From: gkinkie@gmail.com Date: Sun, 8 Jan 2023 00:10:31 +0000 (+0000) Subject: Remove bundled GnuRegex library (#1229) X-Git-Tag: SQUID_6_0_1~43 X-Git-Url: http://git.ipfire.org/?a=commitdiff_plain;h=2e0942f94f80eb33c51e3dfa5d1fde35783fd8c8;p=thirdparty%2Fsquid.git Remove bundled GnuRegex library (#1229) Modern operating systems provide a functioning regex library, so we don't need to carry one anymore. --- diff --git a/CREDITS b/CREDITS index 90eefc9391..66c6355772 100644 --- a/CREDITS +++ b/CREDITS @@ -375,46 +375,6 @@ compat/getnameinfo.c: ============================================================================== -compat/GnuRegex.h: - - * Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. - -============================================================================== - -compat/GnuRegex.c: - - * Copyright (C) 1993 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. - -============================================================================== - compat/inet_ntop.c: /* diff --git a/acinclude/lib-checks.m4 b/acinclude/lib-checks.m4 index 1e9333527c..6a974d9e98 100644 --- a/acinclude/lib-checks.m4 +++ b/acinclude/lib-checks.m4 @@ -5,26 +5,6 @@ ## Please see the COPYING and CONTRIBUTORS files for details. ## -dnl check whether regex works by actually compiling one -dnl sets squid_cv_regex_works to either yes or no - -AC_DEFUN([SQUID_CHECK_REGEX_WORKS],[ - AC_CACHE_CHECK([if the system-supplied regex lib actually works],squid_cv_regex_works,[ - AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ -#if HAVE_SYS_TYPES_H -#include -#endif -#if HAVE_REGEX_H -#include -#endif -]], [[ -regex_t t; regcomp(&t,"",0);]])], - [ squid_cv_regex_works=yes ], - [ squid_cv_regex_works=no ]) - ]) -]) - - AC_DEFUN([SQUID_CHECK_LIBIPHLPAPI],[ AC_CACHE_CHECK([for libIpHlpApi],squid_cv_have_libiphlpapi,[ SQUID_STATE_SAVE(iphlpapi) diff --git a/compat/GnuRegex.c b/compat/GnuRegex.c deleted file mode 100644 index fd03664089..0000000000 --- a/compat/GnuRegex.c +++ /dev/null @@ -1,4318 +0,0 @@ -/* - * Copyright (C) 1996-2022 The Squid Software Foundation and contributors - * - * Squid software is distributed under GPLv2+ license and includes - * contributions from numerous individuals and organizations. - * Please see the COPYING and CONTRIBUTORS files for details. - */ - -/* Extended regular expression matching and search library, - * version 0.12. - * (Implements POSIX draft P10003.2/D11.2, except for - * internationalization features.) - * - * Copyright (C) 1993 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */ - -/* AIX requires this to be the first thing in the file. */ -#if defined (_AIX) && !defined(REGEX_MALLOC) -#pragma alloca -#endif - -#ifndef _GNU_SOURCE -#define _GNU_SOURCE 1 -#endif - -#include "squid.h" - -#if USE_GNUREGEX /* only if squid needs it. Usually not */ - -/* Starting with v12.1, GCC warns of various problems with this ancient code. */ -/* GCC versions prior to v12.1 do not support these pragmas. */ -#if (__GNUC__ == 12 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 12) -#pragma GCC diagnostic ignored "-Warray-bounds" -#pragma GCC diagnostic ignored "-Wuse-after-free" -#endif - -#if !HAVE_ALLOCA -#define REGEX_MALLOC 1 -#endif - -/* We used to test for `BSTRING' here, but only GCC and Emacs define - * `BSTRING', as far as I know, and neither of them use this code. */ -#if HAVE_STRING_H || STDC_HEADERS -#include -#else -#include -#endif - -/* Define the syntax stuff for \<, \>, etc. */ - -/* This must be nonzero for the wordchar and notwordchar pattern - * commands in re_match_2. */ -#ifndef Sword -#define Sword 1 -#endif - -#ifdef SYNTAX_TABLE - -extern char *re_syntax_table; - -#else /* not SYNTAX_TABLE */ - -/* How many characters in the character set. */ -#define CHAR_SET_SIZE 256 - -static char re_syntax_table[CHAR_SET_SIZE]; - -static void -init_syntax_once(void) -{ - register int c; - static int done = 0; - - if (done) - return; - - memset(re_syntax_table, 0, sizeof re_syntax_table); - - for (c = 'a'; c <= 'z'; c++) - re_syntax_table[c] = Sword; - - for (c = 'A'; c <= 'Z'; c++) - re_syntax_table[c] = Sword; - - for (c = '0'; c <= '9'; c++) - re_syntax_table[c] = Sword; - - re_syntax_table['_'] = Sword; - - done = 1; -} - -#endif /* not SYNTAX_TABLE */ - -/* Get the interface, including the syntax bits. */ -#include "compat/GnuRegex.h" - -/* Compile a fastmap for the compiled pattern in BUFFER; used to - * accelerate searches. Return 0 if successful and -2 if was an - * internal error. */ -static int re_compile_fastmap(struct re_pattern_buffer * buffer); - -/* Search in the string STRING (with length LENGTH) for the pattern - * compiled into BUFFER. Start searching at position START, for RANGE - * characters. Return the starting position of the match, -1 for no - * match, or -2 for an internal error. Also return register - * information in REGS (if REGS and BUFFER->no_sub are nonzero). */ -static int re_search(struct re_pattern_buffer * buffer, const char *string, - int length, int start, int range, struct re_registers * regs); - -/* Like `re_search', but search in the concatenation of STRING1 and - * STRING2. Also, stop searching at index START + STOP. */ -static int re_search_2(struct re_pattern_buffer * buffer, const char *string1, - int length1, const char *string2, int length2, - int start, int range, struct re_registers * regs, int stop); - -/* Like `re_search_2', but return how many characters in STRING the regexp - * in BUFFER matched, starting at position START. */ -static int re_match_2(struct re_pattern_buffer * buffer, const char *string1, - int length1, const char *string2, int length2, - int start, struct re_registers * regs, int stop); - -/* isalpha etc. are used for the character classes. */ -#include - -#ifndef isascii -#define isascii(c) 1 -#endif - -#ifdef isblank -#define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c)) -#else -#define ISBLANK(c) ((c) == ' ' || (c) == '\t') -#endif -#ifdef isgraph -#define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c)) -#else -#define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c)) -#endif - -#define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c)) -#define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c)) -#define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c)) -#define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c)) -#define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c)) -#define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c)) -#define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c)) -#define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c)) -#define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c)) -#define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c)) - -/* We remove any previous definition of `SIGN_EXTEND_CHAR', - * since ours (we hope) works properly with all combinations of - * machines, compilers, `char' and `unsigned char' argument types. - * (Per Bothner suggested the basic approach.) */ -#undef SIGN_EXTEND_CHAR -#ifdef __STDC__ -#define SIGN_EXTEND_CHAR(c) ((signed char) (c)) -#else /* not __STDC__ */ -/* As in Harbison and Steele. */ -#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) -#endif - -/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we - * use `alloca' instead of `malloc'. This is because using malloc in - * re_search* or re_match* could cause memory leaks when C-g is used in - * Emacs; also, malloc is slower and causes storage fragmentation. On - * the other hand, malloc is more portable, and easier to debug. - * - * Because we sometimes use alloca, some routines have to be macros, - * not functions -- `alloca'-allocated space disappears at the end of the - * function it is called in. */ - -#ifdef REGEX_MALLOC - -#define REGEX_ALLOCATE malloc -#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) - -#else /* not REGEX_MALLOC */ - -/* Emacs already defines alloca, sometimes. */ -#ifndef alloca - -/* Make alloca work the best possible way. */ -#ifdef __GNUC__ -#define alloca __builtin_alloca -#else /* not __GNUC__ */ -#if HAVE_ALLOCA_H -#include -#else /* not __GNUC__ or HAVE_ALLOCA_H */ -#ifndef _AIX /* Already did AIX, up at the top. */ -char *alloca(); -#endif /* not _AIX */ -#endif /* not HAVE_ALLOCA_H */ -#endif /* not __GNUC__ */ - -#endif /* not alloca */ - -#define REGEX_ALLOCATE alloca - -/* Assumes a `char *destination' variable. */ -#define REGEX_REALLOCATE(source, osize, nsize) \ - (destination = (char *) alloca (nsize), \ - memcpy (destination, source, osize), \ - destination) - -#endif /* not REGEX_MALLOC */ - -/* True if `size1' is non-NULL and PTR is pointing anywhere inside - * `string1' or just past its end. This works if PTR is NULL, which is - * a good thing. */ -#define FIRST_STRING_P(ptr) \ - (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) - -/* (Re)Allocate N items of type T using malloc, or fail. */ -#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) -#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) -#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) - -#define BYTEWIDTH 8 /* In bits. */ - -#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) - -#if !defined(__MINGW32__) /* MinGW defines boolean */ -typedef char boolean; -#endif -#define false 0 -#define true 1 - -/* These are the command codes that appear in compiled regular - * expressions. Some opcodes are followed by argument bytes. A - * command code can specify any interpretation whatsoever for its - * arguments. Zero bytes may appear in the compiled regular expression. - * - * The value of `exactn' is needed in search.c (search_buffer) in Emacs. - * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of - * `exactn' we use here must also be 1. */ - -typedef enum { - no_op = 0, - - /* Followed by one byte giving n, then by n literal bytes. */ - exactn = 1, - - /* Matches any (more or less) character. */ - anychar, - - /* Matches any one char belonging to specified set. First - * following byte is number of bitmap bytes. Then come bytes - * for a bitmap saying which chars are in. Bits in each byte - * are ordered low-bit-first. A character is in the set if its - * bit is 1. A character too large to have a bit in the map is - * automatically not in the set. */ - charset, - - /* Same parameters as charset, but match any character that is - * not one of those specified. */ - charset_not, - - /* Start remembering the text that is matched, for storing in a - * register. Followed by one byte with the register number, in - * the range 0 to one less than the pattern buffer's re_nsub - * field. Then followed by one byte with the number of groups - * inner to this one. (This last has to be part of the - * start_memory only because we need it in the on_failure_jump - * of re_match_2.) */ - start_memory, - - /* Stop remembering the text that is matched and store it in a - * memory register. Followed by one byte with the register - * number, in the range 0 to one less than `re_nsub' in the - * pattern buffer, and one byte with the number of inner groups, - * just like `start_memory'. (We need the number of inner - * groups here because we don't have any easy way of finding the - * corresponding start_memory when we're at a stop_memory.) */ - stop_memory, - - /* Match a duplicate of something remembered. Followed by one - * byte containing the register number. */ - duplicate, - - /* Fail unless at beginning of line. */ - begline, - - /* Fail unless at end of line. */ - endline, - - /* Succeeds if or at beginning of string to be matched. */ - begbuf, - - /* Analogously, for end of buffer/string. */ - endbuf, - - /* Followed by two byte relative address to which to jump. */ - jump, - - /* Same as jump, but marks the end of an alternative. */ - jump_past_alt, - - /* Followed by two-byte relative address of place to resume at - * in case of failure. */ - on_failure_jump, - - /* Like on_failure_jump, but pushes a placeholder instead of the - * current string position when executed. */ - on_failure_keep_string_jump, - - /* Throw away latest failure point and then jump to following - * two-byte relative address. */ - pop_failure_jump, - - /* Change to pop_failure_jump if know won't have to backtrack to - * match; otherwise change to jump. This is used to jump - * back to the beginning of a repeat. If what follows this jump - * clearly won't match what the repeat does, such that we can be - * sure that there is no use backtracking out of repetitions - * already matched, then we change it to a pop_failure_jump. - * Followed by two-byte address. */ - maybe_pop_jump, - - /* Jump to following two-byte address, and push a dummy failure - * point. This failure point will be thrown away if an attempt - * is made to use it for a failure. A `+' construct makes this - * before the first repeat. Also used as an intermediary kind - * of jump when compiling an alternative. */ - dummy_failure_jump, - - /* Push a dummy failure point and continue. Used at the end of - * alternatives. */ - push_dummy_failure, - - /* Followed by two-byte relative address and two-byte number n. - * After matching N times, jump to the address upon failure. */ - succeed_n, - - /* Followed by two-byte relative address, and two-byte number n. - * Jump to the address N times, then fail. */ - jump_n, - - /* Set the following two-byte relative address to the - * subsequent two-byte number. The address *includes* the two - * bytes of number. */ - set_number_at, - - wordchar, /* Matches any word-constituent character. */ - notwordchar, /* Matches any char that is not a word-constituent. */ - - wordbeg, /* Succeeds if at word beginning. */ - wordend, /* Succeeds if at word end. */ - - wordbound, /* Succeeds if at a word boundary. */ - notwordbound /* Succeeds if not at a word boundary. */ - -} re_opcode_t; - -/* Common operations on the compiled pattern. */ - -/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ - -#define STORE_NUMBER(destination, number) \ - do { \ - (destination)[0] = (number) & 0377; \ - (destination)[1] = (number) >> 8; \ - } while (0) - -/* Same as STORE_NUMBER, except increment DESTINATION to - * the byte after where the number is stored. Therefore, DESTINATION - * must be an lvalue. */ - -#define STORE_NUMBER_AND_INCR(destination, number) \ - do { \ - STORE_NUMBER (destination, number); \ - (destination) += 2; \ - } while (0) - -/* Put into DESTINATION a number stored in two contiguous bytes starting - * at SOURCE. */ - -#define EXTRACT_NUMBER(destination, source) \ - do { \ - (destination) = *(source) & 0377; \ - (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ - } while (0) - -#ifdef DEBUG -static void -extract_number(dest, source) -int *dest; -unsigned char *source; -{ - int temp = SIGN_EXTEND_CHAR(*(source + 1)); - *dest = *source & 0377; - *dest += temp << 8; -} - -#ifndef EXTRACT_MACROS /* To debug the macros. */ -#undef EXTRACT_NUMBER -#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) -#endif /* not EXTRACT_MACROS */ - -#endif /* DEBUG */ - -/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. - * SOURCE must be an lvalue. */ - -#define EXTRACT_NUMBER_AND_INCR(destination, source) \ - do { \ - EXTRACT_NUMBER (destination, source); \ - (source) += 2; \ - } while (0) - -#ifdef DEBUG -static void -extract_number_and_incr(destination, source) -int *destination; -unsigned char **source; -{ - extract_number(destination, *source); - *source += 2; -} - -#ifndef EXTRACT_MACROS -#undef EXTRACT_NUMBER_AND_INCR -#define EXTRACT_NUMBER_AND_INCR(dest, src) \ - extract_number_and_incr (&dest, &src) -#endif /* not EXTRACT_MACROS */ - -#endif /* DEBUG */ - -/* If DEBUG is defined, Regex prints many voluminous messages about what - * it is doing (if the variable `debug' is nonzero). If linked with the - * main program in `iregex.c', you can enter patterns and strings - * interactively. And if linked with the main program in `main.c' and - * the other test files, you can run the already-written tests. */ - -#ifdef DEBUG - -static int debug = 0; - -#define DEBUG_STATEMENT(e) e -#define DEBUG_PRINT1(x) if (debug) printf (x) -#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) -#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) -#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) -#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ - if (debug) print_partial_compiled_pattern (s, e) -#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ - if (debug) print_double_string (w, s1, sz1, s2, sz2) - -extern void printchar(); - -/* Print the fastmap in human-readable form. */ - -void -print_fastmap(fastmap) -char *fastmap; -{ - unsigned was_a_range = 0; - unsigned i = 0; - - while (i < (1 << BYTEWIDTH)) { - if (fastmap[i++]) { - was_a_range = 0; - printchar(i - 1); - while (i < (1 << BYTEWIDTH) && fastmap[i]) { - was_a_range = 1; - i++; - } - if (was_a_range) { - printf("-"); - printchar(i - 1); - } - } - } - putchar('\n'); -} - -/* Print a compiled pattern string in human-readable form, starting at - * the START pointer into it and ending just before the pointer END. */ - -void -print_partial_compiled_pattern(start, end) -unsigned char *start; -unsigned char *end; -{ - int mcnt, mcnt2; - unsigned char *p = start; - unsigned char *pend = end; - - if (start == NULL) { - printf("(null)\n"); - return; - } - /* Loop over pattern commands. */ - while (p < pend) { - switch ((re_opcode_t) * p++) { - case no_op: - printf("/no_op"); - break; - - case exactn: - mcnt = *p++; - printf("/exactn/%d", mcnt); - do { - putchar('/'); - printchar(*p++); - } while (--mcnt); - break; - - case start_memory: - mcnt = *p++; - printf("/start_memory/%d/%d", mcnt, *p++); - break; - - case stop_memory: - mcnt = *p++; - printf("/stop_memory/%d/%d", mcnt, *p++); - break; - - case duplicate: - printf("/duplicate/%d", *p++); - break; - - case anychar: - printf("/anychar"); - break; - - case charset: - case charset_not: { - register int c; - - printf("/charset%s", - (re_opcode_t) * (p - 1) == charset_not ? "_not" : ""); - - assert(p + *p < pend); - - for (c = 0; c < *p; c++) { - unsigned bit; - unsigned char map_byte = p[1 + c]; - - putchar('/'); - - for (bit = 0; bit < BYTEWIDTH; bit++) - if (map_byte & (1 << bit)) - printchar(c * BYTEWIDTH + bit); - } - p += 1 + *p; - break; - } - - case begline: - printf("/begline"); - break; - - case endline: - printf("/endline"); - break; - - case on_failure_jump: - extract_number_and_incr(&mcnt, &p); - printf("/on_failure_jump/0/%d", mcnt); - break; - - case on_failure_keep_string_jump: - extract_number_and_incr(&mcnt, &p); - printf("/on_failure_keep_string_jump/0/%d", mcnt); - break; - - case dummy_failure_jump: - extract_number_and_incr(&mcnt, &p); - printf("/dummy_failure_jump/0/%d", mcnt); - break; - - case push_dummy_failure: - printf("/push_dummy_failure"); - break; - - case maybe_pop_jump: - extract_number_and_incr(&mcnt, &p); - printf("/maybe_pop_jump/0/%d", mcnt); - break; - - case pop_failure_jump: - extract_number_and_incr(&mcnt, &p); - printf("/pop_failure_jump/0/%d", mcnt); - break; - - case jump_past_alt: - extract_number_and_incr(&mcnt, &p); - printf("/jump_past_alt/0/%d", mcnt); - break; - - case jump: - extract_number_and_incr(&mcnt, &p); - printf("/jump/0/%d", mcnt); - break; - - case succeed_n: - extract_number_and_incr(&mcnt, &p); - extract_number_and_incr(&mcnt2, &p); - printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2); - break; - - case jump_n: - extract_number_and_incr(&mcnt, &p); - extract_number_and_incr(&mcnt2, &p); - printf("/jump_n/0/%d/0/%d", mcnt, mcnt2); - break; - - case set_number_at: - extract_number_and_incr(&mcnt, &p); - extract_number_and_incr(&mcnt2, &p); - printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2); - break; - - case wordbound: - printf("/wordbound"); - break; - - case notwordbound: - printf("/notwordbound"); - break; - - case wordbeg: - printf("/wordbeg"); - break; - - case wordend: - printf("/wordend"); - - case wordchar: - printf("/wordchar"); - break; - - case notwordchar: - printf("/notwordchar"); - break; - - case begbuf: - printf("/begbuf"); - break; - - case endbuf: - printf("/endbuf"); - break; - - default: - printf("?