_t cr2_or_gpa;
+       unsigned long addr;
+       struct kvm_arch_async_pf arch;
+       bool   wakeup_all;
+@@ -194,8 +194,8 @@ struct kvm_async_pf {
+ void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
+ void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
+-int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
+-                     struct kvm_arch_async_pf *arch);
++int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
++                     unsigned long hva, struct kvm_arch_async_pf *arch);
+ int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
+ #endif
+diff --git a/virt/kvm/async_pf.c b/virt/kvm/async_pf.c
+index 23c2519c5b32a..c9861c2315e8e 100644
+--- a/virt/kvm/async_pf.c
++++ b/virt/kvm/async_pf.c
+@@ -76,7 +76,7 @@ static void async_pf_execute(struct work_struct *work)
+       struct mm_struct *mm = apf->mm;
+       struct kvm_vcpu *vcpu = apf->vcpu;
+       unsigned long addr = apf->addr;
+-      gva_t gva = apf->gva;
++      gpa_t cr2_or_gpa = apf->cr2_or_gpa;
+       int locked = 1;
+       might_sleep();
+@@ -104,7 +104,7 @@ static void async_pf_execute(struct work_struct *work)
+        * this point
+        */
+-      trace_kvm_async_pf_completed(addr, gva);
++      trace_kvm_async_pf_completed(addr, cr2_or_gpa);
+       if (swq_has_sleeper(&vcpu->wq))
+               swake_up_one(&vcpu->wq);
+@@ -177,8 +177,8 @@ void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu)
+       }
+ }
+-int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
+-                     struct kvm_arch_async_pf *arch)
++int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
++                     unsigned long hva, struct kvm_arch_async_pf *arch)
+ {
+       struct kvm_async_pf *work;
+@@ -197,7 +197,7 @@ int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
+       work->wakeup_all = false;
+       work->vcpu = vcpu;
+-      work->gva = gva;
++      work->cr2_or_gpa = cr2_or_gpa;
+       work->addr = hva;
+       work->arch = *arch;
+       work->mm = current->mm;
+-- 
+2.20.1
+
diff --git a/queue-4.19/mm-page_alloc.c-fix-uninitialized-memmaps-on-a-parti.patch b/queue-4.19/mm-page_alloc.c-fix-uninitialized-memmaps-on-a-parti.patch
new file mode 100644 (file)
index 0000000..0d9fb19
--- /dev/null
@@ -0,0 +1,139 @@
+From e9ca65111a0aa093d4b3092a41639ae8fa29a353 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Mon, 3 Feb 2020 17:33:48 -0800
+Subject: mm/page_alloc.c: fix uninitialized memmaps on a partially populated
+ last section
+
+From: David Hildenbrand <david@redhat.com>
+
+[ Upstream commit e822969cab48b786b64246aad1a3ba2a774f5d23 ]
+
+Patch series "mm: fix max_pfn not falling on section boundary", v2.
+
+Playing with different memory sizes for a x86-64 guest, I discovered that
+some memmaps (highest section if max_mem does not fall on the section
+boundary) are marked as being valid and online, but contain garbage.  We
+have to properly initialize these memmaps.
+
+Looking at /proc/kpageflags and friends, I found some more issues,
+partially related to this.
+
+This patch (of 3):
+
+If max_pfn is not aligned to a section boundary, we can easily run into
+BUGs.  This can e.g., be triggered on x86-64 under QEMU by specifying a
+memory size that is not a multiple of 128MB (e.g., 4097MB, but also
+4160MB).  I was told that on real HW, we can easily have this scenario
+(esp., one of the main reasons sub-section hotadd of devmem was added).
+
+The issue is, that we have a valid memmap (pfn_valid()) for the whole
+section, and the whole section will be marked "online".
+pfn_to_online_page() will succeed, but the memmap contains garbage.
