From: Amos Jeffries Date: Wed, 30 Nov 2016 08:39:14 +0000 (+1300) Subject: Revert C++11 std::regex changes X-Git-Tag: M-staged-PR71~357 X-Git-Url: http://git.ipfire.org/?a=commitdiff_plain;h=c2afddd8f98c17c7a9e03d504b97847065d744e1;p=thirdparty%2Fsquid.git Revert C++11 std::regex changes CentOS 7 (and thus probably also RHEL 7) still have difficulty using GCC 5+ compiler necessary for this C++11 code to be used reliably. see http://lists.squid-cache.org/pipermail/squid-dev/2015-July/002884.html --- diff --git a/CREDITS b/CREDITS index 24c701c68b..62efccbd48 100644 --- a/CREDITS +++ b/CREDITS @@ -383,6 +383,46 @@ compat/getnameinfo.c: ============================================================================== +compat/GnuRegex.h: + + * Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. + +============================================================================== + +compat/GnuRegex.c: + + * Copyright (C) 1993 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. + +============================================================================== + compat/inet_ntop.c: /* diff --git a/acinclude/lib-checks.m4 b/acinclude/lib-checks.m4 index c7982352cd..4b45934012 100644 --- a/acinclude/lib-checks.m4 +++ b/acinclude/lib-checks.m4 @@ -32,6 +32,26 @@ AC_DEFUN([SQUID_CHECK_DBOPEN_NEEDS_LIBDB],[ ]) +dnl check whether regex works by actually compiling one +dnl sets squid_cv_regex_works to either yes or no + +AC_DEFUN([SQUID_CHECK_REGEX_WORKS],[ + AC_CACHE_CHECK([if the system-supplied regex lib actually works],squid_cv_regex_works,[ + AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ +#if HAVE_SYS_TYPES_H +#include +#endif +#if HAVE_REGEX_H +#include +#endif +]], [[ +regex_t t; regcomp(&t,"",0);]])], + [ squid_cv_regex_works=yes ], + [ squid_cv_regex_works=no ]) + ]) +]) + + AC_DEFUN([SQUID_CHECK_LIBIPHLPAPI],[ AC_CACHE_CHECK([for libIpHlpApi],squid_cv_have_libiphlpapi,[ SQUID_STATE_SAVE(iphlpapi) diff --git a/compat/GnuRegex.c b/compat/GnuRegex.c new file mode 100644 index 0000000000..2ee08920f3 --- /dev/null +++ b/compat/GnuRegex.c @@ -0,0 +1,4311 @@ +/* + * Copyright (C) 1996-2016 The Squid Software Foundation and contributors + * + * Squid software is distributed under GPLv2+ license and includes + * contributions from numerous individuals and organizations. + * Please see the COPYING and CONTRIBUTORS files for details. + */ + +/* Extended regular expression matching and search library, + * version 0.12. + * (Implements POSIX draft P10003.2/D11.2, except for + * internationalization features.) + * + * Copyright (C) 1993 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */ + +/* AIX requires this to be the first thing in the file. */ +#if defined (_AIX) && !defined(REGEX_MALLOC) +#pragma alloca +#endif + +#ifndef _GNU_SOURCE +#define _GNU_SOURCE 1 +#endif + +#include "squid.h" + +#if USE_GNUREGEX /* only if squid needs it. Usually not */ + +#if !HAVE_ALLOCA +#define REGEX_MALLOC 1 +#endif + +/* We used to test for `BSTRING' here, but only GCC and Emacs define + * `BSTRING', as far as I know, and neither of them use this code. */ +#if HAVE_STRING_H || STDC_HEADERS +#include +#else +#include +#endif + +/* Define the syntax stuff for \<, \>, etc. */ + +/* This must be nonzero for the wordchar and notwordchar pattern + * commands in re_match_2. */ +#ifndef Sword +#define Sword 1 +#endif + +#ifdef SYNTAX_TABLE + +extern char *re_syntax_table; + +#else /* not SYNTAX_TABLE */ + +/* How many characters in the character set. */ +#define CHAR_SET_SIZE 256 + +static char re_syntax_table[CHAR_SET_SIZE]; + +static void +init_syntax_once(void) +{ + register int c; + static int done = 0; + + if (done) + return; + + memset(re_syntax_table, 0, sizeof re_syntax_table); + + for (c = 'a'; c <= 'z'; c++) + re_syntax_table[c] = Sword; + + for (c = 'A'; c <= 'Z'; c++) + re_syntax_table[c] = Sword; + + for (c = '0'; c <= '9'; c++) + re_syntax_table[c] = Sword; + + re_syntax_table['_'] = Sword; + + done = 1; +} + +#endif /* not SYNTAX_TABLE */ + +/* Get the interface, including the syntax bits. */ +#include "compat/GnuRegex.h" + +/* Compile a fastmap for the compiled pattern in BUFFER; used to + * accelerate searches. Return 0 if successful and -2 if was an + * internal error. */ +static int re_compile_fastmap(struct re_pattern_buffer * buffer); + +/* Search in the string STRING (with length LENGTH) for the pattern + * compiled into BUFFER. Start searching at position START, for RANGE + * characters. Return the starting position of the match, -1 for no + * match, or -2 for an internal error. Also return register + * information in REGS (if REGS and BUFFER->no_sub are nonzero). */ +static int re_search(struct re_pattern_buffer * buffer, const char *string, + int length, int start, int range, struct re_registers * regs); + +/* Like `re_search', but search in the concatenation of STRING1 and + * STRING2. Also, stop searching at index START + STOP. */ +static int re_search_2(struct re_pattern_buffer * buffer, const char *string1, + int length1, const char *string2, int length2, + int start, int range, struct re_registers * regs, int stop); + +/* Like `re_search_2', but return how many characters in STRING the regexp + * in BUFFER matched, starting at position START. */ +static int re_match_2(struct re_pattern_buffer * buffer, const char *string1, + int length1, const char *string2, int length2, + int start, struct re_registers * regs, int stop); + +/* isalpha etc. are used for the character classes. */ +#include + +#ifndef isascii +#define isascii(c) 1 +#endif + +#ifdef isblank +#define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c)) +#else +#define ISBLANK(c) ((c) == ' ' || (c) == '\t') +#endif +#ifdef isgraph +#define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c)) +#else +#define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c)) +#endif + +#define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c)) +#define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c)) +#define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c)) +#define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c)) +#define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c)) +#define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c)) +#define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c)) +#define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c)) +#define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c)) +#define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c)) + +/* We remove any previous definition of `SIGN_EXTEND_CHAR', + * since ours (we hope) works properly with all combinations of + * machines, compilers, `char' and `unsigned char' argument types. + * (Per Bothner suggested the basic approach.) */ +#undef SIGN_EXTEND_CHAR +#ifdef __STDC__ +#define SIGN_EXTEND_CHAR(c) ((signed char) (c)) +#else /* not __STDC__ */ +/* As in Harbison and Steele. */ +#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) +#endif + +/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we + * use `alloca' instead of `malloc'. This is because using malloc in + * re_search* or re_match* could cause memory leaks when C-g is used in + * Emacs; also, malloc is slower and causes storage fragmentation. On + * the other hand, malloc is more portable, and easier to debug. + * + * Because we sometimes use alloca, some routines have to be macros, + * not functions -- `alloca'-allocated space disappears at the end of the + * function it is called in. */ + +#ifdef REGEX_MALLOC + +#define REGEX_ALLOCATE malloc +#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) + +#else /* not REGEX_MALLOC */ + +/* Emacs already defines alloca, sometimes. */ +#ifndef alloca + +/* Make alloca work the best possible way. */ +#ifdef __GNUC__ +#define alloca __builtin_alloca +#else /* not __GNUC__ */ +#if HAVE_ALLOCA_H +#include +#else /* not __GNUC__ or HAVE_ALLOCA_H */ +#ifndef _AIX /* Already did AIX, up at the top. */ +char *alloca(); +#endif /* not _AIX */ +#endif /* not HAVE_ALLOCA_H */ +#endif /* not __GNUC__ */ + +#endif /* not alloca */ + +#define REGEX_ALLOCATE alloca + +/* Assumes a `char *destination' variable. */ +#define REGEX_REALLOCATE(source, osize, nsize) \ + (destination = (char *) alloca (nsize), \ + memcpy (destination, source, osize), \ + destination) + +#endif /* not REGEX_MALLOC */ + +/* True if `size1' is non-NULL and PTR is pointing anywhere inside + * `string1' or just past its end. This works if PTR is NULL, which is + * a good thing. */ +#define FIRST_STRING_P(ptr) \ + (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) + +/* (Re)Allocate N items of type T using malloc, or fail. */ +#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) +#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) +#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) + +#define BYTEWIDTH 8 /* In bits. */ + +#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) + +#if !defined(__MINGW32__) /* MinGW defines boolean */ +typedef char boolean; +#endif +#define false 0 +#define true 1 + +/* These are the command codes that appear in compiled regular + * expressions. Some opcodes are followed by argument bytes. A + * command code can specify any interpretation whatsoever for its + * arguments. Zero bytes may appear in the compiled regular expression. + * + * The value of `exactn' is needed in search.c (search_buffer) in Emacs. + * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of + * `exactn' we use here must also be 1. */ + +typedef enum { + no_op = 0, + + /* Followed by one byte giving n, then by n literal bytes. */ + exactn = 1, + + /* Matches any (more or less) character. */ + anychar, + + /* Matches any one char belonging to specified set. First + * following byte is number of bitmap bytes. Then come bytes + * for a bitmap saying which chars are in. Bits in each byte + * are ordered low-bit-first. A character is in the set if its + * bit is 1. A character too large to have a bit in the map is + * automatically not in the set. */ + charset, + + /* Same parameters as charset, but match any character that is + * not one of those specified. */ + charset_not, + + /* Start remembering the text that is matched, for storing in a + * register. Followed by one byte with the register number, in + * the range 0 to one less than the pattern buffer's re_nsub + * field. Then followed by one byte with the number of groups + * inner to this one. (This last has to be part of the + * start_memory only because we need it in the on_failure_jump + * of re_match_2.) */ + start_memory, + + /* Stop remembering the text that is matched and store it in a + * memory register. Followed by one byte with the register + * number, in the range 0 to one less than `re_nsub' in the + * pattern buffer, and one byte with the number of inner groups, + * just like `start_memory'. (We need the number of inner + * groups here because we don't have any easy way of finding the + * corresponding start_memory when we're at a stop_memory.) */ + stop_memory, + + /* Match a duplicate of something remembered. Followed by one + * byte containing the register number. */ + duplicate, + + /* Fail unless at beginning of line. */ + begline, + + /* Fail unless at end of line. */ + endline, + + /* Succeeds if or at beginning of string to be matched. */ + begbuf, + + /* Analogously, for end of buffer/string. */ + endbuf, + + /* Followed by two byte relative address to which to jump. */ + jump, + + /* Same as jump, but marks the end of an alternative. */ + jump_past_alt, + + /* Followed by two-byte relative address of place to resume at + * in case of failure. */ + on_failure_jump, + + /* Like on_failure_jump, but pushes a placeholder instead of the + * current string position when executed. */ + on_failure_keep_string_jump, + + /* Throw away latest failure point and then jump to following + * two-byte relative address. */ + pop_failure_jump, + + /* Change to pop_failure_jump if know won't have to backtrack to + * match; otherwise change to jump. This is used to jump + * back to the beginning of a repeat. If what follows this jump + * clearly won't match what the repeat does, such that we can be + * sure that there is no use backtracking out of repetitions + * already matched, then we change it to a pop_failure_jump. + * Followed by two-byte address. */ + maybe_pop_jump, + + /* Jump to following two-byte address, and push a dummy failure + * point. This failure point will be thrown away if an attempt + * is made to use it for a failure. A `+' construct makes this + * before the first repeat. Also used as an intermediary kind + * of jump when compiling an alternative. */ + dummy_failure_jump, + + /* Push a dummy failure point and continue. Used at the end of + * alternatives. */ + push_dummy_failure, + + /* Followed by two-byte relative address and two-byte number n. + * After matching N times, jump to the address upon failure. */ + succeed_n, + + /* Followed by two-byte relative address, and two-byte number n. + * Jump to the address N times, then fail. */ + jump_n, + + /* Set the following two-byte relative address to the + * subsequent two-byte number. The address *includes* the two + * bytes of number. */ + set_number_at, + + wordchar, /* Matches any word-constituent character. */ + notwordchar, /* Matches any char that is not a word-constituent. */ + + wordbeg, /* Succeeds if at word beginning. */ + wordend, /* Succeeds if at word end. */ + + wordbound, /* Succeeds if at a word boundary. */ + notwordbound /* Succeeds if not at a word boundary. */ + +} re_opcode_t; + +/* Common operations on the compiled pattern. */ + +/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ + +#define STORE_NUMBER(destination, number) \ + do { \ + (destination)[0] = (number) & 0377; \ + (destination)[1] = (number) >> 8; \ + } while (0) + +/* Same as STORE_NUMBER, except increment DESTINATION to + * the byte after where the number is stored. Therefore, DESTINATION + * must be an lvalue. */ + +#define STORE_NUMBER_AND_INCR(destination, number) \ + do { \ + STORE_NUMBER (destination, number); \ + (destination) += 2; \ + } while (0) + +/* Put into DESTINATION a number stored in two contiguous bytes starting + * at SOURCE. */ + +#define EXTRACT_NUMBER(destination, source) \ + do { \ + (destination) = *(source) & 0377; \ + (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ + } while (0) + +#ifdef DEBUG +static void +extract_number(dest, source) +int *dest; +unsigned char *source; +{ + int temp = SIGN_EXTEND_CHAR(*(source + 1)); + *dest = *source & 0377; + *dest += temp << 8; +} + +#ifndef EXTRACT_MACROS /* To debug the macros. */ +#undef EXTRACT_NUMBER +#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) +#endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. + * SOURCE must be an lvalue. */ + +#define EXTRACT_NUMBER_AND_INCR(destination, source) \ + do { \ + EXTRACT_NUMBER (destination, source); \ + (source) += 2; \ + } while (0) + +#ifdef DEBUG +static void +extract_number_and_incr(destination, source) +int *destination; +unsigned char **source; +{ + extract_number(destination, *source); + *source += 2; +} + +#ifndef EXTRACT_MACROS +#undef EXTRACT_NUMBER_AND_INCR +#define EXTRACT_NUMBER_AND_INCR(dest, src) \ + extract_number_and_incr (&dest, &src) +#endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* If DEBUG is defined, Regex prints many voluminous messages about what + * it is doing (if the variable `debug' is nonzero). If linked with the + * main program in `iregex.c', you can enter patterns and strings + * interactively. And if linked with the main program in `main.c' and + * the other test files, you can run the already-written tests. */ + +#ifdef DEBUG + +static int debug = 0; + +#define DEBUG_STATEMENT(e) e +#define DEBUG_PRINT1(x) if (debug) printf (x) +#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) +#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) +#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) +#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ + if (debug) print_partial_compiled_pattern (s, e) +#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ + if (debug) print_double_string (w, s1, sz1, s2, sz2) + +extern void printchar(); + +/* Print the fastmap in human-readable form. */ + +void +print_fastmap(fastmap) +char *fastmap; +{ + unsigned was_a_range = 0; + unsigned i = 0; + + while (i < (1 << BYTEWIDTH)) { + if (fastmap[i++]) { + was_a_range = 0; + printchar(i - 1); + while (i < (1 << BYTEWIDTH) && fastmap[i]) { + was_a_range = 1; + i++; + } + if (was_a_range) { + printf("-"); + printchar(i - 1); + } + } + } + putchar('\n'); +} + +/* Print a compiled pattern string in human-readable form, starting at + * the START pointer into it and ending just before the pointer END. */ + +void +print_partial_compiled_pattern(start, end) +unsigned char *start; +unsigned char *end; +{ + int mcnt, mcnt2; + unsigned char *p = start; + unsigned char *pend = end; + + if (start == NULL) { + printf("(null)\n"); + return; + } + /* Loop over pattern commands. */ + while (p < pend) { + switch ((re_opcode_t) * p++) { + case no_op: + printf("/no_op"); + break; + + case exactn: + mcnt = *p++; + printf("/exactn/%d", mcnt); + do { + putchar('/'); + printchar(*p++); + } while (--mcnt); + break; + + case start_memory: + mcnt = *p++; + printf("/start_memory/%d/%d", mcnt, *p++); + break; + + case stop_memory: + mcnt = *p++; + printf("/stop_memory/%d/%d", mcnt, *p++); + break; + + case duplicate: + printf("/duplicate/%d", *p++); + break; + + case anychar: + printf("/anychar"); + break; + + case charset: + case charset_not: { + register int c; + + printf("/charset%s", + (re_opcode_t) * (p - 1) == charset_not ? "_not" : ""); + + assert(p + *p < pend); + + for (c = 0; c < *p; c++) { + unsigned bit; + unsigned char map_byte = p[1 + c]; + + putchar('/'); + + for (bit = 0; bit < BYTEWIDTH; bit++) + if (map_byte & (1 << bit)) + printchar(c * BYTEWIDTH + bit); + } + p += 1 + *p; + break; + } + + case begline: + printf("/begline"); + break; + + case endline: + printf("/endline"); + break; + + case on_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/on_failure_jump/0/%d", mcnt); + break; + + case on_failure_keep_string_jump: + extract_number_and_incr(&mcnt, &p); + printf("/on_failure_keep_string_jump/0/%d", mcnt); + break; + + case dummy_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/dummy_failure_jump/0/%d", mcnt); + break; + + case push_dummy_failure: + printf("/push_dummy_failure"); + break; + + case maybe_pop_jump: + extract_number_and_incr(&mcnt, &p); + printf("/maybe_pop_jump/0/%d", mcnt); + break; + + case pop_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/pop_failure_jump/0/%d", mcnt); + break; + + case jump_past_alt: + extract_number_and_incr(&mcnt, &p); + printf("/jump_past_alt/0/%d", mcnt); + break; + + case jump: + extract_number_and_incr(&mcnt, &p); + printf("/jump/0/%d", mcnt); + break; + + case succeed_n: + extract_number_and_incr(&mcnt, &p); + extract_number_and_incr(&mcnt2, &p); + printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2); + break; + + case jump_n: + extract_number_and_incr(&mcnt, &p); + extract_number_and_incr(&mcnt2, &p); + printf("/jump_n/0/%d/0/%d", mcnt, mcnt2); + break; + + case set_number_at: + extract_number_and_incr(&mcnt, &p); + extract_number_and_incr(&mcnt2, &p); + printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2); + break; + + case wordbound: + printf("/wordbound"); + break; + + case notwordbound: + printf("/notwordbound"); + break; + + case wordbeg: + printf("/wordbeg"); + break; + + case wordend: + printf("/wordend"); + + case wordchar: + printf("/wordchar"); + break; + + case notwordchar: + printf("/notwordchar"); + break; + + case begbuf: + printf("/begbuf"); + break; + + case endbuf: + printf("/endbuf"); + break; + + default: + printf("?%d", *(p - 1)); + } + } + printf("/\n"); +} + +void +print_compiled_pattern(bufp) +struct re_pattern_buffer *bufp; +{ + unsigned char *buffer = bufp->buffer; + + print_partial_compiled_pattern(buffer, buffer + bufp->used); + printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); + + if (bufp->fastmap_accurate && bufp->fastmap) { + printf("fastmap: "); + print_fastmap(bufp->fastmap); + } + printf("re_nsub: %d\t", bufp->re_nsub); + printf("regs_alloc: %d\t", bufp->regs_allocated); + printf("can_be_null: %d\t", bufp->can_be_null); + printf("newline_anchor: %d\n", bufp->newline_anchor); + printf("no_sub: %d\t", bufp->no_sub); + printf("not_bol: %d\t", bufp->not_bol); + printf("not_eol: %d\t", bufp->not_eol); + printf("syntax: %d\n", bufp->syntax); + /* Perhaps we should print the translate table? */ +} + +void +print_double_string(where, string1, size1, string2, size2) +const char *where; +const char *string1; +const char *string2; +int size1; +int size2; +{ + unsigned this_char; + + if (where == NULL) + printf("(null)"); + else { + if (FIRST_STRING_P(where)) { + for (this_char = where - string1; this_char < size1; this_char++) + printchar(string1[this_char]); + + where = string2; + } + for (this_char = where - string2; this_char < size2; this_char++) + printchar(string2[this_char]); + } +} + +#else /* not DEBUG */ + +#undef assert +#define assert(e) + +#define DEBUG_STATEMENT(e) +#define DEBUG_PRINT1(x) +#define DEBUG_PRINT2(x1, x2) +#define DEBUG_PRINT3(x1, x2, x3) +#define DEBUG_PRINT4(x1, x2, x3, x4) +#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) +#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) + +#endif /* not DEBUG */ + +/* This table gives an error message for each of the error codes listed + * in regex.h. Obviously the order here has to be same as there. */ + +static const char *re_error_msg[] = {NULL, /* REG_NOERROR */ + "No match", /* REG_NOMATCH */ + "Invalid regular expression", /* REG_BADPAT */ + "Invalid collation character", /* REG_ECOLLATE */ + "Invalid character class name", /* REG_ECTYPE */ + "Trailing backslash", /* REG_EESCAPE */ + "Invalid back reference", /* REG_ESUBREG */ + "Unmatched [ or [^", /* REG_EBRACK */ + "Unmatched ( or \\(", /* REG_EPAREN */ + "Unmatched \\{", /* REG_EBRACE */ + "Invalid content of \\{\\}", /* REG_BADBR */ + "Invalid range end", /* REG_ERANGE */ + "Memory exhausted", /* REG_ESPACE */ + "Invalid preceding regular expression", /* REG_BADRPT */ + "Premature end of regular expression", /* REG_EEND */ + "Regular