From: drh Date: Thu, 30 May 2013 17:43:19 +0000 (+0000) Subject: Cut over the NGQP query planner. Remove lots of legacy code. X-Git-Tag: version-3.8.0~130^2~66 X-Git-Url: http://git.ipfire.org/?a=commitdiff_plain;h=7ba39a921a326294e679c755aab2172a700e695b;p=thirdparty%2Fsqlite.git Cut over the NGQP query planner. Remove lots of legacy code. This check-in compiles but does not work. The test suite gets incorrect answers and crashes. FossilOrigin-Name: 001539df4b74dc1cbceb010a91407003ab4d8735 --- diff --git a/manifest b/manifest index 39a8c39490..7344d1b38d 100644 --- a/manifest +++ b/manifest @@ -1,5 +1,5 @@ -C Merge\srecent\strunk\schanges\sinto\sthe\sNGQP\sbranch. -D 2013-05-30T11:48:36.654 +C Cut\sover\sthe\sNGQP\squery\splanner.\s\sRemove\slots\sof\slegacy\scode.\s\s\nThis\scheck-in\scompiles\sbut\sdoes\snot\swork.\s\sThe\stest\ssuite\sgets\sincorrect\nanswers\sand\scrashes. +D 2013-05-30T17:43:19.293 F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f F Makefile.in 5e41da95d92656a5004b03d3576e8b226858a28e F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23 @@ -220,7 +220,7 @@ F src/shell.c 9a18124ff209ca308d786c99a466e8e270193ff3 F src/sqlite.h.in 5b390ca5d94e09e56e7fee6a51ddde4721b89f8e F src/sqlite3.rc fea433eb0a59f4c9393c8e6d76a6e2596b1fe0c0 F src/sqlite3ext.h d936f797812c28b81b26ed18345baf8db28a21a5 -F src/sqliteInt.h 55f43f10f165c8c17334e33a11b2d58a557b4a2c +F src/sqliteInt.h c386fb7c61c03a0a65d78e326016449767be5b93 F src/sqliteLimit.h 164b0e6749d31e0daa1a4589a169d31c0dec7b3d F src/status.c bedc37ec1a6bb9399944024d63f4c769971955a9 F src/table.c 2cd62736f845d82200acfa1287e33feb3c15d62e @@ -289,7 +289,7 @@ F src/vtab.c b05e5f1f4902461ba9f5fc49bb7eb7c3a0741a83 F src/wal.c 436bfceb141b9423c45119e68e444358ee0ed35d F src/wal.h df01efe09c5cb8c8e391ff1715cca294f89668a4 F src/walker.c 4fa43583d0a84b48f93b1e88f11adf2065be4e73 -F src/where.c 3f4f25df651e8cea5b02d94aeee28838e9c5e2c3 +F src/where.c 296baae1cbfd99527d8c87f9773a6c98116f6b8a F test/8_3_names.test ebbb5cd36741350040fd28b432ceadf495be25b2 F test/aggerror.test a867e273ef9e3d7919f03ef4f0e8c0d2767944f2 F test/aggnested.test 45c0201e28045ad38a530b5a144b73cd4aa2cfd6 @@ -1093,7 +1093,7 @@ F tool/vdbe-compress.tcl f12c884766bd14277f4fcedcae07078011717381 F tool/warnings-clang.sh f6aa929dc20ef1f856af04a730772f59283631d4 F tool/warnings.sh fbc018d67fd7395f440c28f33ef0f94420226381 F tool/win/sqlite.vsix 97894c2790eda7b5bce3cc79cb2a8ec2fde9b3ac -P 211f7a5374fe20a02535edc8b799a8a7136ff6b3 d5b084e9d8cfe9c0c339aca076d472bb50aa764c -R 6c4c190a12a33f58ef606f4f8676d338 +P aebe1f2603ee04d792af73aaf59625bda99d5cd1 +R cdb9a6b0104d69931bfa04869e682c85 U drh -Z e692c34c627e293c83ac7dc20bf238bc +Z 36d07876c5b50e19bee990a15e1431a7 diff --git a/manifest.uuid b/manifest.uuid index eeb2053b55..ea56fcb1ab 100644 --- a/manifest.uuid +++ b/manifest.uuid @@ -1 +1 @@ -aebe1f2603ee04d792af73aaf59625bda99d5cd1 \ No newline at end of file +001539df4b74dc1cbceb010a91407003ab4d8735 \ No newline at end of file diff --git a/src/sqliteInt.h b/src/sqliteInt.h index 45a587780b..a0e7bba7d6 100644 --- a/src/sqliteInt.h +++ b/src/sqliteInt.h @@ -1989,7 +1989,6 @@ struct WherePlan { ** after FROM clause ordering. */ struct WhereLevel { - WherePlan plan; /* query plan for this element of the FROM clause */ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ @@ -1997,7 +1996,7 @@ struct WhereLevel { int addrNxt; /* Jump here to start the next IN combination */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ - u8 iFrom; /* Which entry in the FROM clause */ + u8 iFrom; /* FIXME: Which entry in the FROM clause */ u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on plan.wsFlags */ @@ -2011,16 +2010,7 @@ struct WhereLevel { } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ } u; - double rOptCost; /* "Optimal" cost for this level */ struct WhereLoop *pWLoop; /* The selected WhereLoop object */ - - /* The following field is really not part of the current level. But - ** we need a place to cache virtual table index information for each - ** virtual table in the FROM clause and the WhereLevel structure is - ** a convenient place since there is one WhereLevel for each FROM clause - ** element. - */ - sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ }; /* diff --git a/src/where.c b/src/where.c index b0b953af30..a9a431ba9a 100644 --- a/src/where.c +++ b/src/where.c @@ -60,7 +60,7 @@ struct WhereLoop { #ifdef SQLITE_DEBUG char cId; /* Symbolic ID of this loop for debugging use */ #endif - u8 iTab; /* Position in FROM clause of table coded by this loop */ + u8 iTab; /* Position in FROM clause of table for this loop */ u8 iSortIdx; /* Sorting index number. 0==None */ u16 nTerm; /* Number of entries in aTerm[] */ u32 wsFlags; /* WHERE_* flags describing the plan */ @@ -190,7 +190,7 @@ struct WhereScan { WhereTerm *pCurrent; /* Most recent match */ WhereClause *pOrigWC; /* Original, innermost WhereClause */ WhereClause *pWC; /* WhereClause currently being scanned */ - char *zCollName; /* Must have this collating sequence, if not NULL */ + char *zCollName; /* Required collating sequence, if not NULL */ char idxaff; /* Must match this affinity, if zCollName!=NULL */ unsigned char nEquiv; /* Number of entries in aEquiv[] */ unsigned char iEquiv; /* Next unused slot in aEquiv[] */ @@ -376,17 +376,6 @@ struct WhereBestIdx { WhereCost cost; /* Lowest cost query plan */ }; -/* -** Return TRUE if the probe cost is less than the baseline cost -*/ -static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){ - if( pProbe->rCostrCost ) return 1; - if( pProbe->rCost>pBaseline->rCost ) return 0; - if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1; - if( pProbe->plan.nRowplan.nRow ) return 1; - return 0; -} - /* ** Initialize a preallocated WhereClause structure. */ @@ -1691,66 +1680,6 @@ static int findIndexCol( return -1; } -/* -** This routine determines if pIdx can be used to assist in processing a -** DISTINCT qualifier. In other words, it tests whether or not using this -** index for the outer loop guarantees that rows with equal values for -** all expressions in the pDistinct list are delivered grouped together. -** -** For example, the query -** -** SELECT DISTINCT a, b, c FROM tbl WHERE a = ? -** -** can benefit from any index on columns "b" and "c". -*/ -static int isDistinctIndex( - Parse *pParse, /* Parsing context */ - WhereClause *pWC, /* The WHERE clause */ - Index *pIdx, /* The index being considered */ - int base, /* Cursor number for the table pIdx is on */ - ExprList *pDistinct, /* The DISTINCT expressions */ - int nEqCol /* Number of index columns with == */ -){ - Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */ - int i; /* Iterator variable */ - - assert( pDistinct!=0 ); - if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0; - testcase( pDistinct->nExpr==BMS-1 ); - - /* Loop through all the expressions in the distinct list. If any of them - ** are not simple column references, return early. Otherwise, test if the - ** WHERE clause contains a "col=X" clause. If it does, the expression - ** can be ignored. If it does not, and the column does not belong to the - ** same table as index pIdx, return early. Finally, if there is no - ** matching "col=X" expression and the column is on the same table as pIdx, - ** set the corresponding bit in variable mask. - */ - for(i=0; inExpr; i++){ - WhereTerm *pTerm; - Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); - if( p->op!=TK_COLUMN ) return 0; - pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0); - if( pTerm ){ - Expr *pX = pTerm->pExpr; - CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); - CollSeq *p2 = sqlite3ExprCollSeq(pParse, p); - if( p1==p2 ) continue; - } - if( p->iTable!=base ) return 0; - mask |= (((Bitmask)1) << i); - } - - for(i=nEqCol; mask && inColumn; i++){ - int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i); - if( iExpr<0 ) break; - mask &= ~(((Bitmask)1) << iExpr); - } - - return (mask==0); -} - - /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. A DISTINCT list is redundant if the database contains a @@ -1878,106 +1807,6 @@ static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ #define TRACE_IDX_OUTPUTS(A) #endif -/* -** Required because bestIndex() is called by bestOrClauseIndex() -*/ -static void bestIndex(WhereBestIdx*); - -/* -** This routine attempts to find an scanning strategy that can be used -** to optimize an 'OR' expression that is part of a WHERE clause. -** -** The table associated with FROM clause term pSrc may be either a -** regular B-Tree table or a virtual table. -*/ -static void bestOrClauseIndex(WhereBestIdx *p){ -#ifndef SQLITE_OMIT_OR_OPTIMIZATION - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - const int iCur = pSrc->iCursor; /* The cursor of the table */ - const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ - WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ - - /* The OR-clause optimization is disallowed if the INDEXED BY or - ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */ - if( pSrc->notIndexed || pSrc->pIndex!=0 ){ - return; - } - if( pWC->wctrlFlags & WHERE_AND_ONLY ){ - return; - } - - /* Search the WHERE clause terms for a usable WO_OR term. */ - for(pTerm=pWC->a; pTermeOperator & WO_OR)!=0 - && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0 - && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 - ){ - WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; - WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; - WhereTerm *pOrTerm; - double rTotal = 0; - double nRow = 0; - Bitmask used = 0; - WhereBestIdx sBOI; - - sBOI = *p; - sBOI.pOrderBy = 0; - sBOI.pDistinct = 0; - sBOI.ppIdxInfo = 0; - for(pOrTerm=pOrWC->a; pOrTerma), (pTerm - pWC->a) - ));*/ - if( (pOrTerm->eOperator& WO_AND)!