+
+E.g., doing a "./page-types -r -a 0x144001" when QEMU was started with "-m
+4160M" - (see tools/vm/page-types.c):
+
+[  200.476376] BUG: unable to handle page fault for address: fffffffffffffffe
+[  200.477500] #PF: supervisor read access in kernel mode
+[  200.478334] #PF: error_code(0x0000) - not-present page
+[  200.479076] PGD 59614067 P4D 59614067 PUD 59616067 PMD 0
+[  200.479557] Oops: 0000 [#4] SMP NOPTI
+[  200.479875] CPU: 0 PID: 603 Comm: page-types Tainted: G      D W         5.5.0-rc1-next-20191209 #93
+[  200.480646] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu4
+[  200.481648] RIP: 0010:stable_page_flags+0x4d/0x410
+[  200.482061] Code: f3 ff 41 89 c0 48 b8 00 00 00 00 01 00 00 00 45 84 c0 0f 85 cd 02 00 00 48 8b 53 08 48 8b 2b 48f
+[  200.483644] RSP: 0018:ffffb139401cbe60 EFLAGS: 00010202
+[  200.484091] RAX: fffffffffffffffe RBX: fffffbeec5100040 RCX: 0000000000000000
+[  200.484697] RDX: 0000000000000001 RSI: ffffffff9535c7cd RDI: 0000000000000246
+[  200.485313] RBP: ffffffffffffffff R08: 0000000000000000 R09: 0000000000000000
+[  200.485917] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000144001
+[  200.486523] R13: 00007ffd6ba55f48 R14: 00007ffd6ba55f40 R15: ffffb139401cbf08
+[  200.487130] FS:  00007f68df717580(0000) GS:ffff9ec77fa00000(0000) knlGS:0000000000000000
+[  200.487804] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
+[  200.488295] CR2: fffffffffffffffe CR3: 0000000135d48000 CR4: 00000000000006f0
+[  200.488897] Call Trace:
+[  200.489115]  kpageflags_read+0xe9/0x140
+[  200.489447]  proc_reg_read+0x3c/0x60
+[  200.489755]  vfs_read+0xc2/0x170
+[  200.490037]  ksys_pread64+0x65/0xa0
+[  200.490352]  do_syscall_64+0x5c/0xa0
+[  200.490665]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
+
+But it can be triggered much easier via "cat /proc/kpageflags > /dev/null"
+after cold/hot plugging a DIMM to such a system:
+
+[root@localhost ~]# cat /proc/kpageflags > /dev/null
+[  111.517275] BUG: unable to handle page fault for address: fffffffffffffffe
+[  111.517907] #PF: supervisor read access in kernel mode
+[  111.518333] #PF: error_code(0x0000) - not-present page
+[  111.518771] PGD a240e067 P4D a240e067 PUD a2410067 PMD 0
+
+This patch fixes that by at least zero-ing out that memmap (so e.g.,
+page_to_pfn() will not crash).  Commit 907ec5fca3dc ("mm: zero remaining
+unavailable struct pages") tried to fix a similar issue, but forgot to
+consider this special case.
+
+After this patch, there are still problems to solve.  E.g., not all of
+these pages falling into a memory hole will actually get initialized later
+and set PageReserved - they are only zeroed out - but at least the
+immediate crashes are gone.  A follow-up patch will take care of this.
+
+Link: http://lkml.kernel.org/r/20191211163201.17179-2-david@redhat.com
+Fixes: f7f99100d8d9 ("mm: stop zeroing memory during allocation in vmemmap")
+Signed-off-by: David Hildenbrand <david@redhat.com>
+Tested-by: Daniel Jordan <daniel.m.jordan@oracle.com>
+Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
+Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
+Cc: Andrew Morton <akpm@linux-foundation.org>
+Cc: Steven Sistare <steven.sistare@oracle.com>
+Cc: Michal Hocko <mhocko@suse.com>
+Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
+Cc: Bob Picco <bob.picco@oracle.com>
+Cc: Oscar Salvador <osalvador@suse.de>
+Cc: Alexey Dobriyan <adobriyan@gmail.com>
+Cc: Dan Williams <dan.j.williams@intel.com>
+Cc: Michal Hocko <mhocko@kernel.org>
+Cc: Stephen Rothwell <sfr@canb.auug.org.au>
+Cc: <stable@vger.kernel.org>   [4.15+]
+Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
+Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ mm/page_alloc.c | 14 ++++++++++++--
+ 1 file changed, 12 insertions(+), 2 deletions(-)
+
+diff --git a/mm/page_alloc.c b/mm/page_alloc.c
+index 8a00c32191263..e5c610d711f32 100644
+--- a/mm/page_alloc.c
++++ b/mm/page_alloc.c
+@@ -6489,7 +6489,8 @@ static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
+  * This function also addresses a similar issue where struct pages are left
+  * uninitialized because the physical address range is not covered by
+  * memblock.memory or memblock.reserved. That could happen when memblock
+- * layout is manually configured via memmap=.
