--- /dev/null
+/*
+ * Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ * https://www.openssl.org/source/license.html
+ * or in the file LICENSE in the source distribution.
+ */
+
+/*
+ * Test slh-dsa operation.
+ */
+#include <string.h>
+#include <openssl/evp.h>
+#include <openssl/err.h>
+#include <openssl/rand.h>
+#include <openssl/byteorder.h>
+#include <openssl/core_names.h>
+#include "crypto/slh_dsa.h"
+#include "internal/nelem.h"
+#include "fuzzer.h"
+
+/**
+ * @brief Consumes an 8-bit unsigned integer from a buffer.
+ *
+ * This function extracts an 8-bit unsigned integer from the provided buffer,
+ * updates the buffer pointer, and adjusts the remaining length.
+ *
+ * @param buf Pointer to the input buffer.
+ * @param len Pointer to the size of the remaining buffer; updated after consumption.
+ * @param val Pointer to store the extracted 8-bit value.
+ *
+ * @return Pointer to the updated buffer position after reading the value,
+ * or NULL if the buffer does not contain enough data.
+ */
+static uint8_t *consume_uint8t(const uint8_t *buf, size_t *len, uint8_t *val)
+{
+ if (*len < sizeof(uint8_t))
+ return NULL;
+ *val = *buf;
+ *len -= sizeof(uint8_t);
+ return (uint8_t *)buf + 1;
+}
+
+/**
+ * @brief Generates a DSA key pair using OpenSSL EVP API.
+ *
+ * This function creates a DSA key pair based on the specified key size and
+ * parameters. It supports generating keys using explicit parameters if provided.
+ *
+ * @param name The name of the key type (e.g., "DSA").
+ * @param keysize The desired key size in bits.
+ * @param params Optional OpenSSL parameters for key generation.
+ * @param param_broken A flag indicating if the parameters are broken.
+ * If true, key generation will fail.
+ *
+ * @return A pointer to the generated EVP_PKEY structure on success,
+ * or NULL on failure.
+ */
+static EVP_PKEY *slh_dsa_gen_key(const char *name, uint32_t keysize,
+ OSSL_PARAM params[], uint8_t *param_broken)
+{
+ EVP_PKEY_CTX *ctx;
+ EVP_PKEY *new = NULL;
+ int rc;
+
+ ctx = EVP_PKEY_CTX_new_from_name(NULL, name, NULL);
+ OPENSSL_assert(ctx != NULL);
+ if (params != NULL) {
+ new = EVP_PKEY_new();
+ OPENSSL_assert(EVP_PKEY_fromdata_init(ctx));
+ if (*param_broken) {
+ rc = EVP_PKEY_fromdata(ctx, &new, EVP_PKEY_KEYPAIR, params);
+ OPENSSL_assert(rc == 0);
+ EVP_PKEY_free(new);
+ new = NULL;
+ } else {
+ OPENSSL_assert(EVP_PKEY_fromdata(ctx, &new, EVP_PKEY_KEYPAIR, params) == 1);
+ }
+ goto out;
+ }
+
+ OPENSSL_assert(EVP_PKEY_keygen_init(ctx));
+ OPENSSL_assert(EVP_PKEY_generate(ctx, &new));
+
+out:
+ EVP_PKEY_CTX_free(ctx);
+ return new;
+}
+
+/**
+ * @brief Selects a key type and determines the key size.
+ *
+ * This function maps a selector value to a specific SLH-DSA algorithm
+ * using a modulo operation. It then retrieves the corresponding
+ * algorithm name and assigns an appropriate key size based on the
+ * selected algorithm.
+ *
+ * @param selector A random selector value used to determine the key type.
+ * @param keysize Pointer to a variable where the determined key size
+ * (in bytes) will be stored.
+ *
+ * @return A pointer to a string containing the long name of the
+ * selected key type, or NULL if invalid.
