]> git.ipfire.org Git - thirdparty/kernel/linux.git/commitdiff
pwm: stm32: Implementation of the waveform callbacks
authorUwe Kleine-König <u.kleine-koenig@baylibre.com>
Fri, 20 Sep 2024 08:58:02 +0000 (10:58 +0200)
committerUwe Kleine-König <ukleinek@kernel.org>
Sat, 28 Sep 2024 13:13:56 +0000 (15:13 +0200)
Convert the stm32 pwm driver to use the new callbacks for hardware
programming.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://lore.kernel.org/r/332d4f736d8360038d03f109c013441c655eea23.1726819463.git.u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
drivers/pwm/pwm-stm32.c

index eb24054f9729734da21eb96f2e37af03339e3440..d2c1085aee74e9d848f33860619c624c1c6e6df0 100644 (file)
@@ -51,6 +51,391 @@ static u32 active_channels(struct stm32_pwm *dev)
        return ccer & TIM_CCER_CCXE;
 }
 
+struct stm32_pwm_waveform {
+       u32 ccer;
+       u32 psc;
+       u32 arr;
+       u32 ccr;
+};
+
+static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip,
+                                        struct pwm_device *pwm,
+                                        const struct pwm_waveform *wf,
+                                        void *_wfhw)
+{
+       struct stm32_pwm_waveform *wfhw = _wfhw;
+       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
+       unsigned int ch = pwm->hwpwm;
+       unsigned long rate;
+       u64 ccr, duty;
+       int ret;
+
+       if (wf->period_length_ns == 0) {
+               *wfhw = (struct stm32_pwm_waveform){
+                       .ccer = 0,
+               };
+
+               return 0;
+       }
+
+       ret = clk_enable(priv->clk);
+       if (ret)
+               return ret;
+
+       wfhw->ccer = TIM_CCER_CCxE(ch + 1);
+       if (priv->have_complementary_output)
+               wfhw->ccer = TIM_CCER_CCxNE(ch + 1);
+
+       rate = clk_get_rate(priv->clk);
+
+       if (active_channels(priv) & ~(1 << ch * 4)) {
+               u64 arr;
+
+               /*
+                * Other channels are already enabled, so the configured PSC and
+                * ARR must be used for this channel, too.
+                */
+               ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
+               if (ret)
+                       goto out;
+
+               ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
+               if (ret)
+                       goto out;
+
+               /*
+                * calculate the best value for ARR for the given PSC, refuse if
+                * the resulting period gets bigger than the requested one.
+                */
+               arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
+                                         (u64)NSEC_PER_SEC * (wfhw->psc + 1));
+               if (arr <= wfhw->arr) {
+                       /*
+                        * requested period is small than the currently
+                        * configured and unchangable period, report back the smallest
+                        * possible period, i.e. the current state; Initialize
+                        * ccr to anything valid.
+                        */
+                       wfhw->ccr = 0;
+                       ret = 1;
+                       goto out;
+               }
+
+       } else {
+               /*
+                * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
+                * the calculations here won't overflow.
+                * First we need to find the minimal value for prescaler such that
+                *
+                *        period_ns * clkrate
+                *   ------------------------------ < max_arr + 1
+                *   NSEC_PER_SEC * (prescaler + 1)
+                *
+                * This equation is equivalent to
+                *
+                *        period_ns * clkrate
+                *   ---------------------------- < prescaler + 1
+                *   NSEC_PER_SEC * (max_arr + 1)
+                *
+                * Using integer division and knowing that the right hand side is
+                * integer, this is further equivalent to
+                *
+                *   (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
+                */
+               u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate,
+                                             (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
+               u64 arr;
+
+               wfhw->psc = min_t(u64, psc, MAX_TIM_PSC);
+
+               arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
+                                         (u64)NSEC_PER_SEC * (wfhw->psc + 1));
+               if (!arr) {
+                       /*
+                        * requested period is too small, report back the smallest
+                        * possible period, i.e. ARR = 0. The only valid CCR
+                        * value is then zero, too.
+                        */
+                       wfhw->arr = 0;
+                       wfhw->ccr = 0;
+                       ret = 1;
+                       goto out;
+               }
+
+               /*
+                * ARR is limited intentionally to values less than
+                * priv->max_arr to allow 100% duty cycle.