++ * layout is manually configured via memmap=, or when the highest physical
++ * address (max_pfn) does not end on a section boundary.
+  */
+ void __init zero_resv_unavail(void)
+ {
+@@ -6507,7 +6508,16 @@ void __init zero_resv_unavail(void)
+                       pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
+               next = end;
+       }
+-      pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
++
++      /*
++       * Early sections always have a fully populated memmap for the whole
++       * section - see pfn_valid(). If the last section has holes at the
++       * end and that section is marked "online", the memmap will be
++       * considered initialized. Make sure that memmap has a well defined
++       * state.
++       */
++      pgcnt += zero_pfn_range(PFN_DOWN(next),
++                              round_up(max_pfn, PAGES_PER_SECTION));
+       /*
+        * Struct pages that do not have backing memory. This could be because
+-- 
+2.20.1
+
diff --git a/queue-4.19/mm-return-zero_resv_unavail-optimization.patch b/queue-4.19/mm-return-zero_resv_unavail-optimization.patch
new file mode 100644 (file)
index 0000000..68c606b
--- /dev/null
@@ -0,0 +1,114 @@
+From 7f9e116273aa43e0be7574380a03b9606aba9660 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Fri, 26 Oct 2018 15:10:21 -0700
+Subject: mm: return zero_resv_unavail optimization
+
+From: Pavel Tatashin <pavel.tatashin@microsoft.com>
+
+[ Upstream commit ec393a0f014eaf688a3dbe8c8a4cbb52d7f535f9 ]
+
+When checking for valid pfns in zero_resv_unavail(), it is not necessary
+to verify that pfns within pageblock_nr_pages ranges are valid, only the
+first one needs to be checked.  This is because memory for pages are
+allocated in contiguous chunks that contain pageblock_nr_pages struct
+pages.
+
+Link: http://lkml.kernel.org/r/20181002143821.5112-3-msys.mizuma@gmail.com
+Signed-off-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
+Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
+Reviewed-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
+Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
+Reviewed-by: Oscar Salvador <osalvador@suse.de>
+Cc: Ingo Molnar <mingo@kernel.org>
+Cc: Michal Hocko <mhocko@kernel.org>
+Cc: Thomas Gleixner <tglx@linutronix.de>
+Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
+Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ mm/page_alloc.c | 46 ++++++++++++++++++++++++++--------------------
+ 1 file changed, 26 insertions(+), 20 deletions(-)
+
+diff --git a/mm/page_alloc.c b/mm/page_alloc.c
+index 19f2e77d1c50b..8a00c32191263 100644
+--- a/mm/page_alloc.c
++++ b/mm/page_alloc.c
+@@ -6456,6 +6456,29 @@ void __init free_area_init_node(int nid, unsigned long *zones_size,
+ }
+ #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
++
++/*
++ * Zero all valid struct pages in range [spfn, epfn), return number of struct
++ * pages zeroed
++ */
++static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
++{
++      unsigned long pfn;
++      u64 pgcnt = 0;
++
++      for (pfn = spfn; pfn < epfn; pfn++) {
++              if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
++                      pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
++                              + pageblock_nr_pages - 1;
++                      continue;
++              }
++              mm_zero_struct_page(pfn_to_page(pfn));
++              pgcnt++;
++      }
++
++      return pgcnt;
++}
++
+ /*
+  * Only struct pages that are backed by physical memory are zeroed and
+  * initialized by going through __init_single_page(). But, there are some
+@@ -6471,7 +6494,6 @@ void __init free_area_init_node(int nid, unsigned long *zones_size,
+ void __init zero_resv_unavail(void)
+ {
+       phys_addr_t start, end;
+-      unsigned long pfn;
+       u64 i, pgcnt;
+       phys_addr_t next = 0;
+@@ -6481,34 +6503,18 @@ void __init zero_resv_unavail(void)
+       pgcnt = 0;
+       for_each_mem_range(i, &memblock.memory, NULL,
+                       NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
+-              if (next < start) {
+-                      for (pfn = PFN_DOWN(next); pfn < PFN_UP(start); pfn++) {
+-                              if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
+-                                      continue;
+-                              mm_zero_struct_page(pfn_to_page(pfn));
+-                              pgcnt++;
+-                      }
+-              }
++              if (next < start)
++                      pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
+               next = end;
+       }
+-      for (pfn = PFN_DOWN(next); pfn < max_pfn; pfn++) {
+-              if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
+-                      continue;
+-              mm_zero_struct_page(pfn_to_page(pfn));
+-              pgcnt++;
+-      }
+-
++      pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
+       /*
+        * Struct pages that do not have backing memory. This could be because
+        * firmware is using some of this memory, or for some other reasons.