=0 ){ - sBOI.pWC = &pOrTerm->u.pAndInfo->wc; - bestIndex(&sBOI); - }else if( pOrTerm->leftCursor==iCur ){ - WhereClause tempWC; - tempWC.pParse = pWC->pParse; - tempWC.pMaskSet = pWC->pMaskSet; - tempWC.pOuter = pWC; - tempWC.op = TK_AND; - tempWC.a = pOrTerm; - tempWC.wctrlFlags = 0; - tempWC.nTerm = 1; - sBOI.pWC = &tempWC; - bestIndex(&sBOI); - }else{ - continue; - } - rTotal += sBOI.cost.rCost; - nRow += sBOI.cost.plan.nRow; - used |= sBOI.cost.used; - if( rTotal>=p->cost.rCost ) break; - } - - /* If there is an ORDER BY clause, increase the scan cost to account - ** for the cost of the sort. */ - if( p->pOrderBy!=0 ){ - /*WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", - rTotal, rTotal+nRow*estLog(nRow)));*/ - rTotal += nRow*estLog(nRow); - } - - /* If the cost of scanning using this OR term for optimization is - ** less than the current cost stored in pCost, replace the contents - ** of pCost. */ - /*WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));*/ - if( rTotalcost.rCost ){ - p->cost.rCost = rTotal; - p->cost.used = used; - p->cost.plan.nRow = nRow; - p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; - p->cost.plan.wsFlags = WHERE_MULTI_OR; - p->cost.plan.u.pTerm = pTerm; - } - } - } -#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ -} - #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it @@ -2000,82 +1829,6 @@ static int termCanDriveIndex( } #endif -#ifndef SQLITE_OMIT_AUTOMATIC_INDEX -/* -** If the query plan for pSrc specified in pCost is a full table scan -** and indexing is allows (if there is no NOT INDEXED clause) and it -** possible to construct a transient index that would perform better -** than a full table scan even when the cost of constructing the index -** is taken into account, then alter the query plan to use the -** transient index. -*/ -static void bestAutomaticIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - double nTableRow; /* Rows in the input table */ - double logN; /* log(nTableRow) */ - double costTempIdx; /* per-query cost of the transient index */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ - WhereTerm *pWCEnd; /* End of pWC->a[] */ - Table *pTable; /* Table tht might be indexed */ - - if( pParse->nQueryLoop<=(double)1 ){ - /* There is no point in building an automatic index for a single scan */ - return; - } - if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ - /* Automatic indices are disabled at run-time */ - return; - } - if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 - && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0 - ){ - /* We already have some kind of index in use for this query. */ - return; - } - if( pSrc->viaCoroutine ){ - /* Cannot index a co-routine */ - return; - } - if( pSrc->notIndexed ){ - /* The NOT INDEXED clause appears in the SQL. */ - return; - } - if( pSrc->isCorrelated ){ - /* The source is a correlated sub-query. No point in indexing it. */ - return; - } - - assert( pParse->nQueryLoop >= (double)1 ); - pTable = pSrc->pTab; - nTableRow = pTable->nRowEst; - logN = estLog(nTableRow); - costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); - if( costTempIdx>=p->cost.rCost ){ - /* The cost of creating the transient table would be greater than - ** doing the full table scan */ - return; - } - - /* Search for any equality comparison term */ - pWCEnd = &pWC->a[pWC->nTerm]; - for(pTerm=pWC->a; pTermnotReady) ){ - /*WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", - p->cost.rCost, costTempIdx));*/ - p->cost.rCost = costTempIdx; - p->cost.plan.nRow = logN + 1; - p->cost.plan.wsFlags = WHERE_TEMP_INDEX; - p->cost.used = pTerm->prereqRight; - break; - } - } -} -#else -# define bestAutomaticIndex(A) /* no-op */ -#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ - #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* @@ -2105,6 +1858,7 @@ static void constructAutomaticIndex( int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ + WhereLoop *pLoop; /* The Loop object */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ @@ -2119,6 +1873,7 @@ static void constructAutomaticIndex( nColumn = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; + pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTerm0 ); - pLevel->plan.nEq = nColumn; + pLoop->u.btree.nEq = nColumn; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all @@ -2153,7 +1908,7 @@ static void constructAutomaticIndex( if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ nColumn += pTable->nCol - BMS + 1; } - pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; + pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY; /* Construct the Index object to describe this index */ nByte = sizeof(Index); @@ -2162,7 +1917,7 @@ static void constructAutomaticIndex( nByte += nColumn; /* Index.aSortOrder */ pIdx = sqlite3DbMallocZero(pParse->db, nByte); if( pIdx==0 ) return; - pLevel->plan.u.pIdx = pIdx; + pLoop->u.btree.pIndex = pIdx; pIdx->azColl = (char**)&pIdx[1]; pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; @@ -2185,7 +1940,7 @@ static void constructAutomaticIndex( } } } - assert( (u32)n==pLevel->plan.nEq ); + assert( (u32)n==pLoop->u.btree.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ @@ -2384,208 +2139,9 @@ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ return pParse->nErr; } +#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ -/* -** Compute the best index for a virtual table. -** -** The best index is computed by the xBestIndex method of the virtual -** table module. This routine is really just a wrapper that sets up -** the sqlite3_index_info structure that is used to communicate with -** xBestIndex. -** -** In a join, this routine might be called multiple times for the -** same virtual table. The sqlite3_index_info structure is created -** and initialized on the first invocation and reused on all subsequent -** invocations. The sqlite3_index_info structure is also used when -** code is generated to access the virtual table. The whereInfoDelete() -** routine takes care of freeing the sqlite3_index_info structure after -** everybody has finished with it. -*/ -static void bestVirtualIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - Table *pTab = pSrc->pTab; - sqlite3_index_info *pIdxInfo; - struct sqlite3_index_constraint *pIdxCons; - struct sqlite3_index_constraint_usage *pUsage; - WhereTerm *pTerm; - int i, j; - int nOrderBy; - int bAllowIN; /* Allow IN optimizations */ - double rCost; - - /* Make sure wsFlags is initialized to some sane value. Otherwise, if the - ** malloc in allocateIndexInfo() fails and this function returns leaving - ** wsFlags in an uninitialized state, the caller may behave unpredictably. - */ - memset(&p->cost, 0, sizeof(p->cost)); - p->cost.plan.wsFlags = WHERE_VIRTUALTABLE; - - /* If the sqlite3_index_info structure has not been previously - ** allocated and initialized, then allocate and initialize it now. - */ - pIdxInfo = *p->ppIdxInfo; - if( pIdxInfo==0 ){ - *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse,pWC,pSrc,p->pOrderBy); - } - if( pIdxInfo==0 ){ - return; - } - - /* At this point, the sqlite3_index_info structure that pIdxInfo points - ** to will have been initialized, either during the current invocation or - ** during some prior invocation. Now we just have to customize the - ** details of pIdxInfo for the current invocation and pass it to - ** xBestIndex. - */ - - /* The module name must be defined. Also, by this point there must - ** be a pointer to an sqlite3_vtab structure. Otherwise - ** sqlite3ViewGetColumnNames() would have picked up the error. - */ - assert( pTab->azModuleArg && pTab->azModuleArg[0] ); - assert( sqlite3GetVTable(pParse->db, pTab) ); - - /* Try once or twice. On the first attempt, allow IN optimizations. - ** If an IN optimization is accepted by the virtual table xBestIndex - ** method, but the pInfo->aConstrainUsage.omit flag is not set, then - ** the query will not work because it might allow duplicate rows in - ** output. In that case, run the xBestIndex method a second time - ** without the IN constraints. Usually this loop only runs once. - ** The loop will exit using a "break" statement. - */ - for(bAllowIN=1; 1; bAllowIN--){ - assert( bAllowIN==0 || bAllowIN==1 ); - - /* Set the aConstraint[].usable fields and initialize all - ** output variables to zero. - ** - ** aConstraint[].usable is true for constraints where the right-hand - ** side contains only references to tables to the left of the current - ** table. In other words, if the constraint is of the form: - ** - ** column = expr - ** - ** and we are evaluating a join, then the constraint on column is - ** only valid if all tables referenced in expr occur to the left - ** of the table containing column. - ** - ** The aConstraints[] array contains entries for all constraints - ** on the current table. That way we only have to compute it once - ** even though we might try to pick the best index multiple times. - ** For each attempt at picking an index, the order of tables in the - ** join might be different so we have to recompute the usable flag - ** each time. - */ - pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; - pUsage = pIdxInfo->aConstraintUsage; - for(i=0; inConstraint; i++, pIdxCons++){ - j = pIdxCons->iTermOffset; - pTerm = &pWC->a[j]; - if( (pTerm->prereqRight&p->notReady)==0 - && (bAllowIN || (pTerm->eOperator & WO_IN)==0) - ){ - pIdxCons->usable = 1; - }else{ - pIdxCons->usable = 0; - } - } - memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); - if( pIdxInfo->needToFreeIdxStr ){ - sqlite3_free(pIdxInfo->idxStr); - } - pIdxInfo->idxStr = 0; - pIdxInfo->idxNum = 0; - pIdxInfo->needToFreeIdxStr = 0; - pIdxInfo->orderByConsumed = 0; - /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ - pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); - nOrderBy = pIdxInfo->nOrderBy; - if( !p->pOrderBy ){ - pIdxInfo->nOrderBy = 0; - } - - if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ - return; - } - - pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; - for(i=0; inConstraint; i++, pIdxCons++){ - if( pUsage[i].argvIndex>0 ){ - j = pIdxCons->iTermOffset; - pTerm = &pWC->a[j]; - p->cost.used |= pTerm->prereqRight; - if( (pTerm->eOperator & WO_IN)!