+                */
+               wfhw->arr = min_t(u64, arr, priv->max_arr) - 1;
+       }
+
+       duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate,
+                                  (u64)NSEC_PER_SEC * (wfhw->psc + 1));
+       duty = min_t(u64, duty, wfhw->arr + 1);
+
+       if (wf->duty_length_ns && wf->duty_offset_ns &&
+           wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) {
+               wfhw->ccer |= TIM_CCER_CCxP(ch + 1);
+               if (priv->have_complementary_output)
+                       wfhw->ccer |= TIM_CCER_CCxNP(ch + 1);
+
+               ccr = wfhw->arr + 1 - duty;
+       } else {
+               ccr = duty;
+       }
+
+       wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1);
+
+       dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n",
+               pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
+               rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr);
+
+out:
+       clk_disable(priv->clk);
+
+       return ret;
+}
+
+/*
+ * This should be moved to lib/math/div64.c. Currently there are some changes
+ * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles.
+ */
+static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c)
+{
+       u64 res = mul_u64_u64_div_u64(a, b, c);
+       /* Those multiplications might overflow but it doesn't matter */
+       u64 rem = a * b - c * res;
+
+       if (rem)
+               res += 1;
+
+       return res;
+}
+
+static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip,
+                                          struct pwm_device *pwm,
+                                          const void *_wfhw,
+                                          struct pwm_waveform *wf)
+{
+       const struct stm32_pwm_waveform *wfhw = _wfhw;
+       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
+       unsigned int ch = pwm->hwpwm;
+
+       if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
+               unsigned long rate = clk_get_rate(priv->clk);
+               u64 ccr_ns;
+
+               /* The result doesn't overflow for rate >= 15259 */
+               wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1),
+                                                                            NSEC_PER_SEC, rate);
+
+               ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr,
+                                                              NSEC_PER_SEC, rate);
+
+               if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) {
+                       wf->duty_length_ns =
+                               stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr),
+                                                                     NSEC_PER_SEC, rate);
+
+                       wf->duty_offset_ns = ccr_ns;
+               } else {
+                       wf->duty_length_ns = ccr_ns;
+                       wf->duty_offset_ns = 0;
+               }
+
+               dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n",
+                       pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate,
+                       wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
+
+       } else {
+               *wf = (struct pwm_waveform){
+                       .period_length_ns = 0,
+               };
+       }
+
+       return 0;
+}
+
+static int stm32_pwm_read_waveform(struct pwm_chip *chip,
+                                    struct pwm_device *pwm,
+                                    void *_wfhw)
+{
+       struct stm32_pwm_waveform *wfhw = _wfhw;
+       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
+       unsigned int ch = pwm->hwpwm;
+       int ret;
+
+       ret = clk_enable(priv->clk);
+       if (ret)
+               return ret;
+
+       ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer);
+       if (ret)
+               goto out;
+
+       if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
+               ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
+               if (ret)
+                       goto out;
+
+               ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
+               if (ret)
+                       goto out;
+
+               if (wfhw->arr == U32_MAX)
+                       wfhw->arr -= 1;
+
+               ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr);
+               if (ret)
+                       goto out;
+
+               if (wfhw->ccr > wfhw->arr + 1)
+                       wfhw->ccr = wfhw->arr + 1;
+       }
+
+out:
+       clk_disable(priv->clk);
+
+       return ret;
+}
+
+static int stm32_pwm_write_waveform(struct pwm_chip *chip,
+                                     struct pwm_device *pwm,
+                                     const void *_wfhw)
+{
+       const struct stm32_pwm_waveform *wfhw = _wfhw;
+       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
+       unsigned int ch = pwm->hwpwm;
+       int ret;
+
+       ret = clk_enable(priv->clk);
+       if (ret)
+               return ret;
+
+       if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
+               u32 ccer, mask;
+               unsigned int shift;
+               u32 ccmr;
+
+               ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
+               if (ret)
+                       goto out;
+
+               /* If there are other channels enabled, don't update PSC and ARR */
+               if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) {
+                       u32 psc, arr;
+
+                       ret = regmap_read(priv->regmap, TIM_PSC, &psc);
+                       if (ret)
+                               goto out;
+