+-       * Once memblock is changed so such behaviour is not allowed: i.e.
+-       * list of "reserved" memory must be a subset of list of "memory", then
+-       * this code can be removed.
+        */
+       if (pgcnt)
+               pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
+-
+ }
+ #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
+-- 
+2.20.1
+
diff --git a/queue-4.19/mm-zero-remaining-unavailable-struct-pages.patch b/queue-4.19/mm-zero-remaining-unavailable-struct-pages.patch
new file mode 100644 (file)
index 0000000..c16893b
--- /dev/null
@@ -0,0 +1,205 @@
+From 36ddb1757ef1943ac751efe676c7d879a857e238 Mon Sep 17 00:00:00 2001
+From: Sasha Levin <sashal@kernel.org>
+Date: Fri, 26 Oct 2018 15:10:15 -0700
+Subject: mm: zero remaining unavailable struct pages
+
+From: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
+
+[ Upstream commit 907ec5fca3dc38d37737de826f06f25b063aa08e ]
+
+Patch series "mm: Fix for movable_node boot option", v3.
+
+This patch series contains a fix for the movable_node boot option issue
+which was introduced by commit 124049decbb1 ("x86/e820: put !E820_TYPE_RAM
+regions into memblock.reserved").
+
+The commit breaks the option because it changed the memory gap range to
+reserved memblock.  So, the node is marked as Normal zone even if the SRAT
+has Hot pluggable affinity.
+
+First and second patch fix the original issue which the commit tried to
+fix, then revert the commit.
+
+This patch (of 3):
+
+There is a kernel panic that is triggered when reading /proc/kpageflags on
+the kernel booted with kernel parameter 'memmap=nn[KMG]!ss[KMG]':
+
+  BUG: unable to handle kernel paging request at fffffffffffffffe
+  PGD 9b20e067 P4D 9b20e067 PUD 9b210067 PMD 0
+  Oops: 0000 [#1] SMP PTI
+  CPU: 2 PID: 1728 Comm: page-types Not tainted 4.17.0-rc6-mm1-v4.17-rc6-180605-0816-00236-g2dfb086ef02c+ #160
+  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014
+  RIP: 0010:stable_page_flags+0x27/0x3c0
+  Code: 00 00 00 0f 1f 44 00 00 48 85 ff 0f 84 a0 03 00 00 41 54 55 49 89 fc 53 48 8b 57 08 48 8b 2f 48 8d 42 ff 83 e2 01 48 0f 44 c7 <48> 8b 00 f6 c4 01 0f 84 10 03 00 00 31 db 49 8b 54 24 08 4c 89 e7
+  RSP: 0018:ffffbbd44111fde0 EFLAGS: 00010202
+  RAX: fffffffffffffffe RBX: 00007fffffffeff9 RCX: 0000000000000000
+  RDX: 0000000000000001 RSI: 0000000000000202 RDI: ffffed1182fff5c0
+  RBP: ffffffffffffffff R08: 0000000000000001 R09: 0000000000000001
+  R10: ffffbbd44111fed8 R11: 0000000000000000 R12: ffffed1182fff5c0
+  R13: 00000000000bffd7 R14: 0000000002fff5c0 R15: ffffbbd44111ff10
+  FS:  00007efc4335a500(0000) GS:ffff93a5bfc00000(0000) knlGS:0000000000000000
+  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
+  CR2: fffffffffffffffe CR3: 00000000b2a58000 CR4: 00000000001406e0
+  Call Trace:
+   kpageflags_read+0xc7/0x120
+   proc_reg_read+0x3c/0x60
+   __vfs_read+0x36/0x170
+   vfs_read+0x89/0x130
+   ksys_pread64+0x71/0x90
+   do_syscall_64+0x5b/0x160
+   entry_SYSCALL_64_after_hwframe+0x44/0xa9
+  RIP: 0033:0x7efc42e75e23
+  Code: 09 00 ba 9f 01 00 00 e8 ab 81 f4 ff 66 2e 0f 1f 84 00 00 00 00 00 90 83 3d 29 0a 2d 00 00 75 13 49 89 ca b8 11 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 34 c3 48 83 ec 08 e8 db d3 01 00 48 89 04 24
+
+According to kernel bisection, this problem became visible due to commit
+f7f99100d8d9 which changes how struct pages are initialized.