expression too big", /* REG_ESIZE */ + "Unmatched ) or \\)", /* REG_ERPAREN */ + }; + +/* Subroutine declarations and macros for regex_compile. */ + +/* Fetch the next character in the uncompiled pattern---translating it + * if necessary. Also cast from a signed character in the constant + * string passed to us by the user to an unsigned char that we can use + * as an array index (in, e.g., `translate'). */ +#define PATFETCH(c) \ + do {if (p == pend) return REG_EEND; \ + c = (unsigned char) *p++; \ + if (translate) c = translate[c]; \ + } while (0) + +/* Fetch the next character in the uncompiled pattern, with no + * translation. */ +#define PATFETCH_RAW(c) \ + do {if (p == pend) return REG_EEND; \ + c = (unsigned char) *p++; \ + } while (0) + +/* Go backwards one character in the pattern. */ +#define PATUNFETCH p-- + +/* If `translate' is non-null, return translate[D], else just D. We + * cast the subscript to translate because some data is declared as + * `char *', to avoid warnings when a string constant is passed. But + * when we use a character as a subscript we must make it unsigned. */ +#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) + +/* Macros for outputting the compiled pattern into `buffer'. */ + +/* If the buffer isn't allocated when it comes in, use this. */ +#define INIT_BUF_SIZE 32 + +/* Make sure we have at least N more bytes of space in buffer. */ +#define GET_BUFFER_SPACE(n) \ + while (b - bufp->buffer + (n) > bufp->allocated) \ + EXTEND_BUFFER () + +/* Make sure we have one more byte of buffer space and then add C to it. */ +#define BUF_PUSH(c) \ + do { \ + GET_BUFFER_SPACE (1); \ + *b++ = (unsigned char) (c); \ + } while (0) + +/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ +#define BUF_PUSH_2(c1, c2) \ + do { \ + GET_BUFFER_SPACE (2); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + } while (0) + +/* As with BUF_PUSH_2, except for three bytes. */ +#define BUF_PUSH_3(c1, c2, c3) \ + do { \ + GET_BUFFER_SPACE (3); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + *b++ = (unsigned char) (c3); \ + } while (0) + +/* Store a jump with opcode OP at LOC to location TO. We store a + * relative address offset by the three bytes the jump itself occupies. */ +#define STORE_JUMP(op, loc, to) \ + store_op1 (op, loc, (to) - (loc) - 3) + +/* Likewise, for a two-argument jump. */ +#define STORE_JUMP2(op, loc, to, arg) \ + store_op2 (op, loc, (to) - (loc) - 3, arg) + +/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP(op, loc, to) \ + insert_op1 (op, loc, (to) - (loc) - 3, b) + +/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP2(op, loc, to, arg) \ + insert_op2 (op, loc, (to) - (loc) - 3, arg, b) + +/* This is not an arbitrary limit: the arguments which represent offsets + * into the pattern are two bytes long. So if 2^16 bytes turns out to + * be too small, many things would have to change. */ +#define MAX_BUF_SIZE (1L << 16) + +/* Extend the buffer by twice its current size via realloc and + * reset the pointers that pointed into the old block to point to the + * correct places in the new one. If extending the buffer results in it + * being larger than MAX_BUF_SIZE, then flag memory exhausted. */ +#define EXTEND_BUFFER() \ + do { \ + unsigned char *old_buffer = bufp->buffer; \ + if (bufp->allocated == MAX_BUF_SIZE) \ + return REG_ESIZE; \ + bufp->allocated <<= 1; \ + if (bufp->allocated > MAX_BUF_SIZE) \ + bufp->allocated = MAX_BUF_SIZE; \ + bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ + if (bufp->buffer == NULL) \ + return REG_ESPACE; \ + /* If the buffer moved, move all the pointers into it. */ \ + if (old_buffer != bufp->buffer) \ + { \ + b = (b - old_buffer) + bufp->buffer; \ + begalt = (begalt - old_buffer) + bufp->buffer; \ + if (fixup_alt_jump) \ + fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ + if (laststart) \ + laststart = (laststart - old_buffer) + bufp->buffer; \ + if (pending_exact) \ + pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ + } \ + } while (0) + +/* Since we have one byte reserved for the register number argument to + * {start,stop}_memory, the maximum number of groups we can report + * things about is what fits in that byte. */ +#define MAX_REGNUM 255 + +/* But patterns can have more than `MAX_REGNUM' registers. We just + * ignore the excess. */ +typedef unsigned regnum_t; + +/* Macros for the compile stack. */ + +/* Since offsets can go either forwards or backwards, this type needs to + * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ +typedef int pattern_offset_t; + +typedef struct { + pattern_offset_t begalt_offset; + pattern_offset_t fixup_alt_jump; + pattern_offset_t inner_group_offset; + pattern_offset_t laststart_offset; + regnum_t regnum; +} compile_stack_elt_t; + +typedef struct { + compile_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ +} compile_stack_type; + +static void store_op1(re_opcode_t op, unsigned char *loc, int arg); +static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2); +static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end); +static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end); +static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax); +static boolean at_endline_loc_p(const char *p, const char *pend, int syntax); +static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum); +static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b); + +#define INIT_COMPILE_STACK_SIZE 32 + +/* The next available element. */ +#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) + +/* Set the bit for character C in a list. */ +#define SET_LIST_BIT(c) \ + (b[((unsigned char) (c)) / BYTEWIDTH] \ + |= 1 << (((unsigned char) c) % BYTEWIDTH)) + +/* Get the next unsigned number in the uncompiled pattern. */ +#define GET_UNSIGNED_NUMBER(num) \ + { if (p != pend) \ + { \ + PATFETCH (c); \ + while (ISDIGIT (c)) \ + { \ + if (num < 0) \ + num = 0; \ + num = num * 10 + c - '0'; \ + if (p == pend) \ + break; \ + PATFETCH (c); \ + } \ + } \ + } + +#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ + +#define IS_CHAR_CLASS(string) \ + (STREQ (string, "alpha") || STREQ (string, "upper") \ + || STREQ (string, "lower") || STREQ (string, "digit") \ + || STREQ (string, "alnum") || STREQ (string, "xdigit") \ + || STREQ (string, "space") || STREQ (string, "print") \ + || STREQ (string, "punct") || STREQ (string, "graph") \ + || STREQ (string, "cntrl") || STREQ (string, "blank")) + +/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. + * Returns one of error codes defined in `regex.h', or zero for success. + * + * Assumes the `allocated' (and perhaps `buffer') and `translate' + * fields are set in BUFP on entry. + * + * If it succeeds, results are put in BUFP (if it returns an error, the + * contents of BUFP are undefined): + * `buffer' is the compiled pattern; + * `syntax' is set to SYNTAX; + * `used' is set to the length of the compiled pattern; + * `fastmap_accurate' is zero; + * `re_nsub' is the number of subexpressions in PATTERN; + * `not_bol' and `not_eol' are zero; + * + * The `fastmap' and `newline_anchor' fields are neither + * examined nor set. */ + +static reg_errcode_t +regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp) +{ + /* We fetch characters from PATTERN here. Even though PATTERN is + * `char *' (i.e., signed), we declare these variables as unsigned, so + * they can be reliably used as array indices. */ + register unsigned char c, c1; + + /* A random