=0 ){ - if( pUsage[i].omit==0 ){ - /* Do not attempt to use an IN constraint if the virtual table - ** says that the equivalent EQ constraint cannot be safely omitted. - ** If we do attempt to use such a constraint, some rows might be - ** repeated in the output. */ - break; - } - /* A virtual table that is constrained by an IN clause may not - ** consume the ORDER BY clause because (1) the order of IN terms - ** is not necessarily related to the order of output terms and - ** (2) Multiple outputs from a single IN value will not merge - ** together. */ - pIdxInfo->orderByConsumed = 0; - } - } - } - if( i>=pIdxInfo->nConstraint ) break; - } - - /* The orderByConsumed signal is only valid if all outer loops collectively - ** generate just a single row of output. - */ - if( pIdxInfo->orderByConsumed ){ - for(i=0; ii; i++){ - if( (p->aLevel[i].plan.wsFlags & WHERE_UNIQUE)==0 ){ - pIdxInfo->orderByConsumed = 0; - } - } - } - - /* If there is an ORDER BY clause, and the selected virtual table index - ** does not satisfy it, increase the cost of the scan accordingly. This - ** matches the processing for non-virtual tables in bestBtreeIndex(). - */ - rCost = pIdxInfo->estimatedCost; - if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){ - rCost += estLog(rCost)*rCost; - } - - /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the - ** inital value of lowestCost in this loop. If it is, then the - ** (costcost.rCost = (SQLITE_BIG_DBL/((double)2)); - }else{ - p->cost.rCost = rCost; - } - p->cost.plan.u.pVtabIdx = pIdxInfo; - if( pIdxInfo->orderByConsumed ){ - p->cost.plan.wsFlags |= WHERE_ORDERED; - p->cost.plan.nOBSat = nOrderBy; - }else{ - p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; - } - p->cost.plan.nEq = 0; - pIdxInfo->nOrderBy = nOrderBy; - - /* Try to find a more efficient access pattern by using multiple indexes - ** to optimize an OR expression within the WHERE clause. - */ - bestOrClauseIndex(p); -} -#endif /* SQLITE_OMIT_VIRTUALTABLE */ - #ifdef SQLITE_ENABLE_STAT3 /* ** Estimate the location of a particular key among all keys in an @@ -2979,879 +2535,6 @@ static int whereInScanEst( } #endif /* defined(SQLITE_ENABLE_STAT3) */ -/* -** Check to see if column iCol of the table with cursor iTab will appear -** in sorted order according to the current query plan. -** -** Return values: -** -** 0 iCol is not ordered -** 1 iCol has only a single value -** 2 iCol is in ASC order -** 3 iCol is in DESC order -*/ -static int isOrderedColumn( - WhereBestIdx *p, - int iTab, - int iCol -){ - int i, j; - WhereLevel *pLevel = &p->aLevel[p->i-1]; - Index *pIdx; - u8 sortOrder; - for(i=p->i-1; i>=0; i--, pLevel--){ - if( pLevel->iTabCur!=iTab ) continue; - if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ - return 1; - } - assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 ); - if( (pIdx = pLevel->plan.u.pIdx)!=0 ){ - if( iCol<0 ){ - sortOrder = 0; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - }else{ - int n = pIdx->nColumn; - for(j=0; jaiColumn[j] ) break; - } - if( j>=n ) return 0; - sortOrder = pIdx->aSortOrder[j]; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - } - }else{ - if( iCol!=(-1) ) return 0; - sortOrder = 0; - testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); - } - if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){ - assert( sortOrder==0 || sortOrder==1 ); - testcase( sortOrder==1 ); - sortOrder = 1 - sortOrder; - } - return sortOrder+2; - } - return 0; -} - -/* -** This routine decides if pIdx can be used to satisfy the ORDER BY -** clause, either in whole or in part. The return value is the -** cumulative number of terms in the ORDER BY clause that are satisfied -** by the index pIdx and other indices in outer loops. -** -** The table being queried has a cursor number of "base". pIdx is the -** index that is postulated for use to access the table. -** -** The *pbRev value is set to 0 order 1 depending on whether or not -** pIdx should be run in the forward order or in reverse order. -*/ -static int isSortingIndex( - WhereBestIdx *p, /* Best index search context */ - Index *pIdx, /* The index we are testing */ - int base, /* Cursor number for the table to be sorted */ - int *pbRev, /* Set to 1 for reverse-order scan of pIdx */ - int *pbObUnique /* ORDER BY column values will different in every row */ -){ - int i; /* Number of pIdx terms used */ - int j; /* Number of ORDER BY terms satisfied */ - int sortOrder = 2; /* 0: forward. 1: backward. 2: unknown */ - int nTerm; /* Number of ORDER BY terms */ - struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */ - Table *pTab = pIdx->pTable; /* Table that owns index pIdx */ - ExprList *pOrderBy; /* The ORDER BY clause */ - Parse *pParse = p->pParse; /* Parser context */ - sqlite3 *db = pParse->db; /* Database connection */ - int nPriorSat; /* ORDER BY terms satisfied by outer loops */ - int seenRowid = 0; /* True if an ORDER BY rowid term is seen */ - int uniqueNotNull; /* pIdx is UNIQUE with all terms are NOT NULL */ - int outerObUnique; /* Outer loops generate different values in - ** every row for the ORDER BY columns */ - - if( p->i==0 ){ - nPriorSat = 0; - outerObUnique = 1; - }else{ - u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags; - nPriorSat = p->aLevel[p->i-1].plan.nOBSat; - if( (wsFlags & WHERE_ORDERED)==0 ){ - /* This loop cannot be ordered unless the next outer loop is - ** also ordered */ - return nPriorSat; - } - if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){ - /* Only look at the outer-most loop if the OrderByIdxJoin - ** optimization is disabled */ - return nPriorSat; - } - testcase( wsFlags & WHERE_OB_UNIQUE ); - testcase( wsFlags & WHERE_ALL_UNIQUE ); - outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0; - } - pOrderBy = p->pOrderBy; - assert( pOrderBy!=0 ); - if( pIdx->bUnordered ){ - /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot - ** be used for sorting */ - return nPriorSat; - } - nTerm = pOrderBy->nExpr; - uniqueNotNull = pIdx->onError!=OE_None; - assert( nTerm>0 ); - - /* Argument pIdx must either point to a 'real' named index structure, - ** or an index structure allocated on the stack by bestBtreeIndex() to - ** represent the rowid index that is part of every table. */ - assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); - - /* Match terms of the ORDER BY clause against columns of - ** the index. - ** - ** Note that indices have pIdx->nColumn regular columns plus - ** one additional column containing the rowid. The rowid column - ** of the index is also allowed to match against the ORDER BY - ** clause. - */ - j = nPriorSat; - for(i=0,pOBItem=&pOrderBy->a[j]; jnColumn; i++){ - Expr *pOBExpr; /* The expression of the ORDER BY pOBItem */ - CollSeq *pColl; /* The collating sequence of pOBExpr */ - int termSortOrder; /* Sort order for this term */ - int iColumn; /* The i-th column of the index. -1 for rowid */ - int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ - int isEq; /* Subject to an == or IS NULL constraint */ - int isMatch; /* ORDER BY term matches the index term */ - const char *zColl; /* Name of collating sequence for i-th index term */ - WhereTerm *pConstraint; /* A constraint in the WHERE clause */ - - /* If the next term of the ORDER BY clause refers to anything other than - ** a column in the "base" table, then this index will not be of any - ** further use in handling the ORDER BY. */ - pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr); - if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){ - break; - } - - /* Find column number and collating sequence for the next entry - ** in the index */ - if( pIdx->zName && inColumn ){ - iColumn = pIdx->aiColumn[i]; - if( iColumn==pIdx->pTable->iPKey ){ - iColumn = -1; - } - iSortOrder = pIdx->aSortOrder[i]; - zColl = pIdx->azColl[i]; - assert( zColl!=0 ); - }else{ - iColumn = -1; - iSortOrder = 0; - zColl = 0; - } - - /* Check to see if the column number and collating sequence of the - ** index match the column number and collating sequence of the ORDER BY - ** clause entry. Set isMatch to 1 if they both match. */ - if( pOBExpr->iColumn==iColumn ){ - if( zColl ){ - pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr); - if( !pColl ) pColl = db->pDfltColl; - isMatch = sqlite3StrICmp(pColl->zName, zColl)==0; - }else{ - isMatch = 1; - } - }else{ - isMatch = 0; - } - - /* termSortOrder is 0 or 1 for whether or not the access loop should - ** run forward or backwards (respectively) in order to satisfy this - ** term of the ORDER BY clause. */ - assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 ); - assert( iSortOrder==0 || iSortOrder==1 ); - termSortOrder = iSortOrder ^ pOBItem->sortOrder; - - /* If X is the column in the index and ORDER BY clause, check to see - ** if there are any X= or X IS NULL constraints in the WHERE clause. */ - pConstraint = findTerm(p->pWC, base, iColumn, p->notReady, - WO_EQ|WO_ISNULL|WO_IN, pIdx); - if( pConstraint==0 ){ - isEq = 0; - }else if( (pConstraint->eOperator & WO_IN)!=0 ){ - isEq = 0; - }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){ - uniqueNotNull = 0; - isEq = 1; /* "X IS NULL" means X has only a single value */ - }else if( pConstraint->prereqRight==0 ){ - isEq = 1; /* Constraint "X=constant" means X has only a single value */ - }else{ - Expr *pRight = pConstraint->pExpr->pRight; - if( pRight->op==TK_COLUMN ){ - /*WHERETRACE((" .. isOrderedColumn(tab=%d,col=%d)", - pRight->iTable, pRight->iColumn));*/ - isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn); - /*WHERETRACE((" -> isEq=%d\n", isEq));*/ - - /* If the constraint is of the form X=Y where Y is an ordered value - ** in an outer loop, then make sure the sort order of Y matches the - ** sort order required for X. */ - if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){ - testcase( isEq==2 ); - testcase( isEq==3 ); - break; - } - }else{ - isEq = 0; /* "X=expr" places no ordering constraints on X */ - } - } - if( !isMatch ){ - if( isEq==0 ){ - break; - }else{ - continue; - } - }else if( isEq!