+                       if (psc != wfhw->psc) {
+                               ret = -EBUSY;
+                               goto out;
+                       }
+
+                       regmap_read(priv->regmap, TIM_ARR, &arr);
+                       if (ret)
+                               goto out;
+
+                       if (arr != wfhw->arr) {
+                               ret = -EBUSY;
+                               goto out;
+                       }
+               } else {
+                       ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc);
+                       if (ret)
+                               goto out;
+
+                       ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr);
+                       if (ret)
+                               goto out;
+
+                       ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
+                       if (ret)
+                               goto out;
+
+               }
+
+               /* set polarity */
+               mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1);
+               ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer);
+               if (ret)
+                       goto out;
+
+               ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr);
+               if (ret)
+                       goto out;
+
+               /* Configure output mode */
+               shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
+               ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
+               mask = CCMR_CHANNEL_MASK << shift;
+
+               if (ch < 2)
+                       ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
+               else
+                       ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
+               if (ret)
+                       goto out;
+
+               ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
+               if (ret)
+                       goto out;
+
+               if (!(ccer & TIM_CCER_CCxE(ch + 1))) {
+                       mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1);
+
+                       ret = clk_enable(priv->clk);
+                       if (ret)
+                               goto out;
+
+                       ccer = (ccer & ~mask) | (wfhw->ccer & mask);
+                       regmap_write(priv->regmap, TIM_CCER, ccer);
+
+                       /* Make sure that registers are updated */
+                       regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
+
+                       /* Enable controller */
+                       regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
+               }
+
+       } else {
+               /* disable channel */
+               u32 mask, ccer;
+
+               mask = TIM_CCER_CCxE(ch + 1);
+               if (priv->have_complementary_output)
+                       mask |= TIM_CCER_CCxNE(ch + 1);
+
+               ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
+               if (ret)
+                       goto out;
+
+               if (ccer & mask) {
+                       ccer = ccer & ~mask;
+
+                       ret = regmap_write(priv->regmap, TIM_CCER, ccer);
+                       if (ret)
+                               goto out;
+
+                       if (!(ccer & TIM_CCER_CCXE)) {
+                               /* When all channels are disabled, we can disable the controller */
+                               ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
+                               if (ret)
+                                       goto out;
+                       }
+
+                       clk_disable(priv->clk);
+               }
+       }
+
+out:
+       clk_disable(priv->clk);
+
+       return ret;
+}
+
 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
@@ -308,228 +693,13 @@ unlock:
        return ret;
 }
 
-static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
-                           u64 duty_ns, u64 period_ns)
-{
-       unsigned long long prd, dty;
-       unsigned long long prescaler;
-       u32 ccmr, mask, shift;
-
-       /*
-        * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
-        * the calculations here won't overflow.
-        * First we need to find the minimal value for prescaler such that
-        *
-        *        period_ns * clkrate
-        *   ------------------------------ < max_arr + 1
-        *   NSEC_PER_SEC * (prescaler + 1)
-        *
-        * This equation is equivalent to
-        *
-        *        period_ns * clkrate
-        *   ---------------------------- < prescaler + 1
-        *   NSEC_PER_SEC * (max_arr + 1)
-        *
-        * Using integer division and knowing that the right hand side is
-        * integer, this is further equivalent to
-        *
-        *   (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
-        */
-
-       prescaler = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
-                                       (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
-       if (prescaler > MAX_TIM_PSC)
-               return -EINVAL;
-
-       prd = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
-                                 (u64)NSEC_PER_SEC * (prescaler + 1));
-       if (!prd)
-               return -EINVAL;
-
-       /*
-        * All channels share the same prescaler and counter so when two
-        * channels are active at the same time we can't change them
-        */
-       if (active_channels(priv) & ~(1 << ch * 4)) {
-               u32 psc, arr;
-
-               regmap_read(priv->regmap, TIM_PSC, &psc);
-               regmap_read(priv->regmap, TIM_ARR, &arr);
