--- /dev/null
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Low level access to the FTS index stored in the database file. The
+** routines in this file file implement all read and write access to the
+** %_data table. Other parts of the system access this functionality via
+** the interface defined in fts5Int.h.
+*/
+
+#include "fts5Int.h"
+#include "fts3_hash.h"
+
+/*
+** Overview:
+**
+** The %_data table contains all the FTS indexes for an FTS5 virtual table.
+** As well as the main term index, there may be up to 31 prefix indexes.
+** The format is similar to FTS3/4, except that:
+**
+** * all segment b-tree leaf data is stored in fixed size page records
+** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
+** taken to ensure it is possible to iterate in either direction through
+** the entries in a doclist, or to seek to a specific entry within a
+** doclist, without loading it into memory.
+**
+** * large doclists that span many pages have associated "doclist index"
+** records that contain a copy of the first docid on each page spanned by
+** the doclist. This is used to speed up seek operations, and merges of
+** large doclists with very small doclists.
+**
+** * extra fields in the "structure record" record the state of ongoing
+** incremental merge operations.
+**
+*/
+
+#define FTS5_DEFAULT_PAGE_SIZE 1000
+
+#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
+#define FTS5_MIN_MERGE 4 /* Minimum number of segments to merge */
+
+/*
+** Details:
+**
+** The %_data table managed by this module,
+**
+** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
+**
+** , contains the following 5 types of records. See the comments surrounding
+** the FTS5_*_ROWID macros below for a description of how %_data rowids are
+** assigned to each fo them.
+**
+** 1. Structure Records:
+**
+** The set of segments that make up an index - the index structure - are
+** recorded in a single record within the %_data table. The record is a list
+** of SQLite varints.
+**
+** For each level from 0 to nMax:
+**
+** + number of input segments in ongoing merge.
+** + total number of segments in level.
+** + for each segment from oldest to newest:
+** + segment id (always > 0)
+** + b-tree height (1 -> root is leaf, 2 -> root is parent of leaf etc.)
+** + first leaf page number (often 1)
+** + final leaf page number
+**
+** 2. The Averages Record:
+**
+** A single record within the %_data table. The data is a list of varints.
+** The first value is the number of rows in the index. Then, for each column
+** from left to right, the total number of tokens in the column for all
+** rows of the table.
+**
+** 3. Segment leaves:
+**
+** TERM DOCLIST FORMAT:
+**
+** Most of each segment leaf is taken up by term/doclist data. The
+** general format of the term/doclist data is:
+**
+** varint : size of first term
+** blob: first term data
+** doclist: first doclist
+** zero-or-more {
+** varint: number of bytes in common with previous term
+** varint: number of bytes of new term data (nNew)
+** blob: nNew bytes of new term data
+** doclist: next doclist
+** }
+**
+** doclist format:
+**
+** varint: first rowid
+** poslist: first poslist
+** zero-or-more {
+** varint: rowid delta (always > 0)
+** poslist: first poslist
+** }
+** 0x00 byte
+**
+** poslist format:
+**
+** collist: collist for column 0
+** zero-or-more {
+** 0x01 byte
+** varint: column number (I)
+** collist: collist for column I
+** }
+** 0x00 byte
+**
+** collist format:
+**
+** varint: first offset + 2
+** zero-or-more {
+** varint: offset delta + 2
+** }
+**
+** PAGINATION
+**
+** The format described above is only accurate if the entire term/doclist
+** data fits on a single leaf page. If this is not the case, the format
+** is changed in two ways:
+**
+** + if the first rowid on a page occurs before the first term, it
+** is stored as a literal value:
+**
+** varint: first rowid
+**
+** + the first term on each page is stored in the same way as the
+** very first term of the segment:
+**
+** varint : size of first term
+** blob: first term data
+**
+** Each leaf page begins with:
+**
+** + 2-byte unsigned containing offset to first rowid (or 0).
+** + 2-byte unsigned containing offset to first term (or 0).
+**
+** Followed by term/doclist data.
+**
+** 4. Segment interior nodes:
+**
+** The interior nodes turn the list of leaves into a b+tree.
+**
+** Each interior node begins with a varint - the page number of the left
+** most child node. Following this, for each leaf page except the first,
+** the interior nodes contain:
+**
+** a) If the leaf page contains at least one term, then a term-prefix that
+** is greater than all previous terms, and less than or equal to the
+** first term on the leaf page.
+**
+** b) If the leaf page no terms, a record indicating how many consecutive
+** leaves contain no terms, and whether or not there is an associated
+** by-rowid index record.
+**
+** By definition, there is never more than one type (b) record in a row.
+** Type (b) records only ever appear on height=1 pages - immediate parents
+** of leaves. Only type (a) records are pushed to higher levels.
+**
+** Term format:
+**
+** * Number of bytes in common with previous term plus 2, as a varint.
+** * Number of bytes of new term data, as a varint.
+** * new term data.
+**
+** No-term format:
+**
+** * either an 0x00 or 0x01 byte. If the value 0x01 is used, then there
+** is an associated index-by-rowid record.
+** * the number of zero-term leaves as a varint.
+**
+** 5. Segment doclist indexes:
+**
+** A list of varints - the first docid on each page (starting with the
+** second) of the doclist. First element in the list is a literal docid.
+** Each docid thereafter is a (negative) delta.
+*/
+
+/*
+** Rowids for the averages and structure records in the %_data table.
+*/
+#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
+#define FTS5_STRUCTURE_ROWID(iIdx) (10 + (iIdx)) /* For structure records */
+
+/*
+** Macros determining the rowids used by segment nodes. All nodes in all
+** segments for all indexes (the regular FTS index and any prefix indexes)
+** are stored in the %_data table with large positive rowids.
+**
+** The %_data table may contain up to (1<<FTS5_SEGMENT_INDEX_BITS)
+** indexes - one regular term index and zero or more prefix indexes.
+**
+** Each segment in an index has a unique id greater than zero.
+**
+** Each node in a segment b-tree is assigned a "page number" that is unique
+** within nodes of its height within the segment (leaf nodes have a height
+** of 0, parents 1, etc.). Page numbers are allocated sequentially so that
+** a nodes page number is always one more than its left sibling.
+**
+** The rowid for a node is then found using the FTS5_SEGMENT_ROWID() macro
+** below. The FTS5_SEGMENT_*_BITS macros define the number of bits used
+** to encode the three FTS5_SEGMENT_ROWID() arguments. This module returns
+** SQLITE_FULL and fails the current operation if they ever prove too small.
+*/
+#define FTS5_DATA_IDX_B 5 /* Max of 31 prefix indexes */
+#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
+#define FTS5_DATA_HEIGHT_B 5 /* Max b-tree height of 32 */
+#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
+
+#define FTS5_SEGMENT_ROWID(idx, segid, height, pgno) ( \
+ ((i64)(idx) << (FTS5_DATA_ID_B + FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
+ ((i64)(segid) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
+ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
+ ((i64)(pgno)) \
+)
+
+#if FTS5_MAX_PREFIX_INDEXES > ((1<<FTS5_DATA_IDX_B)-1)
+# error "FTS5_MAX_PREFIX_INDEXES is too large"
+#endif
+
+/*
+** The height of segment b-trees is actually limited to one less than
+** (1<<HEIGHT_BITS). This is because the rowid address space for nodes
+** with such a height is used by doclist indexes.
+*/
+#define FTS5_SEGMENT_MAX_HEIGHT ((1 << FTS5_SEGMENT_HEIGHT_BITS)-1)
+
+/*
+** The rowid for the doclist index associated with leaf page pgno of segment
+** segid in index idx.
+*/
+#define FTS5_DOCLIST_IDX_ROWID(idx, segid, pgno) \
+ FTS5_SEGMENT_ROWID(idx, segid, FTS5_SEGMENT_MAX_HEIGHT, pgno)
+
+#ifdef SQLITE_DEBUG
+static int fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
+# define FTS5_CORRUPT fts5Corrupt()
+#else
+# define FTS5_CORRUPT SQLITE_CORRUPT_VTAB
+#endif
+
+
+typedef struct Fts5BtreeIter Fts5BtreeIter;
+typedef struct Fts5BtreeIterLevel Fts5BtreeIterLevel;
+typedef struct Fts5Buffer Fts5Buffer;
+typedef struct Fts5Data Fts5Data;
+typedef struct Fts5MultiSegIter Fts5MultiSegIter;
+typedef struct Fts5NodeIter Fts5NodeIter;
+typedef struct Fts5PageWriter Fts5PageWriter;
+typedef struct Fts5PendingDoclist Fts5PendingDoclist;
+typedef struct Fts5PendingPoslist Fts5PendingPoslist;
+typedef struct Fts5PosIter Fts5PosIter;
+typedef struct Fts5SegIter Fts5SegIter;
+typedef struct Fts5SegWriter Fts5SegWriter;
+typedef struct Fts5Structure Fts5Structure;
+typedef struct Fts5StructureLevel Fts5StructureLevel;
+typedef struct Fts5StructureSegment Fts5StructureSegment;
+
+
+/*
+** One object per %_data table.
+*/
+struct Fts5Index {
+ Fts5Config *pConfig; /* Virtual table configuration */
+ char *zDataTbl; /* Name of %_data table */
+ int pgsz; /* Target page size for this index */
+ int nMinMerge; /* Minimum input segments in a merge */
+ int nWorkUnit; /* Leaf pages in a "unit" of work */
+
+ /*
+ ** Variables related to the accumulation of tokens and doclists within the
+ ** in-memory hash tables before they are flushed to disk.
+ */
+ Fts3Hash *aHash; /* One hash for terms, one for each prefix */
+ int nMaxPendingData; /* Max pending data before flush to disk */
+ int nPendingData; /* Current bytes of pending data */
+ i64 iWriteRowid; /* Rowid for current doc being written */
+
+ /* Error state. */
+ int rc; /* Current error code */
+
+ /* State used by the fts5DataXXX() functions. */
+ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
+ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
+ sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
+};
+
+/*
+** Buffer object for the incremental building of string data.
+*/
+struct Fts5Buffer {
+ u8 *p;
+ int n;
+ int nSpace;
+};
+
+/*
+** A single record read from the %_data table.
+*/
+struct Fts5Data {
+ u8 *p; /* Pointer to buffer containing record */
+ int n; /* Size of record in bytes */
+ int nRef; /* Ref count */
+};
+
+/*
+** Before it is flushed to a level-0 segment, term data is collected in
+** the hash tables in the Fts5Index.aHash[] array. Hash table keys are
+** terms (or, for prefix indexes, term prefixes) and values are instances
+** of type Fts5PendingDoclist.
+*/
+struct Fts5PendingDoclist {
+ u8 *pTerm; /* Term for this entry */
+ int nTerm; /* Bytes of data at pTerm */
+ Fts5PendingPoslist *pPoslist; /* Linked list of position lists */
+ int iCol; /* Column for last entry in pPending */
+ int iPos; /* Pos value for last entry in pPending */
+ Fts5PendingDoclist *pNext; /* Used during merge sort */
+};
+struct Fts5PendingPoslist {
+ i64 iRowid; /* Rowid for this doclist entry */
+ Fts5Buffer buf; /* Current doclist contents */
+ Fts5PendingPoslist *pNext; /* Previous poslist for same term */
+};
+
+/*
+** The contents of the "structure" record for each index are represented
+** using an Fts5Structure record in memory. Which uses instances of the
+** other Fts5StructureXXX types as components.
+*/
+struct Fts5StructureSegment {
+ int iSegid; /* Segment id */
+ int nHeight; /* Height of segment b-tree */
+ int pgnoFirst; /* First leaf page number in segment */
+ int pgnoLast; /* Last leaf page number in segment */
+};
+struct Fts5StructureLevel {
+ int nMerge; /* Number of segments in incr-merge */
+ int nSeg; /* Total number of segments on level */
+ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
+};
+struct Fts5Structure {
+ u64 nWriteCounter; /* Total leaves written to level 0 */
+ int nLevel; /* Number of levels in this index */
+ Fts5StructureLevel aLevel[0]; /* Array of nLevel level objects */
+};
+
+/*
+** An object of type Fts5SegWriter is used to write to segments.