%d", *(p - 1)); - } - } - printf("/\n"); -} - -void -print_compiled_pattern(bufp) -struct re_pattern_buffer *bufp; -{ - unsigned char *buffer = bufp->buffer; - - print_partial_compiled_pattern(buffer, buffer + bufp->used); - printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); - - if (bufp->fastmap_accurate && bufp->fastmap) { - printf("fastmap: "); - print_fastmap(bufp->fastmap); - } - printf("re_nsub: %d\t", bufp->re_nsub); - printf("regs_alloc: %d\t", bufp->regs_allocated); - printf("can_be_null: %d\t", bufp->can_be_null); - printf("newline_anchor: %d\n", bufp->newline_anchor); - printf("no_sub: %d\t", bufp->no_sub); - printf("not_bol: %d\t", bufp->not_bol); - printf("not_eol: %d\t", bufp->not_eol); - printf("syntax: %d\n", bufp->syntax); - /* Perhaps we should print the translate table? */ -} - -void -print_double_string(where, string1, size1, string2, size2) -const char *where; -const char *string1; -const char *string2; -int size1; -int size2; -{ - unsigned this_char; - - if (where == NULL) - printf("(null)"); - else { - if (FIRST_STRING_P(where)) { - for (this_char = where - string1; this_char < size1; this_char++) - printchar(string1[this_char]); - - where = string2; - } - for (this_char = where - string2; this_char < size2; this_char++) - printchar(string2[this_char]); - } -} - -#else /* not DEBUG */ - -#undef assert -#define assert(e) - -#define DEBUG_STATEMENT(e) -#define DEBUG_PRINT1(x) -#define DEBUG_PRINT2(x1, x2) -#define DEBUG_PRINT3(x1, x2, x3) -#define DEBUG_PRINT4(x1, x2, x3, x4) -#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) -#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) - -#endif /* not DEBUG */ - -/* This table gives an error message for each of the error codes listed - * in regex.h. Obviously the order here has to be same as there. */ - -static const char *re_error_msg[] = {NULL, /* REG_NOERROR */ - "No match", /* REG_NOMATCH */ - "Invalid regular expression", /* REG_BADPAT */ - "Invalid collation character", /* REG_ECOLLATE */ - "Invalid character class name", /* REG_ECTYPE */ - "Trailing backslash", /* REG_EESCAPE */ - "Invalid back reference", /* REG_ESUBREG */ - "Unmatched [ or [^", /* REG_EBRACK */ - "Unmatched ( or \\(", /* REG_EPAREN */ - "Unmatched \\{", /* REG_EBRACE */ - "Invalid content of \\{\\}", /* REG_BADBR */ - "Invalid range end", /* REG_ERANGE */ - "Memory exhausted", /* REG_ESPACE */ - "Invalid preceding regular expression", /* REG_BADRPT */ - "Premature end of regular expression", /* REG_EEND */ - "Regular expression too big", /* REG_ESIZE */ - "Unmatched ) or \\)", /* REG_ERPAREN */ - }; - -/* Subroutine declarations and macros for regex_compile. */ - -/* Fetch the next character in the uncompiled pattern---translating it - * if necessary. Also cast from a signed character in the constant - * string passed to us by the user to an unsigned char that we can use - * as an array index (in, e.g., `translate'). */ -#define PATFETCH(c) \ - do {if (p == pend) return REG_EEND; \ - c = (unsigned char) *p++; \ - if (translate) c = translate[c]; \ - } while (0) - -/* Fetch the next character in the uncompiled pattern, with no - * translation. */ -#define PATFETCH_RAW(c) \ - do {if (p == pend) return REG_EEND; \ - c = (unsigned char) *p++; \ - } while (0) - -/* Go backwards one character in the pattern. */ -#define PATUNFETCH p-- - -/* If `translate' is non-null, return translate[D], else just D. We - * cast the subscript to translate because some data is declared as - * `char *', to avoid warnings when a string constant is passed. But - * when we use a character as a subscript we must make it unsigned. */ -#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) - -/* Macros for outputting the compiled pattern into `buffer'. */ - -/* If the buffer isn't allocated when it comes in, use this. */ -#define INIT_BUF_SIZE 32 - -/* Make sure we have at least N more bytes of space in buffer. */ -#define GET_BUFFER_SPACE(n) \ - while (b - bufp->buffer + (n) > bufp->allocated) \ - EXTEND_BUFFER () - -/* Make sure we have one more byte of buffer space and then add C to it. */ -#define BUF_PUSH(c) \ - do { \ - GET_BUFFER_SPACE (1); \ - *b++ = (unsigned char) (c); \ - } while (0) - -/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ -#define BUF_PUSH_2(c1, c2) \ - do { \ - GET_BUFFER_SPACE (2); \ - *b++ = (unsigned char) (c1); \ - *b++ = (unsigned char) (c2); \ - } while (0) - -/* As with BUF_PUSH_2, except for three bytes. */ -#define BUF_PUSH_3(c1, c2, c3) \ - do { \ - GET_BUFFER_SPACE (3); \ - *b++ = (unsigned char) (c1); \ - *b++ = (unsigned char) (c2); \ - *b++ = (unsigned char) (c3); \ - } while (0) - -/* Store a jump with opcode OP at LOC to location TO. We store a - * relative address offset by the three bytes the jump itself occupies. */ -#define STORE_JUMP(op, loc, to) \ - store_op1 (op, loc, (to) - (loc) - 3) - -/* Likewise, for a two-argument jump. */ -#define STORE_JUMP2(op, loc, to, arg) \ - store_op2 (op, loc, (to) - (loc) - 3, arg) - -/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ -#define INSERT_JUMP(op, loc, to) \ - insert_op1 (op, loc, (to) - (loc) - 3, b) - -/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ -#define INSERT_JUMP2(op, loc, to, arg) \ - insert_op2 (op, loc, (to) - (loc) - 3, arg, b) - -/* This is not an arbitrary limit: the arguments which represent offsets - * into the pattern are two bytes long. So if 2^16 bytes turns out to - * be too small, many things would have to change. */ -#define MAX_BUF_SIZE (1L << 16) - -/* Extend the buffer by twice its current size via realloc and - * reset the pointers that pointed into the old block to point to the - * correct places in the new one. If extending the buffer results in it - * being larger than MAX_BUF_SIZE, then flag memory exhausted. */ -#define EXTEND_BUFFER() \ - do { \ - unsigned char *old_buffer = bufp->buffer; \ - if (bufp->allocated == MAX_BUF_SIZE) \ - return REG_ESIZE; \ - bufp->allocated <<= 1; \ - if (bufp->allocated > MAX_BUF_SIZE) \ - bufp->allocated = MAX_BUF_SIZE; \ - bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ - if (bufp->buffer == NULL) \ - return REG_ESPACE; \ - /* If the buffer moved, move all the pointers into it. */ \ - if (old_buffer != bufp->buffer) \ - { \ - b = (b - old_buffer) + bufp->buffer; \ - begalt = (begalt - old_buffer) + bufp->buffer; \ - if (fixup_alt_jump) \ - fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ - if (laststart) \ - laststart = (laststart - old_buffer) + bufp->buffer; \ - if (pending_exact) \ - pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ - } \ - } while (0) - -/* Since we have one byte reserved for the register number argument to - * {start,stop}_memory, the maximum number of groups we can report - * things about is what fits in that byte. */ -#define MAX_REGNUM 255 - -/* But patterns can have more than `MAX_REGNUM' registers. We just - * ignore the excess. */ -typedef unsigned regnum_t; - -/* Macros for the compile stack. */ - -/* Since offsets can go either forwards or backwards, this type needs to - * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ -typedef int pattern_offset_t; - -typedef struct { - pattern_offset_t begalt_offset; - pattern_offset_t fixup_alt_jump; - pattern_offset_t inner_group_offset; - pattern_offset_t laststart_offset; - regnum_t regnum; -} compile_stack_elt_t; - -typedef struct { - compile_stack_elt_t *stack; - unsigned size; - unsigned avail; /* Offset of next open position. */ -} compile_stack_type; - -static void store_op1(re_opcode_t op, unsigned char *loc, int arg); -static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2); -static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end); -static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end); -static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax); -static boolean at_endline_loc_p(const char *p, const char *pend, int syntax); -static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum); -static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b); - -#define INIT_COMPILE_STACK_SIZE 32 - -/* The next available element. */ -#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) - -/* Set the bit for character C in a list. */ -#define SET_LIST_BIT(c) \ - (b[((unsigned char) (c)) / BYTEWIDTH] \ - |= 1 << (((unsigned char) c) % BYTEWIDTH)) - -/* Get the next unsigned number in the uncompiled pattern. */ -#define GET_UNSIGNED_NUMBER(num) \ - { if (p != pend) \ - { \ - PATFETCH (c); \ - while (ISDIGIT (c)) \ - { \ - if (num < 0) \ - num = 0; \ - num = num * 10 + c - '0'; \ - if (p == pend) \ - break; \ - PATFETCH (c); \ - } \ - } \ - } - -#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ - -#define IS_CHAR_CLASS(string) \ - (STREQ (string, "alpha") || STREQ (string, "upper") \ - || STREQ (string, "lower") || STREQ (string, "digit") \ - || STREQ (string, "alnum") || STREQ (string, "xdigit") \ - || STREQ (string, "space") || STREQ (string, "print") \ - || STREQ (string, "punct") || STREQ (string, "graph") \ - || STREQ (string, "cntrl") || STREQ (string, "blank")) - -/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. - * Returns one of error codes defined in `regex.h', or zero for success. - * - * Assumes the `allocated' (and perhaps `buffer') and `translate' - * fields are set in BUFP on entry. - * - * If it succeeds, results are put in BUFP (if it returns an error, the - * contents of BUFP are undefined): - * `buffer' is the compiled pattern; - * `syntax' is set to SYNTAX; - * `used' is set to the length of the compiled pattern; - * `fastmap_accurate' is zero; - * `re_nsub' is the number of subexpressions in PATTERN; - * `not_bol' and `not_eol' are zero; - * - * The `fastmap' and `newline_anchor' fields are neither - * examined nor set. */ - -static reg_errcode_t -regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp) -{ - /* We fetch characters from PATTERN here. Even though PATTERN is - * `char *' (i.e., signed), we declare these variables as unsigned, so - * they can be reliably used as array indices. */ - register unsigned char c, c1; - - /* A random temporary spot in PATTERN. */ - const char *p1; - - /* Points to the end of the buffer, where we should append. */ - register unsigned char *b; - - /* Keeps track of unclosed groups. */ - compile_stack_type compile_stack; - - /* Points to the current (ending) position in the pattern. */ - const char *p = pattern; - const char *pend = pattern + size; - - /* How to translate the characters in the pattern. */ - char *translate = bufp->translate; - - /* Address of the count-byte of the most recently inserted `exactn' - * command. This makes it possible to tell if a new exact-match - * character can be added to that command or if the character requires - * a new `exactn' command. */ - unsigned char *pending_exact = 0; - - /* Address of start of the most recently finished expression. - * This tells, e.g., postfix * where to find the start of its - * operand. Reset at the beginning of groups and alternatives. */ - unsigned char *laststart = 0; - - /* Address of beginning of regexp, or inside of last group. */ - unsigned char *begalt; - - /* Place in the uncompiled pattern (i.e., the {) to - * which to go back if the interval is invalid. */ - const char *beg_interval; - - /* Address of the place where a forward jump should go to the end of - * the containing expression. Each alternative of an `or' -- except the - * last -- ends with a forward jump of this sort. */ - unsigned char *fixup_alt_jump = 0; - - /* Counts open-groups as they are encountered. Remembered for the - * matching close-group on the compile stack, so the same register - * number is put in the stop_memory as the start_memory. */ - regnum_t regnum = 0; - -#ifdef DEBUG - DEBUG_PRINT1("\nCompiling pattern: "); - if (debug) { - unsigned debug_count; - - for (debug_count = 0; debug_count < size; debug_count++) - printchar(pattern[debug_count]); - putchar('\n'); - } -#endif /* DEBUG */ - - /* Initialize the compile stack. */ - compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); - if (compile_stack.stack == NULL) - return REG_ESPACE; - - compile_stack.size = INIT_COMPILE_STACK_SIZE; - compile_stack.avail = 0; - - /* Initialize the pattern buffer. */ - bufp->syntax = syntax; - bufp->fastmap_accurate = 0; - bufp->not_bol = bufp->not_eol = 0; - - /* Set `used' to zero, so that if we return an error, the pattern - * printer (for debugging) will think there's no pattern. We reset it - * at the end. */ - bufp->used = 0; - - /* Always count groups, whether or not bufp->no_sub is set. */ - bufp->re_nsub = 0; - -#if !defined (SYNTAX_TABLE) - /* Initialize the syntax table. */ - init_syntax_once(); -#endif - - if (bufp->allocated == 0) { - if (bufp->buffer) { - /* If zero allocated, but buffer is non-null, try to realloc - * enough space. This loses if buffer's address is bogus, but - * that is the user's responsibility. */ - RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char); - } else { /* Caller did not allocate a buffer. Do it for them. */ - bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char); - } - if (!bufp->buffer) - return REG_ESPACE; - - bufp->allocated = INIT_BUF_SIZE; - } - begalt = b = bufp->buffer; - - /* Loop through the uncompiled pattern until we're at the end. */ - while (p != pend) { - PATFETCH(c); - - switch (c) { - case '^': { - if ( /* If at start of pattern, it's an operator. */ - p == pattern + 1 - /* If context independent, it's an operator. */ - || syntax & RE_CONTEXT_INDEP_ANCHORS - /* Otherwise, depends on what's come before. */ - || at_begline_loc_p(pattern, p, syntax)) - BUF_PUSH(begline); - else - goto normal_char; - } - break; - - case '$': { - if ( /* If at end of pattern, it's an operator. */ - p == pend - /* If context independent, it's an operator. */ - || syntax & RE_CONTEXT_INDEP_ANCHORS - /* Otherwise, depends on what's next. */ - || at_endline_loc_p(p, pend, syntax)) - BUF_PUSH(endline); - else - goto normal_char; - } - break; - - case '+': - case '?': - if ((syntax & RE_BK_PLUS_QM) - || (syntax & RE_LIMITED_OPS)) - goto normal_char; -handle_plus: - case '*': - /* If there is no previous pattern... */ - if (!laststart) { - if (syntax & RE_CONTEXT_INVALID_OPS) - return REG_BADRPT; - else if (!(syntax & RE_CONTEXT_INDEP_OPS)) - goto normal_char; - } { - /* Are we optimizing this jump? */ - boolean keep_string_p = false; - - /* 1 means zero (many) matches is allowed. */ - char zero_times_ok = 0, many_times_ok = 0; - - /* If there is a sequence of repetition chars, collapse it - * down to just one (the right one). We can't combine - * interval operators with these because of, e.g., `a{2}*', - * which should only match an even number of `a's. */ - - for (;;) { - zero_times_ok |= c != '+'; - many_times_ok |= c != '?'; - - if (p == pend) - break; - - PATFETCH(c); - - if (c == '*' - || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))); - - else if (syntax & RE_BK_PLUS_QM && c == '\\') { - if (p == pend) - return REG_EESCAPE; - - PATFETCH(c1); - if (!(c1 == '+' || c1 == '?')) { - PATUNFETCH; - PATUNFETCH; - break; - } - c = c1; - } else { - PATUNFETCH; - break; - } - - /* If we get here, we found another repeat character. */ - } - - /* Star, etc. applied to an empty pattern is equivalent - * to an empty pattern. */ - if (!laststart) - break; - - /* Now we know whether or not zero matches is allowed - * and also whether or not two or more matches is allowed. */ - if (many_times_ok) { - /* More than one repetition is allowed, so put in at the - * end a backward relative jump from `b' to before the next - * jump we're going to put in below (which jumps from - * laststart to after this jump). - * - * But if we are at the `*' in the exact sequence `.*\n', - * insert an unconditional jump backwards to the ., - * instead of the beginning of the loop. This way we only - * push a failure point once, instead of every time - * through the loop. */ - assert(p - 1 > pattern); - - /* Allocate the space for the jump. */ - GET_BUFFER_SPACE(3); - - /* We know we are not at the first character of the pattern, - * because laststart was nonzero. And we've already - * incremented `p', by the way, to be the character after - * the `*'. Do we have to do something analogous here - * for null bytes, because of RE_DOT_NOT_NULL? */ - if (TRANSLATE(*(p - 2)) == TRANSLATE('.') - && zero_times_ok - && p < pend && TRANSLATE(*p) == TRANSLATE('\n') - && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */ - STORE_JUMP(jump, b, laststart); - keep_string_p = true; - } else - /* Anything else. */ - STORE_JUMP(maybe_pop_jump, b, laststart - 3); - - /* We've added more stuff to the buffer. */ - b += 3; - } - /* On failure, jump from laststart to b + 3, which will be the - * end of the buffer after this jump is inserted. */ - GET_BUFFER_SPACE(3); - INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump - : on_failure_jump, - laststart, b + 3); - pending_exact = 0; - b += 3; - - if (!zero_times_ok) { - /* At least one repetition is required, so insert a - * `dummy_failure_jump' before the initial - * `on_failure_jump' instruction of the loop. This - * effects a skip over that instruction the first time - * we hit that loop. */ - GET_BUFFER_SPACE(3); - INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6); - b += 3; - } - } - break; - - case '.': - laststart = b; - BUF_PUSH(anychar); - break; - - case '[': { - boolean had_char_class = false; - - if (p == pend) - return REG_EBRACK; - - /* Ensure that we have enough space to push a charset: the - * opcode, the length count, and the bitset; 34 bytes in all. */ - GET_BUFFER_SPACE(34); - - laststart = b; - - /* We test `*p == '^' twice, instead of using an if - * statement, so we only need one BUF_PUSH. */ - BUF_PUSH(*p == '^' ? charset_not : charset); - if (*p == '^') - p++; - - /* Remember the first position in the bracket expression. */ - p1 = p; - - /* Push the number of bytes in the bitmap. */ - BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH); - - /* Clear the whole map. */ - memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH); - - /* charset_not matches newline according to a syntax bit. */ - if ((re_opcode_t) b[-2] == charset_not - && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) - SET_LIST_BIT('\n'); - - /* Read in characters and ranges, setting map bits. */ - for (;;) { - if (p == pend) - return REG_EBRACK; - - PATFETCH(c); - - /* \ might escape characters inside [...] and [^...]