+
+Memblock layout affects the pfn ranges covered by node/zone.  Consider
+that we have a VM with 2 NUMA nodes and each node has 4GB memory, and the
+default (no memmap= given) memblock layout is like below:
+
+  MEMBLOCK configuration:
+   memory size = 0x00000001fff75c00 reserved size = 0x000000000300c000
+   memory.cnt  = 0x4
+   memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
+   memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
+   memory[0x2]     [0x0000000100000000-0x000000013fffffff], 0x0000000040000000 bytes on node 0 flags: 0x0
+   memory[0x3]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
+   ...
+
+If you give memmap=1G!4G (so it just covers memory[0x2]),
+the range [0x100000000-0x13fffffff] is gone:
+
+  MEMBLOCK configuration:
+   memory size = 0x00000001bff75c00 reserved size = 0x000000000300c000
+   memory.cnt  = 0x3
+   memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
+   memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
+   memory[0x2]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
+   ...
+
+This causes shrinking node 0's pfn range because it is calculated by the
+address range of memblock.memory.  So some of struct pages in the gap
+range are left uninitialized.
+
+We have a function zero_resv_unavail() which does zeroing the struct pages
+outside memblock.memory, but currently it covers only the reserved
+unavailable range (i.e.  memblock.memory && !memblock.reserved).  This
+patch extends it to cover all unavailable range, which fixes the reported
+issue.
+
+Link: http://lkml.kernel.org/r/20181002143821.5112-2-msys.mizuma@gmail.com
+Fixes: f7f99100d8d9 ("mm: stop zeroing memory during allocation in vmemmap")
+Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
+Signed-off-by-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
+Tested-by: Oscar Salvador <osalvador@suse.de>
+Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
+Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
+Cc: Ingo Molnar <mingo@kernel.org>
+Cc: Michal Hocko <mhocko@kernel.org>
+Cc: Thomas Gleixner <tglx@linutronix.de>
+Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
+Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
+Signed-off-by: Sasha Levin <sashal@kernel.org>
+---
+ include/linux/memblock.h | 15 ---------------
+ mm/page_alloc.c          | 36 +++++++++++++++++++++++++-----------
+ 2 files changed, 25 insertions(+), 26 deletions(-)
+
+diff --git a/include/linux/memblock.h b/include/linux/memblock.h
+index 5169205493782..2acdd046df2d5 100644
+--- a/include/linux/memblock.h
++++ b/include/linux/memblock.h
+@@ -265,21 +265,6 @@ void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
+       for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
+                              nid, flags, p_start, p_end, p_nid)
+-/**
+- * for_each_resv_unavail_range - iterate through reserved and unavailable memory
+- * @i: u64 used as loop variable
+- * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
+- * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
+- *
+- * Walks over unavailable but reserved (reserved && !memory) areas of memblock.
+- * Available as soon as memblock is initialized.
+- * Note: because this memory does not belong to any physical node, flags and
+- * nid arguments do not make sense and thus not exported as arguments.