+*/
+struct Fts5PageWriter {
+ int pgno; /* Page number for this page */
+ Fts5Buffer buf; /* Buffer containing page data */
+ Fts5Buffer term; /* Buffer containing previous term on page */
+};
+
+struct Fts5SegWriter {
+ int iIdx; /* Index to write to */
+ int iSegid; /* Segid to write to */
+ int nWriter; /* Number of entries in aWriter */
+ Fts5PageWriter *aWriter; /* Array of PageWriter objects */
+ i64 iPrevRowid; /* Previous docid written to current leaf */
+ u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
+ u8 bFirstRowidInPage; /* True if next rowid is first in page */
+ int nLeafWritten; /* Number of leaf pages written */
+ int nEmpty; /* Number of contiguous term-less nodes */
+};
+
+/*
+** Object for iterating through the merged results of one or more segments,
+** visiting each term/docid pair in the merged data.
+**
+** nSeg is always a power of two greater than or equal to the number of
+** segments that this object is merging data from. Both the aSeg[] and
+** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
+** with zeroed objects - these are handled as if they were iterators opened
+** on empty segments.
+**
+** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
+** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
+** comparison in this context is the index of the iterator that currently
+** points to the smaller term/rowid combination. Iterators at EOF are
+** considered to be greater than all other iterators.
+**
+** aFirst[1] contains the index in aSeg[] of the iterator that points to
+** the smallest key overall. aFirst[0] is unused.
+*/
+struct Fts5MultiSegIter {
+ int nSeg; /* Size of aSeg[] array */
+ Fts5SegIter *aSeg; /* Array of segment iterators */
+ u16 *aFirst; /* Current merge state (see above) */
+};
+
+/*
+** Object for iterating through a single segment, visiting each term/docid
+** pair in the segment.
+**
+** pSeg:
+** The segment to iterate through.
+**
+** iLeafPgno:
+** Current leaf page number within segment.
+**
+** iLeafOffset:
+** Byte offset within the current leaf that is one byte past the end of the
+** rowid field of the current entry. Usually this is the first byte of
+** the position list data. The exception is if the rowid for the current
+** entry is the last thing on the leaf page.
+**
+** pLeaf:
+** Buffer containing current leaf page data. Set to NULL at EOF.
+**
+** iTermLeafPgno, iTermLeafOffset:
+** Leaf page number containing the last term read from the segment. And
+** the offset immediately following the term data.
+*/
+struct Fts5SegIter {
+ Fts5StructureSegment *pSeg; /* Segment to iterate through */
+ int iIdx; /* Byte offset within current leaf */
+ int iLeafPgno; /* Current leaf page number */
+ Fts5Data *pLeaf; /* Current leaf data */
+ int iLeafOffset; /* Byte offset within current leaf */
+
+ int iTermLeafPgno;
+ int iTermLeafOffset;
+
+ /* Variables populated based on current entry. */
+ Fts5Buffer term; /* Current term */
+ i64 iRowid; /* Current rowid */
+};
+
+/*
+** Object for iterating through a single position list.
+*/
+struct Fts5PosIter {
+ Fts5Data *pLeaf; /* Current leaf data. NULL -> EOF. */
+ i64 iLeafRowid; /* Absolute rowid of current leaf */
+ int iLeafOffset; /* Current offset within leaf */
+
+ int iCol;
+ int iPos;
+};
+
+/*
+** Object for iterating through the conents of a single internal node in
+** memory.
+*/
+struct Fts5NodeIter {
+ /* Internal. Set and managed by fts5NodeIterXXX() functions. Except,
+ ** the EOF test for the iterator is (Fts5NodeIter.aData==0). */
+ const u8 *aData;
+ int nData;
+ int iOff;
+
+ /* Output variables */
+ Fts5Buffer term;
+ int nEmpty;
+ int iChild;
+};
+
+/*
+** An Fts5BtreeIter object is used to iterate through all entries in the
+** b-tree hierarchy belonging to a single fts5 segment. In this case the
+** "b-tree hierarchy" is all b-tree nodes except leaves. Each entry in the
+** b-tree hierarchy consists of the following:
+**
+** iLeaf: The page number of the leaf page the entry points to.
+**
+** term: A split-key that all terms on leaf page $leaf must be greater
+** than or equal to. The "term" associated with the first b-tree
+** hierarchy entry (the one that points to leaf page 1) is always
+** an empty string.
+**
+** nEmpty: The number of empty (termless) leaf pages that immediately
+** following iLeaf.
+**
+** The Fts5BtreeIter object is only used as part of the integrity-check code.
+*/
+struct Fts5BtreeIterLevel {
+ Fts5NodeIter s; /* Iterator for the current node */
+ Fts5Data *pData; /* Data for the current node */
+};
+struct Fts5BtreeIter {
+ Fts5Index *p; /* FTS5 backend object */
+ Fts5StructureSegment *pSeg; /* Iterate through this segment's b-tree */
+ int iIdx; /* Index pSeg belongs to */
+ int nLvl; /* Size of aLvl[] array */
+ Fts5BtreeIterLevel *aLvl; /* Level for each tier of b-tree */
+
+ /* Output variables */
+ Fts5Buffer term; /* Current term */
+ int iLeaf; /* Leaf containing terms >= current term */
+ int nEmpty; /* Number of "empty" leaves following iLeaf */
+ int bEof; /* Set to true at EOF */
+};
+
+static void fts5PutU16(u8 *aOut, u16 iVal){
+ aOut[0] = (iVal>>8);
+ aOut[1] = (iVal&0xFF);
+}
+
+static u16 fts5GetU16(const u8 *aIn){
+ return ((u16)aIn[0] << 8) + aIn[1];
+}
+
+/*
+** Allocate and return a buffer at least nByte bytes in size.
+**
+** If an OOM error is encountered, return NULL and set the error code in
+** the Fts5Index handle passed as the first argument.
+*/
+static void *fts5IdxMalloc(Fts5Index *p, int nByte){
+ void *pRet;
+ assert( p->rc==SQLITE_OK );
+ pRet = sqlite3_malloc(nByte);
+ if( pRet==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ }
+ return pRet;
+}
+
+
+static int fts5BufferGrow(int *pRc, Fts5Buffer *pBuf, int nByte){
+ /* A no-op if an error has already occurred */
+ if( *pRc ) return 1;
+
+ if( (pBuf->n + nByte) > pBuf->nSpace ){
+ u8 *pNew;
+ int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;
+ while( nNew<(pBuf->n + nByte) ){
+ nNew = nNew * 2;
+ }
+ pNew = sqlite3_realloc(pBuf->p, nNew);
+ if( pNew==0 ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }else{
+ pBuf->nSpace = nNew;
+ pBuf->p = pNew;
+ }
+ }
+ return 0;
+}
+
+/*
+** Encode value iVal as an SQLite varint and append it to the buffer object
+** pBuf. If an OOM error occurs, set the error code in p.
+*/
+static void fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
+ if( fts5BufferGrow(pRc, pBuf, 9) ) return;
+ pBuf->n += sqlite3PutVarint(&pBuf->p[pBuf->n], iVal);
+}
+
+/*
+** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void fts5BufferAppendBlob(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ int nData,
+ const u8 *pData
+){
+ if( fts5BufferGrow(pRc, pBuf, nData) ) return;
+ memcpy(&pBuf->p[pBuf->n], pData, nData);
+ pBuf->n += nData;
+}
+
+/*
+** Append the nul-terminated string zStr to the buffer pBuf. This function
+** ensures that the byte following the buffer data is set to 0x00, even
+** though this byte is not included in the pBuf->n count.
+*/
+static void fts5BufferAppendString(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ const char *zStr
+){
+ int nStr = strlen(zStr);
+ if( fts5BufferGrow(pRc, pBuf, nStr+1) ) return;
+ fts5BufferAppendBlob(pRc, pBuf, nStr, (const u8*)zStr);
+ if( *pRc==SQLITE_OK ) pBuf->p[pBuf->n] = 0x00;
+}
+
+/*
+** Argument zFmt is a printf() style format string. This function performs
+** the printf() style processing, then appends the results to buffer pBuf.
+**
+** Like fts5BufferAppendString(), this function ensures that the byte
+** following the buffer data is set to 0x00, even though this byte is not
+** included in the pBuf->n count.
+*/
+static void fts5BufferAppendPrintf(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ char *zFmt, ...
+){
+ if( *pRc==SQLITE_OK ){
+ char *zTmp;
+ va_list ap;
+ va_start(ap, zFmt);
+ zTmp = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+
+ if( zTmp==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ fts5BufferAppendString(pRc, pBuf, zTmp);
+ sqlite3_free(zTmp);
+ }
+ }
+}
+
+/*
+** Free any buffer allocated by pBuf. Zero the structure before returning.
+*/
+static void fts5BufferFree(Fts5Buffer *pBuf){
+ sqlite3_free(pBuf->p);
+ memset(pBuf, 0, sizeof(Fts5Buffer));
+}
+
+/*
+** Zero the contents of the buffer object. But do not free the associated
+** memory allocation.
+*/
+static void fts5BufferZero(Fts5Buffer *pBuf){
+ pBuf->n = 0;
+}
+
+/*
+** Set the buffer to contain nData/pData. If an OOM error occurs, leave an
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void fts5BufferSet(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ int nData,
+ const u8 *pData
+){
+ pBuf->n = 0;
+ fts5BufferAppendBlob(pRc, pBuf, nData, pData);
+}
+
+/*
+** Compare the contents of the two buffers using memcmp(). If one buffer
+** is a prefix of the other, it is considered the lesser.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
+ int nCmp = MIN(pLeft->n, pRight->n);
+ int res = memcmp(pLeft->p, pRight->p, nCmp);
+ return (res==0 ? (pLeft->n - pRight->n) : res);
+}
+
+
+/*
+** Close the read-only blob handle, if it is open.
+*/
+static void fts5CloseReader(Fts5Index *p){
+ if( p->pReader ){
+ sqlite3_blob_close(p->pReader);
+ p->pReader = 0;
+ }
+}
+
+static Fts5Data *fts5DataReadOrBuffer(
+ Fts5Index *p,
+ Fts5Buffer *pBuf,
+ i64 iRowid
+){
+ Fts5Data *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ int rc;
+
+ /* If the blob handle is not yet open, open and seek it. Otherwise, use
+ ** the blob_reopen() API to reseek the existing blob handle. */
+ if( p->pReader==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ rc = sqlite3_blob_open(pConfig->db,
+ pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
+ );
+ }else{
+ rc = sqlite3_blob_reopen(p->pReader, iRowid);
+ }
+
+ if( rc==SQLITE_OK ){
+ int nByte = sqlite3_blob_bytes(p->pReader);
+ if( pBuf ){
+ fts5BufferZero(pBuf);
+ fts5BufferGrow(&rc, pBuf, nByte);
+ rc = sqlite3_blob_read(p->pReader, pBuf->p, nByte, 0);
+ if( rc==SQLITE_OK ) pBuf->n = nByte;
+ }else{
+ pRet = (Fts5Data*)fts5IdxMalloc(p, sizeof(Fts5Data) + nByte);
+ if( !pRet ) return 0;
+
+ pRet->n = nByte;
+ pRet->p = (u8*)&pRet[1];
+ pRet->nRef = 1;
+ rc = sqlite3_blob_read(p->pReader, pRet->p, nByte, 0);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+ }
+ }
+ p->rc = rc;
+ }
+
+ return pRet;
+}
+
+/*
+** Retrieve a record from the %_data table.
+**
+** If an error occurs, NULL is returned and an error left in the
+** Fts5Index object.
+*/
+static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = fts5DataReadOrBuffer(p, 0, iRowid);
+ assert( (pRet==0)==(p->rc!=SQLITE_OK) );
+assert( pRet );
+ return pRet;
+}
+
+/*
+** Read a record from the %_data table into the buffer supplied as the
+** second argument.
