From: Thomas Gleixner Date: Tue, 21 Apr 2020 09:20:41 +0000 (+0200) Subject: x86/tlb: Move PCID helpers where they are used X-Git-Tag: v5.8-rc1~134^2~4 X-Git-Url: http://git.ipfire.org/?a=commitdiff_plain;h=6c9b7d79a801074837c683fc996e231266ca47ae;p=thirdparty%2Flinux.git x86/tlb: Move PCID helpers where they are used Aside of the fact that they are used only in the TLB code, especially having the comment close to the actual implementation makes a lot of sense. Signed-off-by: Thomas Gleixner Signed-off-by: Borislav Petkov Reviewed-by: Alexandre Chartre Acked-by: Peter Zijlstra (Intel) Link: https://lkml.kernel.org/r/20200421092600.145772183@linutronix.de --- diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h index 1c17f5a6cb538..f9731219a28d0 100644 --- a/arch/x86/include/asm/tlbflush.h +++ b/arch/x86/include/asm/tlbflush.h @@ -13,133 +13,6 @@ #include #include -/* - * The x86 feature is called PCID (Process Context IDentifier). It is similar - * to what is traditionally called ASID on the RISC processors. - * - * We don't use the traditional ASID implementation, where each process/mm gets - * its own ASID and flush/restart when we run out of ASID space. - * - * Instead we have a small per-cpu array of ASIDs and cache the last few mm's - * that came by on this CPU, allowing cheaper switch_mm between processes on - * this CPU. - * - * We end up with different spaces for different things. To avoid confusion we - * use different names for each of them: - * - * ASID - [0, TLB_NR_DYN_ASIDS-1] - * the canonical identifier for an mm - * - * kPCID - [1, TLB_NR_DYN_ASIDS] - * the value we write into the PCID part of CR3; corresponds to the - * ASID+1, because PCID 0 is special. - * - * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] - * for KPTI each mm has two address spaces and thus needs two - * PCID values, but we can still do with a single ASID denomination - * for each mm. Corresponds to kPCID + 2048. - * - */ - -/* There are 12 bits of space for ASIDS in CR3 */ -#define CR3_HW_ASID_BITS 12 - -/* - * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for - * user/kernel switches - */ -#ifdef CONFIG_PAGE_TABLE_ISOLATION -# define PTI_CONSUMED_PCID_BITS 1 -#else -# define PTI_CONSUMED_PCID_BITS 0 -#endif - -#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) - -/* - * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account - * for them being zero-based. Another -1 is because PCID 0 is reserved for - * use by non-PCID-aware users. - */ -#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) - -/* - * 6 because 6 should be plenty and struct tlb_state will fit in two cache - * lines. - */ -#define TLB_NR_DYN_ASIDS 6 - -/* - * Given @asid, compute kPCID - */ -static inline u16 kern_pcid(u16 asid) -{ - VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); - -#ifdef CONFIG_PAGE_TABLE_ISOLATION - /* - * Make sure that the dynamic ASID space does not confict with the - * bit we are using to switch between user and kernel ASIDs. - */ - BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); - - /* - * The ASID being passed in here should have respected the - * MAX_ASID_AVAILABLE and thus never have the switch bit set. - */ - VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); -#endif - /* - * The dynamically-assigned ASIDs that get passed in are small - * ( MAX_ASID_AVAILABLE); - /* - * Use boot_cpu_has() instead of this_cpu_has() as this function - * might be called during early boot. This should work even after - * boot because all CPU's the have same capabilities: - */ - VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); - return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; -} - struct flush_tlb_info; void __flush_tlb_all(void); @@ -153,6 +26,12 @@ void flush_tlb_others(const struct cpumask *cpumask, #include #endif +/* + * 6 because 6 should be plenty and struct tlb_state will fit in two cache + * lines. + */ +#define TLB_NR_DYN_ASIDS 6 + struct tlb_context { u64 ctx_id; u64 tlb_gen; diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c index 45426ae8e7d73..cf81902e6992f 100644 --- a/arch/x86/mm/tlb.c +++ b/arch/x86/mm/tlb.c @@ -48,6 +48,126 @@ */ #define LAST_USER_MM_IBPB 0x1UL +/* + * The x86 feature is called PCID (Process Context IDentifier). It is similar + * to what is traditionally called ASID on the RISC processors. + * + * We don't use the traditional ASID implementation, where each process/mm gets + * its own ASID and flush/restart when we run out of ASID space. + * + * Instead we have a small per-cpu array of ASIDs and cache the last few mm's + * that came by on this CPU, allowing cheaper switch_mm between processes on + * this CPU. + * + * We end up with different spaces for different things. To avoid confusion we + * use different names for each of them: + * + * ASID - [0, TLB_NR_DYN_ASIDS-1] + * the canonical identifier for an mm + * + * kPCID - [1, TLB_NR_DYN_ASIDS] + * the value we write into the PCID part of CR3; corresponds to the + * ASID+1, because PCID 0 is special. + * + * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] + * for KPTI each mm has two address spaces and thus needs two + * PCID values, but we can still do with a single ASID denomination + * for each mm. Corresponds to kPCID + 2048. + * + */ + +/* There are 12 bits of space for ASIDS in CR3 */ +#define CR3_HW_ASID_BITS 12 + +/* + * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for + * user/kernel switches + */ +#ifdef CONFIG_PAGE_TABLE_ISOLATION +# define PTI_CONSUMED_PCID_BITS 1 +#else +# define PTI_CONSUMED_PCID_BITS 0 +#endif + +#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) + +/* + * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account + * for them being zero-based. Another -1 is because PCID 0 is reserved for + * use by non-PCID-aware users. + */ +#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) + +/* + * Given @asid, compute kPCID + */ +static inline u16 kern_pcid(u16 asid) +{ + VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); + +#ifdef CONFIG_PAGE_TABLE_ISOLATION + /* + * Make sure that the dynamic ASID space does not confict with the + * bit we are using to switch between user and kernel ASIDs. + */ + BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); + + /* + * The ASID being passed in here should have respected the + * MAX_ASID_AVAILABLE and thus never have the switch bit set. + */ + VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); +#endif + /* + * The dynamically-assigned ASIDs that get passed in are small + * ( MAX_ASID_AVAILABLE); + /* + * Use boot_cpu_has() instead of this_cpu_has() as this function + * might be called during early boot. This should work even after + * boot because all CPU's the have same capabilities: + */ + VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); + return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; +} + /* * We get here when we do something requiring a TLB invalidation * but could not go invalidate all of the contexts. We do the