=1 ){ - if( sortOrder==2 ){ - sortOrder = termSortOrder; - }else if( termSortOrder!=sortOrder ){ - break; - } - } - j++; - pOBItem++; - if( iColumn<0 ){ - seenRowid = 1; - break; - }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){ - testcase( isEq==0 ); - testcase( isEq==2 ); - testcase( isEq==3 ); - uniqueNotNull = 0; - } - } - if( seenRowid ){ - uniqueNotNull = 1; - }else if( uniqueNotNull==0 || inColumn ){ - uniqueNotNull = 0; - } - - /* If we have not found at least one ORDER BY term that matches the - ** index, then show no progress. */ - if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat; - - /* Either the outer queries must generate rows where there are no two - ** rows with the same values in all ORDER BY columns, or else this - ** loop must generate just a single row of output. Example: Suppose - ** the outer loops generate A=1 and A=1, and this loop generates B=3 - ** and B=4. Then without the following test, ORDER BY A,B would - ** generate the wrong order output: 1,3 1,4 1,3 1,4 - */ - if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat; - *pbObUnique = uniqueNotNull; - - /* Return the necessary scan order back to the caller */ - *pbRev = sortOrder & 1; - - /* If there was an "ORDER BY rowid" term that matched, or it is only - ** possible for a single row from this table to match, then skip over - ** any additional ORDER BY terms dealing with this table. - */ - if( uniqueNotNull ){ - /* Advance j over additional ORDER BY terms associated with base */ - WhereMaskSet *pMS = p->pWC->pMaskSet; - Bitmask m = ~getMask(pMS, base); - while( ja[j].pExpr)&m)==0 ){ - j++; - } - } - return j; -} - -/* -** Find the best query plan for accessing a particular table. Write the -** best query plan and its cost into the p->cost. -** -** The lowest cost plan wins. The cost is an estimate of the amount of -** CPU and disk I/O needed to process the requested result. -** Factors that influence cost include: -** -** * The estimated number of rows that will be retrieved. (The -** fewer the better.) -** -** * Whether or not sorting must occur. -** -** * Whether or not there must be separate lookups in the -** index and in the main table. -** -** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in -** the SQL statement, then this function only considers plans using the -** named index. If no such plan is found, then the returned cost is -** SQLITE_BIG_DBL. If a plan is found that uses the named index, -** then the cost is calculated in the usual way. -** -** If a NOT INDEXED clause was attached to the table -** in the SELECT statement, then no indexes are considered. However, the -** selected plan may still take advantage of the built-in rowid primary key -** index. -*/ -static void bestBtreeIndex(WhereBestIdx *p){ - Parse *pParse = p->pParse; /* The parsing context */ - WhereClause *pWC = p->pWC; /* The WHERE clause */ - struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ - int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ - Index *pProbe; /* An index we are evaluating */ - Index *pIdx; /* Copy of pProbe, or zero for IPK index */ - int eqTermMask; /* Current mask of valid equality operators */ - int idxEqTermMask; /* Index mask of valid equality operators */ - Index sPk; /* A fake index object for the primary key */ - tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ - int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ - int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */ - int nPriorSat; /* ORDER BY terms satisfied by outer loops */ - int nOrderBy; /* Number of ORDER BY terms */ - char bSortInit; /* Initializer for bSort in inner loop */ - char bDistInit; /* Initializer for bDist in inner loop */ - - - /* Initialize the cost to a worst-case value */ - memset(&p->cost, 0, sizeof(p->cost)); - p->cost.rCost = SQLITE_BIG_DBL; - - /* If the pSrc table is the right table of a LEFT JOIN then we may not - ** use an index to satisfy IS NULL constraints on that table. This is - ** because columns might end up being NULL if the table does not match - - ** a circumstance which the index cannot help us discover. Ticket #2177. - */ - if( pSrc->jointype & JT_LEFT ){ - idxEqTermMask = WO_EQ|WO_IN; - }else{ - idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; - } - - if( pSrc->pIndex ){ - /* An INDEXED BY clause specifies a particular index to use */ - pIdx = pProbe = pSrc->pIndex; - wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); - eqTermMask = idxEqTermMask; - }else{ - /* There is no INDEXED BY clause. Create a fake Index object in local - ** variable sPk to represent the rowid primary key index. Make this - ** fake index the first in a chain of Index objects with all of the real - ** indices to follow */ - Index *pFirst; /* First of real indices on the table */ - memset(&sPk, 0, sizeof(Index)); - sPk.nColumn = 1; - sPk.aiColumn = &aiColumnPk; - sPk.aiRowEst = aiRowEstPk; - sPk.onError = OE_Replace; - sPk.pTable = pSrc->pTab; - aiRowEstPk[0] = pSrc->pTab->nRowEst; - aiRowEstPk[1] = 1; - pFirst = pSrc->pTab->pIndex; - if( pSrc->notIndexed==0 ){ - /* The real indices of the table are only considered if the - ** NOT INDEXED qualifier is omitted from the FROM clause */ - sPk.pNext = pFirst; - } - pProbe = &sPk; - wsFlagMask = ~( - WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE - ); - eqTermMask = WO_EQ|WO_IN; - pIdx = 0; - } - - nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0; - if( p->i ){ - nPriorSat = p->aLevel[p->i-1].plan.nOBSat; - bSortInit = nPriorSat0; - bDistInit = p->pDistinct!=0; - } - - /* Loop over all indices looking for the best one to use - */ - for(; pProbe; pIdx=pProbe=pProbe->pNext){ - const tRowcnt * const aiRowEst = pProbe->aiRowEst; - WhereCost pc; /* Cost of using pProbe */ - double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */ - - /* The following variables are populated based on the properties of - ** index being evaluated. They are then used to determine the expected - ** cost and number of rows returned. - ** - ** pc.plan.nEq: - ** Number of equality terms that can be implemented using the index. - ** In other words, the number of initial fields in the index that - ** are used in == or IN or NOT NULL constraints of the WHERE clause. - ** - ** nInMul: - ** The "in-multiplier". This is an estimate of how many seek operations - ** SQLite must perform on the index in question. For example, if the - ** WHERE clause is: - ** - ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) - ** - ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is - ** set to 9. Given the same schema and either of the following WHERE - ** clauses: - ** - ** WHERE a = 1 - ** WHERE a >= 2 - ** - ** nInMul is set to 1. - ** - ** If there exists a WHERE term of the form "x IN (SELECT ...)", then - ** the sub-select is assumed to return 25 rows for the purposes of - ** determining nInMul. - ** - ** bInEst: - ** Set to true if there was at least one "x IN (SELECT ...)" term used - ** in determining the value of nInMul. Note that the RHS of the - ** IN operator must be a SELECT, not a value list, for this variable - ** to be true. - ** - ** rangeDiv: - ** An estimate of a divisor by which to reduce the search space due - ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE - ** data, a single inequality reduces the search space to 1/4rd its - ** original size (rangeDiv==4). Two inequalities reduce the search - ** space to 1/16th of its original size (rangeDiv==16). - ** - ** bSort: - ** Boolean. True if there is an ORDER BY clause that will require an - ** external sort (i.e. scanning the index being evaluated will not - ** correctly order records). - ** - ** bDist: - ** Boolean. True if there is a DISTINCT clause that will require an - ** external btree. - ** - ** bLookup: - ** Boolean. True if a table lookup is required for each index entry - ** visited. In other words, true if this is not a covering index. - ** This is always false for the rowid primary key index of a table. - ** For other indexes, it is true unless all the columns of the table - ** used by the SELECT statement are present in the index (such an - ** index is sometimes described as a covering index). - ** For example, given the index on (a, b), the second of the following - ** two queries requires table b-tree lookups in order to find the value - ** of column c, but the first does not because columns a and b are - ** both available in the index. - ** - ** SELECT a, b FROM tbl WHERE a = 1; - ** SELECT a, b, c FROM tbl WHERE a = 1; - */ - int bInEst = 0; /* True if "x IN (SELECT...)" seen */ - int nInMul = 1; /* Number of distinct equalities to lookup */ - double rangeDiv = (double)1; /* Estimated reduction in search space */ - int nBound = 0; /* Number of range constraints seen */ - char bSort = bSortInit; /* True if external sort required */ - char bDist = bDistInit; /* True if index cannot help with DISTINCT */ - char bLookup = 0; /* True if not a covering index */ - WhereTerm *pTerm; /* A single term of the WHERE clause */ -#ifdef SQLITE_ENABLE_STAT3 - WhereTerm *pFirstTerm = 0; /* First term matching the index */ -#endif - - /*WHERETRACE(( - " %s(%s):\n", - pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk") - ));*/ - memset(&pc, 0, sizeof(pc)); - pc.plan.nOBSat = nPriorSat; - - /* Determine the values of pc.plan.nEq and nInMul */ - for(pc.plan.nEq=0; pc.plan.nEqnColumn; pc.plan.nEq++){ - int j = pProbe->aiColumn[pc.plan.nEq]; - pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx); - if( pTerm==0 ) break; - pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); - testcase( pTerm->pWC!