+**
+** If an error occurs, an error is left in the Fts5Index object. If an
+** error has already occurred when this function is called, it is a
+** no-op.
+*/
+static void fts5DataBuffer(Fts5Index *p, Fts5Buffer *pBuf, i64 iRowid){
+ (void)fts5DataReadOrBuffer(p, pBuf, iRowid);
+}
+
+/*
+** Release a reference to data record returned by an earlier call to
+** fts5DataRead().
+*/
+static void fts5DataRelease(Fts5Data *pData){
+ if( pData ){
+ pData->nRef--;
+ if( pData->nRef==0 ) sqlite3_free(pData);
+ }
+}
+
+static void fts5DataReference(Fts5Data *pData){
+ pData->nRef++;
+}
+
+/*
+** INSERT OR REPLACE a record into the %_data table.
+*/
+static void fts5DataWrite(Fts5Index *p, i64 iRowid, u8 *pData, int nData){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pWriter==0 ){
+ int rc;
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql = sqlite3_mprintf(
+ "REPLACE INTO '%q'.%Q(id, block) VALUES(?,?)", pConfig->zDb, p->zDataTbl
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pWriter, 0);
+ sqlite3_free(zSql);
+ }
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ return;
+ }
+ }
+
+ sqlite3_bind_int64(p->pWriter, 1, iRowid);
+ sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
+ sqlite3_step(p->pWriter);
+ p->rc = sqlite3_reset(p->pWriter);
+}
+
+/*
+** Execute the following SQL:
+**
+** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
+*/
+static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pDeleter==0 ){
+ int rc;
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql = sqlite3_mprintf(
+ "DELETE FROM '%q'.%Q WHERE id>=? AND id<=?", pConfig->zDb, p->zDataTbl
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pDeleter, 0);
+ sqlite3_free(zSql);
+ }
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ return;
+ }
+ }
+
+ sqlite3_bind_int64(p->pDeleter, 1, iFirst);
+ sqlite3_bind_int64(p->pDeleter, 2, iLast);
+ sqlite3_step(p->pDeleter);
+ p->rc = sqlite3_reset(p->pDeleter);
+}
+
+/*
+** Close the sqlite3_blob handle used to read records from the %_data table.
+** And discard any cached reads. This function is called at the end of
+** a read transaction or when any sub-transaction is rolled back.
+*/
+static void fts5DataReset(Fts5Index *p){
+ if( p->pReader ){
+ sqlite3_blob_close(p->pReader);
+ p->pReader = 0;
+ }
+}
+
+/*
+** Remove all records associated with segment iSegid in index iIdx.
+*/
+static void fts5DataRemoveSegment(Fts5Index *p, int iIdx, int iSegid){
+ i64 iFirst = FTS5_SEGMENT_ROWID(iIdx, iSegid, 0, 0);
+ i64 iLast = FTS5_SEGMENT_ROWID(iIdx, iSegid+1, 0, 0)-1;
+ fts5DataDelete(p, iFirst, iLast);
+}
+
+/*
+** Deserialize and return the structure record currently stored in serialized
+** form within buffer pData/nData.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated by one slot. This allows the structure contents
+** to be more easily edited.
+**
+** If an error occurs, *ppOut is set to NULL and an SQLite error code
+** returned. Otherwise, *ppOut is set to point to the new object and
+** SQLITE_OK returned.
+*/
+static int fts5StructureDecode(
+ const u8 *pData, /* Buffer containing serialized structure */
+ int nData, /* Size of buffer pData in bytes */
+ Fts5Structure **ppOut /* OUT: Deserialized object */
+){
+ int rc = SQLITE_OK;
+ int i = 0;
+ int iLvl;
+ int nLevel = 0;
+ int nSegment = 0;
+ int nByte; /* Bytes of space to allocate */
+ Fts5Structure *pRet = 0;
+
+ /* Read the total number of levels and segments from the start of the
+ ** structure record. Use these values to allocate space for the deserialized
+ ** version of the record. */
+ i = getVarint32(&pData[i], nLevel);
+ i += getVarint32(&pData[i], nSegment);
+ nByte = (
+ sizeof(Fts5Structure) +
+ sizeof(Fts5StructureLevel) * (nLevel+1) +
+ sizeof(Fts5StructureSegment) * (nSegment+nLevel+1)
+ );
+ pRet = (Fts5Structure*)sqlite3_malloc(nByte);
+
+ if( pRet ){
+ u8 *pSpace = (u8*)&pRet->aLevel[nLevel+1];
+ memset(pRet, 0, nByte);
+ pRet->nLevel = nLevel;
+ i += sqlite3GetVarint(&pData[i], &pRet->nWriteCounter);
+ for(iLvl=0; iLvl<nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
+ int nTotal;
+ int iSeg;
+
+ i += getVarint32(&pData[i], pLvl->nMerge);
+ i += getVarint32(&pData[i], nTotal);
+ assert( nTotal>=pLvl->nMerge );
+ pLvl->nSeg = nTotal;
+ pLvl->aSeg = (Fts5StructureSegment*)pSpace;
+ pSpace += ((nTotal+1) * sizeof(Fts5StructureSegment));
+
+ for(iSeg=0; iSeg<nTotal; iSeg++){
+ i += getVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
+ i += getVarint32(&pData[i], pLvl->aSeg[iSeg].nHeight);
+ i += getVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
+ i += getVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
+ }
+ }
+ pRet->aLevel[nLevel].aSeg = (Fts5StructureSegment*)pSpace;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ *ppOut = pRet;
+ return rc;
+}
+
+/*
+** Read, deserialize and return the structure record for index iIdx.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated as described for function fts5StructureDecode()
+** above.
+**
+** If an error occurs, NULL is returned and an error code left in the
+** Fts5Index handle. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static Fts5Structure *fts5StructureRead(Fts5Index *p, int iIdx){
+ Fts5Config *pConfig = p->pConfig;
+ Fts5Structure *pRet = 0; /* Object to return */
+ Fts5Data *pData; /* %_data entry containing structure record */
+
+ assert( iIdx<=pConfig->nPrefix );
+ pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID(iIdx));
+ if( !pData ) return 0;
+ p->rc = fts5StructureDecode(pData->p, pData->n, &pRet);
+
+ fts5DataRelease(pData);
+ return pRet;
+}
+
+/*
+** Release a reference to an Fts5Structure object returned by an earlier
+** call to fts5StructureRead() or fts5StructureDecode().
+*/
+static void fts5StructureRelease(Fts5Structure *pStruct){
+ sqlite3_free(pStruct);
+}
+
+/*
+** Return the total number of segments in index structure pStruct.
+*/
+static int fts5StructureCountSegments(Fts5Structure *pStruct){
+ int nSegment = 0; /* Total number of segments */
+ int iLvl; /* Used to iterate through levels */
+
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ nSegment += pStruct->aLevel[iLvl].nSeg;
+ }
+
+ return nSegment;
+}
+
+/*
+** Serialize and store the "structure" record for index iIdx.
+**
+** If an error occurs, leave an error code in the Fts5Index object. If an
+** error has already occurred, this function is a no-op.
+*/
+static void fts5StructureWrite(Fts5Index *p, int iIdx, Fts5Structure *pStruct){
+ int nSegment; /* Total number of segments */
+ Fts5Buffer buf; /* Buffer to serialize record into */
+ int iLvl; /* Used to iterate through levels */
+
+ nSegment = fts5StructureCountSegments(pStruct);
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ fts5BufferAppendVarint(&p->rc, &buf, pStruct->nLevel);
+ fts5BufferAppendVarint(&p->rc, &buf, nSegment);
+ fts5BufferAppendVarint(&p->rc, &buf, (i64)pStruct->nWriteCounter);
+
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
+
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].nHeight);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
+ }
+ }
+
+ fts5DataWrite(p, FTS5_STRUCTURE_ROWID(iIdx), buf.p, buf.n);
+ fts5BufferFree(&buf);
+}
+
+
+/*
+** Load the next leaf page into the segment iterator.
+*/
+static void fts5SegIterNextPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter /* Iterator to advance to next page */
+){
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+ if( pIter->pLeaf ) fts5DataRelease(pIter->pLeaf);
+ if( pIter->iLeafPgno<pSeg->pgnoLast ){
+ pIter->iLeafPgno++;
+ pIter->pLeaf = fts5DataRead(p,
+ FTS5_SEGMENT_ROWID(pIter->iIdx, pSeg->iSegid, 0, pIter->iLeafPgno)
+ );
+ }else{
+ pIter->pLeaf = 0;
+ }
+}
+
+static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ int iOff = pIter->iLeafOffset; /* Offset to read at */
+ int nNew; /* Bytes of new data */
+
+ iOff += getVarint32(&a[iOff], nNew);
+ pIter->term.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+ iOff += nNew;
+ pIter->iTermLeafOffset = iOff;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+ if( iOff>=pIter->pLeaf->n ){
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff = 4;
+ a = pIter->pLeaf->p;
+ }
+ iOff += sqlite3GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+}
+
+/*
+** Initialize the iterator object pIter to iterate through the entries in
+** segment pSeg within index iIdx. The iterator is left pointing to the
+** first entry when this function returns.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterInit(
+ Fts5Index *p,
+ int iIdx, /* Config.aHash[] index of FTS index */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+
+ if( p->rc==SQLITE_OK ){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->pSeg = pSeg;
+ pIter->iIdx = iIdx;
+ pIter->iLeafPgno = pSeg->pgnoFirst-1;
+ fts5SegIterNextPage(p, pIter);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ u8 *a = pIter->pLeaf->p;
+ pIter->iLeafOffset = fts5GetU16(&a[2]);
+ fts5SegIterLoadTerm(p, pIter, 0);
+ }
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
+** is not considered an error if the iterator reaches EOF. If an error has
+** already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterNext(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter /* Iterator to advance */
+){
+ if( p->rc==SQLITE_OK ){
+ Fts5Data *pLeaf = pIter->pLeaf;
+ int iOff;
+ int bNewTerm = 0;
+ int nKeep = 0;
+
+ /* Search for the end of the position list within the current page. */
+ u8 *a = pLeaf->p;
+ int n = pLeaf->n;
+ for(iOff=pIter->iLeafOffset; iOff<n && a[iOff]; iOff++);
+ iOff++;
+
+ if( iOff<n ){
+ /* The next entry is on the current page */
+ u64 iDelta;
+ iOff += sqlite3GetVarint(&a[iOff], &iDelta);
+ pIter->iLeafOffset = iOff;
+ if( iDelta==0 ){
+ bNewTerm = 1;
+ if( iOff>=n ){
+ fts5SegIterNextPage(p, pIter);
+ pIter->iLeafOffset = 4;
+ }else if( iOff!=fts5GetU16(&a[2]) ){
+ pIter->iLeafOffset += getVarint32(&a[iOff], nKeep);
+ }
+ }else{
+ pIter->iRowid -= iDelta;
+ }
+ }else{
+ iOff = 0;
+ /* Next entry is not on the current page */
+ while( iOff==0 ){
+ fts5SegIterNextPage(p, pIter);
+ pLeaf = pIter->pLeaf;
+ if( pLeaf==0 ) break;
+ if( (iOff = fts5GetU16(&pLeaf->p[0])) ){
+ iOff += sqlite3GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+ }
+ else if( (iOff = fts5GetU16(&pLeaf->p[2])) ){
+ pIter->iLeafOffset = iOff;
+ bNewTerm = 1;
+ }
+ }
+ }
+
+ /* Check if the iterator is now at EOF. If so, return early. */
+ if( pIter->pLeaf==0 ) return;
+ if( bNewTerm ){
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ }
+ }
+}
+
+/*
+** Zero the iterator passed as the only argument.
+*/
+static void fts5SegIterClear(Fts5SegIter *pIter){
+ fts5BufferFree(&pIter->term);
+ fts5DataRelease(pIter->pLeaf);
+ memset(pIter, 0, sizeof(Fts5SegIter));
+}
+
+/*
+** Do the comparison necessary to populate pIter->aFirst[iOut].