. */ - if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') { - if (p == pend) - return REG_EESCAPE; - - PATFETCH(c1); - SET_LIST_BIT(c1); - continue; - } - /* Could be the end of the bracket expression. If it's - * not (i.e., when the bracket expression is `[]' so - * far), the ']' character bit gets set way below. */ - if (c == ']' && p != p1 + 1) - break; - - /* Look ahead to see if it's a range when the last thing - * was a character class. */ - if (had_char_class && c == '-' && *p != ']') - return REG_ERANGE; - - /* Look ahead to see if it's a range when the last thing - * was a character: if this is a hyphen not at the - * beginning or the end of a list, then it's the range - * operator. */ - if (c == '-' - && !(p - 2 >= pattern && p[-2] == '[') - && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') - && *p != ']') { - reg_errcode_t ret - = compile_range(&p, pend, translate, syntax, b); - if (ret != REG_NOERROR) - return ret; - } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */ - reg_errcode_t ret; - - /* Move past the `-'. */ - PATFETCH(c1); - - ret = compile_range(&p, pend, translate, syntax, b); - if (ret != REG_NOERROR) - return ret; - } - /* See if we're at the beginning of a possible character - * class. */ - - else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */ - char str[CHAR_CLASS_MAX_LENGTH + 1]; - - PATFETCH(c); - c1 = 0; - - /* If pattern is `[[:'. */ - if (p == pend) - return REG_EBRACK; - - for (;;) { - PATFETCH(c); - if (c == ':' || c == ']' || p == pend - || c1 == CHAR_CLASS_MAX_LENGTH) - break; - str[c1++] = c; - } - str[c1] = '\0'; - - /* If isn't a word bracketed by `[:' and:`]': - * undo the ending character, the letters, and leave - * the leading `:' and `[' (but set bits for them). */ - if (c == ':' && *p == ']') { - int ch; - boolean is_alnum = STREQ(str, "alnum"); - boolean is_alpha = STREQ(str, "alpha"); - boolean is_blank = STREQ(str, "blank"); - boolean is_cntrl = STREQ(str, "cntrl"); - boolean is_digit = STREQ(str, "digit"); - boolean is_graph = STREQ(str, "graph"); - boolean is_lower = STREQ(str, "lower"); - boolean is_print = STREQ(str, "print"); - boolean is_punct = STREQ(str, "punct"); - boolean is_space = STREQ(str, "space"); - boolean is_upper = STREQ(str, "upper"); - boolean is_xdigit = STREQ(str, "xdigit"); - - if (!IS_CHAR_CLASS(str)) - return REG_ECTYPE; - - /* Throw away the ] at the end of the character - * class. */ - PATFETCH(c); - - if (p == pend) - return REG_EBRACK; - - for (ch = 0; ch < 1 << BYTEWIDTH; ch++) { - if ((is_alnum && ISALNUM(ch)) - || (is_alpha && ISALPHA(ch)) - || (is_blank && ISBLANK(ch)) - || (is_cntrl && ISCNTRL(ch)) - || (is_digit && ISDIGIT(ch)) - || (is_graph && ISGRAPH(ch)) - || (is_lower && ISLOWER(ch)) - || (is_print && ISPRINT(ch)) - || (is_punct && ISPUNCT(ch)) - || (is_space && ISSPACE(ch)) - || (is_upper && ISUPPER(ch)) - || (is_xdigit && ISXDIGIT(ch))) - SET_LIST_BIT(ch); - } - had_char_class = true; - } else { - c1++; - while (c1--) - PATUNFETCH; - SET_LIST_BIT('['); - SET_LIST_BIT(':'); - had_char_class = false; - } - } else { - had_char_class = false; - SET_LIST_BIT(c); - } - } - - /* Discard any (non)matching list bytes that are all 0 at the - * end of the map. Decrease the map-length byte too. */ - while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) - b[-1]--; - b += b[-1]; - } - break; - - case '(': - if (syntax & RE_NO_BK_PARENS) - goto handle_open; - else - goto normal_char; - - case ')': - if (syntax & RE_NO_BK_PARENS) - goto handle_close; - else - goto normal_char; - - case '\n': - if (syntax & RE_NEWLINE_ALT) - goto handle_alt; - else - goto normal_char; - - case '|': - if (syntax & RE_NO_BK_VBAR) - goto handle_alt; - else - goto normal_char; - - case '{': - if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) - goto handle_interval; - else - goto normal_char; - - case '\\': - if (p == pend) - return REG_EESCAPE; - - /* Do not translate the character after the \, so that we can - * distinguish, e.g., \B from \b, even if we normally would - * translate, e.g., B to b. */ - PATFETCH_RAW(c); - - switch (c) { - case '(': - if (syntax & RE_NO_BK_PARENS) - goto normal_backslash; - -handle_open: - bufp->re_nsub++; - regnum++; - - if (compile_stack.avail == compile_stack.size) { - RETALLOC(compile_stack.stack, compile_stack.size << 1, - compile_stack_elt_t); - if (compile_stack.stack == NULL) - return REG_ESPACE; - - compile_stack.size <<= 1; - } - /* These are the values to restore when we hit end of this - * group. They are all relative offsets, so that if the - * whole pattern moves because of realloc, they will still - * be valid. */ - COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; - COMPILE_STACK_TOP.fixup_alt_jump - = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; - COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; - COMPILE_STACK_TOP.regnum = regnum; - - /* We will eventually replace the 0 with the number of - * groups inner to this one. But do not push a - * start_memory for groups beyond the last one we can - * represent in the compiled pattern. */ - if (regnum <= MAX_REGNUM) { - COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; - BUF_PUSH_3(start_memory, regnum, 0); - } - compile_stack.avail++; - - fixup_alt_jump = 0; - laststart = 0; - begalt = b; - /* If we've reached MAX_REGNUM groups, then this open - * won't actually generate any code, so we'll have to - * clear pending_exact explicitly. */ - pending_exact = 0; - break; - - case ')': - if (syntax & RE_NO_BK_PARENS) - goto normal_backslash; - - if (compile_stack.avail == 0) { - if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) - goto normal_backslash; - else - return REG_ERPAREN; - } -handle_close: - if (fixup_alt_jump) { - /* Push a dummy failure point at the end of the - * alternative for a possible future - * `pop_failure_jump' to pop. See comments at - * `push_dummy_failure' in `re_match_2'. */ - BUF_PUSH(push_dummy_failure); - - /* We allocated space for this jump when we assigned - * to `fixup_alt_jump', in the `handle_alt' case below. */ - STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1); - } - /* See similar code for backslashed left paren above. */ - if (compile_stack.avail == 0) { - if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) - goto normal_char; - else - return REG_ERPAREN; - } - /* Since we just checked for an empty stack above, this - * ``can't happen''. */ - assert(compile_stack.avail != 0); - { - /* We don't just want to restore into `regnum', because - * later groups should continue to be numbered higher, - * as in `(ab)c(de)' -- the second group is #2. */ - regnum_t this_group_regnum; - - compile_stack.avail--; - begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; - fixup_alt_jump - = COMPILE_STACK_TOP.fixup_alt_jump - ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 - : 0; - laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; - this_group_regnum = COMPILE_STACK_TOP.regnum; - /* If we've reached MAX_REGNUM groups, then this open - * won't actually generate any code, so we'll have to - * clear pending_exact explicitly. */ - pending_exact = 0; - - /* We're at the end of the group, so now we know how many - * groups were inside this one. */ - if (this_group_regnum <= MAX_REGNUM) { - unsigned char *inner_group_loc - = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; - - *inner_group_loc = regnum - this_group_regnum; - BUF_PUSH_3(stop_memory, this_group_regnum, - regnum - this_group_regnum); - } - } - break; - - case '|': /* `\|'. */ - if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) - goto normal_backslash; -handle_alt: - if (syntax & RE_LIMITED_OPS) - goto normal_char; - - /* Insert before the previous alternative a jump which - * jumps to this alternative if the former fails. */ - GET_BUFFER_SPACE(3); - INSERT_JUMP(on_failure_jump, begalt, b + 6); - pending_exact = 0; - b += 3; - - /* The alternative before this one has a jump after it - * which gets executed if it gets matched. Adjust that - * jump so it will jump to this alternative's analogous - * jump (put in below, which in turn will jump to the next - * (if any) alternative's such jump, etc.). The last such - * jump jumps to the correct final destination. A picture: - * _____ _____ - * | | | | - * | v | v - * a | b | c - * - * If we are at `b', then fixup_alt_jump right now points to a - * three-byte space after `a'. We'll put in the jump, set - * fixup_alt_jump to right after `b', and leave behind three - * bytes which we'll fill in when we get to after `c'. */ - - if (fixup_alt_jump) - STORE_JUMP(jump_past_alt, fixup_alt_jump, b); - - /* Mark and leave space for a jump after this alternative, - * to be filled in later either by next alternative or - * when know we're at the end of a series of alternatives. */ - fixup_alt_jump = b; - GET_BUFFER_SPACE(3); - b += 3; - - laststart = 0; - begalt = b; - break; - - case '{': - /* If \{ is a literal. */ - if (!(syntax & RE_INTERVALS) - /* If we're at `\{' and it's not the open-interval - * operator. */ - || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) - || (p - 2 == pattern && p == pend)) - goto normal_backslash; - -handle_interval: { - /* If got here, then the syntax allows intervals. */ - - /* At least (most) this many matches must be made. */ - int lower_bound = -1, upper_bound = -1; - - beg_interval = p - 1; - - if (p == pend) { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_EBRACE; - } - GET_UNSIGNED_NUMBER(lower_bound); - - if (c == ',') { - GET_UNSIGNED_NUMBER(upper_bound); - if (upper_bound < 0) - upper_bound = RE_DUP_MAX; - } else - /* Interval such as `{1}' => match exactly once. */ - upper_bound = lower_bound; - - if (lower_bound < 0 || upper_bound > RE_DUP_MAX - || lower_bound > upper_bound) { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_BADBR; - } - if (!(syntax & RE_NO_BK_BRACES)) { - if (c != '\\') - return REG_EBRACE; - - PATFETCH(c); - } - if (c != '}') { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_BADBR; - } - /* We just parsed a valid interval. */ - - /* If it's invalid to have no preceding re. */ - if (!laststart) { - if (syntax & RE_CONTEXT_INVALID_OPS) - return REG_BADRPT; - else if (syntax & RE_CONTEXT_INDEP_OPS) - laststart = b; - else - goto unfetch_interval; - } - /* If the upper bound is zero, don't want to succeed at - * all; jump from `laststart' to `b + 3', which will be - * the end of the buffer after we insert the jump. */ - if (upper_bound == 0) { - GET_BUFFER_SPACE(3); - INSERT_JUMP(jump, laststart, b + 3); - b += 3; - } - /* Otherwise, we have a nontrivial interval. When - * we're all done, the pattern will look like: - * set_number_at - * set_number_at - * succeed_n - * - * jump_n - * (The upper bound and `jump_n' are omitted if - * `upper_bound' is 1, though.) */ - else { - /* If the upper bound is > 1, we need to insert - * more at the end of the loop. */ - unsigned nbytes = 10 + (upper_bound > 1) * 10; - - GET_BUFFER_SPACE(nbytes); - - /* Initialize lower bound of the `succeed_n', even - * though it will be set during matching by its - * attendant `set_number_at' (inserted next), - * because `re_compile_fastmap' needs to know. - * Jump to the `jump_n' we might insert below. */ - INSERT_JUMP2(succeed_n, laststart, - b + 5 + (upper_bound > 1) * 5, - lower_bound); - b += 5; - - /* Code to initialize the lower bound. Insert - * before the `succeed_n'. The `5' is the last two - * bytes of this `set_number_at', plus 3 bytes of - * the following `succeed_n'. */ - insert_op2(set_number_at, laststart, 5, lower_bound, b); - b += 5; - - if (upper_bound > 1) { - /* More than one repetition is allowed, so - * append a backward jump to the `succeed_n' - * that starts this interval. - * - * When we've reached this during matching, - * we'll have matched the interval once, so - * jump back only `upper_bound - 1' times. */ - STORE_JUMP2(jump_n, b, laststart + 5, - upper_bound - 1); - b += 5; - - /* The location we want to set is the second - * parameter of the `jump_n'; that is `b-2' as - * an absolute address. `laststart' will be - * the `set_number_at' we're about to insert; - * `laststart+3' the number to set, the source - * for the relative address. But we are - * inserting into the middle of the pattern -- - * so everything is getting moved up by 5. - * Conclusion: (b - 2) - (laststart + 3) + 5, - * i.e., b - laststart. - * - * We insert this at the beginning of the loop - * so that if we fail during matching, we'll - * reinitialize the bounds. */ - insert_op2(set_number_at, laststart, b - laststart, - upper_bound - 1, b); - b += 5; - } - } - pending_exact = 0; - beg_interval = NULL; - } - break; - -unfetch_interval: - /* If an invalid interval, match the characters as literals. */ - assert(beg_interval); - p = beg_interval; - beg_interval = NULL; - - /* normal_char and normal_backslash need `c'. */ - PATFETCH(c); - - if (!(syntax & RE_NO_BK_BRACES)) { - if (p > pattern && p[-1] == '\\') - goto normal_backslash; - } - goto normal_char; - - case 'w': - laststart = b; - BUF_PUSH(wordchar); - break; - - case 'W': - laststart = b; - BUF_PUSH(notwordchar); - break; - - case '<': - BUF_PUSH(wordbeg); - break; - - case '>': - BUF_PUSH(wordend); - break; - - case 'b': - BUF_PUSH(wordbound); - break; - - case 'B': - BUF_PUSH(notwordbound); - break; - - case '`': - BUF_PUSH(begbuf); - break; - - case '\'': - BUF_PUSH(endbuf); - break; - - case '1': - case '2': - case '3': - case '4': - case '5': - case '6': - case '7': - case '8': - case '9': - if (syntax & RE_NO_BK_REFS) - goto normal_char; - - c1 = c - '0'; - - if (c1 > regnum) - return REG_ESUBREG; - - /* Can't back reference to a subexpression if inside of it. */ - if (group_in_compile_stack(compile_stack, c1)) - goto normal_char; - - laststart = b; - BUF_PUSH_2(duplicate, c1); - break; - - case '+': - case '?': - if (syntax & RE_BK_PLUS_QM) - goto handle_plus; - else - goto normal_backslash; - - default: -normal_backslash: - /* You might think it would be useful for \ to mean - * not to translate; but if we don't translate it - * it will never match anything. */ - c = TRANSLATE(c); - goto normal_char; - } - break; - - default: - /* Expects the character in `c'. */ -normal_char: - /* If no exactn currently being built. */ - if (!pending_exact - - /* If last exactn not at current position. */ - || pending_exact + *pending_exact + 1 != b - - /* We have only one byte following the exactn for the count. */ - || *pending_exact == (1 << BYTEWIDTH) - 1 - - /* If followed by a repetition operator. */ - || *p == '*' || *p == '^' - || ((syntax & RE_BK_PLUS_QM) - ? *p == '\\' && (p[1] == '+' || p[1] == '?') - : (*p == '+' || *p == '?')) - || ((syntax & RE_INTERVALS) - && ((syntax & RE_NO_BK_BRACES) - ? *p == '{' - : (p[0] == '\\' && p[1] == '{')))) { - /* Start building a new exactn. */ - - laststart = b; - - BUF_PUSH_2(exactn, 0); - pending_exact = b - 1; - } - BUF_PUSH(c); - (*pending_exact)++; - break; - } /* switch (c) */ - } /* while p != pend */ - - /* Through the pattern now. */ - - if (fixup_alt_jump) - STORE_JUMP(jump_past_alt, fixup_alt_jump, b); - - if (compile_stack.avail != 0) - return REG_EPAREN; - - free(compile_stack.stack); - - /* We have succeeded; set the length of the buffer. */ - bufp->used = b - bufp->buffer; - -#ifdef DEBUG - if (debug) { - DEBUG_PRINT1("\nCompiled pattern: "); - print_compiled_pattern(bufp); - } -#endif /* DEBUG */ - - return REG_NOERROR; -} /* regex_compile */ - -/* Subroutines for `regex_compile'. */ - -/* Store OP at LOC followed by two-byte integer parameter ARG. */ - -void store_op1(re_opcode_t op, unsigned char *loc, int arg) -{ - *loc = (unsigned char) op; - STORE_NUMBER(loc + 1, arg); -} - -/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ - -void -store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2) -{ - *loc = (unsigned char) op; - STORE_NUMBER(loc + 1, arg1); - STORE_NUMBER(loc + 3, arg2); -} - -/* Copy the bytes from LOC to END to open up three bytes of space at LOC - * for OP followed by two-byte integer parameter ARG. */ - -void -insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end) -{ - register unsigned char *pfrom = end; - register unsigned char *pto = end + 3; - - while (pfrom != loc) - *--pto = *--pfrom; - - store_op1(op, loc, arg); -} - -/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ - -void -insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end) -{ - register unsigned char *pfrom = end; - register unsigned char *pto = end + 5; - - while (pfrom != loc) - *--pto = *--pfrom; - - store_op2(op, loc, arg1, arg2); -} - -/* P points to just after a ^ in PATTERN. Return true if that ^ comes - * after an alternative or a begin-subexpression. We assume there is at - * least one character before the ^. */ - -boolean -at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax) -{ - const char *prev = p - 2; - boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; - - return - /* After a subexpression? */ - (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) - /* After an alternative? */ - || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); -} - -/* The dual of at_begline_loc_p. This one is for $. We assume there is - * at least one character after the $, i.e., `P < PEND'. */ - -boolean -at_endline_loc_p(const char *p, const char *pend, int syntax) -{ - const char *next = p; - boolean next_backslash = *next == '\\'; - const char *next_next = p + 1 < pend ? p + 1 : NULL; - - return - /* Before a subexpression? */ - (syntax & RE_NO_BK_PARENS ? *next == ')' - : next_backslash && next_next && *next_next == ')') - /* Before an alternative? */ - || (syntax & RE_NO_BK_VBAR ? *next == '|' - : next_backslash && next_next && *next_next == '|'); -} - -/* Returns true if REGNUM is in one of COMPILE_STACK's elements and - * false if it's not. */ - -boolean -group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum) -{ - int this_element; - - for (this_element = compile_stack.avail - 