-
-               if ((psc != prescaler) || (arr != prd - 1))
-                       return -EBUSY;
-       }
-
-       regmap_write(priv->regmap, TIM_PSC, prescaler);
-       regmap_write(priv->regmap, TIM_ARR, prd - 1);
-       regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
-
-       /* Calculate the duty cycles */
-       dty = mul_u64_u64_div_u64(duty_ns, clk_get_rate(priv->clk),
-                                 (u64)NSEC_PER_SEC * (prescaler + 1));
-
-       regmap_write(priv->regmap, TIM_CCRx(ch + 1), dty);
-
-       /* Configure output mode */
-       shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
-       ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
-       mask = CCMR_CHANNEL_MASK << shift;
-
-       if (ch < 2)
-               regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
-       else
-               regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
-
-       regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
-
-       return 0;
-}
-
-static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
-                                 enum pwm_polarity polarity)
-{
-       u32 mask;
-
-       mask = TIM_CCER_CCxP(ch + 1);
-       if (priv->have_complementary_output)
-               mask |= TIM_CCER_CCxNP(ch + 1);
-
-       regmap_update_bits(priv->regmap, TIM_CCER, mask,
-                          polarity == PWM_POLARITY_NORMAL ? 0 : mask);
-
-       return 0;
-}
-
-static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
-{
-       u32 mask;
-       int ret;
-
-       ret = clk_enable(priv->clk);
-       if (ret)
-               return ret;
-
-       /* Enable channel */
-       mask = TIM_CCER_CCxE(ch + 1);
-       if (priv->have_complementary_output)
-               mask |= TIM_CCER_CCxNE(ch + 1);
-
-       regmap_set_bits(priv->regmap, TIM_CCER, mask);
-
-       /* Make sure that registers are updated */
-       regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
-
-       /* Enable controller */
-       regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
-
-       return 0;
-}
-
-static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
-{
-       u32 mask;
-
-       /* Disable channel */
-       mask = TIM_CCER_CCxE(ch + 1);
-       if (priv->have_complementary_output)
-               mask |= TIM_CCER_CCxNE(ch + 1);
-
-       regmap_clear_bits(priv->regmap, TIM_CCER, mask);
-
-       /* When all channels are disabled, we can disable the controller */
-       if (!active_channels(priv))
-               regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
-
-       clk_disable(priv->clk);
-}
-
-static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
-                          const struct pwm_state *state)
-{
-       bool enabled;
-       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
-       int ret;
-
-       enabled = pwm->state.enabled;
-
-       if (!state->enabled) {
-               if (enabled)
-                       stm32_pwm_disable(priv, pwm->hwpwm);
-               return 0;
-       }
-
-       if (state->polarity != pwm->state.polarity)
-               stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
-
-       ret = stm32_pwm_config(priv, pwm->hwpwm,
-                              state->duty_cycle, state->period);
-       if (ret)
-               return ret;
-
-       if (!enabled && state->enabled)
-               ret = stm32_pwm_enable(priv, pwm->hwpwm);
-
-       return ret;
-}
-
-static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
-                                 const struct pwm_state *state)
-{
-       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
-       int ret;
-
-       /* protect common prescaler for all active channels */
-       mutex_lock(&priv->lock);
-       ret = stm32_pwm_apply(chip, pwm, state);
-       mutex_unlock(&priv->lock);
-
-       return ret;
-}
-
-static int stm32_pwm_get_state(struct pwm_chip *chip,
-                              struct pwm_device *pwm, struct pwm_state *state)
-{
-       struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
-       int ch = pwm->hwpwm;
-       unsigned long rate;
-       u32 ccer, psc, arr, ccr;
-       u64 dty, prd;
-       int ret;
-
-       mutex_lock(&priv->lock);
-
-       ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
-       if (ret)
-               goto out;
-
-       state->enabled = ccer & TIM_CCER_CCxE(ch + 1);
-       state->polarity = (ccer & TIM_CCER_CCxP(ch + 1)) ?
-                         PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
-       ret = regmap_read(priv->regmap, TIM_PSC, &psc);
-       if (ret)
-               goto out;
-       ret = regmap_read(priv->regmap, TIM_ARR, &arr);
-       if (ret)
-               goto out;
-       ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &ccr);
-       if (ret)
-               goto out;
-
-       rate = clk_get_rate(priv->clk);
-
-       prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
-       state->period = DIV_ROUND_UP_ULL(prd, rate);
-       dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
-       state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
-
-out:
-       mutex_unlock(&priv->lock);
-       return ret;
-}
-
 static const struct pwm_ops stm32pwm_ops = {
-       .apply = stm32_pwm_apply_locked,
-       .get_state = stm32_pwm_get_state,
+       .sizeof_wfhw = sizeof(struct stm32_pwm_waveform),
+       .round_waveform_tohw = stm32_pwm_round_waveform_tohw,
+       .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw,
+       .read_waveform = stm32_pwm_read_waveform,
+       .write_waveform = stm32_pwm_write_waveform,
+
        .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
 };