2, /* ld2_st2_permute_cost */
2, /* ld3_st3_permute_cost */
3, /* ld4_st4_permute_cost */
- 3, /* permute_cost */
+ 2, /* permute_cost */
4, /* reduc_i8_cost */
4, /* reduc_i16_cost */
2, /* reduc_i32_cost */
{
2, /* int_stmt_cost */
2, /* fp_stmt_cost */
- 3, /* ld2_st2_permute_cost */
- 4, /* ld3_st3_permute_cost */
- 4, /* ld4_st4_permute_cost */
- 3, /* permute_cost */
+ 2, /* ld2_st2_permute_cost */
+ 3, /* ld3_st3_permute_cost */
+ 3, /* ld4_st4_permute_cost */
+ 2, /* permute_cost */
/* Theoretically, a reduction involving 15 scalar ADDs could
complete in ~5 cycles and would have a cost of 15. [SU]ADDV
- completes in 11 cycles, so give it a cost of 15 + 6. */
- 21, /* reduc_i8_cost */
- /* Likewise for 7 scalar ADDs (~3 cycles) vs. 9: 7 + 6. */
- 13, /* reduc_i16_cost */
- /* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 6. */
- 9, /* reduc_i32_cost */
- /* Likewise for 1 scalar ADD (~1 cycles) vs. 2: 1 + 1. */
- 2, /* reduc_i64_cost */
+ completes in 9 cycles, so give it a cost of 15 + 4. */
+ 19, /* reduc_i8_cost */
+ /* Likewise for 7 scalar ADDs (~3 cycles) vs. 8: 7 + 5. */
+ 12, /* reduc_i16_cost */
+ /* Likewise for 3 scalar ADDs (~2 cycles) vs. 6: 3 + 4. */
+ 7, /* reduc_i32_cost */
+ /* Likewise for 1 scalar ADDs (~1 cycles) vs. 4: 1 + 3. */
+ 4, /* reduc_i64_cost */
/* Theoretically, a reduction involving 7 scalar FADDs could
- complete in ~8 cycles and would have a cost of 14. FADDV
- completes in 6 cycles, so give it a cost of 14 - 2. */
+ complete in ~8 cycles and would have a cost of 14. FADDV
+ completes in 6 cycles, so give it a cost of 14 + -2. */
12, /* reduc_f16_cost */
- /* Likewise for 3 scalar FADDs (~4 cycles) vs. 4: 6 - 0. */
+ /* Likewise for 3 scalar FADDs (~4 cycles) vs. 4: 6 + 0. */
6, /* reduc_f32_cost */
- /* Likewise for 1 scalar FADD (~2 cycles) vs. 2: 2 - 0. */
+ /* Likewise for 1 scalar FADD (~2 cycles) vs. 2: 2 + 0. */
2, /* reduc_f64_cost */
2, /* store_elt_extra_cost */
/* This value is just inherited from the Cortex-A57 table. */
/* A strided Advanced SIMD x64 load would take two parallel FP loads
(8 cycles) plus an insertion (2 cycles). Assume a 64-bit SVE gather
is 1 cycle more. The Advanced SIMD version is costed as 2 scalar loads
- (cost 8) and a vec_construct (cost 2). Add a full vector operation
+ (cost 8) and a vec_construct (cost 4). Add a full vector operation
(cost 2) to that, to avoid the difference being lost in rounding.
There is no easy comparison between a strided Advanced SIMD x32 load
{
{
{
- 3, /* loads_per_cycle */
+ 3, /* loads_stores_per_cycle */
2, /* stores_per_cycle */
2, /* general_ops_per_cycle */
0, /* fp_simd_load_general_ops */
1 /* fp_simd_store_general_ops */
},
2, /* ld2_st2_general_ops */
- 3, /* ld3_st3_general_ops */
+ 2, /* ld3_st3_general_ops */
3 /* ld4_st4_general_ops */
},
2, /* pred_ops_per_cycle */
&neoversen2_sve_issue_info
};
-/* Neoverse N2 costs for vector insn classes. */
+/* Neoversen2 costs for vector insn classes. */
static const struct cpu_vector_cost neoversen2_vector_cost =
{
1, /* scalar_int_stmt_cost */
6, /* load_pred. */
1 /* store_pred. */
}, /* memmov_cost. */
- 3, /* issue_rate */
+ 5, /* issue_rate */
(AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops */
"32:16", /* function_align. */
"4", /* jump_align. */
AARCH64_LDP_STP_POLICY_ALWAYS /* stp_policy_model. */
};
-#endif /* GCC_AARCH64_H_NEOVERSEN2. */
+#endif /* GCC_AARCH64_H_NEOVERSEN2. */
\ No newline at end of file