1; - this_element >= 0; - this_element--) - if (compile_stack.stack[this_element].regnum == regnum) - return true; - - return false; -} - -/* Read the ending character of a range (in a bracket expression) from the - * uncompiled pattern *P_PTR (which ends at PEND). We assume the - * starting character is in `P[-2]'. (`P[-1]' is the character `-'.) - * Then we set the translation of all bits between the starting and - * ending characters (inclusive) in the compiled pattern B. - * - * Return an error code. - * - * We use these short variable names so we can use the same macros as - * `regex_compile' itself. */ - -reg_errcode_t -compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b) -{ - unsigned this_char; - - const char *p = *p_ptr; - int range_start, range_end; - - if (p == pend) - return REG_ERANGE; - - /* Even though the pattern is a signed `char *', we need to fetch - * with unsigned char *'s; if the high bit of the pattern character - * is set, the range endpoints will be negative if we fetch using a - * signed char *. - * - * We also want to fetch the endpoints without translating them; the - * appropriate translation is done in the bit-setting loop below. */ - range_start = ((unsigned char *) p)[-2]; - range_end = ((unsigned char *) p)[0]; - - /* Have to increment the pointer into the pattern string, so the - * caller isn't still at the ending character. */ - (*p_ptr)++; - - /* If the start is after the end, the range is empty. */ - if (range_start > range_end) - return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; - - /* Here we see why `this_char' has to be larger than an `unsigned - * char' -- the range is inclusive, so if `range_end' == 0xff - * (assuming 8-bit characters), we would otherwise go into an infinite - * loop, since all characters <= 0xff. */ - for (this_char = range_start; this_char <= range_end; this_char++) { - SET_LIST_BIT(TRANSLATE(this_char)); - } - - return REG_NOERROR; -} - -/* Failure stack declarations and macros; both re_compile_fastmap and - * re_match_2 use a failure stack. These have to be macros because of - * REGEX_ALLOCATE. */ - -/* Number of failure points for which to initially allocate space - * when matching. If this number is exceeded, we allocate more - * space, so it is not a hard limit. */ -#ifndef INIT_FAILURE_ALLOC -#define INIT_FAILURE_ALLOC 5 -#endif - -/* Roughly the maximum number of failure points on the stack. Would be - * exactly that if always used MAX_FAILURE_SPACE each time we failed. - * This is a variable only so users of regex can assign to it; we never - * change it ourselves. */ -int re_max_failures = 2000; - -typedef const unsigned char *fail_stack_elt_t; - -typedef struct { - fail_stack_elt_t *stack; - unsigned size; - unsigned avail; /* Offset of next open position. */ -} fail_stack_type; - -#define FAIL_STACK_EMPTY() (fail_stack.avail == 0) -#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) -#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) -#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) - -/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ - -#define INIT_FAIL_STACK() \ - do { \ - fail_stack.stack = (fail_stack_elt_t *) \ - REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ - \ - if (fail_stack.stack == NULL) \ - return -2; \ - \ - fail_stack.size = INIT_FAILURE_ALLOC; \ - fail_stack.avail = 0; \ - } while (0) - -/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. - * - * Return 1 if succeeds, and 0 if either ran out of memory - * allocating space for it or it was already too large. - * - * REGEX_REALLOCATE requires `destination' be declared. */ - -#define DOUBLE_FAIL_STACK(fail_stack) \ - ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ - ? 0 \ - : ((fail_stack).stack = (fail_stack_elt_t *) \ - REGEX_REALLOCATE ((fail_stack).stack, \ - (fail_stack).size * sizeof (fail_stack_elt_t), \ - ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ - \ - (fail_stack).stack == NULL \ - ? 0 \ - : ((fail_stack).size <<= 1, \ - 1))) - -/* Push PATTERN_OP on FAIL_STACK. - * - * Return 1 if was able to do so and 0 if ran out of memory allocating - * space to do so. */ -#define PUSH_PATTERN_OP(pattern_op, fail_stack) \ - ((FAIL_STACK_FULL () \ - && !DOUBLE_FAIL_STACK (fail_stack)) \ - ? 0 \ - : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ - 1)) - -/* This pushes an item onto the failure stack. Must be a four-byte - * value. Assumes the variable `fail_stack'. Probably should only - * be called from within `PUSH_FAILURE_POINT'. */ -#define PUSH_FAILURE_ITEM(item) \ - fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item - -/* The complement operation. Assumes `fail_stack' is nonempty. */ -#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] - -/* Used to omit pushing failure point id's when we're not debugging. */ -#ifdef DEBUG -#define DEBUG_PUSH PUSH_FAILURE_ITEM -#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () -#else -#define DEBUG_PUSH(item) -#define DEBUG_POP(item_addr) -#endif - -/* Push the information about the state we will need - * if we ever fail back to it. - * - * Requires variables fail_stack, regstart, regend, reg_info, and - * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be - * declared. - * - * Does `return FAILURE_CODE' if runs out of memory. */ - -#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ - do { \ - char *destination; \ - /* Must be int, so when we don't save any registers, the arithmetic \ - of 0 + -1 isn't done as unsigned. */ \ - int this_reg; \ - \ - DEBUG_STATEMENT (failure_id++); \ - DEBUG_STATEMENT (nfailure_points_pushed++); \ - DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ - DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ - DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ - \ - DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ - DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ - \ - /* Ensure we have enough space allocated for what we will push. */ \ - while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ - { \ - if (!DOUBLE_FAIL_STACK (fail_stack)) \ - return failure_code; \ - \ - DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ - (fail_stack).size); \ - DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ - } \ - \ - /* Push the info, starting with the registers. */ \ - DEBUG_PRINT1 ("\n"); \ - \ - for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ - this_reg++) \ - { \ - DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ - DEBUG_STATEMENT (num_regs_pushed++); \ - \ - DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ - PUSH_FAILURE_ITEM (regstart[this_reg]); \ - \ - DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ - PUSH_FAILURE_ITEM (regend[this_reg]); \ - \ - DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ - DEBUG_PRINT2 (" match_null=%d", \ - REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ - DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ - DEBUG_PRINT2 (" matched_something=%d", \ - MATCHED_SOMETHING (reg_info[this_reg])); \ - DEBUG_PRINT2 (" ever_matched=%d", \ - EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ - DEBUG_PRINT1 ("\n"); \ - PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ - } \ - \ - DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ - PUSH_FAILURE_ITEM (lowest_active_reg); \ - \ - DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ - PUSH_FAILURE_ITEM (highest_active_reg); \ - \ - DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ - DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ - PUSH_FAILURE_ITEM (pattern_place); \ - \ - DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ - DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ - size2); \ - DEBUG_PRINT1 ("'\n"); \ - PUSH_FAILURE_ITEM (string_place); \ - \ - DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ - DEBUG_PUSH (failure_id); \ - } while (0) - -/* This is the number of items that are pushed and popped on the stack - * for each register. */ -#define NUM_REG_ITEMS 3 - -/* Individual items aside from the registers. */ -#ifdef DEBUG -#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ -#else -#define NUM_NONREG_ITEMS 4 -#endif - -/* We push at most this many items on the stack. */ -#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) - -/* We actually push this many items. */ -#define NUM_FAILURE_ITEMS \ - ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ - + NUM_NONREG_ITEMS) - -/* How many items can still be added to the stack without overflowing it. */ -#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) - -/* Pops what PUSH_FAIL_STACK pushes. - * - * We restore into the parameters, all of which should be lvalues: - * STR -- the saved data position. - * PAT -- the saved pattern position. - * LOW_REG, HIGH_REG -- the highest and lowest active registers. - * REGSTART, REGEND -- arrays of string positions. - * REG_INFO -- array of information about each subexpression. - * - * Also assumes the variables `fail_stack' and (if debugging), `bufp', - * `pend', `string1', `size1', `string2', and `size2'. */ - -#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ -{ \ - DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ - int this_reg; \ - const unsigned char *string_temp; \ - \ - assert (!FAIL_STACK_EMPTY ()); \ - \ - /* Remove failure points and point to how many regs pushed. */ \ - DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ - DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ - DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ - \ - assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ - \ - DEBUG_POP (&failure_id); \ - DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ - \ - /* If the saved string location is NULL, it came from an \ - on_failure_keep_string_jump opcode, and we want to throw away the \ - saved NULL, thus retaining our current position in the string. */ \ - string_temp = POP_FAILURE_ITEM (); \ - if (string_temp != NULL) \ - str = (const char *) string_temp; \ - \ - DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ - DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ - DEBUG_PRINT1 ("'\n"); \ - \ - pat = (unsigned char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ - DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ - \ - /* Restore register info. */ \ - high_reg = (unsigned long) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ - \ - low_reg = (unsigned long) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ - \ - for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ - { \ - DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ - \ - reg_info[this_reg].word = POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ - \ - regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ - \ - regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ - } \ - \ - DEBUG_STATEMENT (nfailure_points_popped++); \ -} /* POP_FAILURE_POINT */ - -/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in - * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible - * characters can start a string that matches the pattern. This fastmap - * is used by re_search to skip quickly over impossible starting points. - * - * The caller must supply the address of a (1 << BYTEWIDTH)-byte data - * area as BUFP->fastmap. - * - * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in - * the pattern buffer. - * - * Returns 0 if we succeed, -2 if an internal error. */ -#ifdef STDC_HEADERS -int -re_compile_fastmap(struct re_pattern_buffer *bufp) -#else -int -re_compile_fastmap(bufp) -struct re_pattern_buffer *bufp; -#endif -{ - int j, k; - fail_stack_type fail_stack; -#ifndef REGEX_MALLOC - char *destination; -#endif - /* We don't push any register information onto the failure stack. */ - unsigned num_regs = 0; - - register char *fastmap = bufp->fastmap; - unsigned char *pattern = bufp->buffer; - unsigned long size = bufp->used; - const unsigned char *p = pattern; - register unsigned char *pend = pattern + size; - - /* Assume that each path through the pattern can be null until - * proven otherwise. We set this false at the bottom of switch - * statement, to which we get only if a particular path doesn't - * match the empty string. */ - boolean path_can_be_null = true; - - /* We aren't doing a `succeed_n' to begin with. */ - boolean succeed_n_p = false; - - assert(fastmap != NULL && p != NULL); - - INIT_FAIL_STACK(); - memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */ - bufp->fastmap_accurate = 1; /* It will be when we're done. */ - bufp->can_be_null = 0; - - while (p != pend || !FAIL_STACK_EMPTY()) { - if (p == pend) { - bufp->can_be_null |= path_can_be_null; - - /* Reset for next path. */ - path_can_be_null = true; - - p = fail_stack.stack[--fail_stack.avail]; - } - /* We should never be about to go beyond the end of the pattern. */ - assert(p < pend); - -#ifdef SWITCH_ENUM_BUG - switch ((int) ((re_opcode_t) * p++)) -#else - switch ((re_opcode_t) * p++) -#endif - { - - /* I guess the idea here is to simply not bother with a fastmap - * if a backreference is used, since it's too hard to figure out - * the fastmap for the corresponding group. Setting - * `can_be_null' stops `re_search_2' from using the fastmap, so - * that is all we do. */ - case duplicate: - bufp->can_be_null = 1; - return 0; - - /* Following are the cases which match a character. These end - * with `break'. */ - - case exactn: - fastmap[p[1]] = 1; - break; - - case charset: - for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) - if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) - fastmap[j] = 1; - break; - - case charset_not: - /* Chars beyond end of map must be allowed. */ - for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) - fastmap[j] = 1; - - for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) - if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) - fastmap[j] = 1; - break; - - case wordchar: - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (re_syntax_table[j] == Sword) - fastmap[j] = 1; - break; - - case notwordchar: - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (re_syntax_table[j] != Sword) - fastmap[j] = 1; - break; - - case anychar: - /* `.' matches anything ... */ - for (j = 0; j < (1 << BYTEWIDTH); j++) - fastmap[j] = 1; - - /* ... except perhaps newline. */ - if (!(bufp->syntax & RE_DOT_NEWLINE)) - fastmap['\n'] = 0; - - /* Return if we have already set `can_be_null'; if we have, - * then the fastmap is irrelevant. Something's wrong here. */ - else if (bufp->can_be_null) - return 0; - - /* Otherwise, have to check alternative paths. */ - break; - - case no_op: - case begline: - case endline: - case begbuf: - case endbuf: - case wordbound: - case notwordbound: - case wordbeg: - case wordend: - case push_dummy_failure: - continue; - - case jump_n: - case pop_failure_jump: - case maybe_pop_jump: - case jump: - case jump_past_alt: - case dummy_failure_jump: - EXTRACT_NUMBER_AND_INCR(j, p); - p += j; - if (j > 0) - continue; - - /* Jump backward implies we just went through the body of a - * loop and matched nothing. Opcode jumped to should be - * `on_failure_jump' or `succeed_n'. Just treat it like an - * ordinary jump. For a * loop, it has pushed its failure - * point already; if so, discard that as redundant. */ - if ((re_opcode_t) * p != on_failure_jump - && (re_opcode_t) * p != succeed_n) - continue; - - p++; - EXTRACT_NUMBER_AND_INCR(j, p); - p += j; - - /* If what's on the stack is where we are now, pop it. */ - if (!FAIL_STACK_EMPTY() - && fail_stack.stack[fail_stack.avail - 1] == p) - fail_stack.avail--; - - continue; - - case on_failure_jump: - case on_failure_keep_string_jump: -handle_on_failure_jump: - EXTRACT_NUMBER_AND_INCR(j, p); - - /* For some patterns, e.g., `(a?)?', `p+j' here points to the - * end of the pattern. We don't want to push such a point, - * since when we restore it above, entering the switch will - * increment `p' past the end of the pattern. We don't need - * to push such a point since we obviously won't find any more - * fastmap entries beyond `pend'. Such a pattern can match - * the null string, though. */ - if (p + j < pend) { - if (!PUSH_PATTERN_OP(p + j, fail_stack)) - return -2; - } else - bufp->can_be_null = 1; - - if (succeed_n_p) { - EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */ - succeed_n_p = false; - } - continue; - - case succeed_n: - /* Get to the number of times to succeed. */ - p += 2; - - /* Increment p past the n for when k != 0. */ - EXTRACT_NUMBER_AND_INCR(k, p); - if (k == 0) { - p -= 4; - succeed_n_p = true; /* Spaghetti code alert. */ - goto handle_on_failure_jump; - } - continue; - - case set_number_at: - p += 4; - continue; - - case start_memory: - case stop_memory: - p += 2; - continue; - - default: - abort(); /* We have listed all the cases. */ - } /* switch *p++ */ - - /* Getting here means we have found the possible starting - * characters for one path of the pattern -- and that the empty - * string does not match. We need not follow this path further. - * Instead, look at the next alternative (remembered on the - * stack), or quit if no more. The test at the top of the loop - * does these things. */ - path_can_be_null = false; - p = pend; - } /* while p */ - - /* Set `can_be_null' for the last path (also the first path, if the - * pattern is empty). */ - bufp->can_be_null |= path_can_be_null; - return 0; -} /* re_compile_fastmap */ - -/* Searching routines. */ - -/* Like re_search_2, below, but only one string is specified, and - * doesn't let you say where to stop matching. */ - -static int -re_search(bufp, string, size, startpos, range, regs) -struct re_pattern_buffer *bufp; -const char *string; -int size, startpos, range; -struct re_registers *regs; -{ - return re_search_2(bufp, NULL, 0, string, size, startpos, range, - regs, size); -} - -/* Using the compiled pattern in BUFP->buffer, first tries to match the - * virtual concatenation of STRING1 and STRING2, starting first at index - * STARTPOS, then at STARTPOS + 1, and so on. - * - * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. - * - * RANGE is how far to scan while trying to match. RANGE = 0 means try - * only at STARTPOS; in general, the last start tried is STARTPOS + - * RANGE. - * - * In REGS, return the indices of the virtual concatenation of STRING1 - * and STRING2 that matched the entire BUFP->buffer and its contained - * subexpressions. - * - * Do not consider matching one past the index STOP in the virtual - * concatenation of STRING1 and STRING2. - * - * We return either the position in the strings at which the match was - * found, -1 if no match, or -2 if error (such as failure - * stack overflow). */ - -static int -re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop) -struct re_pattern_buffer *bufp; -const char *string1, *string2; -int size1, size2; -int startpos; -int range; -struct re_registers *regs; -int