ill_formed_expression ();
}
+ /* Make a slice of a location description with an added bit offset
+ BIT_OFFSET and BIT_SIZE size in bits.
+
+ In the case of a composite location description, function returns
+ a minimum subset of that location description that starts on a
+ given offset of a given size. */
+ virtual std::unique_ptr<dwarf_location> slice (LONGEST bit_offset,
+ LONGEST bit_size) const;
+
/* Read contents from the described location.
The read operation is performed in the context of a FRAME.
using dwarf_location_up = std::unique_ptr<dwarf_location>;
+/* This is a default implementation used for
+ non-composite location descriptions. */
+
+std::unique_ptr<dwarf_location>
+dwarf_location::slice (LONGEST bit_offset, LONGEST bit_size) const
+{
+ dwarf_location_up location_slice = this->clone_location ();
+ location_slice->add_bit_offset (bit_offset);
+ return location_slice;
+}
+
void
dwarf_location::read_from_gdb_value (frame_info *frame, struct value *value,
int value_bit_offset,
return make_unique<dwarf_composite> (*this);
}
+ std::unique_ptr<dwarf_location> slice (LONGEST bit_offset,
+ LONGEST bit_size) const override;
+
void add_piece (std::unique_ptr<dwarf_location> location, ULONGEST bit_size)
{
gdb_assert (location != nullptr);
bool m_completed = false;
};
+std::unique_ptr<dwarf_location>
+dwarf_composite::slice (LONGEST bit_offset, LONGEST bit_size) const
+{
+ /* Size 0 is never expected at this point. */
+ gdb_assert (bit_size != 0);
+
+ unsigned int pieces_num = m_pieces.size ();
+ LONGEST total_bit_size = bit_size;
+ LONGEST total_bits_to_skip = m_offset * HOST_CHAR_BIT
+ + m_bit_suboffset + bit_offset;
+ std::vector<piece> piece_slices;
+ unsigned int i;
+
+ for (i = 0; i < pieces_num; i++)
+ {
+ LONGEST piece_bit_size = m_pieces[i].size;
+
+ if (total_bits_to_skip < piece_bit_size)
+ break;
+
+ total_bits_to_skip -= piece_bit_size;
+ }
+
+ for (; i < pieces_num; i++)
+ {
+ if (total_bit_size == 0)
+ break;
+
+ gdb_assert (total_bit_size > 0);
+ LONGEST slice_bit_size = m_pieces[i].size - total_bits_to_skip;
+
+ if (total_bit_size < slice_bit_size)
+ slice_bit_size = total_bit_size;
+
+ std::unique_ptr<dwarf_location> slice
+ = m_pieces[i].location->slice (total_bits_to_skip, slice_bit_size);
+ piece_slices.emplace_back (std::move (slice), slice_bit_size);
+
+ total_bit_size -= slice_bit_size;
+ total_bits_to_skip = 0;
+ }
+
+ unsigned int slices_num = piece_slices.size ();
+
+ /* Only one piece found, so there is no reason to
+ make a composite location description. */
+ if (slices_num == 1)
+ return std::move (piece_slices[0].location);
+
+ std::unique_ptr<dwarf_composite> composite_slice
+ = make_unique<dwarf_composite> (m_arch, m_per_cu);
+
+ for (piece &piece : piece_slices)
+ composite_slice->add_piece (std::move (piece.location), piece.size);
+
+ return composite_slice;
+}
+
void
dwarf_composite::read (frame_info *frame, gdb_byte *buf,
int buf_bit_offset, size_t bit_size,
void create_extend_composite (ULONGEST piece_bit_size,
ULONGEST pieces_count);
+ /* It pops three stack entries. The first must be an integral type
+ value that represents a bit mask. The second must be a location
+ description that represents the one-location description. The
+ third must be a location description that represents the
+ zero-location description.
+
+ A complete composite location description created with parts from
+ either of the two location description, based on the bit mask,
+ is pushed on top of the DWARF stack. PIECE_BIT_SIZE represent
+ a size in bits of each piece and PIECES_COUNT represents a number
+ of pieces required. */
+ void create_select_composite (ULONGEST piece_bit_size,
+ ULONGEST pieces_count);
+
/* The engine for the expression evaluator. Using the context in this
object, evaluate the expression between OP_PTR and OP_END. */
void execute_stack_op (const gdb_byte *op_ptr, const gdb_byte *op_end);
push (std::move (composite));
}
+void
+dwarf_expr_context::create_select_composite (ULONGEST piece_bit_size,
+ ULONGEST pieces_count)
+{
+ gdb::byte_vector mask_buf;
+ gdbarch *arch = this->m_per_objfile->objfile->arch ();
+
+ if (stack_empty_p () || piece_bit_size == 0 || pieces_count == 0)
+ ill_formed_expression ();
+
+ dwarf_value_up mask = to_value (pop (), address_type ());
+
+ type *mask_type = mask->type ();
+ ULONGEST mask_size = TYPE_LENGTH (mask_type);
+ dwarf_require_integral (mask_type);
+
+ if (mask_size * HOST_CHAR_BIT < pieces_count)
+ ill_formed_expression ();
+
+ mask_buf.resize (mask_size);
+
+ copy_bitwise (mask_buf.data (), 0, mask->contents ().data (),
+ 0, mask_size * HOST_CHAR_BIT,
+ type_byte_order (mask_type) == BFD_ENDIAN_BIG);
+
+ if (stack_empty_p ())
+ ill_formed_expression ();
+
+ dwarf_location_up one = to_location (pop (), arch);
+
+ if (stack_empty_p ())
+ ill_formed_expression ();
+
+ dwarf_location_up zero = to_location (pop (), arch);
+
+ std::unique_ptr<dwarf_composite> composite
+ = make_unique<dwarf_composite> (arch, this->m_per_cu);
+
+ for (ULONGEST i = 0; i < pieces_count; i++)
+ {
+ std::unique_ptr<dwarf_location> slice;
+
+ if ((mask_buf.data ()[i / HOST_CHAR_BIT] >> (i % HOST_CHAR_BIT)) & 1)
+ slice = one->slice (i * piece_bit_size, piece_bit_size);
+ else
+ slice = zero->slice (i * piece_bit_size, piece_bit_size);
+
+ composite->add_piece (std::move (slice), piece_bit_size);
+ }
+
+ composite->set_completed (true);
+ push (std::move (composite));
+}
+
void
dwarf_expr_context::eval (const gdb_byte *addr, size_t len)
{
break;
}
+ case DW_OP_LLVM_select_bit_piece:
+ {
+ uint64_t piece_bit_size, pieces_count;
+
+ /* Record the piece. */
+ op_ptr = safe_read_uleb128 (op_ptr, op_end, &piece_bit_size);
+ op_ptr = safe_read_uleb128 (op_ptr, op_end, &pieces_count);
+ create_select_composite (piece_bit_size, pieces_count);
+ break;
+ }
+
default:
error (_("Unhandled dwarf expression opcode 0x%x"), op);
}
--- /dev/null
+# Copyright (C) 2017-2021 Free Software Foundation, Inc.