+ */
+static const char *select_keytype(uint8_t selector, uint32_t *keysize)
+{
+ unsigned int choice;
+ const char *name = NULL;
+
+ *keysize = 0;
+ /*
+ * There are 12 SLH-DSA algs with registered NIDS at the moment
+ * So use our random selector value to get one of them by computing
+ * its modulo 12 value and adding the offset of the first NID, 1460
+ * Then convert that to a long name
+ */
+ choice = (selector % 12) + 1460;
+
+ name = OBJ_nid2ln(choice);
+
+ /*
+ * Select a keysize, values taken from
+ * man7/EVP_PKEY-SLH-DSA.pod
+ */
+ switch (choice) {
+ case NID_SLH_DSA_SHA2_128s:
+ case NID_SLH_DSA_SHA2_128f:
+ case NID_SLH_DSA_SHAKE_128s:
+ case NID_SLH_DSA_SHAKE_128f:
+ *keysize = 16;
+ break;
+ case NID_SLH_DSA_SHA2_192s:
+ case NID_SLH_DSA_SHA2_192f:
+ case NID_SLH_DSA_SHAKE_192s:
+ case NID_SLH_DSA_SHAKE_192f:
+ *keysize = 24;
+ break;
+ case NID_SLH_DSA_SHA2_256s:
+ case NID_SLH_DSA_SHA2_256f:
+ case NID_SLH_DSA_SHAKE_256s:
+ case NID_SLH_DSA_SHAKE_256f:
+ *keysize = 32;
+ break;
+ default:
+ fprintf(stderr, "Selecting invalid key size\n");
+ *keysize = 0;
+ break;
+ }
+ return name;
+}
+
+/**
+ * @brief Generates two SLH-DSA key pairs based on consumed selector values.
+ *
+ * This function extracts two selector values from the provided buffer,
+ * determines the corresponding key types and sizes, and generates two
+ * SLH-DSA key pairs.
+ *
+ * @param buf Pointer to a buffer containing selector values. The buffer
+ * pointer is updated as values are consumed.
+ * @param len Pointer to the remaining buffer length, updated as values
+ * are consumed.
+ * @param out1 Pointer to store the first generated key.
+ * @param out2 Pointer to store the second generated key.
+ */
+static void slh_dsa_gen_keys(uint8_t **buf, size_t *len,
+ void **out1, void **out2)
+{
+ uint8_t selector = 0;
+ const char *keytype = NULL;
+ uint32_t keysize;
+
+ *buf = consume_uint8t(*buf, len, &selector);
+ keytype = select_keytype(selector, &keysize);
+ *out1 = (void *)slh_dsa_gen_key(keytype, keysize, NULL, 0);
+
+ *buf = consume_uint8t(*buf, len, &selector);
+ keytype = select_keytype(selector, &keysize);
+ *out2 = (void *)slh_dsa_gen_key(keytype, keysize, NULL, 0);
+ return;
+}
+
+#define PARAM_BUF_SZ 256
+
+/**
+ * @brief Generates an SLH-DSA key pair with custom parameters.
+ *
+ * This function extracts a selector value from the provided buffer,
+ * determines the corresponding key type and size, and generates an
+ * SLH-DSA key pair using randomly generated public and private key
+ * buffers. It also introduces intentional modifications to test
+ * invalid parameter handling.
+ *
+ * @param buf Pointer to a buffer containing the selector value. The
+ * buffer pointer is updated as values are consumed.
+ * @param len Pointer to the remaining buffer length, updated as values
+ * are consumed.
+ * @param out1 Pointer to store the generated key. Will be NULL if key
+ * generation fails due to invalid parameters.
+ * @param out2 Unused output parameter (placeholder for symmetry with
+ * other key generation functions).
+ */
+static void slh_dsa_gen_key_with_params(uint8_t **buf, size_t *len,
+ void **out1, void **out2)
+{
+ uint8_t selector = 0;
+ const char *keytype = NULL;
+ uint32_t keysize;
+ uint8_t pubbuf[PARAM_BUF_SZ]; /* expressly bigger than max key size * 3 */
+ uint8_t prvbuf[PARAM_BUF_SZ]; /* expressly bigger than max key size * 3 */
+ uint8_t sdbuf[PARAM_BUF_SZ]; /* expressly bigger than max key size * 3 */
+ uint8_t *bufptr;
+ OSSL_PARAM params[3];
+ size_t buflen;
+ uint8_t broken = 0;
+
+ *out1 = NULL;
+
+ *buf = consume_uint8t(*buf, len, &selector);
+ keytype = select_keytype(selector, &keysize);
+
+ RAND_bytes(pubbuf, PARAM_BUF_SZ);
+ RAND_bytes(prvbuf, PARAM_BUF_SZ);
+ RAND_bytes(sdbuf, PARAM_BUF_SZ);
+
+ /*
+ * select an invalid length if the buffer 0th bit is one
+ * make it too big if the 2nd bit is 0, smaller otherwise
+ */
+ buflen = keysize * 2; /* these params are 2 * the keysize */
+ if ((*buf)[0] & 0x1) {
+ buflen = ((*buf)[0] & 0x2) ? buflen - 1 : buflen + 1;
+ broken = 1;
+ }
+
+ /* pass a null buffer if the third bit of the buffer is 1 */
+ bufptr = ((*buf)[0] & 0x4) ? NULL : pubbuf;
+ if (!broken)
+ broken = (bufptr == NULL) ? 1 : 0;
+
+ params[0] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
+ (char *)bufptr, buflen);
+
+ buflen = keysize * 2;
+ /* select an invalid length if the 4th bit is true */
+ if ((*buf)[0] & 0x8) {
+ buflen = (*buf[0] & 0x1) ? buflen - 1 : buflen + 1;
+ broken = 1;
+ }
+
+ /* pass a null buffer if the 5th bit is true */
+ bufptr = ((*buf)[0] & 0x10) ? NULL : prvbuf;
+ if (!broken)
+ broken = (bufptr == NULL) ? 1 : 0;
+ params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY,
+ (char *)bufptr, buflen);
+
+ params[2] = OSSL_PARAM_construct_end();
+
+ *out1 = (void *)slh_dsa_gen_key(keytype, keysize, params, &broken);
+
+ if (broken)
+ OPENSSL_assert(*out1 == NULL);
+ else
+ OPENSSL_assert(*out1 != NULL);
+ return;
+}
+
+/**
+ * @brief Frees allocated SLH-DSA key structures.