=pWC ); - if( pTerm->eOperator & WO_IN ){ - Expr *pExpr = pTerm->pExpr; - pc.plan.wsFlags |= WHERE_COLUMN_IN; - if( ExprHasProperty(pExpr, EP_xIsSelect) ){ - /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ - nInMul *= 25; - bInEst = 1; - }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ - /* "x IN (value, value, ...)" */ - nInMul *= pExpr->x.pList->nExpr; - } - }else if( pTerm->eOperator & WO_ISNULL ){ - pc.plan.wsFlags |= WHERE_COLUMN_NULL; - } -#ifdef SQLITE_ENABLE_STAT3 - if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; -#endif - pc.used |= pTerm->prereqRight; - } - - /* If the index being considered is UNIQUE, and there is an equality - ** constraint for all columns in the index, then this search will find - ** at most a single row. In this case set the WHERE_UNIQUE flag to - ** indicate this to the caller. - ** - ** Otherwise, if the search may find more than one row, test to see if - ** there is a range constraint on indexed column (pc.plan.nEq+1) that - ** can be optimized using the index. - */ - if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){ - testcase( pc.plan.wsFlags & WHERE_COLUMN_IN ); - testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL ); - if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ - pc.plan.wsFlags |= WHERE_UNIQUE; - if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ - pc.plan.wsFlags |= WHERE_ALL_UNIQUE; - } - } - }else if( pProbe->bUnordered==0 ){ - int j; - j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]); - if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ - WhereTerm *pTop, *pBtm; - pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx); - pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx); - whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv); - if( pTop ){ - nBound = 1; - pc.plan.wsFlags |= WHERE_TOP_LIMIT; - pc.used |= pTop->prereqRight; - testcase( pTop->pWC!=pWC ); - } - if( pBtm ){ - nBound++; - pc.plan.wsFlags |= WHERE_BTM_LIMIT; - pc.used |= pBtm->prereqRight; - testcase( pBtm->pWC!=pWC ); - } - pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); - } - } - - /* If there is an ORDER BY clause and the index being considered will - ** naturally scan rows in the required order, set the appropriate flags - ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but - ** the index will scan rows in a different order, set the bSort - ** variable. */ - if( bSort && (pSrc->jointype & JT_LEFT)==0 ){ - int bRev = 2; - int bObUnique = 0; - /*WHERETRACE((" --> before isSortIndex: nPriorSat=%d\n",nPriorSat));*/ - pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique); - /*WHERETRACE((" --> after isSortIndex: bRev=%d bObU=%d nOBSat=%d\n", - bRev, bObUnique, pc.plan.nOBSat));*/ - if( nPriorSatpDistinct, pc.plan.nEq) - && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0 - ){ - bDist = 0; - pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT; - } - - /* If currently calculating the cost of using an index (not the IPK - ** index), determine if all required column data may be obtained without - ** using the main table (i.e. if the index is a covering - ** index for this query). If it is, set the WHERE_IDX_ONLY flag in - ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true. */ - if( pIdx ){ - Bitmask m = pSrc->colUsed; - int j; - for(j=0; jnColumn; j++){ - int x = pIdx->aiColumn[j]; - if( xaiRowEst[0] ){ - pc.plan.nRow = aiRowEst[0]/2; - nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]); - } - -#ifdef SQLITE_ENABLE_STAT3 - /* If the constraint is of the form x=VALUE or x IN (E1,E2,...) - ** and we do not think that values of x are unique and if histogram - ** data is available for column x, then it might be possible - ** to get a better estimate on the number of rows based on - ** VALUE and how common that value is according to the histogram. - */ - if( pc.plan.nRow>(double)1 && pc.plan.nEq==1 - && pFirstTerm!=0 && aiRowEst[1]>1 ){ - assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 ); - if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ - testcase( pFirstTerm->eOperator & WO_EQ ); - testcase( pFirstTerm->eOperator & WO_EQUIV ); - testcase( pFirstTerm->eOperator & WO_ISNULL ); - whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, - &pc.plan.nRow); - }else if( bInEst==0 ){ - assert( pFirstTerm->eOperator & WO_IN ); - whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, - &pc.plan.nRow); - } - } -#endif /* SQLITE_ENABLE_STAT3 */ - - /* Adjust the number of output rows and downward to reflect rows - ** that are excluded by range constraints. - */ - pc.plan.nRow = pc.plan.nRow/rangeDiv; - if( pc.plan.nRow<1 ) pc.plan.nRow = 1; - - /* Experiments run on real SQLite databases show that the time needed - ** to do a binary search to locate a row in a table or index is roughly - ** log10(N) times the time to move from one row to the next row within - ** a table or index. The actual times can vary, with the size of - ** records being an important factor. Both moves and searches are - ** slower with larger records, presumably because fewer records fit - ** on one page and hence more pages have to be fetched. - ** - ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do - ** not give us data on the relative sizes of table and index records. - ** So this computation assumes table records are about twice as big - ** as index records - */ - if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE)) - ==WHERE_IDX_ONLY - && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 - && sqlite3GlobalConfig.bUseCis - && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan) - ){ - /* This index is not useful for indexing, but it is a covering index. - ** A full-scan of the index might be a little faster than a full-scan - ** of the table, so give this case a cost slightly less than a table - ** scan. */ - pc.rCost = aiRowEst[0]*3 + pProbe->nColumn; - pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE; - }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ - /* The cost of a full table scan is a number of move operations equal - ** to the number of rows in the table. - ** - ** We add an additional 4x penalty to full table scans. This causes - ** the cost function to err on the side of choosing an index over - ** choosing a full scan. This 4x full-scan penalty is an arguable - ** decision and one which we expect to revisit in the future. But - ** it seems to be working well enough at the moment. - */ - pc.rCost = aiRowEst[0]*4; - pc.plan.wsFlags &= ~WHERE_IDX_ONLY; - if( pIdx ){ - pc.plan.wsFlags &= ~WHERE_ORDERED; - pc.plan.nOBSat = nPriorSat; - } - }else{ - log10N = estLog(aiRowEst[0]); - pc.rCost = pc.plan.nRow; - if( pIdx ){ - if( bLookup ){ - /* For an index lookup followed by a table lookup: - ** nInMul index searches to find the start of each index range - ** + nRow steps through the index - ** + nRow table searches to lookup the table entry using the rowid - */ - pc.rCost += (nInMul + pc.plan.nRow)*log10N; - }else{ - /* For a covering index: - ** nInMul index searches to find the initial entry - ** + nRow steps through the index - */ - pc.rCost += nInMul*log10N; - } - }else{ - /* For a rowid primary key lookup: - ** nInMult table searches to find the initial entry for each range - ** + nRow steps through the table - */ - pc.rCost += nInMul*log10N; - } - } - - /* Add in the estimated cost of sorting the result. Actual experimental - ** measurements of sorting performance in SQLite show that sorting time - ** adds C*N*log10(N) to the cost, where N is the number of rows to be - ** sorted and C is a factor between 1.95 and 4.3. We will split the - ** difference and select C of 3.0. - */ - if( bSort ){ - double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy); - m *= (double)(pc.plan.nOBSat ? 2 : 3); - pc.rCost += pc.plan.nRow*m; - } - if( bDist ){ - pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3; - } - - /**** Cost of using this index has now been computed ****/ - - /* If there are additional constraints on this table that cannot - ** be used with the current index, but which might lower the number - ** of output rows, adjust the nRow value accordingly. This only - ** matters if the current index is the least costly, so do not bother - ** with this step if we already know this index will not be chosen. - ** Also, never reduce the output row count below 2 using this step. - ** - ** It is critical that the notValid mask be used here instead of - ** the notReady mask. When computing an "optimal" index, the notReady - ** mask will only have one bit set - the bit for the current table. - ** The notValid mask, on the other hand, always has all bits set for - ** tables that are not in outer loops. If notReady is used here instead - ** of notValid, then a optimal index that depends on inner joins loops - ** might be selected even when there exists an optimal index that has - ** no such dependency. - */ - if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){ - int k; /* Loop counter */ - int nSkipEq = pc.plan.nEq; /* Number of == constraints to skip */ - int nSkipRange = nBound; /* Number of < constraints to skip */ - Bitmask thisTab; /* Bitmap for pSrc */ - - thisTab = getMask(pWC->pMaskSet, iCur); - for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){ - if( pTerm->wtFlags & TERM_VIRTUAL ) continue; - if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue; - if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ - if( nSkipEq ){ - /* Ignore the first pc.plan.nEq equality matches since the index - ** has already accounted for these */ - nSkipEq--; - }else{ - /* Assume each additional equality match reduces the result - ** set