+# Copyright (C) 2020-2021 Advanced Micro Devices, Inc. All rights reserved.
+
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+# Test the new DW_OP_LLVM_select_bit_piece operation.
+#
+# The test uses a composite location description, where all the pieces
+# are selected from two registers in odd/even pattern using the new
+# operation.
+
+load_lib dwarf.exp
+
+# This test can only be run on targets which support DWARF-2 and use gas.
+if {![dwarf2_support]} {
+ return 0
+}
+
+# Choose suitable integer registers for the test.
+
+set dwarf_regnum {0 1}
+
+if { [is_aarch64_target] } {
+ set regname {x0 x1}
+} elseif { [is_aarch32_target]
+ || [istarget "s390*-*-*" ]
+ || [istarget "powerpc*-*-*"]
+ || [istarget "rs6000*-*-aix*"] } {
+ set regname {r0 r1}
+} elseif { [is_x86_like_target] } {
+ set regname {eax ecx}
+} elseif { [is_amd64_regs_target] } {
+ set regname {rax rdx}
+} else {
+ verbose "Skipping $gdb_test_file_name."
+ return
+}
+
+standard_testfile var-access.c ${gdb_test_file_name}-dw.S
+
+# Make some DWARF for the test.
+
+set asm_file [standard_output_file $srcfile2]
+Dwarf::assemble $asm_file {
+ global dwarf_regnum regname srcdir subdir srcfile
+ set buf_src [gdb_target_symbol buf]
+
+ set main_result [function_range main ${srcdir}/${subdir}/${srcfile}]
+ set main_start [lindex $main_result 0]
+ set main_length [lindex $main_result 1]
+
+ cu {} {
+ DW_TAG_compile_unit {
+ {DW_AT_name var-access.c}
+ {DW_AT_comp_dir /tmp}
+ } {
+ declare_labels int_type_label char_type_label array_type_label
+
+ # define char type
+ char_type_label: DW_TAG_base_type {
+ {DW_AT_name "char"}
+ {DW_AT_encoding @DW_ATE_signed}
+ {DW_AT_byte_size 1 DW_FORM_sdata}
+ }
+
+ int_type_label: DW_TAG_base_type {
+ {DW_AT_name "int"}
+ {DW_AT_encoding @DW_ATE_signed}
+ {DW_AT_byte_size 4 DW_FORM_sdata}
+ }
+
+ array_type_label: DW_TAG_array_type {
+ {DW_AT_type :$char_type_label}
+ } {
+ DW_TAG_subrange_type {
+ {DW_AT_type :$int_type_label}
+ {DW_AT_upper_bound 7 DW_FORM_udata}
+ }
+ }
+
+ DW_TAG_subprogram {
+ {DW_AT_name main}
+ {DW_AT_low_pc $main_start addr}
+ {DW_AT_high_pc $main_length data8}
+ } {
+
+ # Odd array elements are in first byte of REGNAME 0 register,
+ # while even elements are in first byte of REGNAME 1 register.
+ DW_TAG_variable {
+ {DW_AT_name var_array}
+ {DW_AT_type :$array_type_label}
+ {DW_AT_location {
+ DW_OP_regx [lindex $dwarf_regnum 0]
+ DW_OP_LLVM_extend 8 8
+ DW_OP_regx [lindex $dwarf_regnum 1]
+ DW_OP_LLVM_extend 8 8
+ DW_OP_constu 0xaa
+ DW_OP_LLVM_select_bit_piece 8 8
+ } SPECIAL_expr}
+ }
+ }
+ }
+ }
+}
+
+if { [prepare_for_testing ${testfile}.exp ${testfile} \
+ [list $srcfile $asm_file] {nodebug}] } {
+ return -1
+}
+
+if ![runto_main] {
+ return -1
+}
+
+gdb_test_no_output "set var \$[lindex $regname 0] = 0x04030201" "init reg 0"
+gdb_test_no_output "set var \$[lindex $regname 1] = 0x01020304" "init reg 1"
+
+# Determine byte order.
+set endian [get_endianness]
+
+switch $endian {
+ little {set val "0x1, 0x4, 0x1, 0x4, 0x1, 0x4, 0x1, 0x4"}
+ big {set val "0x4, 0x1, 0x4, 0x1, 0x4, 0x1, 0x4, 0x1"}
+}
+
+gdb_test "print/x var_array" " = \\{${val}\\}" "var_array print"
+