-C Add\svdbevtab.lo\sto\sbuild\sof\slibsqlite3.lib\sin\sMakefile.msc.
-D 2020-05-18T18:02:37.420
+C In\swal.c,\simproved\scomments\son\sconcurrency\sissues.\s\sMore\suse\sof\nAtomicLoad()\sand\sAtomicStore().
+D 2020-05-19T12:27:29.008
F .fossil-settings/empty-dirs dbb81e8fc0401ac46a1491ab34a7f2c7c0452f2f06b54ebb845d024ca8283ef1
F .fossil-settings/ignore-glob 35175cdfcf539b2318cb04a9901442804be81cd677d8b889fcc9149c21f239ea
F LICENSE.md df5091916dbb40e6e9686186587125e1b2ff51f022cc334e886c19a0e9982724
F src/vdbevtab.c ee5b4c902fdda2230f9503ac7b84c6d614c91e8f6f4dc1633e2e8dfef8ffb144
F src/vtab.c 7b452592ed2ee95dedb1f323d557cebede5a6f3b4558b21a5dca527e6ae9b12c
F src/vxworks.h d2988f4e5a61a4dfe82c6524dd3d6e4f2ce3cdb9
-F src/wal.c d0365581aed11a75e176f67cdbdc1bdfe685c5381a052360a00bbf58d3252fa0
+F src/wal.c fc763af2c20d1770e872378b28031c100b52061ec47599f38499cf4bd4977284
F src/wal.h c3aa7825bfa2fe0d85bef2db94655f99870a285778baa36307c0a16da32b226a
F src/walker.c 7c429c694abd12413a5c17aec9f47cfe9eba6807e6b0a32df883e8e3a14835ed
F src/where.c 9546c82056e8cdb27291f98cf1adca5d271240b399bb97b32f77fc2bea6146c9
F vsixtest/vsixtest.vcxproj.data 2ed517e100c66dc455b492e1a33350c1b20fbcdc
F vsixtest/vsixtest.vcxproj.filters 37e51ffedcdb064aad6ff33b6148725226cd608e
F vsixtest/vsixtest_TemporaryKey.pfx e5b1b036facdb453873e7084e1cae9102ccc67a0
-P 69e149f76853d196c8855fedfc98848b60fb116ac36bc08824b1a122469f8ece
-R 3630bc41d5bae3aeb507521e3969369e
-U dan
-Z ad12d06ec98773d9201d7cf643b16e9f
+P f64d054b799c0af8d582fd9aff9bcbfa380ef08026ba5db8c5f89f6f56dfdad9
+R 7f686b5b79d2dddadbc47e9d743b06cb
+U drh
+Z 8798d48c38c827000797710a250a5723
aOut[1] = s2;
}
+/*
+** If there is the possibility of concurrent access to the SHM file
+** from multiple threads and/or processes, then do a memory barrier.
+*/
static void walShmBarrier(Wal *pWal){
if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
sqlite3OsShmBarrier(pWal->pDbFd);
pWal->hdr.isInit = 1;
pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
+ /* Possible TSAN false-positive. See tag-20200519-1 */
memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
walShmBarrier(pWal);
memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
mxSafeFrame = pWal->hdr.mxFrame;
mxPage = pWal->hdr.nPage;
for(i=1; i<WAL_NREADER; i++){
- /* Thread-sanitizer reports that the following is an unsafe read,
- ** as some other thread may be in the process of updating the value
- ** of the aReadMark[] slot. The assumption here is that if that is
- ** happening, the other client may only be increasing the value,
- ** not decreasing it. So assuming either that either the "old" or
- ** "new" version of the value is read, and not some arbitrary value
- ** that would never be written by a real client, things are still
- ** safe.
- **
- ** Astute readers have pointed out that the assumption stated in the
- ** last sentence of the previous paragraph is not guaranteed to be
- ** true for all conforming systems. However, the assumption is true
- ** for all compilers and architectures in common use today (circa
- ** 2019-11-27) and the alternatives are both slow and complex, and
- ** so we will continue to go with the current design for now. If this
- ** bothers you, or if you really are running on a system where aligned
- ** 32-bit reads and writes are not atomic, then you can simply avoid
- ** the use of WAL mode, or only use WAL mode together with
- ** PRAGMA locking_mode=EXCLUSIVE and all will be well.
- */
- u32 y = pInfo->aReadMark[i];
+ u32 y = AtomicLoad(pInfo->aReadMark+i);
if( mxSafeFrame>y ){
assert( y<=pWal->hdr.mxFrame );
rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
if( rc==SQLITE_OK ){
- pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
+ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
+ AtomicStore(pInfo->aReadMark+i, iMark);
walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
}else if( rc==SQLITE_BUSY ){
mxSafeFrame = y;
}
if( pIter
- && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
+ && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
){
u32 nBackfill = pInfo->nBackfill;
** meaning it is possible that an inconsistent snapshot is read
** from the file. If this happens, return non-zero.
**
+ ** tag-20200519-1:
** There are two copies of the header at the beginning of the wal-index.
** When reading, read [0] first then [1]. Writes are in the reverse order.
** Memory barriers are used to prevent the compiler or the hardware from
- ** reordering the reads and writes.
+ ** reordering the reads and writes. TSAN and similar tools can sometimes
+ ** give false-positive warnings about these accesses because the tools do not
+ ** account for the double-read and the memory barrier. The use of mutexes
+ ** here would be problematic as the memory being accessed is potentially
+ ** shared among multiple processes and not all mutex implementions work
+ ** reliably in that environment.
*/
aHdr = walIndexHdr(pWal);
- memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
+ memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
walShmBarrier(pWal);
memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
int iKey; /* Hash slot index */
int nCollide; /* Number of hash collisions remaining */
int rc; /* Error code */
+ u32 iH;
rc = walHashGet(pWal, iHash, &sLoc);
if( rc!=SQLITE_OK ){
return rc;
}
nCollide = HASHTABLE_NSLOT;
- for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
- u32 iH = sLoc.aHash[iKey];
+ iKey = walHash(pgno);
+ while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
u32 iFrame = iH + sLoc.iZero;
if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
assert( iFrame>iRead || CORRUPT_DB );
if( (nCollide--)==0 ){
return SQLITE_CORRUPT_BKPT;
}
+ iKey = walNextHash(iKey);
}
if( iRead ) break;
}