size by a factor of 10 */ - pc.plan.nRow /= 10; - } - }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ - if( nSkipRange ){ - /* Ignore the first nSkipRange range constraints since the index - ** has already accounted for these */ - nSkipRange--; - }else{ - /* Assume each additional range constraint reduces the result - ** set size by a factor of 3. Indexed range constraints reduce - ** the search space by a larger factor: 4. We make indexed range - ** more selective intentionally because of the subjective - ** observation that indexed range constraints really are more - ** selective in practice, on average. */ - pc.plan.nRow /= 3; - } - }else if( (pTerm->eOperator & WO_NOOP)==0 ){ - /* Any other expression lowers the output row count by half */ - pc.plan.nRow /= 2; - } - } - if( pc.plan.nRow<2 ) pc.plan.nRow = 2; - } - - - /*WHERETRACE(( - " nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n" - " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n" - " used=0x%llx nOBSat=%d\n", - pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags, - p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used, - pc.plan.nOBSat - ));*/ - - /* If this index is the best we have seen so far, then record this - ** index and its cost in the p->cost structure. - */ - if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){ - p->cost = pc; - p->cost.plan.wsFlags &= wsFlagMask; - p->cost.plan.u.pIdx = pIdx; - } - - /* If there was an INDEXED BY clause, then only that one index is - ** considered. */ - if( pSrc->pIndex ) break; - - /* Reset masks for the next index in the loop */ - wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); - eqTermMask = idxEqTermMask; - } - - /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag - ** is set, then reverse the order that the index will be scanned - ** in. This is used for application testing, to help find cases - ** where application behavior depends on the (undefined) order that - ** SQLite outputs rows in in the absence of an ORDER BY clause. */ - if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ - p->cost.plan.wsFlags |= WHERE_REVERSE; - } - - assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 ); - assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 ); - assert( pSrc->pIndex==0 - || p->cost.plan.u.pIdx==0 - || p->cost.plan.u.pIdx==pSrc->pIndex - ); - - /*WHERETRACE((" best index is %s cost=%.1f\n", - p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk", - p->cost.rCost));*/ - - bestOrClauseIndex(p); - bestAutomaticIndex(p); - if( eqTermMask & WO_ISNULL ) p->cost.plan.wsFlags |= WHERE_NULL_OK; -} - -/* -** Find the query plan for accessing table pSrc->pTab. Write the -** best query plan and its cost into the WhereCost object supplied -** as the last parameter. This function may calculate the cost of -** both real and virtual table scans. -** -** This function does not take ORDER BY or DISTINCT into account. Nor -** does it remember the virtual table query plan. All it does is compute -** the cost while determining if an OR optimization is applicable. The -** details will be reconsidered later if the optimization is found to be -** applicable. -*/ -static void bestIndex(WhereBestIdx *p){ -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(p->pSrc->pTab) ){ - sqlite3_index_info *pIdxInfo = 0; - p->ppIdxInfo = &pIdxInfo; - bestVirtualIndex(p); - assert( pIdxInfo!=0 || p->pParse->db->mallocFailed ); - if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){ - sqlite3_free(pIdxInfo->idxStr); - } - sqlite3DbFree(p->pParse->db, pIdxInfo); - }else -#endif - { - bestBtreeIndex(p); - } -} - /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON @@ -3949,6 +2632,7 @@ static int codeEqualityTerm( WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ + int bRev, /* True for reverse-order IN operations */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; @@ -3966,10 +2650,11 @@ static int codeEqualityTerm( int eType; int iTab; struct InLoop *pIn; - u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; + WhereLoop *pLoop = pLevel->pWLoop; - if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 - && pLevel->plan.u.pIdx->aSortOrder[iEq] + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 + && pLoop->u.btree.pIndex!=0 + && pLoop->u.btree.pIndex->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 ); @@ -3986,7 +2671,7 @@ static int codeEqualityTerm( } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); - assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); + assert( pLoop->wsFlags & WHERE_IN_ABLE ); if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } @@ -4058,28 +2743,31 @@ static int codeAllEqualityTerms( WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ + int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ - int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ + int nEq; /* The number of == or IN constraints to code */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ - int iCur = pLevel->iTabCur; /* The cursor of the table */ WhereTerm *pTerm; /* A single constraint term */ + WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ - int eqFlags; /* WO_EQ|WO_IN and maybe also WO_ISNULL */ /* This module is only called on query plans that use an index. */ - assert( pLevel->plan.wsFlags & WHERE_INDEXED ); - pIdx = pLevel->plan.u.pIdx; + pLoop = pLevel->pWLoop; + assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); + nEq = pLoop->u.btree.nEq; + pIdx = pLoop->u.btree.pIndex; + assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; - nReg = pLevel->plan.nEq + nExtraReg; + nReg = pLoop->u.btree.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); @@ -4090,18 +2778,15 @@ static int codeAllEqualityTerms( /* Evaluate the equality constraints */ assert( pIdx->nColumn>=nEq ); - eqFlags = (pLevel->plan.wsFlags&WHERE_NULL_OK) ? (WO_EQ|WO_IN|WO_ISNULL) - : (WO_EQ|WO_IN); for(j=0; jaiColumn[j]; - pTerm = findTerm(pWC, iCur, k, notReady, eqFlags, pIdx); - if( pTerm==0 ) break; + pTerm = pLoop->aTerm[j]; + assert( pTerm!=0 ); /* The following true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j); + r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); @@ -4306,6 +2991,7 @@ static Bitmask codeOneLoopStart( int omitTable; /* True if we use the index only */ int bRev; /* True if we need to scan in reverse order */ WhereLevel *pLevel; /* The where level to be coded */ + WhereLoop *pLoop; /* The WhereLoop object being coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ Parse *pParse; /* Parsing context */ @@ -4321,10 +3007,11 @@ static Bitmask codeOneLoopStart( v = pParse->pVdbe; pWC = pWInfo->pWC; pLevel = &pWInfo->a[iLevel]; + pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; - bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; - omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 + bRev = (pWInfo->revMask>>iLevel)&1; + omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (wctrlFlags & WHERE_FORCE_TABLE)==0; VdbeNoopComment((v, "Begin Join Loop %d", iLevel)); @@ -4362,47 +3049,36 @@ static Bitmask codeOneLoopStart( }else #ifndef SQLITE_OMIT_VIRTUALTABLE - if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ - /* Case 0: The table is a virtual-table. Use the VFilter and VNext + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ + /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; - sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; - int nConstraint = pVtabIdx->nConstraint; - struct sqlite3_index_constraint_usage *aUsage = - pVtabIdx->aConstraintUsage; - const struct sqlite3_index_constraint *aConstraint = - pVtabIdx->aConstraint; + int nConstraint = pLoop->nTerm; sqlite3ExprCachePush(pParse); iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; - for(j=1; j<=nConstraint; j++){ - for(k=0; ka[aConstraint[k].iTermOffset]; - if( pTerm->eOperator & WO_IN ){ - codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget); - addrNotFound = pLevel->addrNxt; - }else{ - sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); - } - break; - } + for(j=0; jaTerm[j]; + if( pTerm->eOperator & WO_IN ){ + codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); + addrNotFound = pLevel->addrNxt; + }else{ + sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); } - if( k==nConstraint ) break; } - sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); + sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); - sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr, - pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); - pVtabIdx->needToFreeIdxStr = 0; - for(j=0; ja[iTerm]); + sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, + pLoop->u.vtab.idxStr, + pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); + pLoop->u.vtab.needFree = 0; + for(j=0; ju.vtab.omitMask>>j)&1 ){ + disableTerm(pLevel, pLoop->aTerm[j]); } } pLevel->op = OP_VNext; @@ -4413,19 +3089,22 @@ static Bitmask codeOneLoopStart( }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ - if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ - /* Case 1: We can directly reference a single row using an + if( (pLoop->wsFlags & WHERE_IPK)!=0 + && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 + ){ + /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ + assert( pLoop->u.btree.nEq==1 ); iReleaseReg = sqlite3GetTempReg(pParse); - pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); + pTerm = pLoop->aTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ - iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg); + iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); @@ -4433,8 +3112,10 @@ static Bitmask codeOneLoopStart( sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; - }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ - /* Case 2: We have an inequality comparison against the ROWID field. + }else if( (pLoop->wsFlags & WHERE_IPK)!