+- */
+-#define for_each_resv_unavail_range(i, p_start, p_end)                        \
+-      for_each_mem_range(i, &memblock.reserved, &memblock.memory,     \
+-                         NUMA_NO_NODE, MEMBLOCK_NONE, p_start, p_end, NULL)
+-
+ static inline void memblock_set_region_flags(struct memblock_region *r,
+                                            enum memblock_flags flags)
+ {
+diff --git a/mm/page_alloc.c b/mm/page_alloc.c
+index 74fb5c338e8fb..19f2e77d1c50b 100644
+--- a/mm/page_alloc.c
++++ b/mm/page_alloc.c
+@@ -6462,29 +6462,42 @@ void __init free_area_init_node(int nid, unsigned long *zones_size,
+  * struct pages which are reserved in memblock allocator and their fields
+  * may be accessed (for example page_to_pfn() on some configuration accesses
+  * flags). We must explicitly zero those struct pages.
++ *
++ * This function also addresses a similar issue where struct pages are left
++ * uninitialized because the physical address range is not covered by
++ * memblock.memory or memblock.reserved. That could happen when memblock
++ * layout is manually configured via memmap=.
+  */
+ void __init zero_resv_unavail(void)
+ {
+       phys_addr_t start, end;
+       unsigned long pfn;
+       u64 i, pgcnt;
++      phys_addr_t next = 0;
+       /*
+-       * Loop through ranges that are reserved, but do not have reported
+-       * physical memory backing.
++       * Loop through unavailable ranges not covered by memblock.memory.
+        */
+       pgcnt = 0;
+-      for_each_resv_unavail_range(i, &start, &end) {
+-              for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
+-                      if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
+-                              pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
+-                                      + pageblock_nr_pages - 1;
+-                              continue;
++      for_each_mem_range(i, &memblock.memory, NULL,
++                      NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
++              if (next < start) {
++                      for (pfn = PFN_DOWN(next); pfn < PFN_UP(start); pfn++) {
++                              if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
++                                      continue;
++                              mm_zero_struct_page(pfn_to_page(pfn));
++                              pgcnt++;
+                       }
+-                      mm_zero_struct_page(pfn_to_page(pfn));
+-                      pgcnt++;
+               }
++              next = end;
+       }
++      for (pfn = PFN_DOWN(next); pfn < max_pfn; pfn++) {
++              if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
++                      continue;
++              mm_zero_struct_page(pfn_to_page(pfn));
++              pgcnt++;
++      }
++
+       /*
+        * Struct pages that do not have backing memory. This could be because
+@@ -6494,7 +6507,8 @@ void __init zero_resv_unavail(void)
+        * this code can be removed.
+        */
+       if (pgcnt)
+-              pr_info("Reserved but unavailable: %lld pages", pgcnt);
++              pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
++
+ }
+ #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
+-- 
+2.20.1
+
index 717487d032a1a5833c2e3aaea13c354b3d0707cd..6bacce52a5d521e4c314d42d075a31c6947b4dcc 100644 (file)
@@ -173,3 +173,18 @@ net-mlx5-ipsec-fix-memory-leak-at-mlx5_fpga_ipsec_delete_sa_ctx.patch
 net-macb-remove-unnecessary-alignment-check-for-tso.patch
 net-macb-limit-maximum-gem-tx-length-in-tso.patch
 net-dsa-b53-always-use-dev-vlan_enabled-in-b53_configure_vlan.patch
+ext4-fix-deadlock-allocating-crypto-bounce-page-from.patch
+btrfs-use-bool-argument-in-free_root_pointers.patch
+btrfs-free-block-groups-after-free-ing-fs-trees.patch
+drm-atmel-hlcdc-enable-clock-before-configuring-timi.patch
+drm-dp_mst-remove-vcpi-while-disabling-topology-mgr.patch
+btrfs-flush-write-bio-if-we-loop-in-extent_write_cac.patch
+kvm-x86-mmu-apply-max-pa-check-for-mmio-sptes-to-32-.patch
+kvm-x86-use-gpa_t-for-cr2-gpa-to-fix-tdp-support-on-.patch
+kvm-vmx-add-non-canonical-check-on-writes-to-rtit-ad.patch
+kvm-nvmx-vmread-should-not-set-rflags-to-specify-suc.patch
+kvm-use-vcpu-specific-gva-hva-translation-when-query.patch
+kvm-play-nice-with-read-only-memslots-when-querying-.patch
+mm-zero-remaining-unavailable-struct-pages.patch
+mm-return-zero_resv_unavail-optimization.patch
+mm-page_alloc.c-fix-uninitialized-memmaps-on-a-parti.patch