+ *
+ * This function releases memory allocated for SLH-DSA key pairs
+ * by freeing the provided EVP_PKEY structures.
+ *
+ * @param in1 Pointer to the first input key to be freed.
+ * @param in2 Pointer to the second input key to be freed.
+ * @param out1 Pointer to the first output key to be freed.
+ * @param out2 Pointer to the second output key to be freed.
+ */
+static void slh_dsa_clean_keys(void *in1, void *in2, void *out1, void *out2)
+{
+ EVP_PKEY_free((EVP_PKEY *)in1);
+ EVP_PKEY_free((EVP_PKEY *)in2);
+ EVP_PKEY_free((EVP_PKEY *)out1);
+ EVP_PKEY_free((EVP_PKEY *)out2);
+}
+
+/**
+ * @brief Performs SLH-DSA signing and verification on a given message.
+ *
+ * This function generates an SLH-DSA key, signs a message, and verifies
+ * the generated signature. It extracts necessary parameters from the buffer
+ * to determine signing options.
+ *
+ * @param buf Pointer to a buffer containing the selector and message data.
+ * The buffer pointer is updated as values are consumed.
+ * @param len Pointer to the remaining buffer length, updated as values
+ * are consumed.
+ * @param key1 Unused key parameter (placeholder for function signature consistency).
+ * @param key2 Unused key parameter (placeholder for function signature consistency).
+ * @param out1 Pointer to store the generated key (for cleanup purposes).
+ * @param out2 Unused output parameter (placeholder for consistency).
+ */
+static void slh_dsa_sign_verify(uint8_t **buf, size_t *len, void *key1,
+ void *key2, void **out1, void **out2)
+{
+ EVP_PKEY_CTX *ctx = NULL;
+ EVP_PKEY *key = NULL;
+ EVP_SIGNATURE *sig_alg = NULL;
+ const char *keytype;
+ uint32_t keylen;
+ uint8_t selector = 0;
+ unsigned char *msg = NULL;
+ size_t msg_len;
+ size_t sig_len;
+ unsigned char *sig = NULL;
+ OSSL_PARAM params[4];
+ int paramidx = 0;
+ int intval;
+
+ *buf = consume_uint8t(*buf, len, &selector);
+ if (*buf == NULL)
+ return;
+
+ keytype = select_keytype(selector, &keylen);
+
+ /*
+ * Consume another byte to figure out our params
+ */
+ *buf = consume_uint8t(*buf, len, &selector);
+ if (*buf == NULL)
+ return;
+
+ /*
+ * Remainder of the buffer is the msg to sign
+ */
+ msg = (unsigned char *)*buf;
+ msg_len = *len;
+ *len = 0;
+
+ if (selector & 0x1)
+ params[paramidx++] = OSSL_PARAM_construct_octet_string(OSSL_SIGNATURE_PARAM_CONTEXT_STRING,
+ msg, msg_len);
+
+ if (selector & 0x2) {
+ intval = selector & 0x4;
+ params[paramidx++] = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_MESSAGE_ENCODING,
+ &intval);
+ }
+
+ if (selector & 0x8) {
+ intval = selector & 0x10;
+ params[paramidx++] = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_DETERMINISTIC,
+ &intval);
+ }
+
+ params[paramidx] = OSSL_PARAM_construct_end();
+
+ key = (void *)slh_dsa_gen_key(keytype, keylen, NULL, 0);
+ OPENSSL_assert(key != NULL);
+ *out1 = key; /* for cleanup */
+
+ ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
+ OPENSSL_assert(ctx != NULL);
+
+ sig_alg = EVP_SIGNATURE_fetch(NULL, keytype, NULL);
+ OPENSSL_assert(sig_alg != NULL);
+
+ OPENSSL_assert(EVP_PKEY_sign_message_init(ctx, sig_alg, params));
+
+ OPENSSL_assert(EVP_PKEY_sign(ctx, NULL, &sig_len, msg, msg_len));
+ sig = OPENSSL_zalloc(sig_len);
+ OPENSSL_assert(sig != NULL);
+
+ OPENSSL_assert(EVP_PKEY_sign(ctx, sig, &sig_len, msg, msg_len));
+
+ OPENSSL_assert(EVP_PKEY_verify_message_init(ctx, sig_alg, params));
+ OPENSSL_assert(EVP_PKEY_verify(ctx, sig, sig_len, msg, msg_len));
+
+ OPENSSL_free(sig);
+ EVP_SIGNATURE_free(sig_alg);
+ EVP_PKEY_CTX_free(ctx);
+}
+
+/**
+ * @brief Exports and imports SLH-DSA key pairs, verifying equivalence.