stop; -{ - int val; - register char *fastmap = bufp->fastmap; - register char *translate = bufp->translate; - int total_size = size1 + size2; - int endpos = startpos + range; - - /* Check for out-of-range STARTPOS. */ - if (startpos < 0 || startpos > total_size) - return -1; - - /* Fix up RANGE if it might eventually take us outside - * the virtual concatenation of STRING1 and STRING2. */ - if (endpos < -1) - range = -1 - startpos; - else if (endpos > total_size) - range = total_size - startpos; - - /* If the search isn't to be a backwards one, don't waste time in a - * search for a pattern that must be anchored. */ - if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) { - if (startpos > 0) - return -1; - else - range = 1; - } - /* Update the fastmap now if not correct already. */ - if (fastmap && !bufp->fastmap_accurate) - if (re_compile_fastmap(bufp) == -2) - return -2; - - /* Loop through the string, looking for a place to start matching. */ - for (;;) { - /* If a fastmap is supplied, skip quickly over characters that - * cannot be the start of a match. If the pattern can match the - * null string, however, we don't need to skip characters; we want - * the first null string. */ - if (fastmap && startpos < total_size && !bufp->can_be_null) { - if (range > 0) { /* Searching forwards. */ - register const char *d; - register int lim = 0; - int irange = range; - - if (startpos < size1 && startpos + range >= size1) - lim = range - (size1 - startpos); - - d = (startpos >= size1 ? string2 - size1 : string1) + startpos; - - /* Written out as an if-else to avoid testing `translate' - * inside the loop. */ - if (translate) - while (range > lim - && !fastmap[(unsigned char) - translate[(unsigned char) *d++]]) - range--; - else - while (range > lim && !fastmap[(unsigned char) *d++]) - range--; - - startpos += irange - range; - } else { /* Searching backwards. */ - register char c = (size1 == 0 || startpos >= size1 - ? string2[startpos - size1] - : string1[startpos]); - - if (!fastmap[(unsigned char) TRANSLATE(c)]) - goto advance; - } - } - /* If can't match the null string, and that's all we have left, fail. */ - if (range >= 0 && startpos == total_size && fastmap - && !bufp->can_be_null) - return -1; - - val = re_match_2(bufp, string1, size1, string2, size2, - startpos, regs, stop); - if (val >= 0) - return startpos; - - if (val == -2) - return -2; - -advance: - if (!range) - break; - else if (range > 0) { - range--; - startpos++; - } else { - range++; - startpos--; - } - } - return -1; -} /* re_search_2 */ - -/* Declarations and macros for re_match_2. */ - -/* Structure for per-register (a.k.a. per-group) information. - * This must not be longer than one word, because we push this value - * onto the failure stack. Other register information, such as the - * starting and ending positions (which are addresses), and the list of - * inner groups (which is a bits list) are maintained in separate - * variables. - * - * We are making a (strictly speaking) nonportable assumption here: that - * the compiler will pack our bit fields into something that fits into - * the type of `word', i.e., is something that fits into one item on the - * failure stack. */ -typedef union { - fail_stack_elt_t word; - struct { - /* This field is one if this group can match the empty string, - * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ -#define MATCH_NULL_UNSET_VALUE 3 - unsigned match_null_string_p:2; - unsigned is_active:1; - unsigned matched_something:1; - unsigned ever_matched_something:1; - } bits; -} register_info_type; -static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info); -static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info); -static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate); -static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info); - -#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) -#define IS_ACTIVE(R) ((R).bits.is_active) -#define MATCHED_SOMETHING(R) ((R).bits.matched_something) -#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) - -/* Call this when have matched a real character; it sets `matched' flags - * for the subexpressions which we are currently inside. Also records - * that those subexprs have matched. */ -#define SET_REGS_MATCHED() \ - do \ - { \ - unsigned r; \ - for (r = lowest_active_reg; r <= highest_active_reg; r++) \ - { \ - MATCHED_SOMETHING (reg_info[r]) \ - = EVER_MATCHED_SOMETHING (reg_info[r]) \ - = 1; \ - } \ - } \ - while (0) - -/* This converts PTR, a pointer into one of the search strings `string1' - * and `string2' into an offset from the beginning of that string. */ -#define POINTER_TO_OFFSET(ptr) \ - (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1) - -/* Registers are set to a sentinel when they haven't yet matched. */ -#define REG_UNSET_VALUE ((char *) -1) -#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) - -/* Macros for dealing with the split strings in re_match_2. */ - -#define MATCHING_IN_FIRST_STRING (dend == end_match_1) - -/* Call before fetching a character with *d. This switches over to - * string2 if necessary. */ -#define PREFETCH() \ - while (d == dend) \ - { \ - /* End of string2 => fail. */ \ - if (dend == end_match_2) \ - goto fail; \ - /* End of string1 => advance to string2. */ \ - d = string2; \ - dend = end_match_2; \ - } - -/* Test if at very beginning or at very end of the virtual concatenation - * of `string1' and `string2'. If only one string, it's `string2'. */ -#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) -static int at_strings_end(const char *d, const char *end2) -{ - return d == end2; -} - -/* Test if D points to a character which is word-constituent. We have - * two special cases to check for: if past the end of string1, look at - * the first character in string2; and if before the beginning of - * string2, look at the last character in string1. */ -#define WORDCHAR_P(d) \ - (re_syntax_table[(d) == end1 ? *string2 \ - : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \ - == Sword) -static int -wordchar_p(const char *d, const char *end1, const char *string2) -{ - return re_syntax_table[(d) == end1 ? *string2 - : (d) == string2 - 1 ? *(end1 - 1) : *(d)] - == Sword; -} - -/* Test if the character before D and the one at D differ with respect - * to being word-constituent. */ -#define AT_WORD_BOUNDARY(d) \ - (AT_STRINGS_BEG (d) || at_strings_end(d,end2) \ - || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) - -/* Free everything we malloc. */ -#ifdef REGEX_MALLOC -#define FREE_VAR(var) if (var) free (var); var = NULL -#define FREE_VARIABLES() \ - do { \ - FREE_VAR (fail_stack.stack); \ - FREE_VAR (regstart); \ - FREE_VAR (regend); \ - FREE_VAR (old_regstart); \ - FREE_VAR (old_regend); \ - FREE_VAR (best_regstart); \ - FREE_VAR (best_regend); \ - FREE_VAR (reg_info); \ - FREE_VAR (reg_dummy); \ - FREE_VAR (reg_info_dummy); \ - } while (0) -#else /* not REGEX_MALLOC */ -/* Some MIPS systems (at least) want this to free alloca'd storage. */ -#define FREE_VARIABLES() alloca (0) -#endif /* not REGEX_MALLOC */ - -/* These values must meet several constraints. They must not be valid - * register values; since we have a limit of 255 registers (because - * we use only one byte in the pattern for the register number), we can - * use numbers larger than 255. They must differ by 1, because of - * NUM_FAILURE_ITEMS above. And the value for the lowest register must - * be larger than the value for the highest register, so we do not try - * to actually save any registers when none are active. */ -#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) -#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) - -/* Matching routines. */ - -/* re_match_2 matches the compiled pattern in BUFP against the - * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 - * and SIZE2, respectively). We start matching at POS, and stop - * matching at STOP. - * - * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we - * store offsets for the substring each group matched in REGS. See the - * documentation for exactly how many groups we fill. - * - * We return -1 if no match, -2 if an internal error (such as the - * failure stack overflowing). Otherwise, we return the length of the - * matched substring. */ - -int -re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) -struct re_pattern_buffer *bufp; -const char *string1, *string2; -int size1, size2; -int pos; -struct re_registers *regs; -int stop; -{ - /* General temporaries. */ - int mcnt; - unsigned char *p1; - - /* Just past the end of the corresponding string. */ - const char *end1, *end2; - - /* Pointers into string1 and string2, just past the last characters in - * each to consider matching. */ - const char *end_match_1, *end_match_2; - - /* Where we are in the data, and the end of the current string. */ - const char *d, *dend; - - /* Where we are in the pattern, and the end of the pattern. */ - unsigned char *p = bufp->buffer; - register unsigned char *pend = p + bufp->used; - - /* We use this to map every character in the string. */ - char *translate = bufp->translate; - - /* Failure point stack. Each place that can handle a failure further - * down the line pushes a failure point on this stack. It consists of - * restart, regend, and reg_info for all registers corresponding to - * the subexpressions we're currently inside, plus the number of such - * registers, and, finally, two char *'s. The first char * is where - * to resume scanning the pattern; the second one is where to resume - * scanning the strings. If the latter is zero, the failure point is - * a ``dummy''; if a failure happens and the failure point is a dummy, - * it gets discarded and the next next one is tried. */ - fail_stack_type fail_stack; -#ifdef DEBUG - static unsigned failure_id = 0; - unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; -#endif - - /* We fill all the registers internally, independent of what we - * return, for use in backreferences. The number here includes - * an element for register zero. */ - unsigned num_regs = bufp->re_nsub + 1; - - /* The currently active registers. */ - unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG; - unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG; - - /* Information on the contents of registers. These are pointers into - * the input strings; they record just what was matched (on this - * attempt) by a subexpression part of the pattern, that is, the - * regnum-th regstart pointer points to where in the pattern we began - * matching and the regnum-th regend points to right after where we - * stopped matching the regnum-th subexpression. (The zeroth register - * keeps track of what the whole pattern matches.) */ - const char **regstart = NULL, **regend = NULL; - - /* If a group that's operated upon by a repetition operator fails to - * match anything, then the register for its start will need to be - * restored because it will have been set to wherever in the string we - * are when we last see its open-group operator. Similarly for a - * register's end. */ - const char **old_regstart = NULL, **old_regend = NULL; - - /* The is_active field of reg_info helps us keep track of which (possibly - * nested) subexpressions we are currently in. The matched_something - * field of reg_info[reg_num] helps us tell whether or not we have - * matched any of the pattern so far this time through the reg_num-th - * subexpression. These two fields get reset each time through any - * loop their register is in. */ - register_info_type *reg_info = NULL; - - /* The following record the register info as found in the above - * variables when we find a match better than any we've seen before. - * This happens as we backtrack through the failure points, which in - * turn happens only if we have not yet matched the entire string. */ - unsigned best_regs_set = false; - const char **best_regstart = NULL, **best_regend = NULL; - - /* Logically, this is `best_regend[0]'. But we don't want to have to - * allocate space for that if we're not allocating space for anything - * else (see below). Also, we never need info about register 0 for - * any of the other register vectors, and it seems rather a kludge to - * treat `best_regend' differently than the rest. So we keep track of - * the end of the best match so far in a separate variable. We - * initialize this to NULL so that when we backtrack the first time - * and need to test it, it's not garbage. */ - const char *match_end = NULL; - - /* Used when we pop values we don't care about. */ - const char **reg_dummy = NULL; - register_info_type *reg_info_dummy = NULL; - -#ifdef DEBUG - /* Counts the total number of registers pushed. */ - unsigned num_regs_pushed = 0; -#endif - - DEBUG_PRINT1("\n\nEntering re_match_2.\n"); - - INIT_FAIL_STACK(); - - /* Do not bother to initialize all the register variables if there are - * no groups in the pattern, as it takes a fair amount of time. If - * there are groups, we include space for register 0 (the whole - * pattern), even though we never use it, since it simplifies the - * array indexing. We should fix this. */ - if (bufp->re_nsub) { - regstart = REGEX_TALLOC(num_regs, const char *); - regend = REGEX_TALLOC(num_regs, const char *); - old_regstart = REGEX_TALLOC(num_regs, const char *); - old_regend = REGEX_TALLOC(num_regs, const char *); - best_regstart = REGEX_TALLOC(num_regs, const char *); - best_regend = REGEX_TALLOC(num_regs, const char *); - reg_info = REGEX_TALLOC(num_regs, register_info_type); - reg_dummy = REGEX_TALLOC(num_regs, const char *); - reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type); - - if (!(regstart && regend && old_regstart && old_regend && reg_info - && best_regstart && best_regend && reg_dummy && reg_info_dummy)) { - FREE_VARIABLES(); - return -2; - } - } -#ifdef REGEX_MALLOC - else { - /* We must initialize all our variables to NULL, so that - * `FREE_VARIABLES' doesn't try to free them. */ - regstart = regend = old_regstart = old_regend = best_regstart - = best_regend = reg_dummy = NULL; - reg_info = reg_info_dummy = (register_info_type *) NULL; - } -#endif /* REGEX_MALLOC */ - - /* The starting position is bogus. */ - if (pos < 0 || pos > size1 + size2) { - FREE_VARIABLES(); - return -1; - } - /* Initialize subexpression text positions to -1 to mark ones that no - * start_memory/stop_memory has been seen for. Also initialize the - * register information struct. */ - for (mcnt = 1; mcnt < num_regs; mcnt++) { - regstart[mcnt] = regend[mcnt] - = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; - - REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; - IS_ACTIVE(reg_info[mcnt]) = 0; - MATCHED_SOMETHING(reg_info[mcnt]) = 0; - EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0; - } - - /* We move `string1' into `string2' if the latter's empty -- but not if - * `string1' is null. */ - if (size2 == 0 && string1 != NULL) { - string2 = string1; - size2 = size1; - string1 = 0; - size1 = 0; - } - end1 = string1 + size1; - end2 = string2 + size2; - - /* Compute where to stop matching, within the two strings. */ - if (stop <= size1) { - end_match_1 = string1 + stop; - end_match_2 = string2; - } else { - end_match_1 = end1; - end_match_2 = string2 + stop - size1; - } - - /* `p' scans through the pattern as `d' scans through the data. - * `dend' is the end of the input string that `d' points within. `d' - * is advanced into the following input string whenever necessary, but - * this happens before fetching; therefore, at the beginning of the - * loop, `d' can be pointing at the end of a string, but it cannot - * equal `string2'. */ - if (size1 > 0 && pos <= size1) { - d = string1 + pos; - dend = end_match_1; - } else { - d = string2 + pos - size1; - dend = end_match_2; - } - - DEBUG_PRINT1("The compiled pattern is: "); - DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend); - DEBUG_PRINT1("The string to match is: `"); - DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2); - DEBUG_PRINT1("'\n"); - - /* This loops over pattern commands. It exits by returning from the - * function if the match is complete, or it drops through if the match - * fails at this starting point in the input data. */ - for (;;) { - DEBUG_PRINT2("\n0x%x: ", p); - - if (p == pend) { /* End of pattern means we might have succeeded. */ - DEBUG_PRINT1("end of pattern ... "); - - /* If we haven't matched the entire string, and we want the - * longest match, try backtracking. */ - if (d != end_match_2) { - DEBUG_PRINT1("backtracking.\n"); - - if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */ - boolean same_str_p = (FIRST_STRING_P(match_end) - == MATCHING_IN_FIRST_STRING); - - /* If exceeds best match so far, save it. */ - if (!best_regs_set - || (same_str_p && d > match_end) - || (!same_str_p && !MATCHING_IN_FIRST_STRING)) { - best_regs_set = true; - match_end = d; - - DEBUG_PRINT1("\nSAVING match as best so far.\n"); - - for (mcnt = 1; mcnt < num_regs; mcnt++) { - best_regstart[mcnt] = regstart[mcnt]; - best_regend[mcnt] = regend[mcnt]; - } - } - goto fail; - } - /* If no failure points, don't restore garbage. */ - else if (best_regs_set) { -restore_best_regs: - /* Restore best match. It may happen that `dend == - * end_match_1' while the restored d is in string2. - * For example, the pattern `x.*y.*z' against the - * strings `x-' and `y-z-', if the two strings are - * not consecutive in memory. */ - DEBUG_PRINT1("Restoring best registers.\n"); - - d = match_end; - dend = ((d >= string1 && d <= end1) - ? end_match_1 : end_match_2); - - for (mcnt = 1; mcnt < num_regs; mcnt++) { - regstart[mcnt] = best_regstart[mcnt]; - regend[mcnt] = best_regend[mcnt]; - } - } - } /* d != end_match_2 */ - DEBUG_PRINT1("Accepting match.