=0 + && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 + ){ + /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; @@ -4442,8 +3123,10 @@ static Bitmask codeOneLoopStart( WhereTerm *pStart, *pEnd; assert( omitTable==0 ); - pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); - pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); + j = 0; + pStart = pEnd = 0; + if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aTerm[j++]; + if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aTerm[j++]; if( bRev ){ pTerm = pStart; pStart = pEnd; @@ -4510,8 +3193,8 @@ static Bitmask codeOneLoopStart( sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } - }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ - /* Case 3: A scan using an index. + }else if( pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ|WHERE_IDX_ONLY) ){ + /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N @@ -4557,8 +3240,8 @@ static Bitmask codeOneLoopStart( OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; - int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ - int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ + int nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ + int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ @@ -4574,7 +3257,7 @@ static Bitmask codeOneLoopStart( char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff; /* Affinity for end of range constraint */ - pIdx = pLevel->plan.u.pIdx; + pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]); @@ -4587,7 +3270,7 @@ static Bitmask codeOneLoopStart( ** this requires some special handling. */ if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 - && (pLevel->plan.wsFlags&WHERE_ORDERED) + && (pWInfo->nOBSat>0) && (pIdx->nColumn>nEq) ){ /* assert( pOrderBy->nExpr==1 ); */ @@ -4599,12 +3282,13 @@ static Bitmask codeOneLoopStart( /* Find any inequality constraint terms for the start and end ** of the range. */ - if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ - pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); + j = nEq; + if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ + pRangeStart = pLoop->aTerm[j++]; nExtraReg = 1; } - if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ - pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); + if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ + pRangeEnd = pLoop->aTerm[j++]; nExtraReg = 1; } @@ -4613,7 +3297,7 @@ static Bitmask codeOneLoopStart( ** starting at regBase. */ regBase = codeAllEqualityTerms( - pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff + pParse, pLevel, pWC, notReady, bRev, nExtraReg, &zStartAff ); zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); addrNxt = pLevel->addrNxt; @@ -4723,7 +3407,7 @@ static Bitmask codeOneLoopStart( r1 = sqlite3GetTempReg(pParse); testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); - if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ + if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); } @@ -4742,7 +3426,7 @@ static Bitmask codeOneLoopStart( /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ - if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ + if( pLoop->wsFlags & WHERE_UNIQUE ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; @@ -4750,7 +3434,7 @@ static Bitmask codeOneLoopStart( pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; - if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){ + if( pLoop->wsFlags & WHERE_COVER_SCAN ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); @@ -4758,8 +3442,8 @@ static Bitmask codeOneLoopStart( }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION - if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ - /* Case 4: Two or more separately indexed terms connected by OR + if( pLoop->wsFlags & WHERE_MULTI_OR ){ + /* Case 5: Two or more separately indexed terms connected by OR ** ** Example: ** @@ -4812,7 +3496,7 @@ static Bitmask codeOneLoopStart( int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ - pTerm = pLevel->plan.u.pTerm; + pTerm = pLoop->aTerm[0]; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); @@ -4904,7 +3588,7 @@ static Bitmask codeOneLoopStart( WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur); assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed ); if( pSubWInfo ){ - WhereLevel *pLvl; + WhereLoop *pSubLoop; explainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); @@ -4937,13 +3621,13 @@ static Bitmask codeOneLoopStart( ** pCov to NULL to indicate that no candidate covering index will ** be available. */ - pLvl = &pSubWInfo->a[0]; - if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0 - && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0 - && (ii==0 || pLvl->plan.u.pIdx==pCov) + pSubLoop = pSubWInfo->a[0].pWLoop; + if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 + && (pSubLoop->wsFlags & WHERE_TEMP_INDEX)==0 + && (ii==0 || pSubLoop->u.btree.pIndex==pCov) ){ - assert( pLvl->iIdxCur==iCovCur ); - pCov = pLvl->plan.u.pIdx; + assert( pSubWInfo->a[0].iIdxCur==iCovCur ); + pCov = pLoop->u.btree.pIndex; }else{ pCov = 0; } @@ -4969,13 +3653,12 @@ static Bitmask codeOneLoopStart( #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { - /* Case 5: There is no usable index. We must do a complete + /* Case 6: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); - assert( omitTable==0 ); pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); @@ -5145,16 +3828,8 @@ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ if( ALWAYS(pWInfo) ){ int i; for(i=0; inLevel; i++){ - sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; - if( pInfo ){ - /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ - if( pInfo->needToFreeIdxStr ){ - sqlite3_free(pInfo->idxStr); - } - sqlite3DbFree(db, pInfo); - } - if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ - Index *pIdx = pWInfo->a[i].plan.u.pIdx; + if( pWInfo->a[i].pWLoop->wsFlags & WHERE_TEMP_INDEX ){ + Index *pIdx = pWInfo->a[i].pWLoop->u.btree.pIndex; if( pIdx ){ sqlite3DbFree(db, pIdx->zColAff); sqlite3DbFree(db, pIdx); @@ -5333,6 +4008,7 @@ static int whereLoopAddBtreeIndex( rLogSize = estLog(pProbe->aiRowEst[0]); for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ int nIn = 1; + pNew->wsFlags = savedLoop.wsFlags; pNew->u.btree.nEq = savedLoop.u.btree.nEq; pNew->nTerm = savedLoop.nTerm; if( pNew->nTerm>=pBuilder->mxTerm ) break; /* Repeated column in index */ @@ -6183,7 +4859,10 @@ static int wherePathSolver(WhereInfo *pWInfo, double nRowEst){ assert( pWInfo->nLevel==nLoop ); /* Load the lowest cost path into pWInfo */ for(iLoop=0; iLoopa[iLoop].pWLoop = pFrom->aLoop[iLoop]; + WhereLevel *pLevel = pWInfo->a + iLoop; + pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; + pLevel->iFrom = pWLoop->iTab; /* FIXME: Omit the iFrom field */ + pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; } if( pFrom->isOrdered ){ pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; @@ -6302,8 +4981,6 @@ WhereInfo *sqlite3WhereBegin( WhereLoopBuilder sWLB; /* The WhereLoop builder */ WhereMaskSet *pMaskSet; /* The expression mask set */ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ - int iFrom; /* First unused FROM clause element */ - int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ int ii; /* Loop counter */ sqlite3 *db; /* Database connection */ int rc; /* Return code */ @@ -6476,274 +5153,7 @@ WhereInfo *sqlite3WhereBegin( } #endif - /* Chose the best index to use for each table in the FROM clause. - ** - ** This loop fills in the following fields: - ** - ** pWInfo->a[].pIdx The index to use for this level of the loop. - ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx - ** pWInfo->a[].nEq The number of == and IN constraints - ** pWInfo->a[].iFrom Which term of the FROM clause is being coded - ** pWInfo->a[].iTabCur The VDBE cursor for the database table - ** pWInfo->a[].iIdxCur The VDBE cursor for the index - ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term - ** - ** This loop also figures out the nesting order of tables in the FROM - ** clause. - */ - sWBI.notValid = ~(Bitmask)0; - sWBI.pOrderBy = pOrderBy; - sWBI.n = nTabList; - sWBI.pDistinct = pDistinct; - andFlags = ~0; - for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.ia[j]; jiCursor); - if( (m & sWBI.notValid)==0 ){ - if( j==iFrom ) iFrom++; - continue; - } - if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break; - if( ++ckOptimal ) break; - if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; - } - } - assert( ckOptimal==0 || ckOptimal==1 ); - - for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){ - for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; jiFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){ - /* This break and one like it in the ckOptimal computation loop - ** above prevent table reordering across LEFT and CROSS JOINs. - ** The LEFT JOIN case is necessary for correctness. The prohibition - ** against reordering across a CROSS JOIN is an SQLite feature that - ** allows the developer to control table reordering */ - break; - } - m = getMask(pMaskSet, sWBI.pSrc->iCursor); - if( (m & sWBI.notValid)==0 ){ - assert( j>iFrom ); - continue; - } - sWBI.notReady = (isOptimal ? m : sWBI.notValid); - if( sWBI.pSrc->pIndex==0 ) nUnconstrained++; - - /*WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n", - j, sWBI.pSrc->pTab->zName, isOptimal));*/ - assert( sWBI.pSrc->pTab ); -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( IsVirtual(sWBI.pSrc->pTab) ){ - sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo; - bestVirtualIndex(&sWBI); - }else -#endif - { - bestBtreeIndex(&sWBI); - } - assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 ); - - /* If an INDEXED BY clause is present, then the plan must use that - ** index if it uses any index at all */ - assert( sWBI.pSrc->pIndex==0 - || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 - || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex ); - - if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ - notIndexed |= m; - } - if( isOptimal ){ - pWInfo->a[j].rOptCost = sWBI.cost.rCost; - }else if( ckOptimal ){ - /* If two or more tables have nearly the same outer loop cost, but - ** very different inner loop (optimal) cost, we want to choose - ** for the outer loop that table which benefits the least from - ** being in the inner loop. The following code scales the - ** outer loop cost estimate to accomplish that. */ - /*WHERETRACE((" scaling cost from %.1f to %.1f\n", - sWBI.cost.rCost, - sWBI.cost.rCost/pWInfo->a[j].rOptCost));*/ - sWBI.cost.rCost /= pWInfo->a[j].rOptCost; - } - - /* Conditions under which this table becomes the best so far: - ** - ** (1) The table must not depend on other tables that have not - ** yet run. (In other words, it must not depend on tables - ** in inner loops.) - ** - ** (2) (This rule was removed on 2012-11-09. The scaling of the - ** cost using the optimal scan cost made this rule obsolete.) - ** - ** (3) All tables have an INDEXED BY clause or this table lacks an - ** INDEXED BY clause or this table uses the specific - ** index specified by its INDEXED BY clause. This rule ensures - ** that a best-so-far is always selected even if an impossible - ** combination of INDEXED BY clauses are given. The error - ** will be detected and relayed back to the application later. - ** The NEVER() comes about because rule (2) above prevents - ** An indexable full-table-scan from reaching rule (3). - ** - ** (4) The plan cost must be lower than prior plans, where "cost" - ** is defined by the compareCost() function above. - */ - if( (sWBI.cost.used&sWBI.notValid)==0 /* (1) */ - && (nUnconstrained==0 || sWBI.pSrc->pIndex==0 /* (3) */ - || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) - && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan)) /* (4) */ - ){ - /*WHERETRACE((" === table %d (%s) is best so far\n" - " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n", - j, sWBI.pSrc->pTab->zName, - sWBI.cost.rCost, sWBI.cost.plan.nRow, - sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));*/ - bestPlan = sWBI.cost; - bestJ = j; - } - - /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that - ** table y (and not table z) is always the next inner loop inside - ** of table x. */ - if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; - } - } - assert( bestJ>=0 ); - assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); - assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 ); - testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 ); - testcase( bestJ>iFrom && bestJa[bestJ+1].jointype & JT_LEFT)!=0 ); - /*WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n" - " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n", - bestJ, pTabList->a[bestJ].pTab->zName, - pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow, - bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));*/ - if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){ - assert( pWInfo->eDistinct==0 ); - pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; - } - andFlags &= bestPlan.plan.wsFlags; - pLevel->plan = bestPlan.plan; - pLevel->iTabCur = pTabList->a[bestJ].iCursor; - testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); - testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); - if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ - if( (wctrlFlags & WHERE_ONETABLE_ONLY) - && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 - ){ - pLevel->iIdxCur = iIdxCur; - }else{ - pLevel->iIdxCur = pParse->nTab++; - } - }else{ - pLevel->iIdxCur = -1; - } - sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); - pLevel->iFrom = (u8)bestJ; - if( bestPlan.plan.nRow>=(double)1 ){ - pParse->nQueryLoop *= bestPlan.plan.nRow; - } - - /* Check that if the table scanned by this loop iteration had an - ** INDEXED BY clause attached to it, that the named index is being - ** used for the scan. If not, then query compilation has failed. - ** Return an error. - */ - pIdx = pTabList->a[bestJ].pIndex; - if( pIdx ){ - if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ - sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); - goto whereBeginError; - }else{ - /* If an INDEXED BY clause is used, the bestIndex() function is - ** guaranteed to find the index specified in the INDEXED BY clause - ** if it find an index at all. */ - assert( bestPlan.plan.u.pIdx==pIdx ); - } - } - } - WHERETRACE(("*** Optimizer Finished ***\n")); - if( pParse->nErr || db->mallocFailed ){ - goto whereBeginError; - } - if( nTabList ){ - pLevel--; - pWInfo->nOBSat = pLevel->plan.nOBSat; - }else{ - pWInfo->nOBSat = 0; - } - - /* If the total query only selects a single row, then the ORDER BY - ** clause is irrelevant. - */ - if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){ - assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ); - pWInfo->nOBSat = pOrderBy->nExpr; - } - +#if 0 /* FIXME: Add this back in? */ /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constraints @@ -6754,16 +5164,6 @@ WhereInfo *sqlite3WhereBegin( pWInfo->okOnePass = 1; pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; } - -#if 1 - /* Scaffolding: Check the new query plan against the old. Report any - ** discrepencies */ - for(ii=0; iia[ii].iFrom!=pWInfo->a[ii].pWLoop->iTab ){ - sqlite3DebugPrintf("(QP-Mismatch)"); - break; - } - } #endif /* Open all tables in the pTabList and any indices selected for @@ -6776,16 +5176,17 @@ WhereInfo *sqlite3WhereBegin( Table *pTab; /* Table to open */ int iDb; /* Index of database containing table/index */ struct SrcList_item *pTabItem; + WhereLoop *pLoop; pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; - pWInfo->nRowOut *= pLevel->plan.nRow; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + pLoop = pLevel->pWLoop; if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE - if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ + if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); @@ -6793,7 +5194,7 @@ WhereInfo *sqlite3WhereBegin( /* noop */ }else #endif - if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 + if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); @@ -6811,14 +5212,16 @@ WhereInfo *sqlite3WhereBegin( sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } #ifndef SQLITE_OMIT_AUTOMATIC_INDEX - if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ + if( (pLoop->wsFlags & WHERE_TEMP_INDEX)!=0 ){ constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel); }else #endif - if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ - Index *pIx = pLevel->plan.u.pIdx; + if( pLoop->u.btree.pIndex!=0 ){ + Index *pIx = pLoop->u.btree.pIndex; KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); - int iIndexCur = pLevel->iIdxCur; + /* FIXME: Might need to be the iIdxCur parameter. As an optimization + ** use pTabItem->iCursor if WHERE_IDX_ONLY */ + int iIndexCur = pLevel->iIdxCur = pParse->nTab++; assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb, @@ -6843,7 +5246,7 @@ WhereInfo *sqlite3WhereBegin( pWInfo->iContinue = pLevel->addrCont; } -#ifdef SQLITE_TEST /* For testing and debugging use only */ +#if defined(SQLITE_TEST) && 0 /* For testing and debugging use only */ /* Record in the query plan information about the current table ** and the index used to access it (if any). If the table itself ** is not used, its name is just '{}'. If no index is used @@ -6919,6 +5322,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ Vdbe *v = pParse->pVdbe; int i; WhereLevel *pLevel; + WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; @@ -6927,12 +5331,13 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ pLevel = &pWInfo->a[i]; + pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); sqlite3VdbeChangeP5(v, pLevel->p5); } - if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ + if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); @@ -6947,9 +5352,9 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ if( pLevel->iLeftJoin ){ int addr; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); - assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 - || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); - if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ + assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 + || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); + if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); } if( pLevel->iIdxCur>=0 ){ @@ -6977,15 +5382,16 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); + pLoop = pLevel->pWLoop; if( (pTab->tabFlags & TF_Ephemeral)==0 && pTab->pSelect==0 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ - int ws = pLevel->plan.wsFlags; + int ws = pLoop->wsFlags; if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); } - if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ + if( (ws & WHERE_INDEXED)!=0 && (ws & (WHERE_IPK|WHERE_TEMP_INDEX))==0 ){ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); } } @@ -7003,12 +5409,12 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ ** that reference the table and converts them into opcodes that ** reference the index. */ - if( pLevel->plan.wsFlags & WHERE_INDEXED ){ - pIdx = pLevel->plan.u.pIdx; - }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ + if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ + pIdx = pLoop->u.btree.pIndex; + }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCovidx; } - if( pIdx && !db->mallocFailed){ + if( pIdx && !db->mallocFailed ){ int k, j, last; VdbeOp *pOp; @@ -7024,8 +5430,7 @@ void sqlite3WhereEnd(WhereInfo *pWInfo){ break; } } - assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 - || jnColumn ); + assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || jnColumn ); }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid;