#include <ctype.h>
#include "mb/pg_wchar.h"
+#include "port/simd.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "varatt.h"
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
-uint64
-hex_encode(const char *src, size_t len, char *dst)
+static inline uint64
+hex_encode_scalar(const char *src, size_t len, char *dst)
{
const char *end = src + len;
return (uint64) len * 2;
}
+uint64
+hex_encode(const char *src, size_t len, char *dst)
+{
+#ifdef USE_NO_SIMD
+ return hex_encode_scalar(src, len, dst);
+#else
+ const uint64 tail_idx = len & ~(sizeof(Vector8) - 1);
+ uint64 i;
+
+ /*
+ * This splits the high and low nibbles of each byte into separate
+ * vectors, adds the vectors to a mask that converts the nibbles to their
+ * equivalent ASCII bytes, and interleaves those bytes back together to
+ * form the final hex-encoded string.
+ */
+ for (i = 0; i < tail_idx; i += sizeof(Vector8))
+ {
+ Vector8 srcv;
+ Vector8 lo;
+ Vector8 hi;
+ Vector8 mask;
+
+ vector8_load(&srcv, (const uint8 *) &src[i]);
+
+ lo = vector8_and(srcv, vector8_broadcast(0x0f));
+ mask = vector8_gt(lo, vector8_broadcast(0x9));
+ mask = vector8_and(mask, vector8_broadcast('a' - '0' - 10));
+ mask = vector8_add(mask, vector8_broadcast('0'));
+ lo = vector8_add(lo, mask);
+
+ hi = vector8_and(srcv, vector8_broadcast(0xf0));
+ hi = vector8_shift_right(hi, 4);
+ mask = vector8_gt(hi, vector8_broadcast(0x9));
+ mask = vector8_and(mask, vector8_broadcast('a' - '0' - 10));
+ mask = vector8_add(mask, vector8_broadcast('0'));
+ hi = vector8_add(hi, mask);
+
+ vector8_store((uint8 *) &dst[i * 2],
+ vector8_interleave_low(hi, lo));
+ vector8_store((uint8 *) &dst[i * 2 + sizeof(Vector8)],
+ vector8_interleave_high(hi, lo));
+ }
+
+ (void) hex_encode_scalar(src + i, len - i, dst + i * 2);
+
+ return (uint64) len * 2;
+#endif
+}
+
static inline bool
get_hex(const char *cp, char *out)
{
return hex_decode_safe(src, len, dst, NULL);
}
-uint64
-hex_decode_safe(const char *src, size_t len, char *dst, Node *escontext)
+static inline uint64
+hex_decode_safe_scalar(const char *src, size_t len, char *dst, Node *escontext)
{
const char *s,
*srcend;
return p - dst;
}
+/*
+ * This helper converts each byte to its binary-equivalent nibble by
+ * subtraction and combines them to form the return bytes (separated by zero
+ * bytes). Returns false if any input bytes are outside the expected ranges of
+ * ASCII values. Otherwise, returns true.
+ */
+#ifndef USE_NO_SIMD
+static inline bool
+hex_decode_simd_helper(const Vector8 src, Vector8 *dst)
+{
+ Vector8 sub;
+ Vector8 mask_hi = vector8_interleave_low(vector8_broadcast(0), vector8_broadcast(0x0f));
+ Vector8 mask_lo = vector8_interleave_low(vector8_broadcast(0x0f), vector8_broadcast(0));
+ Vector8 tmp;
+ bool ret;
+
+ tmp = vector8_gt(vector8_broadcast('9' + 1), src);
+ sub = vector8_and(tmp, vector8_broadcast('0'));
+
+ tmp = vector8_gt(src, vector8_broadcast('A' - 1));
+ tmp = vector8_and(tmp, vector8_broadcast('A' - 10));
+ sub = vector8_add(sub, tmp);
+
+ tmp = vector8_gt(src, vector8_broadcast('a' - 1));
+ tmp = vector8_and(tmp, vector8_broadcast('a' - 'A'));
+ sub = vector8_add(sub, tmp);
+
+ *dst = vector8_issub(src, sub);
+ ret = !vector8_has_ge(*dst, 0x10);
+
+ tmp = vector8_and(*dst, mask_hi);
+ tmp = vector8_shift_right(tmp, 8);
+ *dst = vector8_and(*dst, mask_lo);
+ *dst = vector8_shift_left(*dst, 4);
+ *dst = vector8_or(*dst, tmp);
+ return ret;
+}
+#endif /* ! USE_NO_SIMD */
+
+uint64
+hex_decode_safe(const char *src, size_t len, char *dst, Node *escontext)
+{
+#ifdef USE_NO_SIMD
+ return hex_decode_safe_scalar(src, len, dst, escontext);
+#else
+ const uint64 tail_idx = len & ~(sizeof(Vector8) * 2 - 1);
+ uint64 i;
+ bool success = true;
+
+ /*
+ * We must process 2 vectors at a time since the output will be half the
+ * length of the input.
+ */
+ for (i = 0; i < tail_idx; i += sizeof(Vector8) * 2)
+ {
+ Vector8 srcv;
+ Vector8 dstv1;
+ Vector8 dstv2;
+
+ vector8_load(&srcv, (const uint8 *) &src[i]);
+ success &= hex_decode_simd_helper(srcv, &dstv1);
+
+ vector8_load(&srcv, (const uint8 *) &src[i + sizeof(Vector8)]);
+ success &= hex_decode_simd_helper(srcv, &dstv2);
+
+ vector8_store((uint8 *) &dst[i / 2], vector8_pack_16(dstv1, dstv2));
+ }
+
+ /*
+ * If something didn't look right in the vector path, try again in the
+ * scalar path so that we can handle it correctly.
+ */
+ if (!success)
+ i = 0;
+
+ return i / 2 + hex_decode_safe_scalar(src + i, len - i, dst + i / 2, escontext);
+#endif
+}
+
static uint64
hex_enc_len(const char *src, size_t srclen)
{
}
#endif /* ! USE_NO_SIMD */
+/*
+ * Store a vector into the given memory address.
+ */
+#ifndef USE_NO_SIMD
+static inline void
+vector8_store(uint8 *s, Vector8 v)
+{
+#ifdef USE_SSE2
+ _mm_storeu_si128((Vector8 *) s, v);
+#elif defined(USE_NEON)
+ vst1q_u8(s, v);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
/*
* Create a vector with all elements set to the same value.
*/
return result;
}
+/*
+ * Returns true if any elements in the vector are greater than or equal to the
+ * given scalar.
+ */
+#ifndef USE_NO_SIMD
+static inline bool
+vector8_has_ge(const Vector8 v, const uint8 c)
+{
+#ifdef USE_SSE2
+ Vector8 umax = _mm_max_epu8(v, vector8_broadcast(c));
+ Vector8 cmpe = vector8_eq(umax, v);
+
+ return vector8_is_highbit_set(cmpe);
+#elif defined(USE_NEON)
+ return vmaxvq_u8(v) >= c;
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
/*
* Return true if the high bit of any element is set
*/
}
#endif /* ! USE_NO_SIMD */
+/*
+ * Return the bitwise AND of the inputs.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_and(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_and_si128(v1, v2);
+#elif defined(USE_NEON)
+ return vandq_u8(v1, v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Return the result of adding the respective elements of the input vectors.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_add(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_add_epi8(v1, v2);
+#elif defined(USE_NEON)
+ return vaddq_u8(v1, v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Return the result of subtracting the respective elements of the input
+ * vectors using signed saturation (i.e., if the operation would yield a value
+ * less than -128, -128 is returned instead). For more information on
+ * saturation arithmetic, see
+ * https://en.wikipedia.org/wiki/Saturation_arithmetic
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_issub(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_subs_epi8(v1, v2);
+#elif defined(USE_NEON)
+ return (Vector8) vqsubq_s8((int8x16_t) v1, (int8x16_t) v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
/*
* Return a vector with all bits set in each lane where the corresponding
* lanes in the inputs are equal.
}
#endif /* ! USE_NO_SIMD */
+/*
+ * Return a vector with all bits set for each lane of v1 that is greater than
+ * the corresponding lane of v2. NB: The comparison treats the elements as
+ * signed.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_gt(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_cmpgt_epi8(v1, v2);
+#elif defined(USE_NEON)
+ return vcgtq_s8((int8x16_t) v1, (int8x16_t) v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
/*
* Given two vectors, return a vector with the minimum element of each.
*/
}
#endif /* ! USE_NO_SIMD */
+/*
+ * Interleave elements of low halves (e.g., for SSE2, bits 0-63) of given
+ * vectors. Bytes 0, 2, 4, etc. use v1, and bytes 1, 3, 5, etc. use v2.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_interleave_low(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_unpacklo_epi8(v1, v2);
+#elif defined(USE_NEON)
+ return vzip1q_u8(v1, v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Interleave elements of high halves (e.g., for SSE2, bits 64-127) of given
+ * vectors. Bytes 0, 2, 4, etc. use v1, and bytes 1, 3, 5, etc. use v2.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_interleave_high(const Vector8 v1, const Vector8 v2)
+{
+#ifdef USE_SSE2
+ return _mm_unpackhi_epi8(v1, v2);
+#elif defined(USE_NEON)
+ return vzip2q_u8(v1, v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Pack 16-bit elements in the given vectors into a single vector of 8-bit
+ * elements. The first half of the return vector (e.g., for SSE2, bits 0-63)
+ * uses v1, and the second half (e.g., for SSE2, bits 64-127) uses v2.
+ *
+ * NB: The upper 8-bits of each 16-bit element must be zeros, else this will
+ * produce different results on different architectures.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_pack_16(const Vector8 v1, const Vector8 v2)
+{
+ Vector8 mask PG_USED_FOR_ASSERTS_ONLY;
+
+ mask = vector8_interleave_low(vector8_broadcast(0), vector8_broadcast(0xff));
+ Assert(!vector8_has_ge(vector8_and(v1, mask), 1));
+ Assert(!vector8_has_ge(vector8_and(v2, mask), 1));
+#ifdef USE_SSE2
+ return _mm_packus_epi16(v1, v2);
+#elif defined(USE_NEON)
+ return vuzp1q_u8(v1, v2);
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Unsigned shift left of each 32-bit element in the vector by "i" bits.
+ *
+ * XXX AArch64 requires an integer literal, so we have to list all expected
+ * values of "i" from all callers in a switch statement. If you add a new
+ * caller, be sure your expected values of "i" are handled.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_shift_left(const Vector8 v1, int i)
+{
+#ifdef USE_SSE2
+ return _mm_slli_epi32(v1, i);
+#elif defined(USE_NEON)
+ switch (i)
+ {
+ case 4:
+ return (Vector8) vshlq_n_u32((Vector32) v1, 4);
+ default:
+ Assert(false);
+ return vector8_broadcast(0);
+ }
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
+/*
+ * Unsigned shift right of each 32-bit element in the vector by "i" bits.
+ *
+ * XXX AArch64 requires an integer literal, so we have to list all expected
+ * values of "i" from all callers in a switch statement. If you add a new
+ * caller, be sure your expected values of "i" are handled.
+ */
+#ifndef USE_NO_SIMD
+static inline Vector8
+vector8_shift_right(const Vector8 v1, int i)
+{
+#ifdef USE_SSE2
+ return _mm_srli_epi32(v1, i);
+#elif defined(USE_NEON)
+ switch (i)
+ {
+ case 4:
+ return (Vector8) vshrq_n_u32((Vector32) v1, 4);
+ case 8:
+ return (Vector8) vshrq_n_u32((Vector32) v1, 8);
+ default:
+ Assert(false);
+ return vector8_broadcast(0);
+ }
+#endif
+}
+#endif /* ! USE_NO_SIMD */
+
#endif /* SIMD_H */
\xcdab
(1 row)
+SELECT ('\x' || repeat(' ', 32))::bytea;
+ bytea
+-------
+ \x
+(1 row)
+
+SELECT ('\x' || repeat('!', 32))::bytea;
+ERROR: invalid hexadecimal digit: "!"
+SELECT ('\x' || repeat('/', 34))::bytea;
+ERROR: invalid hexadecimal digit: "/"
+SELECT ('\x' || repeat('0', 34))::bytea;
+ bytea
+--------------------------------------
+ \x0000000000000000000000000000000000
+(1 row)
+
+SELECT ('\x' || repeat('9', 32))::bytea;
+ bytea
+------------------------------------
+ \x99999999999999999999999999999999
+(1 row)
+
+SELECT ('\x' || repeat(':', 32))::bytea;
+ERROR: invalid hexadecimal digit: ":"
+SELECT ('\x' || repeat('@', 34))::bytea;
+ERROR: invalid hexadecimal digit: "@"
+SELECT ('\x' || repeat('A', 34))::bytea;
+ bytea
+--------------------------------------
+ \xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+(1 row)
+
+SELECT ('\x' || repeat('F', 32))::bytea;
+ bytea
+------------------------------------
+ \xffffffffffffffffffffffffffffffff
+(1 row)
+
+SELECT ('\x' || repeat('G', 32))::bytea;
+ERROR: invalid hexadecimal digit: "G"
+SELECT ('\x' || repeat('`', 34))::bytea;
+ERROR: invalid hexadecimal digit: "`"
+SELECT ('\x' || repeat('a', 34))::bytea;
+ bytea
+--------------------------------------
+ \xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+(1 row)
+
+SELECT ('\x' || repeat('f', 32))::bytea;
+ bytea
+------------------------------------
+ \xffffffffffffffffffffffffffffffff
+(1 row)
+
+SELECT ('\x' || repeat('g', 32))::bytea;
+ERROR: invalid hexadecimal digit: "g"
+SELECT ('\x' || repeat('~', 34))::bytea;
+ERROR: invalid hexadecimal digit: "~"
SET bytea_output TO escape;
SELECT E'\\xDeAdBeEf'::bytea;
bytea
SELECT reverse('\xaa'::bytea);
SELECT reverse('\xabcd'::bytea);
+SELECT ('\x' || repeat(' ', 32))::bytea;
+SELECT ('\x' || repeat('!', 32))::bytea;
+SELECT ('\x' || repeat('/', 34))::bytea;
+SELECT ('\x' || repeat('0', 34))::bytea;
+SELECT ('\x' || repeat('9', 32))::bytea;
+SELECT ('\x' || repeat(':', 32))::bytea;
+SELECT ('\x' || repeat('@', 34))::bytea;
+SELECT ('\x' || repeat('A', 34))::bytea;
+SELECT ('\x' || repeat('F', 32))::bytea;
+SELECT ('\x' || repeat('G', 32))::bytea;
+SELECT ('\x' || repeat('`', 34))::bytea;
+SELECT ('\x' || repeat('a', 34))::bytea;
+SELECT ('\x' || repeat('f', 32))::bytea;
+SELECT ('\x' || repeat('g', 32))::bytea;
+SELECT ('\x' || repeat('~', 34))::bytea;
+
SET bytea_output TO escape;
SELECT E'\\xDeAdBeEf'::bytea;
SELECT E'\\x De Ad Be Ef '::bytea;