+**
+** If the returned value is non-zero, then it is the index of an entry
+** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
+** to a key that is a duplicate of another, higher priority,
+** segment-iterator in the pSeg->aSeg[] array.
+*/
+static int fts5MultiIterDoCompare(Fts5MultiSegIter *pIter, int iOut){
+ int i1; /* Index of left-hand Fts5SegIter */
+ int i2; /* Index of right-hand Fts5SegIter */
+ int iRes;
+ Fts5SegIter *p1; /* Left-hand Fts5SegIter */
+ Fts5SegIter *p2; /* Right-hand Fts5SegIter */
+
+ assert( iOut<pIter->nSeg && iOut>0 );
+
+ if( iOut>=(pIter->nSeg/2) ){
+ i1 = (iOut - pIter->nSeg/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pIter->aFirst[iOut*2];
+ i2 = pIter->aFirst[iOut*2+1];
+ }
+ p1 = &pIter->aSeg[i1];
+ p2 = &pIter->aSeg[i2];
+
+ if( p1->pLeaf==0 ){ /* If p1 is at EOF */
+ iRes = i2;
+ }else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
+ iRes = i1;
+ }else{
+ int res = fts5BufferCompare(&p1->term, &p2->term);
+ if( res==0 ){
+ assert( i2>i1 );
+ assert( i2!=0 );
+ if( p1->iRowid==p2->iRowid ) return i2;
+ res = (p1->iRowid > p2->iRowid) ? -1 : +1;
+ }
+ assert( res!=0 );
+ if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pIter->aFirst[iOut] = iRes;
+ return 0;
+}
+
+/*
+** Free the iterator object passed as the second argument.
+*/
+static void fts5MultiIterFree(Fts5Index *p, Fts5MultiSegIter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nSeg; i++){
+ fts5SegIterClear(&pIter->aSeg[i]);
+ }
+ sqlite3_free(pIter);
+ }
+}
+
+static void fts5MultiIterAdvanced(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5MultiSegIter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ int iMinset /* Minimum entry in aFirst[] to set */
+){
+ int i;
+ for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
+ fts5SegIterNext(p, &pIter->aSeg[iEq]);
+ i = pIter->nSeg + iEq;
+ }
+ }
+}
+
+/*
+** Move the iterator to the next entry.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. It is not
+** considered an error if the iterator reaches EOF, or if it is already at
+** EOF when this function is called.
+*/
+static void fts5MultiIterNext(Fts5Index *p, Fts5MultiSegIter *pIter){
+ if( p->rc==SQLITE_OK ){
+ int iFirst = pIter->aFirst[1];
+ fts5SegIterNext(p, &pIter->aSeg[iFirst]);
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ }
+}
+
+/*
+** Allocate a new Fts5MultiSegIter object.
+**
+** The new object will be used to iterate through data in structure pStruct.
+** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
+** is zero or greater, data from the first nSegment segments on level iLevel
+** is merged.
+**
+** The iterator initially points to the first term/rowid entry in the
+** iterated data.
+*/
+static void fts5MultiIterNew(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Structure *pStruct, /* Structure of specific index */
+ int iIdx, /* Config.aHash[] index of FTS index */
+ int iLevel, /* Level to iterate (-1 for all) */
+ int nSegment, /* Number of segments to merge (iLevel>=0) */
+ Fts5MultiSegIter **ppOut /* New object */
+){
+ int nSeg; /* Number of segments merged */
+ int nSlot; /* Power of two >= nSeg */
+ int iIter = 0; /* */
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl;
+ Fts5MultiSegIter *pNew;
+
+ /* Allocate space for the new multi-seg-iterator. */
+ if( iLevel<0 ){
+ nSeg = fts5StructureCountSegments(pStruct);
+ }else{
+ nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
+ }
+ for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
+ *ppOut = pNew = fts5IdxMalloc(p,
+ sizeof(Fts5MultiSegIter) + /* pNew */
+ sizeof(Fts5SegIter) * nSlot + /* pNew->aSeg[] */
+ sizeof(u16) * nSlot /* pNew->aFirst[] */
+ );
+ if( pNew==0 ) return;
+ pNew->nSeg = nSlot;
+ pNew->aSeg = (Fts5SegIter*)&pNew[1];
+ pNew->aFirst = (u16*)&pNew->aSeg[nSlot];
+
+ /* Initialize each of the component segment iterators. */
+ if( iLevel<0 ){
+ Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
+ for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
+ for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
+ fts5SegIterInit(p, iIdx, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
+ }
+ }
+ }else{
+ pLvl = &pStruct->aLevel[iLevel];
+ for(iSeg=nSeg-1; iSeg>=0; iSeg--){
+ fts5SegIterInit(p, iIdx, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
+ }
+ }
+ assert( iIter==nSeg );
+
+ /* If the above was successful, each component iterators now points
+ ** to the first entry in its segment. In this case initialize the
+ ** aFirst[] array. Or, if an error has occurred, free the iterator
+ ** object and set the output variable to NULL. */
+ if( p->rc==SQLITE_OK ){
+ for(iIter=nSlot-1; iIter>0; iIter--){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
+ fts5SegIterNext(p, &pNew->aSeg[iEq]);
+ fts5MultiIterAdvanced(p, pNew, iEq, iIter);
+ }
+ }
+ }else{
+ fts5MultiIterFree(p, pNew);
+ *ppOut = 0;
+ }
+}
+
+/*
+** Return true if the iterator is at EOF or if an error has occurred.
+** False otherwise.
+*/
+static int fts5MultiIterEof(Fts5Index *p, Fts5MultiSegIter *pIter){
+ return (p->rc || pIter->aSeg[ pIter->aFirst[1] ].pLeaf==0);
+}
+
+/*
+** Return the rowid of the entry that the iterator currently points
+** to. If the iterator points to EOF when this function is called the
+** results are undefined.
+*/
+static i64 fts5MultiIterRowid(Fts5MultiSegIter *pIter){
+ return pIter->aSeg[ pIter->aFirst[1] ].iRowid;
+}
+
+/*
+** Return a pointer to a buffer containing the term associated with the
+** entry that the iterator currently points to.
+*/
+static const u8 *fts5MultiIterTerm(Fts5MultiSegIter *pIter, int *pn){
+ Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1] ];
+ *pn = p->term.n;
+ return p->term.p;
+}
+
+/*
+** Read and return the next 32-bit varint from the position-list iterator
+** passed as the second argument.
+**
+** If an error occurs, zero is returned an an error code left in
+** Fts5Index.rc. If an error has already occurred when this function is
+** called, it is a no-op.
+*/
+static int fts5PosIterReadVarint(Fts5Index *p, Fts5PosIter *pIter){
+ int iVal = 0;
+ if( p->rc==SQLITE_OK ){
+ int iOff = pIter->iLeafOffset;
+ if( iOff < pIter->pLeaf->n ){
+ pIter->iLeafOffset += getVarint32(&pIter->pLeaf->p[iOff], iVal);
+ }else{
+ fts5DataRelease(pIter->pLeaf);
+ pIter->iLeafRowid++;
+ pIter->pLeaf = fts5DataRead(p, pIter->iLeafRowid);
+ if( pIter->pLeaf ){
+ pIter->iLeafOffset = 4 + getVarint32(&pIter->pLeaf->p[4], iVal);
+ }
+ }
+ }
+ return iVal;
+}
+
+/*
+** Advance the position list iterator to the next entry.
+*/
+static void fts5PosIterNext(Fts5Index *p, Fts5PosIter *pIter){
+ int iVal;
+ iVal = fts5PosIterReadVarint(p, pIter);
+ if( iVal==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }
+ else if( iVal==1 ){
+ pIter->iCol = fts5PosIterReadVarint(p, pIter);
+ pIter->iPos = fts5PosIterReadVarint(p, pIter) - 2;
+ }else{
+ pIter->iPos += (iVal - 2);
+ }
+}
+
+/*
+** Initialize the Fts5PosIter object passed as the final argument to iterate
+** through the position-list associated with the index entry that iterator
+** pMulti currently points to.
+*/
+static void fts5PosIterInit(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5MultiSegIter *pMulti, /* Multi-seg iterator to read pos-list from */
+ Fts5PosIter *pIter /* Initialize this object */
+){
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1] ];
+ int iId = pSeg->pSeg->iSegid;
+
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->pLeaf = pSeg->pLeaf;
+ pIter->iLeafOffset = pSeg->iLeafOffset;
+ pIter->iLeafRowid = FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, pSeg->iLeafPgno);
+ fts5DataReference(pIter->pLeaf);
+ fts5PosIterNext(p, pIter);
+ }
+}
+
+/*
+** Return true if the position iterator passed as the second argument is
+** at EOF. Or if an error has already occurred. Otherwise, return false.
+*/
+static int fts5PosIterEof(Fts5Index *p, Fts5PosIter *pIter){
+ return (p->rc || pIter->pLeaf==0);
+}
+
+
+/*
+** Allocate memory. The difference between this function and fts5IdxMalloc()
+** is that this increments the Fts5Index.nPendingData variable by the
+** number of bytes allocated. It should be used for all allocations used
+** to store pending-data within the in-memory hash tables.
+*/
+static void *fts5PendingMalloc(Fts5Index *p, int nByte){
+ p->nPendingData += nByte;
+ return fts5IdxMalloc(p, nByte);
+}
+
+/*
+** Add an entry for (iRowid/iCol/iPos) to the doclist for (pToken/nToken)
+** in hash table for index iIdx. If iIdx is zero, this is the main terms
+** index. Values of 1 and greater for iIdx are prefix indexes.
+**
+** If an OOM error is encountered, set the Fts5Index.rc error code
+** accordingly.
+*/
+static void fts5AddTermToHash(
+ Fts5Index *p, /* Index object to write to */
+ int iIdx, /* Entry in p->aHash[] to update */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ Fts5Config *pConfig = p->pConfig;
+ Fts3Hash *pHash;
+ Fts5PendingDoclist *pDoclist;
+ Fts5PendingPoslist *pPoslist;
+ i64 iRowid = p->iWriteRowid; /* Rowid associated with these tokens */
+
+ /* If an error has already occured this call is a no-op. */
+ if( p->rc!=SQLITE_OK ) return;
+
+ /* Find the hash table to use. It has already been allocated. */
+ assert( iIdx<=pConfig->nPrefix );
+ assert( iIdx==0 || nToken==pConfig->aPrefix[iIdx-1] );
+ pHash = &p->aHash[iIdx];
+
+ /* Find the doclist to append to. Allocate a new doclist object if
+ ** required. */
+ pDoclist = (Fts5PendingDoclist*)fts3HashFind(pHash, pToken, nToken);
+ if( pDoclist==0 ){
+ Fts5PendingDoclist *pDel;
+ pDoclist = fts5PendingMalloc(p, sizeof(Fts5PendingDoclist) + nToken);
+ if( pDoclist==0 ) return;
+ pDoclist->pTerm = (u8*)&pDoclist[1];
+ pDoclist->nTerm = nToken;
+ memcpy(pDoclist->pTerm, pToken, nToken);
+ pDel = fts3HashInsert(pHash, pDoclist->pTerm, nToken, pDoclist);
+ if( pDel ){
+ assert( pDoclist==pDel );
+ sqlite3_free(pDel);
+ p->rc = SQLITE_NOMEM;
+ return;
+ }
+ }
+
+ /* Find the poslist to append to. Allocate a new object if required. */
+ pPoslist = pDoclist->pPoslist;
+ if( pPoslist==0 || pPoslist->iRowid!=iRowid ){
+ pPoslist = fts5PendingMalloc(p, sizeof(Fts5PendingPoslist));
+ if( pPoslist==0 ) return;
+ pPoslist->pNext = pDoclist->pPoslist;
+ pPoslist->iRowid = iRowid;
+ pDoclist->pPoslist = pPoslist;
+ pDoclist->iCol = 0;
+ pDoclist->iPos = 0;
+ }
+
+ /* Append the values to the position list. */
+ if( iCol>=0 ){
+ p->nPendingData -= pPoslist->buf.nSpace;
+ if( iCol!=pDoclist->iCol ){
+ fts5BufferAppendVarint(&p->rc, &pPoslist->buf, 1);
+ fts5BufferAppendVarint(&p->rc, &pPoslist->buf, iCol);
+ pDoclist->iCol = iCol;
+ pDoclist->iPos = 0;
+ }
+ fts5BufferAppendVarint(&p->rc, &pPoslist->buf, iPos + 2 - pDoclist->iPos);
+ p->nPendingData += pPoslist->buf.nSpace;
+ pDoclist->iPos = iPos;
+ }
+}
+
+/*
+** Free the pending-doclist object passed as the only argument.