\n"); - - /* If caller wants register contents data back, do it. */ - if (regs && !bufp->no_sub) { - /* Have the register data arrays been allocated? */ - if (bufp->regs_allocated == REGS_UNALLOCATED) { - /* No. So allocate them with malloc. We need one - * extra element beyond `num_regs' for the `-1' marker - * GNU code uses. */ - regs->num_regs = max(RE_NREGS, num_regs + 1); - regs->start = TALLOC(regs->num_regs, regoff_t); - regs->end = TALLOC(regs->num_regs, regoff_t); - if (regs->start == NULL || regs->end == NULL) - return -2; - bufp->regs_allocated = REGS_REALLOCATE; - } else if (bufp->regs_allocated == REGS_REALLOCATE) { - /* Yes. If we need more elements than were already - * allocated, reallocate them. If we need fewer, just - * leave it alone. */ - if (regs->num_regs < num_regs + 1) { - regs->num_regs = num_regs + 1; - RETALLOC(regs->start, regs->num_regs, regoff_t); - RETALLOC(regs->end, regs->num_regs, regoff_t); - if (regs->start == NULL || regs->end == NULL) - return -2; - } - } else - assert(bufp->regs_allocated == REGS_FIXED); - - /* Convert the pointer data in `regstart' and `regend' to - * indices. Register zero has to be set differently, - * since we haven't kept track of any info for it. */ - if (regs->num_regs > 0) { - regs->start[0] = pos; - regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1 - : d - string2 + size1); - } - /* Go through the first `min (num_regs, regs->num_regs)' - * registers, since that is all we initialized. */ - for (mcnt = 1; mcnt < min(num_regs, regs->num_regs); mcnt++) { - if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt])) - regs->start[mcnt] = regs->end[mcnt] = -1; - else { - regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]); - regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]); - } - } - - /* If the regs structure we return has more elements than - * were in the pattern, set the extra elements to -1. If - * we (re)allocated the registers, this is the case, - * because we always allocate enough to have at least one - * -1 at the end. */ - for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) - regs->start[mcnt] = regs->end[mcnt] = -1; - } /* regs && !bufp->no_sub */ - FREE_VARIABLES(); - DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n", - nfailure_points_pushed, nfailure_points_popped, - nfailure_points_pushed - nfailure_points_popped); - DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed); - - mcnt = d - pos - (MATCHING_IN_FIRST_STRING - ? string1 - : string2 - size1); - - DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt); - - return mcnt; - } - /* Otherwise match next pattern command. */ -#ifdef SWITCH_ENUM_BUG - switch ((int) ((re_opcode_t) * p++)) -#else - switch ((re_opcode_t) * p++) -#endif - { - /* Ignore these. Used to ignore the n of succeed_n's which - * currently have n == 0. */ - case no_op: - DEBUG_PRINT1("EXECUTING no_op.\n"); - break; - - /* Match the next n pattern characters exactly. The following - * byte in the pattern defines n, and the n bytes after that - * are the characters to match. */ - case exactn: - mcnt = *p++; - DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt); - - /* This is written out as an if-else so we don't waste time - * testing `translate' inside the loop. */ - if (translate) { - do { - PREFETCH(); - if (translate[(unsigned char) *d++] != (char) *p++) - goto fail; - } while (--mcnt); - } else { - do { - PREFETCH(); - if (*d++ != (char) *p++) - goto fail; - } while (--mcnt); - } - SET_REGS_MATCHED(); - break; - - /* Match any character except possibly a newline or a null. */ - case anychar: - DEBUG_PRINT1("EXECUTING anychar.\n"); - - PREFETCH(); - - if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n') - || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000')) - goto fail; - - SET_REGS_MATCHED(); - DEBUG_PRINT2(" Matched `%d'.\n", *d); - d++; - break; - - case charset: - case charset_not: { - register unsigned char c; - boolean not = (re_opcode_t) * (p - 1) == charset_not; - - DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : ""); - - PREFETCH(); - c = TRANSLATE(*d); /* The character to match. */ - - /* Cast to `unsigned' instead of `unsigned char' in case the - * bit list is a full 32 bytes long. */ - if (c < (unsigned) (*p * BYTEWIDTH) - && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) - not = !not; - - p += 1 + *p; - - if (!not) - goto fail; - - SET_REGS_MATCHED(); - d++; - break; - } - - /* The beginning of a group is represented by start_memory. - * The arguments are the register number in the next byte, and the - * number of groups inner to this one in the next. The text - * matched within the group is recorded (in the internal - * registers data structure) under the register number. */ - case start_memory: - DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]); - - /* Find out if this group can match the empty string. */ - p1 = p; /* To send to group_match_null_string_p. */ - - if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE) - REG_MATCH_NULL_STRING_P(reg_info[*p]) - = group_match_null_string_p(&p1, pend, reg_info); - - /* Save the position in the string where we were the last time - * we were at this open-group operator in case the group is - * operated upon by a repetition operator, e.g., with `(a*)*b' - * against `ab'; then we want to ignore where we are now in - * the string in case this attempt to match fails. */ - old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) - ? REG_UNSET(regstart[*p]) ? d : regstart[*p] - : regstart[*p]; - DEBUG_PRINT2(" old_regstart: %d\n", - POINTER_TO_OFFSET(old_regstart[*p])); - - regstart[*p] = d; - DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p])); - - IS_ACTIVE(reg_info[*p]) = 1; - MATCHED_SOMETHING(reg_info[*p]) = 0; - - /* This is the new highest active register. */ - highest_active_reg = *p; - - /* If nothing was active before, this is the new lowest active - * register. */ - if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) - lowest_active_reg = *p; - - /* Move past the register number and inner group count. */ - p += 2; - break; - - /* The stop_memory opcode represents the end of a group. Its - * arguments are the same as start_memory's: the register - * number, and the number of inner groups. */ - case stop_memory: - DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]); - - /* We need to save the string position the last time we were at - * this close-group operator in case the group is operated - * upon by a repetition operator, e.g., with `((a*)*(b*)*)*' - * against `aba'; then we want to ignore where we are now in - * the string in case this attempt to match fails. */ - old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) - ? REG_UNSET(regend[*p]) ? d : regend[*p] - : regend[*p]; - DEBUG_PRINT2(" old_regend: %d\n", - POINTER_TO_OFFSET(old_regend[*p])); - - regend[*p] = d; - DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p])); - - /* This register isn't active anymore. */ - IS_ACTIVE(reg_info[*p]) = 0; - - /* If this was the only register active, nothing is active - * anymore. */ - if (lowest_active_reg == highest_active_reg) { - lowest_active_reg = NO_LOWEST_ACTIVE_REG; - highest_active_reg = NO_HIGHEST_ACTIVE_REG; - } else { - /* We must scan for the new highest active register, since - * it isn't necessarily one less than now: consider - * (a(b)c(d(e)f)g). When group 3 ends, after the f), the - * new highest active register is 1. */ - unsigned char r = *p - 1; - while (r > 0 && !IS_ACTIVE(reg_info[r])) - r--; - - /* If we end up at register zero, that means that we saved - * the registers as the result of an `on_failure_jump', not - * a `start_memory', and we jumped to past the innermost - * `stop_memory'. For example, in ((.)*) we save - * registers 1 and 2 as a result of the *, but when we pop - * back to the second ), we are at the stop_memory 1. - * Thus, nothing is active. */ - if (r == 0) { - lowest_active_reg = NO_LOWEST_ACTIVE_REG; - highest_active_reg = NO_HIGHEST_ACTIVE_REG; - } else - highest_active_reg = r; - } - - /* If just failed to match something this time around with a - * group that's operated on by a repetition operator, try to - * force exit from the ``loop'', and restore the register - * information for this group that we had before trying this - * last match. */ - if ((!MATCHED_SOMETHING(reg_info[*p]) - || (re_opcode_t) p[-3] == start_memory) - && (p + 2) < pend) { - boolean is_a_jump_n = false; - - p1 = p + 2; - mcnt = 0; - switch ((re_opcode_t) * p1++) { - case jump_n: - is_a_jump_n = true; - case pop_failure_jump: - case maybe_pop_jump: - case jump: - case dummy_failure_jump: - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - if (is_a_jump_n) - p1 += 2; - break; - - default: - /* do nothing */ - ; - } - p1 += mcnt; - - /* If the next operation is a jump backwards in the pattern - * to an on_failure_jump right before the start_memory - * corresponding to this stop_memory, exit from the loop - * by forcing a failure after pushing on the stack the - * on_failure_jump's jump in the pattern, and d. */ - if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump - && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) { - /* If this group ever matched anything, then restore - * what its registers were before trying this last - * failed match, e.g., with `(a*)*b' against `ab' for - * regstart[1], and, e.g., with `((a*)*(b*)*)*' - * against `aba' for regend[3]. - * - * Also restore the registers for inner groups for, - * e.g., `((a*)(b*))*' against `aba' (register 3 would - * otherwise get trashed). */ - - if (EVER_MATCHED_SOMETHING(reg_info[*p])) { - unsigned r; - - EVER_MATCHED_SOMETHING(reg_info[*p]) = 0; - - /* Restore this and inner groups' (if any) registers. */ - for (r = *p; r < *p + *(p + 1); r++) { - regstart[r] = old_regstart[r]; - - /* xx why this test? */ - if ((long) old_regend[r] >= (long) regstart[r]) - regend[r] = old_regend[r]; - } - } - p1++; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - PUSH_FAILURE_POINT(p1 + mcnt, d, -2); - - goto fail; - } - } - /* Move past the register number and the inner group count. */ - p += 2; - break; - - /* \ has been turned into a `duplicate' command which is - * followed by the numeric value of as the register number. */ - case duplicate: { - register const char *d2, *dend2; - int regno = *p++; /* Get which register to match against. */ - DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno); - - /* Can't back reference a group which we've never matched. */ - if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) - goto fail; - - /* Where in input to try to start matching. */ - d2 = regstart[regno]; - - /* Where to stop matching; if both the place to start and - * the place to stop matching are in the same string, then - * set to the place to stop, otherwise, for now have to use - * the end of the first string. */ - - dend2 = ((FIRST_STRING_P(regstart[regno]) - == FIRST_STRING_P(regend[regno])) - ? regend[regno] : end_match_1); - for (;;) { - /* If necessary, advance to next segment in register - * contents. */ - while (d2 == dend2) { - if (dend2 == end_match_2) - break; - if (dend2 == regend[regno]) - break; - - /* End of string1 => advance to string2. */ - d2 = string2; - dend2 = regend[regno]; - } - /* At end of register contents => success */ - if (d2 == dend2) - break; - - /* If necessary, advance to next segment in data. */ - PREFETCH(); - - /* How many characters left in this segment to match. */ - mcnt = dend - d; - - /* Want how many consecutive characters we can match in - * one shot, so, if necessary, adjust the count. */ - if (mcnt > dend2 - d2) - mcnt = dend2 - d2; - - /* Compare that many; failure if mismatch, else move - * past them. */ - if (translate - ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate) - : memcmp(d, d2, mcnt)) - goto fail; - d += mcnt, d2 += mcnt; - } - } - break; - - /* begline matches the empty string at the beginning of the string - * (unless `not_bol' is set in `bufp'), and, if - * `newline_anchor' is set, after newlines. */ - case begline: - DEBUG_PRINT1("EXECUTING begline.\n"); - - if (AT_STRINGS_BEG(d)) { - if (!bufp->not_bol) - break; - } else if (d[-1] == '\n' && bufp->newline_anchor) { - break; - } - /* In all other cases, we fail. */ - goto fail; - - /* endline is the dual of begline. */ - case endline: - DEBUG_PRINT1("EXECUTING endline.\n"); - - if (at_strings_end(d,end2)) { - if (!bufp->not_eol) - break; - } - /* We have to ``prefetch'' the next character. */ - else if ((d == end1 ? *string2 : *d) == '\n' - && bufp->newline_anchor) { - break; - } - goto fail; - - /* Match at the very beginning of the data. */ - case begbuf: - DEBUG_PRINT1("EXECUTING begbuf.\n"); - if (AT_STRINGS_BEG(d)) - break; - goto fail; - - /* Match at the very end of the data. */ - case endbuf: - DEBUG_PRINT1("EXECUTING endbuf.\n"); - if (at_strings_end(d,end2)) - break; - goto fail; - - /* on_failure_keep_string_jump is used to optimize `.*\n'. It - * pushes NULL as the value for the string on the stack. Then - * `pop_failure_point' will keep the current value for the - * string, instead of restoring it. To see why, consider - * matching `foo\nbar' against `.*\n'. The .* matches the foo; - * then the . fails against the \n. But the next thing we want - * to do is match the \n against the \n; if we restored the - * string value, we would be back at the foo. - * - * Because this is used only in specific cases, we don't need to - * check all the things that `on_failure_jump' does, to make - * sure the right things get saved on the stack. Hence we don't - * share its code. The only reason to push anything on the - * stack at all is that otherwise we would have to change - * `anychar's code to do something besides goto fail in this - * case; that seems worse than this. */ - case on_failure_keep_string_jump: - DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump"); - - EXTRACT_NUMBER_AND_INCR(mcnt, p); - DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt); - - PUSH_FAILURE_POINT(p + mcnt, NULL, -2); - break; - - /* Uses of on_failure_jump: - * - * Each alternative starts with an on_failure_jump that points - * to the beginning of the next alternative. Each alternative - * except the last ends with a jump that in effect jumps past - * the rest of the alternatives. (They really jump to the - * ending jump of the following alternative, because tensioning - * these jumps is a hassle.) - * - * Repeats start with an on_failure_jump that points past both - * the repetition text and either the following jump or - * pop_failure_jump back to this on_failure_jump. */ - case on_failure_jump: -on_failure: - DEBUG_PRINT1("EXECUTING on_failure_jump"); - - EXTRACT_NUMBER_AND_INCR(mcnt, p); - DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt); - - /* If this on_failure_jump comes right before a group (i.e., - * the original * applied to a group), save the information - * for that group and all inner ones, so that if we fail back - * to this point, the group's information will be correct. - * For example, in \(a*\)*\1, we need the preceding group, - * and in \(\(a*\)b*\)\2, we need the inner group. */ - - /* We can't use `p' to check ahead because we push - * a failure point to `p + mcnt' after we do this. */ - p1 = p; - - /* We need to skip no_op's before we look for the - * start_memory in case this on_failure_jump is happening as - * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 - * against aba. */ - while (p1 < pend && (re_opcode_t) * p1 == no_op) - p1++; - - if (p1 < pend && (re_opcode_t) * p1 == start_memory) { - /* We have a new highest active register now. This will - * get reset at the start_memory we are about to get to, - * but we will have saved all the registers relevant to - * this repetition op, as described above. */ - highest_active_reg = *(p1 + 1) + *(p1 + 2); - if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) - lowest_active_reg = *(p1 + 1); - } - DEBUG_PRINT1(":\n"); - PUSH_FAILURE_POINT(p + mcnt, d, -2); - break; - - /* A smart repeat ends with `maybe_pop_jump'. - * We change it to either `pop_failure_jump' or `jump'. */ - case maybe_pop_jump: - EXTRACT_NUMBER_AND_INCR(mcnt, p); - DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt); - { - register unsigned char *p2 = p; - - /* Compare the beginning of the repeat with what in the - * pattern follows its end. If we can establish that there - * is nothing that they would both match, i.e., that we - * would have to backtrack because of (as in, e.g., `a*a') - * then we can change to pop_failure_jump, because we'll - * never have to backtrack. - * - * This is not true in the case of alternatives: in - * `(a|ab)*' we do need to backtrack to the `ab' alternative - * (e.g., if the string was `ab'). But instead of trying to - * detect that here, the alternative has put on a dummy - * failure point which is what we will end up popping. */ - - /* Skip over open/close-group commands. */ - while (p2 + 2 < pend - && ((re_opcode_t) * p2 == stop_memory - || (re_opcode_t) * p2 == start_memory)) - p2 += 3; /* Skip over args, too. */ - - /* If we're at the end of the pattern, we can change. */ - if (p2 == pend) { - /* Consider what happens when matching ":\(.*\)" - * against ":/". I don't really understand this code - * yet. */ - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT1 - (" End of pattern: change to `pop_failure_jump'.\n"); - } else if ((re_opcode_t) * p2 == exactn - || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) { - register unsigned char c - = *p2 == (unsigned char) endline ? '\n' : p2[2]; - p1 = p + mcnt; - - /* p1[0] ... p1[2] are the `on_failure_jump' corresponding - * to the `maybe_finalize_jump' of this case. Examine what - * follows. */ - if ((re_opcode_t) p1[3] == exactn && p1[5] != c) { - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n", - c, p1[5]); - } else if ((re_opcode_t) p1[3] == charset - || (re_opcode_t) p1[3] == charset_not) { - int not = (re_opcode_t) p1[3] == charset_not; - - if (c < (unsigned char) (p1[4] * BYTEWIDTH) - && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) - not = !not; - - /* `not' is equal to 1 if c would match, which means - * that we can't change to pop_failure_jump. */ - if (!not) { - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT1(" No match => pop_failure_jump.\n"); - } - } - } - } - p -= 2; /* Point at relative address again. */ - if ((re_opcode_t) p[-1] != pop_failure_jump) { - p[-1] = (unsigned char) jump; - DEBUG_PRINT1(" Match => jump.\n"); - goto unconditional_jump; - } - /* Note fall through. */ - - /* The end of a simple repeat has a pop_failure_jump back to - * its matching on_failure_jump, where the latter will push a - * failure point. The pop_failure_jump takes off failure - * points put on by this pop_failure_jump's matching - * on_failure_jump; we got through the pattern to here from the - * matching on_failure_jump, so didn't fail. */ - case pop_failure_jump: { - /* We need to pass separate storage for the lowest and - * highest registers, even though we don't care about the - * actual values. Otherwise, we will restore only one - * register from the stack, since lowest will == highest in - * `pop_failure_point'. */ - unsigned long dummy_low_reg, dummy_high_reg; - unsigned char *pdummy; - const char *sdummy; - - DEBUG_PRINT1("EXECUTING pop_failure_jump.\n"); - POP_FAILURE_POINT(sdummy, pdummy, - dummy_low_reg, dummy_high_reg, - reg_dummy, reg_dummy, reg_info_dummy); - /* avoid GCC 4.6 set but unused variables warning. Does not matter here. */ - if (pdummy || sdummy) - (void)0; - } - /* Note fall through. */ - - /* Unconditionally jump (without popping any failure points). */ - case jump: -unconditional_jump: - EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */ - DEBUG_PRINT2("EXECUTING jump %d ", mcnt); - p += mcnt; /* Do the jump. */ - DEBUG_PRINT2("(to 0x%x).\n", p); - break; - - /* We need this opcode so we can detect where alternatives end - * in `group_match_null_string_p' et al. */ - case jump_past_alt: - DEBUG_PRINT1("EXECUTING jump_past_alt.