+ *
+ * This function extracts key data from two given SLH-DSA keys (`alice` and `bob`),
+ * reconstructs new keys from the extracted data, and verifies that the imported
+ * keys are equivalent to the originals. It ensures that key export/import
+ * functionality is working correctly.
+ *
+ * @param buf Unused buffer parameter (placeholder for function signature consistency).
+ * @param len Unused length parameter (placeholder for function signature consistency).
+ * @param key1 Pointer to the first key (`alice`) to be exported and imported.
+ * @param key2 Pointer to the second key (`bob`) to be exported and imported.
+ * @param out1 Unused output parameter (placeholder for consistency).
+ * @param out2 Unused output parameter (placeholder for consistency).
+ */
+static void slh_dsa_export_import(uint8_t **buf, size_t *len, void *key1,
+ void *key2, void **out1, void **out2)
+{
+ int rc;
+ EVP_PKEY *alice = (EVP_PKEY *)key1;
+ EVP_PKEY *bob = (EVP_PKEY *)key2;
+ EVP_PKEY *new = NULL;
+ EVP_PKEY_CTX *ctx = NULL;
+ OSSL_PARAM *params = NULL;
+
+ OPENSSL_assert(EVP_PKEY_todata(alice, EVP_PKEY_KEYPAIR, ¶ms) == 1);
+
+ ctx = EVP_PKEY_CTX_new_from_pkey(NULL, alice, NULL);
+ OPENSSL_assert(ctx != NULL);
+
+ OPENSSL_assert(EVP_PKEY_fromdata_init(ctx));
+
+ new = EVP_PKEY_new();
+ OPENSSL_assert(new != NULL);
+ OPENSSL_assert(EVP_PKEY_fromdata(ctx, &new, EVP_PKEY_KEYPAIR, params) == 1);
+
+ /*
+ * EVP_PKEY returns:
+ * 1 if the keys are equivalent
+ * 0 if the keys are not equivalent
+ * -1 if the key types are differnt
+ * -2 if the operation is not supported
+ */
+ OPENSSL_assert(EVP_PKEY_eq(alice, new) == 1);
+ EVP_PKEY_free(new);
+ EVP_PKEY_CTX_free(ctx);
+ OSSL_PARAM_free(params);
+ params = NULL;
+ ctx = NULL;
+ new = NULL;
+
+ OPENSSL_assert(EVP_PKEY_todata(bob, EVP_PKEY_KEYPAIR, ¶ms) == 1);
+
+ ctx = EVP_PKEY_CTX_new_from_pkey(NULL, bob, NULL);
+ OPENSSL_assert(ctx != NULL);
+
+ OPENSSL_assert(EVP_PKEY_fromdata_init(ctx));
+
+ new = EVP_PKEY_new();
+ OPENSSL_assert(new != NULL);
+ OPENSSL_assert(EVP_PKEY_fromdata(ctx, &new, EVP_PKEY_KEYPAIR, params) == 1);
+
+ OPENSSL_assert(EVP_PKEY_eq(bob, new) == 1);
+
+ /*
+ * Depending on the types of eys that get generated
+ * we might get a simple non-equivalence or a type mismatch here
+ */
+ rc = EVP_PKEY_eq(alice, new);
+ OPENSSL_assert(rc == 0 || rc == -1);
+
+ EVP_PKEY_CTX_free(ctx);
+ EVP_PKEY_free(new);
+ OSSL_PARAM_free(params);
+}
+
+/**
+ * @brief Represents an operation table entry for cryptographic operations.
+ *
+ * This structure defines a table entry containing function pointers for
+ * setting up, executing, and cleaning up cryptographic operations, along
+ * with associated metadata such as a name and description.
+ *
+ * @struct op_table_entry
+ */
+struct op_table_entry {
+ /** Name of the operation. */
+ char *name;
+
+ /**
+ * @brief Function pointer for setting up the operation.
+ *
+ * @param buf Pointer to the buffer pointer; may be updated.
+ * @param len Pointer to the remaining buffer size; may be updated.
+ * @param out1 Pointer to store the first output of the setup function.
+ * @param out2 Pointer to store the second output of the setup function.
+ */
+ void (*setup)(uint8_t **buf, size_t *len, void **out1, void **out2);
+
+ /**
+ * @brief Function pointer for executing the operation.
+ *
+ * @param buf Pointer to the buffer pointer; may be updated.
+ * @param len Pointer to the remaining buffer size; may be updated.
+ * @param in1 First input parameter for the operation.
+ * @param in2 Second input parameter for the operation.
+ * @param out1 Pointer to store the first output of the operation.
+ * @param out2 Pointer to store the second output of the operation.
+ */
+ void (*doit)(uint8_t **buf, size_t *len, void *in1, void *in2,
+ void **out1, void **out2);
+
+ /**
+ * @brief Function pointer for cleaning up after the operation.
+ *
+ * @param in1 First input parameter to be cleaned up.
+ * @param in2 Second input parameter to be cleaned up.
+ * @param out1 First output parameter to be cleaned up.
+ * @param out2 Second output parameter to be cleaned up.
+ */
+ void (*cleanup)(void *in1, void *in2, void *out1, void *out2);
+};
+
+static struct op_table_entry ops[] = {
+ {
+ "Generate SLH-DSA keys",
+ slh_dsa_gen_keys,
+ NULL,
+ slh_dsa_clean_keys
+ }, {
+ "Generate SLH-DSA keys with params",
+ slh_dsa_gen_key_with_params,
+ NULL,
+ slh_dsa_clean_keys
+ }, {
+ "SLH-DSA Export/Import",
+ slh_dsa_gen_keys,
+ slh_dsa_export_import,
+ slh_dsa_clean_keys
+ }, {
+ "SLH-DSA sign and verify",
+ NULL,
+ slh_dsa_sign_verify,
+ slh_dsa_clean_keys
+ }
+};
+
+int FuzzerInitialize(int *argc, char ***argv)
+{
+ return 0;
+}
+
+/**
+ * @brief Processes a fuzzing input by selecting and executing an operation.
+ *
+ * This function interprets the first byte of the input buffer to determine
+ * an operation to execute. It then follows a setup, execution, and cleanup
+ * sequence based on the selected operation.
+ *
+ * @param buf Pointer to the input buffer.
+ * @param len Length of the input buffer.
+ *
+ * @return 0 on successful execution, -1 if the input is too short.
+ *
+ * @note The function requires at least 32 bytes in the buffer to proceed.
+ * It utilizes the `ops` operation table to dynamically determine and
+ * execute the selected operation.
+ */
+int FuzzerTestOneInput(const uint8_t *buf, size_t len)
+{
+ uint8_t operation;
+ uint8_t *buffer_cursor;
+ void *in1 = NULL, *in2 = NULL;
+ void *out1 = NULL, *out2 = NULL;
+
+ if (len < 32)
+ return -1;
+ /*
+ * Get the first byte of the buffer to tell us what operation
+ * to preform
+ */
+ buffer_cursor = consume_uint8t(buf, &len, &operation);
+ if (buffer_cursor == NULL)
+ return -1;
+
+ /*
+ * Adjust for operational array size
+ */
+ operation %= OSSL_NELEM(ops);
+
+ /*
+ * And run our setup/doit/cleanup sequence
+ */
+ if (ops[operation].setup != NULL)
+ ops[operation].setup(&buffer_cursor, &len, &in1, &in2);
+ if (ops[operation].doit != NULL)
+ ops[operation].doit(&buffer_cursor, &len, in1, in2, &out1, &out2);
+ if (ops[operation].cleanup != NULL)
+ ops[operation].cleanup(in1, in2, out1, out2);
+
+ return 0;
+}
+
+void FuzzerCleanup(void)
+{
+ OPENSSL_cleanup();
+}