+*/
+static void fts5FreePendingDoclist(Fts5PendingDoclist *p){
+ Fts5PendingPoslist *pPoslist;
+ Fts5PendingPoslist *pNext;
+ for(pPoslist=p->pPoslist; pPoslist; pPoslist=pNext){
+ pNext = pPoslist->pNext;
+ fts5BufferFree(&pPoslist->buf);
+ sqlite3_free(pPoslist);
+ }
+ sqlite3_free(p);
+}
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+void sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ int i; /* Used to iterate through indexes */
+ Fts5Config *pConfig = p->pConfig;
+
+ /* If an error has already occured this call is a no-op. */
+ if( p->rc!=SQLITE_OK ) return;
+
+ /* Allocate hash tables if they have not already been allocated */
+ if( p->aHash==0 ){
+ int nHash = pConfig->nPrefix + 1;
+ p->aHash = (Fts3Hash*)sqlite3_malloc(sizeof(Fts3Hash) * nHash);
+ if( p->aHash==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ for(i=0; i<nHash; i++){
+ fts3HashInit(&p->aHash[i], FTS3_HASH_STRING, 0);
+ }
+ }
+ }
+
+ /* Add the new token to the main terms hash table. And to each of the
+ ** prefix hash tables that it is large enough for. */
+ fts5AddTermToHash(p, 0, iCol, iPos, pToken, nToken);
+ for(i=0; i<pConfig->nPrefix; i++){
+ if( nToken>=pConfig->aPrefix[i] ){
+ fts5AddTermToHash(p, i+1, iCol, iPos, pToken, pConfig->aPrefix[i]);
+ }
+ }
+}
+
+/*
+** Allocate a new segment-id for the structure pStruct.
+**
+** If an error has already occurred, this function is a no-op. 0 is
+** returned in this case.
+*/
+static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
+ int i;
+ if( p->rc!=SQLITE_OK ) return 0;
+
+ for(i=0; i<100; i++){
+ int iSegid;
+ sqlite3_randomness(sizeof(int), (void*)&iSegid);
+ iSegid = iSegid & ((1 << FTS5_DATA_ID_B)-1);
+ if( iSegid ){
+ int iLvl, iSeg;
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
+ iSegid = 0;
+ }
+ }
+ }
+ }
+ if( iSegid ) return iSegid;
+ }
+
+ p->rc = SQLITE_ERROR;
+ return 0;
+}
+
+static Fts5PendingDoclist *fts5PendingMerge(
+ Fts5Index *p,
+ Fts5PendingDoclist *pLeft,
+ Fts5PendingDoclist *pRight
+){
+ Fts5PendingDoclist *p1 = pLeft;
+ Fts5PendingDoclist *p2 = pRight;
+ Fts5PendingDoclist *pRet = 0;
+ Fts5PendingDoclist **ppOut = &pRet;
+
+ while( p1 || p2 ){
+ if( p1==0 ){
+ *ppOut = p2;
+ p2 = 0;
+ }else if( p2==0 ){
+ *ppOut = p1;
+ p1 = 0;
+ }else{
+ int nCmp = MIN(p1->nTerm, p2->nTerm);
+ int res = memcmp(p1->pTerm, p2->pTerm, nCmp);
+ if( res==0 ) res = p1->nTerm - p2->nTerm;
+
+ if( res>0 ){
+ /* p2 is smaller */
+ *ppOut = p2;
+ ppOut = &p2->pNext;
+ p2 = p2->pNext;
+ }else{
+ /* p1 is smaller */
+ *ppOut = p1;
+ ppOut = &p1->pNext;
+ p1 = p1->pNext;
+ }
+ *ppOut = 0;
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Extract all tokens from hash table iHash and link them into a list
+** in sorted order. The hash table is cleared before returning. It is
+** the responsibility of the caller to free the elements of the returned
+** list.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static Fts5PendingDoclist *fts5PendingList(Fts5Index *p, int iHash){
+ const int nMergeSlot = 32;
+ Fts3Hash *pHash;
+ Fts3HashElem *pE; /* Iterator variable */
+ Fts5PendingDoclist **ap;
+ Fts5PendingDoclist *pList;
+ int i;
+
+ ap = fts5IdxMalloc(p, sizeof(Fts5PendingDoclist*) * nMergeSlot);
+ if( !ap ) return 0;
+
+ pHash = &p->aHash[iHash];
+ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
+ int i;
+ Fts5PendingDoclist *pDoclist = (Fts5PendingDoclist*)fts3HashData(pE);
+ assert( pDoclist->pNext==0 );
+ for(i=0; ap[i]; i++){
+ pDoclist = fts5PendingMerge(p, pDoclist, ap[i]);
+ ap[i] = 0;
+ }
+ ap[i] = pDoclist;
+ }
+
+ pList = 0;
+ for(i=0; i<nMergeSlot; i++){
+ pList = fts5PendingMerge(p, pList, ap[i]);
+ }
+
+ sqlite3_free(ap);
+ fts3HashClear(pHash);
+ return pList;
+}
+
+/*
+** Return the size of the prefix, in bytes, that buffer (nNew/pNew) shares
+** with buffer (nOld/pOld).
+*/
+static int fts5PrefixCompress(
+ int nOld, const u8 *pOld,
+ int nNew, const u8 *pNew
+){
+ int i;
+ for(i=0; i<nNew && i<nOld; i++){
+ if( pOld[i]!=pNew[i] ) break;
+ }
+ return i;
+}
+
+/*
+** If the pIter->iOff offset currently points to an entry indicating one
+** or more term-less nodes, advance past it and set pIter->nEmpty to
+** the number of empty child nodes.
+*/
+static void fts5NodeIterGobbleNEmpty(Fts5NodeIter *pIter){
+ if( pIter->iOff<pIter->nData && 0==(pIter->aData[pIter->iOff] & 0xfe) ){
+ pIter->iOff++;
+ pIter->iOff += getVarint32(&pIter->aData[pIter->iOff], pIter->nEmpty);
+ }else{
+ pIter->nEmpty = 0;
+ }
+}
+
+/*
+** Advance to the next entry within the node.
+*/
+static void fts5NodeIterNext(int *pRc, Fts5NodeIter *pIter){
+ if( pIter->iOff>=pIter->nData ){
+ pIter->aData = 0;
+ pIter->iChild += pIter->nEmpty;
+ }else{
+ int nPre, nNew;
+ pIter->iOff += getVarint32(&pIter->aData[pIter->iOff], nPre);
+ pIter->iOff += getVarint32(&pIter->aData[pIter->iOff], nNew);
+ pIter->term.n = nPre-2;
+ fts5BufferAppendBlob(pRc, &pIter->term, nNew, pIter->aData+pIter->iOff);
+ pIter->iOff += nNew;
+ pIter->iChild += (1 + pIter->nEmpty);
+ fts5NodeIterGobbleNEmpty(pIter);
+ if( *pRc ) pIter->aData = 0;
+ }
+}
+
+
+/*
+** Initialize the iterator object pIter to iterate through the internal
+** segment node in pData.
+*/
+static void fts5NodeIterInit(int nData, const u8 *aData, Fts5NodeIter *pIter){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->aData = aData;
+ pIter->nData = nData;
+ pIter->iOff = getVarint32(aData, pIter->iChild);
+ fts5NodeIterGobbleNEmpty(pIter);
+}
+
+/*
+** Free any memory allocated by the iterator object.
+*/
+static void fts5NodeIterFree(Fts5NodeIter *pIter){
+ fts5BufferFree(&pIter->term);
+}
+
+
+/*
+** This is called once for each leaf page except the first that contains
+** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
+** is larger than all terms written to earlier leaves, and equal to or
+** smaller than the first term on the new leaf.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. If an error
+** has already occurred when this function is called, it is a no-op.
+*/
+static void fts5WriteBtreeTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Writer object */
+ int nTerm, const u8 *pTerm /* First term on new page */
+){
+ int iHeight;
+ for(iHeight=1; 1; iHeight++){
+ Fts5PageWriter *pPage;
+
+ if( iHeight>=pWriter->nWriter ){
+ Fts5PageWriter *aNew;
+ Fts5PageWriter *pNew;
+ int nNew = sizeof(Fts5PageWriter) * (pWriter->nWriter+1);
+ aNew = (Fts5PageWriter*)sqlite3_realloc(pWriter->aWriter, nNew);
+ if( aNew==0 ) return;
+
+ pNew = &aNew[pWriter->nWriter];
+ memset(pNew, 0, sizeof(Fts5PageWriter));
+ pNew->pgno = 1;
+ fts5BufferAppendVarint(&p->rc, &pNew->buf, 1);
+
+ pWriter->nWriter++;
+ pWriter->aWriter = aNew;
+ }
+ pPage = &pWriter->aWriter[iHeight];
+
+ if( pWriter->nEmpty ){
+ assert( iHeight==1 );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, 0);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, pWriter->nEmpty);
+ pWriter->nEmpty = 0;
+ }
+
+ if( pPage->buf.n>=p->pgsz ){
+ /* pPage will be written to disk. The term will be written into the
+ ** parent of pPage. */
+ i64 iRowid = FTS5_SEGMENT_ROWID(
+ pWriter->iIdx, pWriter->iSegid, iHeight, pPage->pgno
+ );
+ fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
+ fts5BufferZero(&pPage->buf);
+ fts5BufferZero(&pPage->term);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, pPage[-1].pgno);
+ pPage->pgno++;
+ }else{
+ int nPre = fts5PrefixCompress(pPage->term.n, pPage->term.p, nTerm, pTerm);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nPre+2);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm-nPre);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm-nPre, pTerm+nPre);
+ fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
+ break;
+ }
+ }
+}
+
+static void fts5WriteBtreeNoTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter /* Writer object */
+){
+ pWriter->nEmpty++;
+}
+
+static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
+ static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
+ Fts5PageWriter *pPage = &pWriter->aWriter[0];
+ i64 iRowid;
+
+ if( pPage->term.n==0 ){
+ /* No term was written to this page. */
+ fts5WriteBtreeNoTerm(p, pWriter);
+ }
+
+ /* Write the current page to the db. */
+ iRowid = FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, 0, pPage->pgno);
+ fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
+
+ /* Initialize the next page. */
+ fts5BufferZero(&pPage->buf);
+ fts5BufferZero(&pPage->term);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
+ pPage->pgno++;
+
+ /* Increase the leaves written counter */
+ pWriter->nLeafWritten++;
+}
+
+/*
+** Append term pTerm/nTerm to the segment being written by the writer passed
+** as the second argument.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5WriteAppendTerm(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nTerm, const u8 *pTerm
+){
+ int nPrefix; /* Bytes of prefix compression for term */
+ Fts5PageWriter *pPage = &pWriter->aWriter[0];
+
+ assert( pPage->buf.n==0 || pPage->buf.n>4 );
+ if( pPage->buf.n==0 ){
+ /* Zero the first term and first docid fields */
+ static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
+ assert( pPage->term.n==0 );
+ }
+ if( p->rc ) return;
+
+ if( pPage->term.n==0 ){
+ /* Update the "first term" field of the page header. */
+ assert( pPage->buf.p[2]==0 && pPage->buf.p[3]==0 );
+ fts5PutU16(&pPage->buf.p[2], pPage->buf.n);
+ nPrefix = 0;
+ if( pWriter->aWriter[0].pgno!=1 ){
+ fts5WriteBtreeTerm(p, pWriter, nTerm, pTerm);
+ pPage = &pWriter->aWriter[0];
+ }
+ }else{
+ nPrefix = fts5PrefixCompress(
+ pPage->term.n, pPage->term.p, nTerm, pTerm
+ );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
+ }
+
+ /* Append the number of bytes of new data, then the term data itself
+ ** to the page. */
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
+
+ /* Update the Fts5PageWriter.term field. */
+ fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
+
+ pWriter->bFirstRowidInPage = 0;
+ pWriter->bFirstRowidInDoclist = 1;
+
+ /* If the current leaf page is full, flush it to disk. */
+ if( pPage->buf.n>=p->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ pWriter->bFirstRowidInPage = 1;
+ }
+}
+
+/*
+** Append a docid to the writers output.