\n"); - goto unconditional_jump; - - /* Normally, the on_failure_jump pushes a failure point, which - * then gets popped at pop_failure_jump. We will end up at - * pop_failure_jump, also, and with a pattern of, say, `a+', we - * are skipping over the on_failure_jump, so we have to push - * something meaningless for pop_failure_jump to pop. */ - case dummy_failure_jump: - DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n"); - /* It doesn't matter what we push for the string here. What - * the code at `fail' tests is the value for the pattern. */ - PUSH_FAILURE_POINT(0, 0, -2); - goto unconditional_jump; - - /* At the end of an alternative, we need to push a dummy failure - * point in case we are followed by a `pop_failure_jump', because - * we don't want the failure point for the alternative to be - * popped. For example, matching `(a|ab)*' against `aab' - * requires that we match the `ab' alternative. */ - case push_dummy_failure: - DEBUG_PRINT1("EXECUTING push_dummy_failure.\n"); - /* See comments just above at `dummy_failure_jump' about the - * two zeroes. */ - PUSH_FAILURE_POINT(0, 0, -2); - break; - - /* Have to succeed matching what follows at least n times. - * After that, handle like `on_failure_jump'. */ - case succeed_n: - EXTRACT_NUMBER(mcnt, p + 2); - DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt); - - assert(mcnt >= 0); - /* Originally, this is how many times we HAVE to succeed. */ - if (mcnt > 0) { - mcnt--; - p += 2; - STORE_NUMBER_AND_INCR(p, mcnt); - DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt); - } else if (mcnt == 0) { - DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2); - p[2] = (unsigned char) no_op; - p[3] = (unsigned char) no_op; - goto on_failure; - } - break; - - case jump_n: - EXTRACT_NUMBER(mcnt, p + 2); - DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt); - - /* Originally, this is how many times we CAN jump. */ - if (mcnt) { - mcnt--; - STORE_NUMBER(p + 2, mcnt); - goto unconditional_jump; - } - /* If don't have to jump any more, skip over the rest of command. */ - else - p += 4; - break; - - case set_number_at: { - DEBUG_PRINT1("EXECUTING set_number_at.\n"); - - EXTRACT_NUMBER_AND_INCR(mcnt, p); - p1 = p + mcnt; - EXTRACT_NUMBER_AND_INCR(mcnt, p); - DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt); - STORE_NUMBER(p1, mcnt); - break; - } - - case wordbound: - DEBUG_PRINT1("EXECUTING wordbound.\n"); - if (AT_WORD_BOUNDARY(d)) - break; - goto fail; - - case notwordbound: - DEBUG_PRINT1("EXECUTING notwordbound.\n"); - if (AT_WORD_BOUNDARY(d)) - goto fail; - break; - - case wordbeg: - DEBUG_PRINT1("EXECUTING wordbeg.\n"); - if (wordchar_p(d,end1,string2) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1))) - break; - goto fail; - - case wordend: - DEBUG_PRINT1("EXECUTING wordend.\n"); - if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1) - && (!wordchar_p(d,end1,string2) || at_strings_end(d,end2))) - break; - goto fail; - - case wordchar: - DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n"); - PREFETCH(); - if (!wordchar_p(d,end1,string2)) - goto fail; - SET_REGS_MATCHED(); - d++; - break; - - case notwordchar: - DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n"); - PREFETCH(); - if (wordchar_p(d,end1,string2)) - goto fail; - SET_REGS_MATCHED(); - d++; - break; - - default: - abort(); - } - continue; /* Successfully executed one pattern command; keep going. */ - - /* We goto here if a matching operation fails. */ -fail: - if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */ - DEBUG_PRINT1("\nFAIL:\n"); - POP_FAILURE_POINT(d, p, - lowest_active_reg, highest_active_reg, - regstart, regend, reg_info); - - /* If this failure point is a dummy, try the next one. */ - if (!p) - goto fail; - - /* If we failed to the end of the pattern, don't examine *p. */ - assert(p <= pend); - if (p < pend) { - boolean is_a_jump_n = false; - - /* If failed to a backwards jump that's part of a repetition - * loop, need to pop this failure point and use the next one. */ - switch ((re_opcode_t) * p) { - case jump_n: - is_a_jump_n = true; - case maybe_pop_jump: - case pop_failure_jump: - case jump: - p1 = p + 1; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - p1 += mcnt; - - if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n) - || (!is_a_jump_n - && (re_opcode_t) * p1 == on_failure_jump)) - goto fail; - break; - default: - /* do nothing */ - ; - } - } - if (d >= string1 && d <= end1) - dend = end_match_1; - } else - break; /* Matching at this starting point really fails. */ - } /* for (;;) */ - - if (best_regs_set) - goto restore_best_regs; - - FREE_VARIABLES(); - - return -1; /* Failure to match. */ -} /* re_match_2 */ - -/* Subroutine definitions for re_match_2. */ - -/* We are passed P pointing to a register number after a start_memory. - * - * Return true if the pattern up to the corresponding stop_memory can - * match the empty string, and false otherwise. - * - * If we find the matching stop_memory, sets P to point to one past its number. - * Otherwise, sets P to an undefined byte less than or equal to END. - * - * We don't handle duplicates properly (yet). */ - -boolean -group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info) -{ - int mcnt; - /* Point to after the args to the start_memory. */ - unsigned char *p1 = *p + 2; - - while (p1 < end) { - /* Skip over opcodes that can match nothing, and return true or - * false, as appropriate, when we get to one that can't, or to the - * matching stop_memory. */ - - switch ((re_opcode_t) * p1) { - /* Could be either a loop or a series of alternatives. */ - case on_failure_jump: - p1++; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - - /* If the next operation is not a jump backwards in the - * pattern. */ - - if (mcnt >= 0) { - /* Go through the on_failure_jumps of the alternatives, - * seeing if any of the alternatives cannot match nothing. - * The last alternative starts with only a jump, - * whereas the rest start with on_failure_jump and end - * with a jump, e.g., here is the pattern for `a|b|c': - * - * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 - * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 - * /exactn/1/c - * - * So, we have to first go through the first (n-1) - * alternatives and then deal with the last one separately. */ - - /* Deal with the first (n-1) alternatives, which start - * with an on_failure_jump (see above) that jumps to right - * past a jump_past_alt. */ - - while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) { - /* `mcnt' holds how many bytes long the alternative - * is, including the ending `jump_past_alt' and - * its number. */ - - if (!alt_match_null_string_p(p1, p1 + mcnt - 3, - reg_info)) - return false; - - /* Move to right after this alternative, including the - * jump_past_alt. */ - p1 += mcnt; - - /* Break if it's the beginning of an n-th alternative - * that doesn't begin with an on_failure_jump. */ - if ((re_opcode_t) * p1 != on_failure_jump) - break; - - /* Still have to check that it's not an n-th - * alternative that starts with an on_failure_jump. */ - p1++; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) { - /* Get to the beginning of the n-th alternative. */ - p1 -= 3; - break; - } - } - - /* Deal with the last alternative: go back and get number - * of the `jump_past_alt' just before it. `mcnt' contains - * the length of the alternative. */ - EXTRACT_NUMBER(mcnt, p1 - 2); - - if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info)) - return false; - - p1 += mcnt; /* Get past the n-th alternative. */ - } /* if mcnt > 0 */ - break; - - case stop_memory: - assert(p1[1] == **p); - *p = p1 + 2; - return true; - - default: - if (!common_op_match_null_string_p(&p1, end, reg_info)) - return false; - } - } /* while p1 < end */ - - return false; -} /* group_match_null_string_p */ - -/* Similar to group_match_null_string_p, but doesn't deal with alternatives: - * It expects P to be the first byte of a single alternative and END one - * byte past the last. The alternative can contain groups. */ - -boolean -alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info) -{ - int mcnt; - unsigned char *p1 = p; - - while (p1 < end) { - /* Skip over opcodes that can match nothing, and break when we get - * to one that can't. */ - - switch ((re_opcode_t) * p1) { - /* It's a loop. */ - case on_failure_jump: - p1++; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - p1 += mcnt; - break; - - default: - if (!common_op_match_null_string_p(&p1, end, reg_info)) - return false; - } - } /* while p1 < end */ - - return true; -} /* alt_match_null_string_p */ - -/* Deals with the ops common to group_match_null_string_p and - * alt_match_null_string_p. - * - * Sets P to one after the op and its arguments, if any. */ - -boolean -common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info) -{ - int mcnt; - boolean ret; - int reg_no; - unsigned char *p1 = *p; - - switch ((re_opcode_t) * p1++) { - case no_op: - case begline: - case endline: - case begbuf: - case endbuf: - case wordbeg: - case wordend: - case wordbound: - case notwordbound: - break; - - case start_memory: - reg_no = *p1; - assert(reg_no > 0 && reg_no <= MAX_REGNUM); - ret = group_match_null_string_p(&p1, end, reg_info); - - /* Have to set this here in case we're checking a group which - * contains a group and a back reference to it. */ - - if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) - REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret; - - if (!ret) - return false; - break; - - /* If this is an optimized succeed_n for zero times, make the jump. */ - case jump: - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - if (mcnt >= 0) - p1 += mcnt; - else - return false; - break; - - case succeed_n: - /* Get to the number of times to succeed. */ - p1 += 2; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - - if (mcnt == 0) { - p1 -= 4; - EXTRACT_NUMBER_AND_INCR(mcnt, p1); - p1 += mcnt; - } else - return false; - break; - - case duplicate: - if (!REG_MATCH_NULL_STRING_P(reg_info[*p1])) - return false; - break; - - case set_number_at: - p1 += 4; - - default: - /* All other opcodes mean we cannot match the empty string. */ - return false; - } - - *p = p1; - return true; -} /* common_op_match_null_string_p */ - -/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN - * bytes; nonzero otherwise. */ - -int -bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate) -{ - register unsigned char const *p1 = s1, *p2 = s2; - while (len) { - if (translate[*p1++] != translate[*p2++]) - return 1; - len--; - } - return 0; -} - -/* Entry points for GNU code. */ - -/* POSIX.2 functions */ - -/* regcomp takes a regular expression as a string and compiles it. - * - * PREG is a regex_t *. We do not expect any fields to be initialized, - * since POSIX says we shouldn't. Thus, we set - * - * `buffer' to the compiled pattern; - * `used' to the length of the compiled pattern; - * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the - * REG_EXTENDED bit in CFLAGS is set; otherwise, to - * RE_SYNTAX_POSIX_BASIC; - * `newline_anchor' to REG_NEWLINE being set in CFLAGS; - * `fastmap' and `fastmap_accurate' to zero; - * `re_nsub' to the number of subexpressions in PATTERN. - * - * PATTERN is the address of the pattern string. - * - * CFLAGS is a series of bits which affect compilation. - * - * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we - * use POSIX basic syntax. - * - * If REG_NEWLINE is set, then . and [^...] don't match newline. - * Also, regexec will try a match beginning after every newline. - * - * If REG_ICASE is set, then we considers upper- and lowercase - * versions of letters to be equivalent when matching. - * - * If REG_NOSUB is set, then when PREG is passed to regexec, that - * routine will report only success or failure, and nothing about the - * registers. - * - * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for - * the return codes and their meanings.) */ - -int -regcomp(preg, pattern, cflags) -regex_t *preg; -const char *pattern; -int cflags; -{ - reg_errcode_t ret; - unsigned syntax - = (cflags & REG_EXTENDED) ? - RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; - - /* regex_compile will allocate the space for the compiled pattern. */ - preg->buffer = 0; - preg->allocated = 0; - - /* Don't bother to use a fastmap when searching. This simplifies the - * REG_NEWLINE case: if we used a fastmap, we'd have to put all the - * characters after newlines into the fastmap. This way, we just try - * every character. */ - preg->fastmap = 0; - - if (cflags & REG_ICASE) { - unsigned i; - - preg->translate = (char *) malloc(CHAR_SET_SIZE); - if (preg->translate == NULL) - return (int) REG_ESPACE; - - /* Map uppercase characters to corresponding lowercase ones. */ - for (i = 0; i < CHAR_SET_SIZE; i++) - preg->translate[i] = ISUPPER(i) ? tolower(i) : i; - } else - preg->translate = NULL; - - /* If REG_NEWLINE is set, newlines are treated differently. */ - if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */ - syntax &= ~RE_DOT_NEWLINE; - syntax |= RE_HAT_LISTS_NOT_NEWLINE; - /* It also changes the matching behavior. */ - preg->newline_anchor = 1; - } else - preg->newline_anchor = 0; - - preg->no_sub = !!(cflags & REG_NOSUB); - - /* POSIX says a null character in the pattern terminates it, so we - * can use strlen here in compiling the pattern. */ - ret = regex_compile(pattern, strlen(pattern), syntax, preg); - - /* POSIX doesn't distinguish between an unmatched open-group and an - * unmatched close-group: both are REG_EPAREN. */ - if (ret == REG_ERPAREN) - ret = REG_EPAREN; - - return (int) ret; -} - -/* regexec searches for a given pattern, specified by PREG, in the - * string STRING. - * - * If NMATCH is zero or REG_NOSUB was set in the cflags argument to - * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at - * least NMATCH elements, and we set them to the offsets of the - * corresponding matched substrings. - * - * EFLAGS specifies `execution flags' which affect matching: if - * REG_NOTBOL is set, then ^ does not match at the beginning of the - * string; if REG_NOTEOL is set, then $ does not match at the end. - * - * We return 0 if we find a match and REG_NOMATCH if not. */ - -int -regexec(preg, string, nmatch, pmatch, eflags) -const regex_t *preg; -const char *string; -size_t nmatch; -regmatch_t pmatch[]; -int eflags; -{ - int ret; - struct re_registers regs; - regex_t private_preg; - int len = strlen(string); - boolean want_reg_info = !preg->no_sub && nmatch > 0; - - private_preg = *preg; - - private_preg.not_bol = !!(eflags & REG_NOTBOL); - private_preg.not_eol = !!(eflags & REG_NOTEOL); - - /* The user has told us exactly how many registers to return - * information about, via `nmatch'. We have to pass that on to the - * matching routines. */ - private_preg.regs_allocated = REGS_FIXED; - - if (want_reg_info) { - regs.num_regs = nmatch; - regs.start = TALLOC(nmatch, regoff_t); - regs.end = TALLOC(nmatch, regoff_t); - if (regs.start == NULL || regs.end == NULL) - return (int) REG_NOMATCH; - } - /* Perform the searching operation. */ - ret = re_search(&private_preg, string, len, - /* start: */ 0, /* range: */ len, - want_reg_info ? ®s : (struct re_registers *) 0); - - /* Copy the register information to the POSIX structure. */ - if (want_reg_info) { - if (ret >= 0) { - unsigned r; - - for (r = 0; r < nmatch; r++) { - pmatch[r].rm_so = regs.start[r]; - pmatch[r].rm_eo = regs.end[r]; - } - } - /* If we needed the temporary register info, free the space now. */ - free(regs.start); - free(regs.end); - } - /* We want zero return to mean success, unlike `re_search'. */ - return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; -} - -/* Returns a message corresponding to an error code, ERRCODE, returned - * from either regcomp or regexec. We don't use PREG here. */ - -size_t -regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size) -{ - const char *msg; - size_t msg_size; - - if (errcode < 0 - || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0]))) - /* Only error codes returned by the rest of the code should be passed - * to this routine. If we are given anything else, or if other regex - * code generates an invalid error code, then the program has a bug. - * Dump core so we can fix it. */ - abort(); - - msg = re_error_msg[errcode]; - - /* POSIX doesn't require that we do anything in this case, but why - * not be nice. */ - if (!msg) - msg = "Success"; - - msg_size = strlen(msg) + 1; /* Includes the null. */ - - if (errbuf_size != 0) { - if (msg_size > errbuf_size) { - strncpy(errbuf, msg, errbuf_size - 1); - errbuf[errbuf_size - 1] = 0; - } else - strcpy(errbuf, msg); - } - return msg_size; -} - -/* Free dynamically allocated space used by PREG. */ - -void -regfree(preg) -regex_t *preg; -{ - if (preg->buffer != NULL) - free(preg->buffer); - preg->buffer = NULL; - - preg->allocated = 0; - preg->used = 0; - - if (preg->fastmap != NULL) - free(preg->fastmap); - preg->fastmap = NULL; - preg->fastmap_accurate = 0; - - if (preg->translate != NULL) - free(preg->translate); - preg->translate = NULL; -} -#endif /* USE_GNUREGEX */ - -/* - * Local variables: - * make-backup-files: t - * version-control: t - * trim-versions-without-asking: nil - * End: - */ - diff --git a/compat/GnuRegex.h b/compat/GnuRegex.h deleted file mode 100644 index 29ced47fbf..0000000000 --- a/compat/GnuRegex.h +++ /dev/null @@ -1,413 +0,0 @@ -/* - * Copyright (C) 1996-2022 The Squid Software Foundation and contributors - * - * Squid software is distributed under GPLv2+ license and includes - * contributions from numerous individuals and organizations. - * Please see the COPYING and CONTRIBUTORS files for details. - */ - -#ifndef SQUID_REGEXP_LIBRARY_H -#define SQUID_REGEXP_LIBRARY_H - -#if !USE_GNUREGEX /* try the system one by default */ - -/* POSIX says that must be included (by the caller) before - * . */ -#if HAVE_SYS_TYPES_H -#include -#endif -#if HAVE_REGEX_H -#include -#endif - -#else /* USE_GNUREGEX */ - -#ifdef __cplusplus -extern "C" { -#endif - -/* Definitions for data structures and routines for the regular - * expression library, version 0.12. - * - * Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */ - -/* POSIX says that must be included (by the caller) before - * . */ - -/* The following bits are used to determine the regexp syntax we - * recognize. The set/not-set meanings are chosen so that Emacs syntax - * remains the value 0. The bits are given in alphabetical order, and - * the definitions shifted by one from the previous bit; thus, when we - * add or remove a bit, only one other definition need change. */ -typedef unsigned reg_syntax_t; - -/* If this bit is not set, then \ inside a bracket expression is literal. - * If set, then such a \ quotes the following character. */ -#define RE_BACKSLASH_ESCAPE_IN_LISTS (1) - -/* If this bit is not set, then + and ? are operators, and \+ and \? are - * literals. - * If set, then \+ and \? are operators and + and ? are literals. */ -#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) - -/* If this bit is set, then character classes are supported. They are: - * [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], - * [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. - * If not set, then character classes are not supported. */ -#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) - -/* If this bit is set, then ^ and $ are always anchors (outside bracket - * expressions, of course). - * If this bit is not set, then it depends: - * ^ is an anchor if it is at the beginning of a regular - * expression or after an open-group or an alternation operator; - * $ is an anchor if it is at the end of a regular expression, or - * before a close-group or an alternation operator. - * - * This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because - * POSIX draft 11.2 says that * etc. in leading positions is undefined. - * We already implemented a previous draft which made those constructs - * invalid, though, so we haven't changed the code back. */ -#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) - -/* If this bit is set, then special characters are always special - * regardless of where they are in the pattern. - * If this bit is not set, then special characters are special only in - * some contexts; otherwise they are ordinary. Specifically, - * * + ? and intervals are only special when not after the beginning, - * open-group, or alternation operator. */ -#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) - -/* If this bit is set, then *, +, ?, and { cannot be first in an re or - * immediately after an alternation or begin-group operator. */ -#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) - -/* If this bit is set, then . matches newline. - * If not set, then it doesn't. */ -#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) - -/* If this bit is set, then . doesn't match NUL. - * If not set, then it does. */ -#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) - -/* If this bit is set, nonmatching lists [^...] do not match newline. - * If not set, they do. */ -#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) - -/* If this bit is set, either \{...\} or {...} defines an - * interval, depending on RE_NO_BK_BRACES. - * If not set, \{, \}, {, and } are literals. */ -#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) - -/* If this bit is set, +, ? and | aren't recognized as operators. - * If not set, they are. */ -#define RE_LIMITED_OPS (RE_INTERVALS << 1) - -/* If this bit is set, newline is an alternation operator. - * If not set, newline is literal. */ -#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) - -/* If this bit is set, then `{...}' defines an interval, and \{ and \} - * are literals. - * If not set, then `\{...\}' defines an interval. */ -#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) - -/* If this bit is set, (...) defines a group, and \( and \) are literals. - * If not set, \(...\) defines a group, and ( and ) are literals. */ -#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) - -/* If this bit is set, then \ matches . - * If not set, then \ is a back-reference. */ -#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) - -/* If this bit is set, then | is an alternation operator, and \| is literal. - * If not set, then \| is an alternation operator, and | is literal. */ -#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) - -/* If this bit is set, then an ending range point collating higher - * than the starting range point, as in [z-a], is invalid. - * If not set, then when ending range point collates higher than the - * starting range point, the range is ignored. */ -#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) - -/* If this bit is set, then an unmatched ) is ordinary. - * If not set, then an unmatched ) is invalid. */ -#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) - -/* Define combinations of the above bits for the standard possibilities. - * (The [[[ comments delimit what gets put into the Texinfo file, so - * don't delete them!) */ -/* [[[begin syntaxes]]] */ -#define RE_SYNTAX_EMACS 0 - -#define RE_SYNTAX_AWK \ - (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ - | RE_NO_BK_PARENS | RE_NO_BK_REFS \ - | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ - | RE_UNMATCHED_RIGHT_PAREN_ORD) - -#define RE_SYNTAX_POSIX_AWK \ - (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS) - -#define RE_SYNTAX_GREP \ - (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ - | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \ - | RE_NEWLINE_ALT) - -#define RE_SYNTAX_EGREP \ - (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \ - | RE_NEWLINE_ALT | RE_NO_BK_PARENS \ - | RE_NO_BK_VBAR) - -#define RE_SYNTAX_POSIX_EGREP \ - (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES) - -/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ -#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC - -#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC - -/* Syntax bits common to both basic and extended POSIX regex syntax. */ -#define _RE_SYNTAX_POSIX_COMMON \ - (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \ - | RE_INTERVALS | RE_NO_EMPTY_RANGES) - -#define RE_SYNTAX_POSIX_BASIC \ - (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM) - -/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes - * RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this - * isn't minimal, since other operators, such as \`, aren't disabled. */ -#define RE_SYNTAX_POSIX_MINIMAL_BASIC \ - (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) - -#define RE_SYNTAX_POSIX_EXTENDED \ - (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ - | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ - | RE_UNMATCHED_RIGHT_PAREN_ORD) - -/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS - * replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */ -#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ - (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ - | RE_NO_BK_PARENS | RE_NO_BK_REFS \ - | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD) -/* [[[end syntaxes]]] */ - -/* Maximum number of duplicates an interval can allow. Some systems - * (erroneously) define this in other header files, but we want our - * value, so remove any previous define. */ -#ifdef RE_DUP_MAX -#undef RE_DUP_MAX -#endif -#define RE_DUP_MAX ((1 << 15) - 1) - -/* POSIX `cflags' bits (i.e., information for `regcomp'). */ - -/* If this bit is set, then use extended regular expression syntax. - * If not set, then use basic regular expression syntax. */ -#define REG_EXTENDED 1 - -/* If this bit is set, then ignore case when matching. - * If not set, then case is significant. */ -#define REG_ICASE (REG_EXTENDED << 1) - -/* If this bit is set, then anchors do not match at newline - * characters in the string. - * If not set, then anchors do match at newlines. */ -#define REG_NEWLINE (REG_ICASE << 1) - -/* If this bit is set, then report only success or fail in regexec. - * If not set, then returns differ between not matching and errors. */ -#define REG_NOSUB (REG_NEWLINE << 1) - -/* POSIX `eflags' bits (i.e., information for regexec). */ - -/* If this bit is set, then the beginning-of-line operator doesn't match - * the beginning of the string (presumably because it's not the - * beginning of a line). - * If not set, then the beginning-of-line operator does match the - * beginning of the string. */ -#define REG_NOTBOL 1 - -/* Like REG_NOTBOL, except for the end-of-line. */ -#define REG_NOTEOL (1 << 1) - -/* If any error codes are removed, changed, or added, update the - * `re_error_msg' table in regex.c. */ -typedef enum { - REG_NOERROR = 0, /* Success. */ - REG_NOMATCH, /* Didn't find a match (for regexec). */ - - /* POSIX regcomp return error codes. (In the order listed in the - * standard.) */ - REG_BADPAT, /* Invalid pattern. */ - REG_ECOLLATE, /* Not implemented. */ - REG_ECTYPE, /* Invalid character class name. */ - REG_EESCAPE, /* Trailing backslash. */ - REG_ESUBREG, /* Invalid back reference. */ - REG_EBRACK, /* Unmatched left bracket. */ - REG_EPAREN, /* Parenthesis imbalance. */ - REG_EBRACE, /* Unmatched \{. */ - REG_BADBR, /* Invalid contents of \{\}. */ - REG_ERANGE, /* Invalid range end. */ - REG_ESPACE, /* Ran out of memory. */ - REG_BADRPT, /* No preceding re for repetition op. */ - - /* Error codes we've added. */ - REG_EEND, /* Premature end. */ - REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */ - REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */ -} reg_errcode_t; - -/* This data structure represents a compiled pattern. Before calling - * the pattern compiler, the fields `buffer', `allocated', `fastmap', - * `translate', and `no_sub' can be set. After the pattern has been - * compiled, the `re_nsub' field is available. All other fields are - * private to the regex routines. */ - -struct re_pattern_buffer { - /* [[[begin pattern_buffer]]] */ - /* Space that holds the compiled pattern. It is declared as - * `unsigned char *' because its elements are - * sometimes used as array indexes. */ - unsigned char *buffer; - - /* Number of bytes to which `buffer' points. */ - unsigned long allocated; - - /* Number of bytes actually used in `buffer'. */ - unsigned long used; - - /* Syntax setting with which the pattern was compiled. */ - reg_syntax_t syntax; - - /* Pointer to a fastmap, if any, otherwise zero. re_search uses - * the fastmap, if there is one, to skip over impossible - * starting points for matches. */ - char *fastmap; - - /* Either a translate table to apply to all characters before - * comparing them, or zero for no translation. The translation - * is applied to a pattern when it is compiled and to a string - * when it is matched. */ - char *translate; - - /* Number of subexpressions found by the compiler. */ - size_t re_nsub; - - /* Zero if this pattern cannot match the empty string, one else. - * Well, in truth it's used only in `re_search_2', to see - * whether or not we should use the fastmap, so we don't set - * this absolutely perfectly; see `re_compile_fastmap' (the - * `duplicate' case). */ - unsigned can_be_null:1; - - /* If REGS_UNALLOCATED, allocate space in the `regs' structure - * for `max (RE_NREGS, re_nsub + 1)' groups. - * If REGS_REALLOCATE, reallocate space if necessary. - * If REGS_FIXED, use what's there. */ -#define REGS_UNALLOCATED 0 -#define REGS_REALLOCATE 1 -#define REGS_FIXED 2 - unsigned regs_allocated:2; - - /* Set to zero when `regex_compile' compiles a pattern; set to one - * by `re_compile_fastmap' if it updates the fastmap. */ - unsigned fastmap_accurate:1; - - /* If set, `re_match_2' does not return information about - * subexpressions. */ - unsigned no_sub:1; - - /* If set, a beginning-of-line anchor doesn't match at the - * beginning of the string. */ - unsigned not_bol:1; - - /* Similarly for an end-of-line anchor. */ - unsigned not_eol:1; - - /* If true, an anchor at a newline matches. */ - unsigned newline_anchor:1; - - /* [[[end pattern_buffer]]] */ -}; - -typedef struct re_pattern_buffer regex_t; - -/* search.c (search_buffer) in Emacs needs this one opcode value. It is - * defined both in `regex.c' and here. */ -#define RE_EXACTN_VALUE 1 - -/* Type for byte offsets within the string. POSIX mandates this. */ -typedef int regoff_t; - -/* This is the structure we store register match data in. See - * regex.texinfo for a full description of what registers match. */ -struct re_registers { - unsigned num_regs; - regoff_t *start; - regoff_t *end; -}; - -/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, - * `re_match_2' returns information about at least this many registers - * the first time a `regs' structure is passed. */ -#ifndef RE_NREGS -#define RE_NREGS 30 -#endif - -/* POSIX specification for registers. Aside from the different names than - * `re_registers', POSIX uses an array of structures, instead of a - * structure of arrays. */ -typedef struct { - regoff_t rm_so; /* Byte offset from string's start to substring's start. */ - regoff_t rm_eo; /* Byte offset from string's start to substring's end. */ -} regmatch_t; - -/* Declarations for routines. */ - -/* To avoid duplicating every routine declaration -- once with a - * prototype (if we are ANSI), and once without (if we aren't) -- we - * use the following macro to declare argument types. This - * unfortunately clutters up the declarations a bit, but I think it's - * worth it. */ - -/* POSIX compatibility. */ -extern int regcomp(regex_t * preg, const char *pattern, int cflags); -extern int regexec(const regex_t * preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags); -extern size_t regerror(int errcode, const regex_t * preg, char *errbuf, size_t errbuf_size); -extern void regfree(regex_t * preg); - -#ifdef __cplusplus -} -#endif - -#endif /* USE_GNUREGEX */ -#endif /* SQUID_REGEXP_LIBRARY_H */ - -/* - * Local variables: - * make-backup-files: t - * version-control: t - * trim-versions-without-asking: nil - * End: - */ - diff --git a/compat/Makefile.am b/compat/Makefile.am index 4a668b61c8..cbb19b0933 100644 --- a/compat/Makefile.am +++ b/compat/Makefile.am @@ -16,8 +16,6 @@ include $(top_srcdir)/src/Common.am noinst_LTLIBRARIES = libcompatsquid.la libcompatsquid_la_SOURCES = \ - GnuRegex.c \ - GnuRegex.h \ assert.cc \ assert.h \ cmsg.h \ diff --git a/compat/compat.h b/compat/compat.h index 3c1f12c6f0..f0310e1e5a 100644 --- a/compat/compat.h +++ b/compat/compat.h @@ -106,12 +106,5 @@ /* Valgrind API macros changed between two versions squid supports */ #include "compat/valgrind.h" -/** - * A Regular Expression library is bundled with Squid. - * Default is to use a system provided one, but the bundle - * may be used instead with explicit configuration. - */ -#include "compat/GnuRegex.h" - #endif /* _SQUID_COMPAT_H */ diff --git a/configure.ac b/configure.ac index 2e4c0488a8..db986911aa 100644 --- a/configure.ac +++ b/configure.ac @@ -2968,36 +2968,6 @@ AS_IF(test "x$enable_zph_qos" = "xyes"],[ ]) AC_CHECK_LIB(regex, regexec, [REGEXLIB="-lregex"],[REGEXLIB='']) -AC_ARG_ENABLE(gnuregex, - AS_HELP_STRING([--enable-gnuregex], - [Compile GNUregex. Unless you have reason to use - this option, you should not enable it. - This library file is usually only required on Windows and - very old Unix boxes which do not have their own regex - library built in.]), [ - SQUID_YESNO([$enableval],[--enable-gnuregex]) -]) -# force-enable on old solaris -AS_IF([test "x${enable_gnuregex:=auto}" = "xauto"],[ - AS_CASE(["$host"], - [*-sun-solaris2.[[0-4]]],[enable_gnuregex="yes"] - ) -]) - -# try detecting if it is needed -AS_IF([test "x$enable_gnuregex" = "xauto"],[ - SQUID_CHECK_REGEX_WORKS - AS_IF([test "x$squid_cv_regex_works" = "xyes"],[enable_gnuregex=no],[enable_gnuregex=yes]) -]) -AC_MSG_CHECKING(if GNUregex needs to be compiled) -AC_MSG_RESULT($enable_gnuregex) -AS_IF([test "x$enable_gnuregex" = "xyes"],[ - # for some reason (force-enable, test..) gnuregex was found as needed. Override any system lib - REGEXLIB="" -]) -#if no reason was found to enable gnuregex, disable it -AS_IF([test "x$enable_gnuregex" = "xauto"],[enable_gnuregex=no]) -SQUID_DEFINE_BOOL(USE_GNUREGEX,$enable_gnuregex,[Define if we should use GNU regex]) AC_SUBST(REGEXLIB) SQUID_DETECT_UDP_SND_BUFSIZE diff --git a/squid.dox b/squid.dox index f9a9f839bd..4780186f5d 100644 --- a/squid.dox +++ b/squid.dox @@ -2083,7 +2083,6 @@ PREDEFINED = __cplusplus \ USE_ERR_LOCALES \ USE_EPOLL \ USE_GNUGSS \ - USE_GNUREGEX \ USE_GNUTLS \ USE_HEIMDAL_KRB5 \ USE_HEXDUMP \ diff --git a/src/base/RegexPattern.h b/src/base/RegexPattern.h index e8e3dfa0d0..3c2e8fa115 100644 --- a/src/base/RegexPattern.h +++ b/src/base/RegexPattern.h @@ -9,10 +9,13 @@ #ifndef SQUID_SRC_BASE_REGEXPATTERN_H #define SQUID_SRC_BASE_REGEXPATTERN_H -#include "compat/GnuRegex.h" #include "mem/forward.h" #include "sbuf/SBuf.h" +#if HAVE_REGEX_H +#include +#endif + /** * A regular expression, * plain text and compiled representations diff --git a/src/clients/FtpGateway.cc b/src/clients/FtpGateway.cc index 087bc2a7af..fb7882084e 100644 --- a/src/clients/FtpGateway.cc +++ b/src/clients/FtpGateway.cc @@ -46,6 +46,9 @@ #endif #include +#if HAVE_REGEX_H +#include +#endif namespace Ftp { diff --git a/src/mime.cc b/src/mime.cc index d1516b6f56..3c3829b646 100644 --- a/src/mime.cc +++ b/src/mime.cc @@ -26,6 +26,10 @@ #include +#if HAVE_REGEX_H +#include +#endif + #if HAVE_SYS_STAT_H #include #endif diff --git a/test-suite/buildtests/layer-01-minimal.opts b/test-suite/buildtests/layer-01-minimal.opts index bb88bda275..4c1e896d33 100644 --- a/test-suite/buildtests/layer-01-minimal.opts +++ b/test-suite/buildtests/layer-01-minimal.opts @@ -39,7 +39,6 @@ MAKETEST="distcheck" DISTCHECK_CONFIGURE_FLAGS=" \ --disable-build-info \ --disable-shared \ - --disable-gnuregex \ --disable-xmalloc-statistics \ --disable-async-io \ --disable-storeio \ diff --git a/test-suite/buildtests/layer-02-maximus.opts b/test-suite/buildtests/layer-02-maximus.opts index 8ce7d0908f..f5f23f8a68 100644 --- a/test-suite/buildtests/layer-02-maximus.opts +++ b/test-suite/buildtests/layer-02-maximus.opts @@ -58,7 +58,6 @@ MAKETEST="distcheck" # we use it to perform the same duty between our nested scripts. DISTCHECK_CONFIGURE_FLAGS=" \ --enable-shared \ - --enable-gnuregex \ --enable-optimizations \ --enable-xmalloc-statistics \ --enable-async-io \ diff --git a/test-suite/buildtests/layer-04-noauth-everything.opts b/test-suite/buildtests/layer-04-noauth-everything.opts index eed5a37862..8b4cb38b20 100644 --- a/test-suite/buildtests/layer-04-noauth-everything.opts +++ b/test-suite/buildtests/layer-04-noauth-everything.opts @@ -57,7 +57,6 @@ MAKETEST="distcheck" # we use it to perform the same duty between our nested scripts. DISTCHECK_CONFIGURE_FLAGS=" \ --enable-shared \ - --enable-gnuregex \ --enable-optimizations \ --enable-inline \ --enable-xmalloc-statistics \ diff --git a/tools/purge/conffile.cc b/tools/purge/conffile.cc index eedf3db783..1e8b6aa305 100644 --- a/tools/purge/conffile.cc +++ b/tools/purge/conffile.cc @@ -47,9 +47,14 @@ #include #include #include -#include #include +#if HAVE_REGEX_H +#include +#endif + +#include + int readConfigFile( CacheDirVector& cachedir, const char* fn, FILE* debug ) // purpose: read squid.conf file and extract cache_dir entries diff --git a/tools/purge/purge.cc b/tools/purge/purge.cc index 3b939b1a69..ac999f3424 100644 --- a/tools/purge/purge.cc +++ b/tools/purge/purge.cc @@ -113,6 +113,10 @@ #include #include +#if HAVE_REGEX_H +#include +#endif + #if HAVE_SIGINFO_H #include #endif