+*/
+static void fts5WriteAppendRowid(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ Fts5PageWriter *pPage = &pWriter->aWriter[0];
+
+ /* If this is to be the first docid written to the page, set the
+ ** docid-pointer in the page-header. */
+ if( pWriter->bFirstRowidInPage ) fts5PutU16(pPage->buf.p, pPage->buf.n);
+
+ /* Write the docid. */
+ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
+ }else{
+ assert( iRowid<pWriter->iPrevRowid );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, pWriter->iPrevRowid - iRowid);
+ }
+ pWriter->iPrevRowid = iRowid;
+ pWriter->bFirstRowidInDoclist = 0;
+ pWriter->bFirstRowidInPage = 0;
+
+ if( pPage->buf.n>=p->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ pWriter->bFirstRowidInPage = 1;
+ }
+}
+
+static void fts5WriteAppendPoslistInt(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int iVal
+){
+ Fts5PageWriter *pPage = &pWriter->aWriter[0];
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iVal);
+ if( pPage->buf.n>=p->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ pWriter->bFirstRowidInPage = 1;
+ }
+}
+
+static void fts5WriteAppendZerobyte(Fts5Index *p, Fts5SegWriter *pWriter){
+ fts5BufferAppendVarint(&p->rc, &pWriter->aWriter[0].buf, 0);
+}
+
+/*
+** Write the contents of pending-doclist object pDoclist to writer pWriter.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5WritePendingDoclist(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Write to this writer object */
+ Fts5PendingDoclist *pDoclist /* Doclist to write to pWriter */
+){
+ Fts5PendingPoslist *pPoslist; /* Used to iterate through the doclist */
+
+ /* Append the term */
+ fts5WriteAppendTerm(p, pWriter, pDoclist->nTerm, pDoclist->pTerm);
+
+ /* Append the position list for each rowid */
+ for(pPoslist=pDoclist->pPoslist; pPoslist; pPoslist=pPoslist->pNext){
+ int i = 0;
+
+ /* Append the rowid itself */
+ fts5WriteAppendRowid(p, pWriter, pPoslist->iRowid);
+
+ /* Copy the position list to the output segment */
+ while( i<pPoslist->buf.n){
+ int iVal;
+ i += getVarint32(&pPoslist->buf.p[i], iVal);
+ fts5WriteAppendPoslistInt(p, pWriter, iVal);
+ }
+
+ /* Write the position list terminator */
+ fts5WriteAppendZerobyte(p, pWriter);
+ }
+
+ /* Write the doclist terminator */
+ fts5WriteAppendZerobyte(p, pWriter);
+}
+
+static void fts5WriteFinish(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int *pnHeight,
+ int *pnLeaf
+){
+ int i;
+ *pnLeaf = pWriter->aWriter[0].pgno;
+ *pnHeight = pWriter->nWriter;
+ fts5WriteFlushLeaf(p, pWriter);
+ if( pWriter->nWriter>1 && pWriter->nEmpty ){
+ Fts5PageWriter *pPg = &pWriter->aWriter[1];
+ fts5BufferAppendVarint(&p->rc, &pPg->buf, 0);
+ fts5BufferAppendVarint(&p->rc, &pPg->buf, pWriter->nEmpty);
+ }
+ for(i=1; i<pWriter->nWriter; i++){
+ Fts5PageWriter *pPg = &pWriter->aWriter[i];
+ i64 iRow = FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, i, pPg->pgno);
+ fts5DataWrite(p, iRow, pPg->buf.p, pPg->buf.n);
+ }
+ for(i=0; i<pWriter->nWriter; i++){
+ Fts5PageWriter *pPg = &pWriter->aWriter[i];
+ fts5BufferFree(&pPg->term);
+ fts5BufferFree(&pPg->buf);
+ }
+ sqlite3_free(pWriter->aWriter);
+}
+
+static void fts5WriteInit(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int iIdx, int iSegid
+){
+ memset(pWriter, 0, sizeof(Fts5SegWriter));
+ pWriter->iIdx = iIdx;
+ pWriter->iSegid = iSegid;
+
+ pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p,sizeof(Fts5PageWriter));
+ if( pWriter->aWriter==0 ) return;
+ pWriter->nWriter = 1;
+ pWriter->aWriter[0].pgno = 1;
+}
+
+static void fts5WriteInitForAppend(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Writer to initialize */
+ int iIdx, /* Index segment is a part of */
+ Fts5StructureSegment *pSeg /* Segment object to append to */
+){
+ int nByte = pSeg->nHeight * sizeof(Fts5PageWriter);
+ memset(pWriter, 0, sizeof(Fts5SegWriter));
+ pWriter->iIdx = iIdx;
+ pWriter->iSegid = pSeg->iSegid;
+ pWriter->aWriter = (Fts5PageWriter*)fts5IdxMalloc(p, nByte);
+ pWriter->nWriter = pSeg->nHeight;
+
+ if( p->rc==SQLITE_OK ){
+ int pgno = 1;
+ int i;
+ pWriter->aWriter[0].pgno = pSeg->pgnoLast+1;
+ for(i=pSeg->nHeight-1; i>0; i--){
+ i64 iRowid = FTS5_SEGMENT_ROWID(pWriter->iIdx, pWriter->iSegid, i, pgno);
+ Fts5PageWriter *pPg = &pWriter->aWriter[i];
+ pPg->pgno = pgno;
+ fts5DataBuffer(p, &pPg->buf, iRowid);
+ if( p->rc==SQLITE_OK ){
+ Fts5NodeIter ss;
+ fts5NodeIterInit(pPg->buf.n, pPg->buf.p, &ss);
+ while( ss.aData ) fts5NodeIterNext(&p->rc, &ss);
+ fts5BufferSet(&p->rc, &pPg->term, ss.term.n, ss.term.p);
+ pgno = ss.iChild;
+ fts5NodeIterFree(&ss);
+ }
+ }
+ if( pSeg->nHeight==1 ){
+ pWriter->nEmpty = pSeg->pgnoLast-1;
+ }
+ assert( (pgno+pWriter->nEmpty)==pSeg->pgnoLast );
+ }
+}
+
+/*
+** Iterator pIter was used to iterate through the input segments of on an
+** incremental merge operation. This function is called if the incremental
+** merge step has finished but the input has not been completely exhausted.
+*/
+static void fts5TrimSegments(Fts5Index *p, Fts5MultiSegIter *pIter){
+ int i;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ for(i=0; i<pIter->nSeg; i++){
+ Fts5SegIter *pSeg = &pIter->aSeg[i];
+ if( pSeg->pSeg==0 ){
+ /* no-op */
+ }else if( pSeg->pLeaf==0 ){
+ pSeg->pSeg->pgnoLast = 0;
+ pSeg->pSeg->pgnoFirst = 0;
+ }else{
+ int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
+ i64 iLeafRowid;
+ Fts5Data *pData;
+ int iId = pSeg->pSeg->iSegid;
+ u8 aHdr[4] = {0x00, 0x00, 0x00, 0x04};
+
+ iLeafRowid = FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, pSeg->iTermLeafPgno);
+ pData = fts5DataRead(p, iLeafRowid);
+ if( pData ){
+ fts5BufferZero(&buf);
+ fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
+ fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
+ fts5BufferAppendBlob(&p->rc, &buf, pData->n - iOff, &pData->p[iOff]);
+ fts5DataRelease(pData);
+ pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
+ fts5DataDelete(p, FTS5_SEGMENT_ROWID(pSeg->iIdx, iId, 0, 1),iLeafRowid);
+ fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
+ }
+ }
+ }
+ fts5BufferFree(&buf);
+}
+
+/*
+**
+*/
+static void fts5IndexMergeLevel(
+ Fts5Index *p, /* FTS5 backend object */
+ int iIdx, /* Index to work on */
+ Fts5Structure *pStruct, /* Stucture of index iIdx */
+ int iLvl, /* Level to read input from */
+ int *pnRem /* Write up to this many output leaves */
+){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureLevel *pLvlOut = &pStruct->aLevel[iLvl+1];
+ Fts5MultiSegIter *pIter = 0; /* Iterator to read input data */
+ int nRem = *pnRem; /* Output leaf pages left to write */
+ int nInput; /* Number of input segments */
+ Fts5SegWriter writer; /* Writer object */
+ Fts5StructureSegment *pSeg; /* Output segment */
+ Fts5Buffer term;
+ int bRequireDoclistTerm = 0;
+
+ assert( iLvl<pStruct->nLevel );
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ memset(&writer, 0, sizeof(Fts5SegWriter));
+ memset(&term, 0, sizeof(Fts5Buffer));
+ writer.iIdx = iIdx;
+ if( pLvl->nMerge ){
+ assert( pLvlOut->nSeg>0 );
+ nInput = pLvl->nMerge;
+ fts5WriteInitForAppend(p, &writer, iIdx, &pLvlOut->aSeg[pLvlOut->nSeg-1]);
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
+ }else{
+ int iSegid = fts5AllocateSegid(p, pStruct);
+ fts5WriteInit(p, &writer, iIdx, iSegid);
+
+ /* Add the new segment to the output level */
+ if( iLvl+1==pStruct->nLevel ) pStruct->nLevel++;
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
+ pLvlOut->nSeg++;
+ pSeg->pgnoFirst = 1;
+ pSeg->iSegid = iSegid;
+
+ /* Read input from all segments in the input level */
+ nInput = pLvl->nSeg;
+ }
+#if 0
+fprintf(stdout, "merging %d segments from level %d!", nInput, iLvl);
+fflush(stdout);
+#endif
+
+ for(fts5MultiIterNew(p, pStruct, iIdx, iLvl, nInput, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter)
+ ){
+ Fts5PosIter sPos; /* Used to iterate through position list */
+ int iCol = 0; /* Current output column */
+ int iPos = 0; /* Current output position */
+ int nTerm;
+ const u8 *pTerm = fts5MultiIterTerm(pIter, &nTerm);
+
+ if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
+ if( writer.nLeafWritten>nRem ) break;
+
+ /* This is a new term. Append a term to the output segment. */
+ if( bRequireDoclistTerm ){
+ fts5WriteAppendZerobyte(p, &writer);
+ }
+ fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
+ fts5BufferSet(&p->rc, &term, nTerm, pTerm);
+ bRequireDoclistTerm = 1;
+ }
+
+ /* Append the rowid to the output */
+ fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));
+
+ /* Copy the position list from input to output */
+ for(fts5PosIterInit(p, pIter, &sPos);
+ fts5PosIterEof(p, &sPos)==0;
+ fts5PosIterNext(p, &sPos)
+ ){
+ if( sPos.iCol!=iCol ){
+ fts5WriteAppendPoslistInt(p, &writer, 1);
+ fts5WriteAppendPoslistInt(p, &writer, sPos.iCol);
+ iCol = sPos.iCol;
+ iPos = 0;
+ }
+ fts5WriteAppendPoslistInt(p, &writer, (sPos.iPos-iPos) + 2);
+ iPos = sPos.iPos;
+ }
+ fts5WriteAppendZerobyte(p, &writer);
+ }
+
+ /* Flush the last leaf page to disk. Set the output segment b-tree height
+ ** and last leaf page number at the same time. */
+ fts5WriteFinish(p, &writer, &pSeg->nHeight, &pSeg->pgnoLast);
+
+ if( fts5MultiIterEof(p, pIter) ){
+ int i;
+
+ /* Remove the redundant segments from the %_data table */
+ for(i=0; i<nInput; i++){
+ fts5DataRemoveSegment(p, iIdx, pLvl->aSeg[i].iSegid);
+ }
+
+ /* Remove the redundant segments from the input level */
+ if( pLvl->nSeg!=nInput ){
+ int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
+ memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
+ }
+ pLvl->nSeg -= nInput;
+ pLvl->nMerge = 0;
+ }else{
+ fts5TrimSegments(p, pIter);
+ pLvl->nMerge = nInput;
+ }
+
+ fts5MultiIterFree(p, pIter);
+ fts5BufferFree(&term);
+ *pnRem -= writer.nLeafWritten;
+}
+
+/*
+** A total of nLeaf leaf pages of data has just been flushed to a level-0
+** segments in index iIdx with structure pStruct. This function updates the
+** write-counter accordingly and, if necessary, performs incremental merge
+** work.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5IndexWork(
+ Fts5Index *p, /* FTS5 backend object */
+ int iIdx, /* Index to work on */
+ Fts5Structure *pStruct, /* Current structure of index */
+ int nLeaf /* Number of output leaves just written */
+){
+ i64 nWrite; /* Initial value of write-counter */
+ int nWork; /* Number of work-quanta to perform */
+ int nRem; /* Number of leaf pages left to write */
+
+ /* Update the write-counter. While doing so, set nWork. */
+ nWrite = pStruct->nWriteCounter;
+ nWork = ((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit);
+ pStruct->nWriteCounter += nLeaf;
+ nRem = p->nWorkUnit * nWork * pStruct->nLevel;
+
+ while( nRem>0 ){
+ int iLvl; /* To iterate through levels */
+ int iBestLvl = -1; /* Level offering the most input segments */
+ int nBest = 0; /* Number of input segments on best level */
+
+ /* Set iBestLvl to the level to read input segments from. */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ if( pLvl->nMerge ){
+ if( pLvl->nMerge>nBest ){
+ iBestLvl = iLvl;
+ nBest = pLvl->nMerge;
+ }
+ break;
+ }
+ if( pLvl->nSeg>nBest ){
+ nBest = pLvl->nSeg;
+ iBestLvl = iLvl;
+ }
+ }
+ assert( iBestLvl>=0 && nBest>0 );
+
+ if( nBest<p->nMinMerge && pStruct->aLevel[iBestLvl].nMerge==0 ) break;
+ fts5IndexMergeLevel(p, iIdx, pStruct, iBestLvl, &nRem);
+ assert( nRem==0 || p->rc==SQLITE_OK );
+ }
+}
+
+/*
+** Flush the contents of in-memory hash table iHash to a new level-0
+** segment on disk. Also update the corresponding structure record.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5FlushOneHash(Fts5Index *p, int iHash, int *pnLeaf){
+ Fts5Structure *pStruct;
+ int iSegid;
+ int pgnoLast = 0; /* Last leaf page number in segment */
+
+ /* Obtain a reference to the index structure and allocate a new segment-id
+ ** for the new level-0 segment. */
+ pStruct = fts5StructureRead(p, iHash);
+ iSegid = fts5AllocateSegid(p, pStruct);
+
+ if( iSegid ){
+ Fts5SegWriter writer;
+ Fts5PendingDoclist *pList;
+ Fts5PendingDoclist *pIter;
+ Fts5PendingDoclist *pNext;
+
+ Fts5StructureSegment *pSeg; /* New segment within pStruct */
+ int nHeight; /* Height of new segment b-tree */
+
+ pList = fts5PendingList(p, iHash);
+ assert( pList!=0 || p->rc!=SQLITE_OK );
+ fts5WriteInit(p, &writer, iHash, iSegid);
+
+ for(pIter=pList; pIter; pIter=pNext){
+ pNext = pIter->pNext;
+ fts5WritePendingDoclist(p, &writer, pIter);
+ fts5FreePendingDoclist(pIter);
+ }
+ fts5WriteFinish(p, &writer, &nHeight, &pgnoLast);
+
+ /* Edit the Fts5Structure and write it back to the database. */
+ if( pStruct->nLevel==0 ) pStruct->nLevel = 1;
+ pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
+ pSeg->iSegid = iSegid;
+ pSeg->nHeight = nHeight;
+ pSeg->pgnoFirst = 1;
+ pSeg->pgnoLast = pgnoLast;
+ }
+
+ fts5IndexWork(p, iHash, pStruct, pgnoLast);
+ fts5StructureWrite(p, iHash, pStruct);
+ fts5StructureRelease(pStruct);
+}
+
+/*
+** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
+** to the document with rowid iRowid.
+*/
+void sqlite3Fts5IndexBeginWrite(Fts5Index *p, i64 iRowid){
+ if( iRowid<=p->iWriteRowid ){
+ sqlite3Fts5IndexFlush(p);
+ }
+ p->iWriteRowid = iRowid;
+}
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+*/
+void sqlite3Fts5IndexFlush(Fts5Index *p){
+ Fts5Config *pConfig = p->pConfig;
+ int i; /* Used to iterate through indexes */
+ int nLeaf = 0; /* Number of leaves written */
+
+ /* If an error has already occured this call is a no-op. */
+ if( p->rc!=SQLITE_OK || p->nPendingData==0 ) return;
+ assert( p->aHash );
+
+ /* Flush the terms and each prefix index to disk */
+ for(i=0; i<=pConfig->nPrefix; i++){
+ fts5FlushOneHash(p, i, &nLeaf);
+ }
+ p->nPendingData = 0;
+}
+
+/*
+** Commit data to disk.
+*/
+int sqlite3Fts5IndexSync(Fts5Index *p){
+ sqlite3Fts5IndexFlush(p);
+ fts5CloseReader(p);
+ return p->rc;
+}
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+int sqlite3Fts5IndexRollback(Fts5Index *p){
+ fts5CloseReader(p);
+ return SQLITE_OK;
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying %_data table.
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+int sqlite3Fts5IndexOpen(
+ Fts5Config *pConfig,
+ int bCreate,
+ Fts5Index **pp,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ Fts5Index *p; /* New object */
+
+ *pp = p = (Fts5Index*)sqlite3_malloc(sizeof(Fts5Index));
+ if( !p ) return SQLITE_NOMEM;
+
+ memset(p, 0, sizeof(Fts5Index));
+ p->pConfig = pConfig;
+ p->pgsz = 1000;
+ p->nMinMerge = FTS5_MIN_MERGE;
+ p->nWorkUnit = FTS5_WORK_UNIT;
+ p->nMaxPendingData = 1024*1024;
+ p->zDataTbl = sqlite3_mprintf("%s_data", pConfig->zName);
+ if( p->zDataTbl==0 ){
+ rc = SQLITE_NOMEM;
+ }else if( bCreate ){
+ int i;
+ Fts5Structure s;
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", pzErr
+ );
+ if( rc==SQLITE_OK ){
+ memset(&s, 0, sizeof(Fts5Structure));
+ for(i=0; i<pConfig->nPrefix+1; i++){
+ fts5StructureWrite(p, i, &s);
+ }
+ rc = p->rc;
+ }
+ }
+
+ if( rc ){
+ sqlite3Fts5IndexClose(p, 0);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
+*/
+int sqlite3Fts5IndexClose(Fts5Index *p, int bDestroy){
+ int rc = SQLITE_OK;
+ if( bDestroy ){
+ rc = sqlite3Fts5DropTable(p->pConfig, "data");
+ }
+ assert( p->pReader==0 );
+ sqlite3_finalize(p->pWriter);
+ sqlite3_finalize(p->pDeleter);
+ sqlite3_free(p->aHash);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p);
+ return rc;
+}
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ const char *pTerm,
+ int nTerm
+){
+ int i;
+ u64 ret = iRowid;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
+ return ret;
+}
+
+/*
+** Calculate and return a checksum that is the XOR of the index entry
+** checksum of all entries that would be generated by the token specified
+** by the final 5 arguments.
+*/
+u64 sqlite3Fts5IndexCksum(
+ Fts5Config *pConfig, /* Configuration object */
+ i64 iRowid, /* Document term appears in */
+ int iCol, /* Column term appears in */
+ int iPos, /* Position term appears in */
+ const char *pTerm, int nTerm /* Term at iPos */
+){
+ u64 ret = 0; /* Return value */
+ int iIdx; /* For iterating through indexes */
+
+ for(iIdx=0; iIdx<=pConfig->nPrefix; iIdx++){
+ int n = ((iIdx==pConfig->nPrefix) ? nTerm : pConfig->aPrefix[iIdx]);
+ if( n<=nTerm ){
+ ret ^= fts5IndexEntryCksum(iRowid, iCol, iPos, pTerm, n);
+ }
+ }
+
+ return ret;
+}
+
+static void fts5BtreeIterInit(
+ Fts5Index *p,
+ int iIdx,
+ Fts5StructureSegment *pSeg,
+ Fts5BtreeIter *pIter
+){
+ int nByte;
+ int i;
+ nByte = sizeof(pIter->aLvl[0]) * (pSeg->nHeight-1);
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->nLvl = pSeg->nHeight-1;
+ pIter->iIdx = iIdx;
+ pIter->p = p;
+ pIter->pSeg = pSeg;
+ if( nByte && p->rc==SQLITE_OK ){
+ pIter->aLvl = (Fts5BtreeIterLevel*)fts5IdxMalloc(p, nByte);
+ }
+ for(i=0; p->rc==SQLITE_OK && i<pIter->nLvl; i++){
+ i64 iRowid = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, i+1, 1);
+ Fts5Data *pData;
+ pIter->aLvl[i].pData = pData = fts5DataRead(p, iRowid);
+ if( pData ){
+ fts5NodeIterInit(pData->n, pData->p, &pIter->aLvl[i].s);
+ }
+ }
+
+ if( pIter->nLvl==0 || p->rc ){
+ pIter->bEof = 1;
+ pIter->iLeaf = pSeg->pgnoLast;
+ }else{
+ pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
+ pIter->iLeaf = pIter->aLvl[0].s.iChild;
+ }
+}
+
+static void fts5BtreeIterNext(Fts5BtreeIter *pIter){
+ Fts5Index *p = pIter->p;
+ int i;
+
+ assert( pIter->bEof==0 && pIter->aLvl[0].s.aData );
+ for(i=0; i<pIter->nLvl && p->rc==SQLITE_OK; i++){
+ Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
+ fts5NodeIterNext(&p->rc, &pLvl->s);
+ if( pLvl->s.aData ){
+ fts5BufferSet(&p->rc, &pIter->term, pLvl->s.term.n, pLvl->s.term.p);
+ break;
+ }else{
+ fts5NodeIterFree(&pLvl->s);
+ fts5DataRelease(pLvl->pData);
+ pLvl->pData = 0;
+ }
+ }
+ if( i==pIter->nLvl || p->rc ){
+ pIter->bEof = 1;
+ }else{
+ int iSegid = pIter->pSeg->iSegid;
+ for(i--; i>=0; i--){
+ Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
+ i64 iRowid = FTS5_SEGMENT_ROWID(pIter->iIdx,iSegid,i+1,pLvl[1].s.iChild);
+ pLvl->pData = fts5DataRead(p, iRowid);
+ if( pLvl->pData ){
+ fts5NodeIterInit(pLvl->pData->n, pLvl->pData->p, &pLvl->s);
+ }
+ }
+ }
+
+ pIter->nEmpty = pIter->aLvl[0].s.nEmpty;
+ pIter->iLeaf = pIter->aLvl[0].s.iChild;
+ assert( p->rc==SQLITE_OK || pIter->bEof );
+}
+
+static void fts5BtreeIterFree(Fts5BtreeIter *pIter){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ Fts5BtreeIterLevel *pLvl = &pIter->aLvl[i];
+ fts5NodeIterFree(&pLvl->s);
+ if( pLvl->pData ){
+ fts5DataRelease(pLvl->pData);
+ pLvl->pData = 0;
+ }
+ }
+ sqlite3_free(pIter->aLvl);
+ fts5BufferFree(&pIter->term);
+}
+
+static void fts5IndexIntegrityCheckSegment(
+ Fts5Index *p, /* FTS5 backend object */
+ int iIdx, /* Index that pSeg is a part of */
+ Fts5StructureSegment *pSeg /* Segment to check internal consistency */
+){
+ Fts5BtreeIter iter; /* Used to iterate through b-tree hierarchy */
+
+ /* Iterate through the b-tree hierarchy. */
+ for(fts5BtreeIterInit(p, iIdx, pSeg, &iter);
+ iter.bEof==0;
+ fts5BtreeIterNext(&iter)
+ ){
+ i64 iRow; /* Rowid for this leaf */
+ Fts5Data *pLeaf; /* Data for this leaf */
+ int iOff; /* Offset of first term on leaf */
+ int i; /* Used to iterate through empty leaves */
+
+ /* If the leaf in question has already been trimmed from the segment,
+ ** ignore this b-tree entry. Otherwise, load it into memory. */
+ if( iter.iLeaf<pSeg->pgnoFirst ) continue;
+ iRow = FTS5_SEGMENT_ROWID(iIdx, pSeg->iSegid, 0, iter.iLeaf);
+ pLeaf = fts5DataRead(p, iRow);
+ if( pLeaf==0 ) break;
+
+ /* Check that the leaf contains at least one term, and that it is equal
+ ** to or larger than the split-key in iter.term. */
+ iOff = fts5GetU16(&pLeaf->p[2]);
+ if( iOff==0 ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ int nTerm; /* Size of term on leaf in bytes */
+ int res; /* Comparison of term and split-key */
+ iOff += getVarint32(&pLeaf->p[iOff], nTerm);
+ res = memcmp(&pLeaf->p[iOff], iter.term.p, MIN(nTerm, iter.term.n));
+ if( res==0 ) res = nTerm - iter.term.n;
+ if( res<0 ){
+ p->rc = FTS5_CORRUPT;
+ }
+ }
+ fts5DataRelease(pLeaf);
+ if( p->rc ) break;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ for(i=1; i<=iter.nEmpty; i++){
+ pLeaf = fts5DataRead(p, iRow+i);
+ if( pLeaf && 0!=fts5GetU16(&pLeaf->p[2]) ){
+ p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+ }
+
+ if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }
+
+ fts5BtreeIterFree(&iter);
+}
+
+/*
+** Run internal checks to ensure that the FTS index (a) is internally
+** consistent and (b) contains entries for which the XOR of the checksums
+** as calculated by fts5IndexEntryCksum() is cksum.
+**
+** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
+** checksum does not match. Return SQLITE_OK if all checks pass without
+** error, or some other SQLite error code if another error (e.g. OOM)
+** occurs.
+*/
+int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
+ Fts5Config *pConfig = p->pConfig;
+ int iIdx; /* Used to iterate through indexes */
+ int rc; /* Return code */
+ u64 cksum2 = 0; /* Checksum based on contents of indexes */
+
+ /* Check that the checksum of the index matches the argument checksum */
+ for(iIdx=0; iIdx<=pConfig->nPrefix; iIdx++){
+ Fts5MultiSegIter *pIter;
+ Fts5Structure *pStruct = fts5StructureRead(p, iIdx);
+ for(fts5MultiIterNew(p, pStruct, iIdx, -1, 0, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter)
+ ){
+ Fts5PosIter sPos; /* Used to iterate through position list */
+ int n; /* Size of term in bytes */
+ i64 iRowid = fts5MultiIterRowid(pIter);
+ char *z = (char*)fts5MultiIterTerm(pIter, &n);
+
+ for(fts5PosIterInit(p, pIter, &sPos);
+ fts5PosIterEof(p, &sPos)==0;
+ fts5PosIterNext(p, &sPos)
+ ){
+ cksum2 ^= fts5IndexEntryCksum(iRowid, sPos.iCol, sPos.iPos, z, n);
+#if 0
+ fprintf(stdout, "rowid=%d ", (int)iRowid);
+ fprintf(stdout, "term=%.*s ", n, z);
+ fprintf(stdout, "col=%d ", sPos.iCol);
+ fprintf(stdout, "off=%d\n", sPos.iPos);
+ fflush(stdout);
+#endif
+ }
+ }
+ fts5MultiIterFree(p, pIter);
+ fts5StructureRelease(pStruct);
+ }
+ rc = p->rc;
+ if( rc==SQLITE_OK && cksum!=cksum2 ) rc = FTS5_CORRUPT;
+
+ /* Check that the internal nodes of each segment match the leaves */
+ for(iIdx=0; rc==SQLITE_OK && iIdx<=pConfig->nPrefix; iIdx++){
+ Fts5Structure *pStruct = fts5StructureRead(p, iIdx);
+ if( pStruct ){
+ int iLvl, iSeg;
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
+ fts5IndexIntegrityCheckSegment(p, iIdx, pSeg);
+ }
+ }
+ }
+ fts5StructureRelease(pStruct);
+ rc = p->rc;
+ }
+
+ return rc;
+}
+
+/*
+*/
+static void fts5DecodeStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int rc; /* Return code */
+ int iLvl, iSeg; /* Iterate through levels, segments */
+ Fts5Structure *p = 0; /* Decoded structure object */
+
+ rc = fts5StructureDecode(pBlob, nBlob, &p);
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+
+ for(iLvl=0; iLvl<p->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
+ fts5BufferAppendPrintf(pRc, pBuf, " {lvl=%d nMerge=%d", iLvl, pLvl->nMerge);
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ fts5BufferAppendPrintf(pRc, pBuf,
+ " {id=%d h=%d leaves=%d..%d}", pSeg->iSegid, pSeg->nHeight,
+ pSeg->pgnoFirst, pSeg->pgnoLast
+ );
+ }
+ fts5BufferAppendPrintf(pRc, pBuf, "}");
+ }
+
+ fts5StructureRelease(p);
+}
+
+/*
+** Decode a segment-data rowid from the %_data table. This function is
+** the opposite of macro FTS5_SEGMENT_ROWID().
+*/
+static void fts5DecodeRowid(
+ i64 iRowid, /* Rowid from %_data table */
+ int *piIdx, /* OUT: Index */
+ int *piSegid, /* OUT: Segment id */
+ int *piHeight, /* OUT: Height */
+ int *piPgno /* OUT: Page number */
+){
+ *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
+ iRowid >>= FTS5_DATA_PAGE_B;
+
+ *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
+ iRowid >>= FTS5_DATA_HEIGHT_B;
+
+ *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
+ iRowid >>= FTS5_DATA_ID_B;
+
+ *piIdx = (int)(iRowid & (((i64)1 << FTS5_DATA_IDX_B) - 1));
+}
+
+/*
+** Buffer (a/n) is assumed to contain a list of serialized varints. Read
+** each varint and append its string representation to buffer pBuf. Return
+** after either the input buffer is exhausted or a 0 value is read.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ int iOff = 0;
+ while( iOff<n ){
+ int iVal;
+ iOff += getVarint32(&a[iOff], iVal);
+ fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
+ if( iVal==0 ) break;
+ }
+ return iOff;
+}
+
+/*
+** The start of buffer (a/n) contains the start of a doclist. The doclist
+** may or may not finish within the buffer. This function appends a text
+** representation of the part of the doclist that is present to buffer
+** pBuf.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ i64 iDocid;
+ int iOff = 0;
+
+ if( iOff<n ){
+ iOff += sqlite3GetVarint(&a[iOff], (u64*)&iDocid);
+ fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
+ }
+ while( iOff<n ){
+ iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], n-iOff);
+ if( iOff<n ){
+ i64 iDelta;
+ iOff += sqlite3GetVarint(&a[iOff], (u64*)&iDelta);
+ if( iDelta==0 ) return iOff;
+ iDocid -= iDelta;
+ fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
+ }
+ }
+
+ return iOff;
+}
+
+/*
+** The implementation of user-defined scalar function fts5_decode().
+*/
+static void fts5DecodeFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ i64 iRowid; /* Rowid for record being decoded */
+ int iIdx,iSegid,iHeight,iPgno; /* Rowid compenents */
+ const u8 *a; int n; /* Record to decode */
+ Fts5Buffer s; /* Build up text to return here */
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( nArg==2 );
+ memset(&s, 0, sizeof(Fts5Buffer));
+ iRowid = sqlite3_value_int64(apVal[0]);
+ n = sqlite3_value_bytes(apVal[1]);
+ a = sqlite3_value_blob(apVal[1]);
+ fts5DecodeRowid(iRowid, &iIdx, &iSegid, &iHeight, &iPgno);
+
+ if( iSegid==0 ){
+ if( iRowid==FTS5_AVERAGES_ROWID ){
+ fts5BufferAppendPrintf(&rc, &s, "{averages} ");
+ }else{
+ fts5BufferAppendPrintf(&rc, &s, "{structure idx=%d}", (int)(iRowid-10));
+ fts5DecodeStructure(&rc, &s, a, n);
+ }
+ }else{
+
+ Fts5Buffer term;
+ memset(&term, 0, sizeof(Fts5Buffer));
+ fts5BufferAppendPrintf(&rc, &s, "(idx=%d segid=%d h=%d pgno=%d) ",
+ iIdx, iSegid, iHeight, iPgno
+ );
+
+ if( iHeight==0 ){
+ int iTermOff = 0;
+ int iRowidOff = 0;
+ int iOff;
+ int nKeep = 0;
+
+ iRowidOff = fts5GetU16(&a[0]);
+ iTermOff = fts5GetU16(&a[2]);
+ iOff = 4;
+ if( iTermOff!=4 && iRowidOff!=4 ){
+ iOff += fts5DecodePoslist(&rc, &s, &a[iOff], n-iOff);
+ if( iRowidOff==0 ) iOff++;
+ }
+
+ assert( iRowidOff==0 || iOff==iRowidOff );
+ if( iRowidOff ){
+ iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
+ }
+
+ assert( iTermOff==0 || iOff==iTermOff );
+ while( iOff<n ){
+ int nByte;
+ iOff += getVarint32(&a[iOff], nByte);
+ term.n= nKeep;
+ fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
+ iOff += nByte;
+
+ fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
+ if( iOff<n ){
+ iOff += getVarint32(&a[iOff], nKeep);
+ }
+ }
+ fts5BufferFree(&term);
+ }else{
+ Fts5NodeIter ss;
+ for(fts5NodeIterInit(n, a, &ss); ss.aData; fts5NodeIterNext(&rc, &ss)){
+ if( ss.term.n==0 ){
+ fts5BufferAppendPrintf(&rc, &s, " left=%d", ss.iChild);
+ }else{
+ fts5BufferAppendPrintf(&rc,&s, " \"%.*s\"", ss.term.n, ss.term.p);
+ }
+ if( ss.nEmpty ){
+ fts5BufferAppendPrintf(&rc, &s, " empty=%d", ss.nEmpty);
+ }
+ }
+ fts5NodeIterFree(&ss);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ fts5BufferFree(&s);
+}
+
+/*
+** This is called as part of registering the FTS5 module with database
+** connection db. It registers several user-defined scalar functions useful
+** with FTS5.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, some other
+** SQLite error code is returned instead.
+*/
+int sqlite3Fts5IndexInit(sqlite3 *db){
+ int rc = sqlite3_create_function(
+ db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
+ );
+ return rc;
+}
+
+/*
+** Set the target page size for the index object.
+*/
+void sqlite3Fts5IndexPgsz(Fts5Index *p, int pgsz){
+ p->pgsz = pgsz;
+}
+