tempory spot in PATTERN. */ + const char *p1; + + /* Points to the end of the buffer, where we should append. */ + register unsigned char *b; + + /* Keeps track of unclosed groups. */ + compile_stack_type compile_stack; + + /* Points to the current (ending) position in the pattern. */ + const char *p = pattern; + const char *pend = pattern + size; + + /* How to translate the characters in the pattern. */ + char *translate = bufp->translate; + + /* Address of the count-byte of the most recently inserted `exactn' + * command. This makes it possible to tell if a new exact-match + * character can be added to that command or if the character requires + * a new `exactn' command. */ + unsigned char *pending_exact = 0; + + /* Address of start of the most recently finished expression. + * This tells, e.g., postfix * where to find the start of its + * operand. Reset at the beginning of groups and alternatives. */ + unsigned char *laststart = 0; + + /* Address of beginning of regexp, or inside of last group. */ + unsigned char *begalt; + + /* Place in the uncompiled pattern (i.e., the {) to + * which to go back if the interval is invalid. */ + const char *beg_interval; + + /* Address of the place where a forward jump should go to the end of + * the containing expression. Each alternative of an `or' -- except the + * last -- ends with a forward jump of this sort. */ + unsigned char *fixup_alt_jump = 0; + + /* Counts open-groups as they are encountered. Remembered for the + * matching close-group on the compile stack, so the same register + * number is put in the stop_memory as the start_memory. */ + regnum_t regnum = 0; + +#ifdef DEBUG + DEBUG_PRINT1("\nCompiling pattern: "); + if (debug) { + unsigned debug_count; + + for (debug_count = 0; debug_count < size; debug_count++) + printchar(pattern[debug_count]); + putchar('\n'); + } +#endif /* DEBUG */ + + /* Initialize the compile stack. */ + compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); + if (compile_stack.stack == NULL) + return REG_ESPACE; + + compile_stack.size = INIT_COMPILE_STACK_SIZE; + compile_stack.avail = 0; + + /* Initialize the pattern buffer. */ + bufp->syntax = syntax; + bufp->fastmap_accurate = 0; + bufp->not_bol = bufp->not_eol = 0; + + /* Set `used' to zero, so that if we return an error, the pattern + * printer (for debugging) will think there's no pattern. We reset it + * at the end. */ + bufp->used = 0; + + /* Always count groups, whether or not bufp->no_sub is set. */ + bufp->re_nsub = 0; + +#if !defined (SYNTAX_TABLE) + /* Initialize the syntax table. */ + init_syntax_once(); +#endif + + if (bufp->allocated == 0) { + if (bufp->buffer) { + /* If zero allocated, but buffer is non-null, try to realloc + * enough space. This loses if buffer's address is bogus, but + * that is the user's responsibility. */ + RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char); + } else { /* Caller did not allocate a buffer. Do it for them. */ + bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char); + } + if (!bufp->buffer) + return REG_ESPACE; + + bufp->allocated = INIT_BUF_SIZE; + } + begalt = b = bufp->buffer; + + /* Loop through the uncompiled pattern until we're at the end. */ + while (p != pend) { + PATFETCH(c); + + switch (c) { + case '^': { + if ( /* If at start of pattern, it's an operator. */ + p == pattern + 1 + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's come before. */ + || at_begline_loc_p(pattern, p, syntax)) + BUF_PUSH(begline); + else + goto normal_char; + } + break; + + case '$': { + if ( /* If at end of pattern, it's an operator. */ + p == pend + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's next. */ + || at_endline_loc_p(p, pend, syntax)) + BUF_PUSH(endline); + else + goto normal_char; + } + break; + + case '+': + case '?': + if ((syntax & RE_BK_PLUS_QM) + || (syntax & RE_LIMITED_OPS)) + goto normal_char; +handle_plus: + case '*': + /* If there is no previous pattern... */ + if (!laststart) { + if (syntax & RE_CONTEXT_INVALID_OPS) + return REG_BADRPT; + else if (!(syntax & RE_CONTEXT_INDEP_OPS)) + goto normal_char; + } { + /* Are we optimizing this jump? */ + boolean keep_string_p = false; + + /* 1 means zero (many) matches is allowed. */ + char zero_times_ok = 0, many_times_ok = 0; + + /* If there is a sequence of repetition chars, collapse it + * down to just one (the right one). We can't combine + * interval operators with these because of, e.g., `a{2}*', + * which should only match an even number of `a's. */ + + for (;;) { + zero_times_ok |= c != '+'; + many_times_ok |= c != '?'; + + if (p == pend) + break; + + PATFETCH(c); + + if (c == '*' + || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))); + + else if (syntax & RE_BK_PLUS_QM && c == '\\') { + if (p == pend) + return REG_EESCAPE; + + PATFETCH(c1); + if (!(c1 == '+' || c1 == '?')) { + PATUNFETCH; + PATUNFETCH; + break; + } + c = c1; + } else { + PATUNFETCH; + break; + } + + /* If we get here, we found another repeat character. */ + } + + /* Star, etc. applied to an empty pattern is equivalent + * to an empty pattern. */ + if (!laststart) + break; + + /* Now we know whether or not zero matches is allowed + * and also whether or not two or more matches is allowed. */ + if (many_times_ok) { + /* More than one repetition is allowed, so put in at the + * end a backward relative jump from `b' to before the next + * jump we're going to put in below (which jumps from + * laststart to after this jump). + * + * But if we are at the `*' in the exact sequence `.*\n', + * insert an unconditional jump backwards to the ., + * instead of the beginning of the loop. This way we only + * push a failure point once, instead of every time + * through the loop. */ + assert(p - 1 > pattern); + + /* Allocate the space for the jump. */ + GET_BUFFER_SPACE(3); + + /* We know we are not at the first character of the pattern, + * because laststart was nonzero. And we've already + * incremented `p', by the way, to be the character after + * the `*'. Do we have to do something analogous here + * for null bytes, because of RE_DOT_NOT_NULL? */ + if (TRANSLATE(*(p - 2)) == TRANSLATE('.') + && zero_times_ok + && p < pend && TRANSLATE(*p) == TRANSLATE('\n') + && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */ + STORE_JUMP(jump, b, laststart); + keep_string_p = true; + } else + /* Anything else. */ + STORE_JUMP(maybe_pop_jump, b, laststart - 3); + + /* We've added more stuff to the buffer. */ + b += 3; + } + /* On failure, jump from laststart to b + 3, which will be the + * end of the buffer after this jump is inserted. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump + : on_failure_jump, + laststart, b + 3); + pending_exact = 0; + b += 3; + + if (!zero_times_ok) { + /* At least one repetition is required, so insert a + * `dummy_failure_jump' before the initial + * `on_failure_jump' instruction of the loop. This + * effects a skip over that instruction the first time + * we hit that loop. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6); + b += 3; + } + } + break; + + case '.': + laststart = b; + BUF_PUSH(anychar); + break; + + case '[': { + boolean had_char_class = false; + + if (p == pend) + return REG_EBRACK; + + /* Ensure that we have enough space to push a charset: the + * opcode, the length count, and the bitset; 34 bytes in all. */ + GET_BUFFER_SPACE(34); + + laststart = b; + + /* We test `*p == '^' twice, instead of using an if + * statement, so we only need one BUF_PUSH. */ + BUF_PUSH(*p == '^' ? charset_not : charset); + if (*p == '^') + p++; + + /* Remember the first position in the bracket expression. */ + p1 = p; + + /* Push the number of bytes in the bitmap. */ + BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH); + + /* Clear the whole map. */ + memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH); + + /* charset_not matches newline according to a syntax bit. */ + if ((re_opcode_t) b[-2] == charset_not + && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) + SET_LIST_BIT('\n'); + + /* Read in characters and ranges, setting map bits. */ + for (;;) { + if (p == pend) + return REG_EBRACK; + + PATFETCH(c); + + /* \ might escape characters inside [...] and [^...]. */ + if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') { + if (p == pend) + return REG_EESCAPE; + + PATFETCH(c1); + SET_LIST_BIT(c1); + continue; + } + /* Could be the end of the bracket expression. If it's + * not (i.e., when the bracket expression is `[]' so + * far), the ']' character bit gets set way below. */ + if (c == ']' && p != p1 + 1) + break; + + /* Look ahead to see if it's a range when the last thing + * was a character class. */ + if (had_char_class && c == '-' && *p != ']') + return REG_ERANGE; + + /* Look ahead to see if it's a range when the last thing + * was a character: if this is a hyphen not at the + * beginning or the end of a list, then it's the range + * operator. */ + if (c == '-' + && !(p - 2 >= pattern && p[-2] == '[') + && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') + && *p != ']') { + reg_errcode_t ret + = compile_range(&p, pend, translate, syntax, b); + if (ret != REG_NOERROR) + return ret; + } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */ + reg_errcode_t ret; + + /* Move past the `-'. */ + PATFETCH(c1); + + ret = compile_range(&p, pend, translate, syntax, b); + if (ret != REG_NOERROR) + return ret; + } + /* See if we're at the beginning of a possible character + * class. */ + + else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */ + char str[CHAR_CLASS_MAX_LENGTH + 1]; + + PATFETCH(c); + c1 = 0; + + /* If pattern is `[[:'. */ + if (p == pend) + return REG_EBRACK; + + for (;;) { + PATFETCH(c); + if (c == ':' || c == ']' || p == pend + || c1 == CHAR_CLASS_MAX_LENGTH) + break; + str[c1++] = c; + } + str[c1] = '\0'; + + /* If isn't a word bracketed by `[:' and:`]': + * undo the ending character, the letters, and leave + * the leading `:' and `[' (but set bits for them). */ + if (c == ':' && *p == ']') { + int ch; + boolean is_alnum = STREQ(str, "alnum"); + boolean is_alpha = STREQ(str, "alpha"); + boolean is_blank = STREQ(str, "blank"); + boolean is_cntrl = STREQ(str, "cntrl"); + boolean is_digit = STREQ(str, "digit"); + boolean is_graph = STREQ(str, "graph"); + boolean is_lower = STREQ(str, "lower"); + boolean is_print = STREQ(str, "print"); + boolean is_punct = STREQ(str, "punct"); + boolean is_space = STREQ(str, "space"); + boolean is_upper = STREQ(str, "upper"); + boolean is_xdigit = STREQ(str, "xdigit"); + + if (!IS_CHAR_CLASS(str)) + return REG_ECTYPE; + + /* Throw away the ] at the end of the character + * class. */ + PATFETCH(c); + + if (p == pend) + return REG_EBRACK; + + for (ch = 0; ch < 1 << BYTEWIDTH; ch++) { + if ((is_alnum && ISALNUM(ch)) + || (is_alpha && ISALPHA(ch)) + || (is_blank && ISBLANK(ch)) + || (is_cntrl && ISCNTRL(ch)) + || (is_digit && ISDIGIT(ch)) + || (is_graph && ISGRAPH(ch)) + || (is_lower && ISLOWER(ch)) + || (is_print && ISPRINT(ch)) + || (is_punct && ISPUNCT(ch)) + || (is_space && ISSPACE(ch)) + || (is_upper && ISUPPER(ch)) + || (is_xdigit && ISXDIGIT(ch))) + SET_LIST_BIT(ch); + } + had_char_class = true; + } else { + c1++; + while (c1--) + PATUNFETCH; + SET_LIST_BIT('['); + SET_LIST_BIT(':'); + had_char_class = false; + } + } else { + had_char_class = false; + SET_LIST_BIT(c); + } + } + + /* Discard any (non)matching list bytes that are all 0 at the + * end of the map. Decrease the map-length byte too. */ + while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) + b[-1]--; + b += b[-1]; + } + break; + + case '(': + if (syntax & RE_NO_BK_PARENS) + goto handle_open; + else + goto normal_char; + + case ')': + if (syntax & RE_NO_BK_PARENS) + goto handle_close; + else + goto normal_char; + + case '\n': + if (syntax & RE_NEWLINE_ALT) + goto handle_alt; + else + goto normal_char; + + case '|': + if (syntax & RE_NO_BK_VBAR) + goto handle_alt; + else + goto normal_char; + + case '{': + if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) + goto handle_interval; + else + goto normal_char; + + case '\\': + if (p == pend) + return REG_EESCAPE; + + /* Do not translate the character after the \, so that we can + * distinguish, e.g., \B from \b, even if we normally would + * translate, e.g., B to b. */ + PATFETCH_RAW(c); + + switch (c) { + case '(': + if (syntax & RE_NO_BK_PARENS) + goto normal_backslash; + +handle_open: + bufp->re_nsub++; + regnum++; + + if (compile_stack.avail == compile_stack.size) { + RETALLOC(compile_stack.stack, compile_stack.size << 1, + compile_stack_elt_t); + if (compile_stack.stack == NULL) + return REG_ESPACE; + + compile_stack.size <<= 1; + } + /* These are the values to restore when we hit end of this + * group. They are all relative offsets, so that if the + * whole pattern moves because of realloc, they will still + * be valid. */ + COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; + COMPILE_STACK_TOP.fixup_alt_jump + = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; + COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; + COMPILE_STACK_TOP.regnum = regnum; + + /* We will eventually replace the 0 with the number of + * groups inner to this one. But do not push a + * start_memory for groups beyond the last one we can + * represent in the compiled pattern. */ + if (regnum <= MAX_REGNUM) { + COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; + BUF_PUSH_3(start_memory, regnum, 0); + } + compile_stack.avail++; + + fixup_alt_jump = 0; + laststart = 0; + begalt = b; + /* If we've reached MAX_REGNUM groups, then this open + * won't actually generate any code, so we'll have to + * clear pending_exact explicitly. */ + pending_exact = 0; + break; + + case ')': + if (syntax & RE_NO_BK_PARENS) + goto normal_backslash; + + if (compile_stack.avail == 0) { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_backslash; + else + return REG_ERPAREN; + } +handle_close: + if (fixup_alt_jump) { + /* Push a dummy failure point at the end of the + * alternative for a possible future + * `pop_failure_jump' to pop. See comments at + * `push_dummy_failure' in `re_match_2'. */ + BUF_PUSH(push_dummy_failure); + + /* We allocated space for this jump when we assigned + * to `fixup_alt_jump', in the `handle_alt' case below. */ + STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1); + } + /* See similar code for backslashed left paren above. */ + if (compile_stack.avail == 0) { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_char; + else + return REG_ERPAREN; + } + /* Since we just checked for an empty stack above, this + * ``can't happen''. */ + assert(compile_stack.avail != 0); + { + /* We don't just want to restore into `regnum', because + * later groups should continue to be numbered higher, + * as in `(ab)c(de)' -- the second group is #2. */ + regnum_t this_group_regnum; + + compile_stack.avail--; + begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; + fixup_alt_jump + = COMPILE_STACK_TOP.fixup_alt_jump + ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 + : 0; + laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; + this_group_regnum = COMPILE_STACK_TOP.regnum; + /* If we've reached MAX_REGNUM groups, then this open + * won't actually generate any code, so we'll have to + * clear pending_exact explicitly. */ + pending_exact = 0; + + /* We're at the end of the group, so now we know how many + * groups were inside this one. */ + if (this_group_regnum <= MAX_REGNUM) { + unsigned char *inner_group_loc + = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; + + *inner_group_loc = regnum - this_group_regnum; + BUF_PUSH_3(stop_memory, this_group_regnum, + regnum - this_group_regnum); + } + } + break; + + case '|': /* `\|'. */ + if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) + goto normal_backslash; +handle_alt: + if (syntax & RE_LIMITED_OPS) + goto normal_char; + + /* Insert before the previous alternative a jump which + * jumps to this alternative if the former fails. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(on_failure_jump, begalt, b + 6); + pending_exact = 0; + b += 3; + + /* The alternative before this one has a jump after it + * which gets executed if it gets matched. Adjust that + * jump so it will jump to this alternative's analogous + * jump (put in below, which in turn will jump to the next + * (if any) alternative's such jump, etc.). The last such + * jump jumps to the correct final destination. A picture: + * _____ _____ + * | | | | + * | v | v + * a | b | c + * + * If we are at `b', then fixup_alt_jump right now points to a + * three-byte space after `a'. We'll put in the jump, set + * fixup_alt_jump to right after `b', and leave behind three + * bytes which we'll fill in when we get to after `c'. */ + + if (fixup_alt_jump) + STORE_JUMP(jump_past_alt, fixup_alt_jump, b); + + /* Mark and leave space for a jump after this alternative, + * to be filled in later either by next alternative or + * when know we're at the end of a series of alternatives. */ + fixup_alt_jump = b; + GET_BUFFER_SPACE(3); + b += 3; + + laststart = 0; + begalt = b; + break; + + case '{': + /* If \{ is a literal. */ + if (!(syntax & RE_INTERVALS) + /* If we're at `\{' and it's not the open-interval + * operator. */ + || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) + || (p - 2 == pattern && p == pend)) + goto normal_backslash; + +handle_interval: { + /* If got here, then the syntax allows intervals. */ + + /* At least (most) this many matches must be made. */ + int lower_bound = -1, upper_bound = -1; + + beg_interval = p - 1; + + if (p == pend) { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + return REG_EBRACE; + } + GET_UNSIGNED_NUMBER(lower_bound); + + if (c == ',') { + GET_UNSIGNED_NUMBER(upper_bound); + if (upper_bound < 0) + upper_bound = RE_DUP_MAX; + } else + /* Interval such as `{1}' => match exactly once. */ + upper_bound = lower_bound; + + if (lower_bound < 0 || upper_bound > RE_DUP_MAX + || lower_bound > upper_bound) { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + return REG_BADBR; + } + if (!(syntax & RE_NO_BK_BRACES)) { + if (c != '\\') + return REG_EBRACE; + + PATFETCH(c); + } + if (c != '}') { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + return REG_BADBR; + } + /* We just parsed a valid interval. */ + + /* If it's invalid to have no preceding re. */ + if (!laststart) { + if (syntax & RE_CONTEXT_INVALID_OPS) + return REG_BADRPT; + else if (syntax & RE_CONTEXT_INDEP_OPS) + laststart = b; + else + goto unfetch_interval; + } + /* If the upper bound is zero, don't want to succeed at + * all; jump from `laststart' to `b + 3', which will be + * the end of the buffer after we insert the jump. */ + if (upper_bound == 0) { + GET_BUFFER_SPACE(3); + INSERT_JUMP(jump, laststart, b + 3); + b += 3; + } + /* Otherwise, we have a nontrivial interval. When + * we're all done, the pattern will look like: + * set_number_at + * set_number_at + * succeed_n + * + * jump_n + * (The upper bound and `jump_n' are omitted if + * `upper_bound' is 1, though.) */ + else { + /* If the upper bound is > 1, we need to insert + * more at the end of the loop. */ + unsigned nbytes = 10 + (upper_bound > 1) * 10; + + GET_BUFFER_SPACE(nbytes); + + /* Initialize lower bound of the `succeed_n', even + * though it will be set during matching by its + * attendant `set_number_at' (inserted next), + * because `re_compile_fastmap' needs to know. + * Jump to the `jump_n' we might insert below. */ + INSERT_JUMP2(succeed_n, laststart, + b + 5 + (upper_bound > 1) * 5, + lower_bound); + b += 5; + + /* Code to initialize the lower bound. Insert + * before the `succeed_n'. The `5' is the last two + * bytes of this `set_number_at', plus 3 bytes of + * the following `succeed_n'. */ + insert_op2(set_number_at, laststart, 5, lower_bound, b); + b += 5; + + if (upper_bound > 1) { + /* More than one repetition is allowed, so + * append a backward jump to the `succeed_n' + * that starts this interval. + * + * When we've reached this during matching, + * we'll have matched the interval once, so + * jump back only `upper_bound - 1' times. */ + STORE_JUMP2(jump_n, b, laststart + 5, + upper_bound - 1); + b += 5; + + /* The location we want to set is the second + * parameter of the `jump_n'; that is `b-2' as + * an absolute address. `laststart' will be + * the `set_number_at' we're about to insert; + * `laststart+3' the number to set, the source + * for the relative address. But we are + * inserting into the middle of the pattern -- + * so everything is getting moved up by 5. + * Conclusion: (b - 2) - (laststart + 3) + 5, + * i.e., b - laststart. + * + * We insert this at the beginning of the loop + * so that if we fail during matching, we'll + * reinitialize the bounds. */ + insert_op2(set_number_at, laststart, b - laststart, + upper_bound - 1, b); + b += 5; + } + } + pending_exact = 0; + beg_interval = NULL; + } + break; + +unfetch_interval: + /* If an invalid interval, match the characters as literals. */ + assert(beg_interval); + p = beg_interval; + beg_interval = NULL; + + /* normal_char and normal_backslash need `c'. */ + PATFETCH(c); + + if (!(syntax & RE_NO_BK_BRACES)) { + if (p > pattern && p[-1] == '\\') + goto normal_backslash; + } + goto normal_char; + + case 'w': + laststart = b; + BUF_PUSH(wordchar); + break; + + case 'W': + laststart = b; + BUF_PUSH(notwordchar); + break; + + case '<': + BUF_PUSH(wordbeg); + break; + + case '>': + BUF_PUSH(wordend); + break; + + case 'b': + BUF_PUSH(wordbound); + break; + + case 'B': + BUF_PUSH(notwordbound); + break; + + case '`': + BUF_PUSH(begbuf); + break; + + case '\'': + BUF_PUSH(endbuf); + break; + + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': + if (syntax & RE_NO_BK_REFS) + goto normal_char; + + c1 = c - '0'; + + if (c1 > regnum) + return REG_ESUBREG; + + /* Can't back reference to a subexpression if inside of it. */ + if (group_in_compile_stack(compile_stack, c1)) + goto normal_char; + + laststart = b; + BUF_PUSH_2(duplicate, c1); + break; + + case '+': + case '?': + if (syntax & RE_BK_PLUS_QM) + goto handle_plus; + else + goto normal_backslash; + + default: +normal_backslash: + /* You might think it would be useful for \ to mean + * not to translate; but if we don't translate it + * it will never match anything. */ + c = TRANSLATE(c); + goto normal_char; + } + break; + + default: + /* Expects the character in `c'. */ +normal_char: + /* If no exactn currently being built. */ + if (!pending_exact + + /* If last exactn not at current position. */ + || pending_exact + *pending_exact + 1 != b + + /* We have only one byte following the exactn for the count. */ + || *pending_exact == (1 << BYTEWIDTH) - 1 + + /* If followed by a repetition operator. */ + || *p == '*' || *p == '^' + || ((syntax & RE_BK_PLUS_QM) + ? *p == '\\' && (p[1] == '+' || p[1] == '?') + : (*p == '+' || *p == '?')) + || ((syntax & RE_INTERVALS) + && ((syntax & RE_NO_BK_BRACES) + ? *p == '{' + : (p[0] == '\\' && p[1] == '{')))) { + /* Start building a new exactn. */ + + laststart = b; + + BUF_PUSH_2(exactn, 0); + pending_exact = b - 1; + } + BUF_PUSH(c); + (*pending_exact)++; + break; + } /* switch (c) */ + } /* while p != pend */ + + /* Through the pattern now. */ + + if (fixup_alt_jump) + STORE_JUMP(jump_past_alt, fixup_alt_jump, b); + + if (compile_stack.avail != 0) + return REG_EPAREN; + + free(compile_stack.stack); + + /* We have succeeded; set the length of the buffer. */ + bufp->used = b - bufp->buffer; + +#ifdef DEBUG + if (debug) { + DEBUG_PRINT1("\nCompiled pattern: "); + print_compiled_pattern(bufp); + } +#endif /* DEBUG */ + + return REG_NOERROR; +} /* regex_compile */ + +/* Subroutines for `regex_compile'. */ + +/* Store OP at LOC followed by two-byte integer parameter ARG. */ + +void store_op1(re_opcode_t op, unsigned char *loc, int arg) +{ + *loc = (unsigned char) op; + STORE_NUMBER(loc + 1, arg); +} + +/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ + +void +store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2) +{ + *loc = (unsigned char) op; + STORE_NUMBER(loc + 1, arg1); + STORE_NUMBER(loc + 3, arg2); +} + +/* Copy the bytes from LOC to END to open up three bytes of space at LOC + * for OP followed by two-byte integer parameter ARG. */ + +void +insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end) +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 3; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op1(op, loc, arg); +} + +/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ + +void +insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end) +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 5; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op2(op, loc, arg1, arg2); +} + +/* P points to just after a ^ in PATTERN. Return true if that ^ comes + * after an alternative or a begin-subexpression. We assume there is at + * least one character before the ^. */ + +boolean +at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax) +{ + const char *prev = p - 2; + boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; + + return + /* After a subexpression? */ + (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) + /* After an alternative? */ + || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); +} + +/* The dual of at_begline_loc_p. This one is for $. We assume there is + * at least one character after the $, i.e., `P < PEND'. */ + +boolean +at_endline_loc_p(const char *p, const char *pend, int syntax) +{ + const char *next = p; + boolean next_backslash = *next == '\\'; + const char *next_next = p + 1 < pend ? p + 1 : NULL; + + return + /* Before a subexpression? */ + (syntax & RE_NO_BK_PARENS ? *next == ')' + : next_backslash && next_next && *next_next == ')') + /* Before an alternative? */ + || (syntax & RE_NO_BK_VBAR ? *next == '|' + : next_backslash && next_next && *next_next == '|'); +} + +/* Returns true if REGNUM is in one of COMPILE_STACK's elements and + * false if it's not. */ + +boolean +group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum) +{ + int this_element; + + for (this_element = compile_stack.avail - 1; + this_element >= 0; + this_element--) + if (compile_stack.stack[this_element].regnum == regnum) + return true; + + return false; +} + +/* Read the ending character of a range (in a bracket expression) from the + * uncompiled pattern *P_PTR (which ends at PEND). We assume the + * starting character is in `P[-2]'. (`P[-1]' is the character `-'.) + * Then we set the translation of all bits between the starting and + * ending characters (inclusive) in the compiled pattern B. + * + * Return an error code. + * + * We use these short variable names so we can use the same macros as + * `regex_compile' itself. */ + +reg_errcode_t +compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b) +{ + unsigned this_char; + + const char *p = *p_ptr; + int range_start, range_end; + + if (p == pend) + return REG_ERANGE; + + /* Even though the pattern is a signed `char *', we need to fetch + * with unsigned char *'s; if the high bit of the pattern character + * is set, the range endpoints will be negative if we fetch using a + * signed char *. + * + * We also want to fetch the endpoints without translating them; the + * appropriate translation is done in the bit-setting loop below. */ + range_start = ((unsigned char *) p)[-2]; + range_end = ((unsigned char *) p)[0]; + + /* Have to increment the pointer into the pattern string, so the + * caller isn't still at the ending character. */ + (*p_ptr)++; + + /* If the start is after the end, the range is empty. */ + if (range_start > range_end) + return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; + + /* Here we see why `this_char' has to be larger than an `unsigned + * char' -- the range is inclusive, so if `range_end' == 0xff + * (assuming 8-bit characters), we would otherwise go into an infinite + * loop, since all characters <= 0xff. */ + for (this_char = range_start; this_char <= range_end; this_char++) { + SET_LIST_BIT(TRANSLATE(this_char)); + } + + return REG_NOERROR; +} + +/* Failure stack declarations and macros; both re_compile_fastmap and + * re_match_2 use a failure stack. These have to be macros because of + * REGEX_ALLOCATE. */ + +/* Number of failure points for which to initially allocate space + * when matching. If this number is exceeded, we allocate more + * space, so it is not a hard limit. */ +#ifndef INIT_FAILURE_ALLOC +#define INIT_FAILURE_ALLOC 5 +#endif + +/* Roughly the maximum number of failure points on the stack. Would be + * exactly that if always used MAX_FAILURE_SPACE each time we failed. + * This is a variable only so users of regex can assign to it; we never + * change it ourselves. */ +int re_max_failures = 2000; + +typedef const unsigned char *fail_stack_elt_t; + +typedef struct { + fail_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ +} fail_stack_type; + +#define FAIL_STACK_EMPTY() (fail_stack.avail == 0) +#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) +#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) +#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) + +/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ + +#define INIT_FAIL_STACK() \ + do { \ + fail_stack.stack = (fail_stack_elt_t *) \ + REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ + \ + if (fail_stack.stack == NULL) \ + return -2; \ + \ + fail_stack.size = INIT_FAILURE_ALLOC; \ + fail_stack.avail = 0; \ + } while (0) + +/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. + * + * Return 1 if succeeds, and 0 if either ran out of memory + * allocating space for it or it was already too large. + * + * REGEX_REALLOCATE requires `destination' be declared. */ + +#define DOUBLE_FAIL_STACK(fail_stack) \ + ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ + ? 0 \ + : ((fail_stack).stack = (fail_stack_elt_t *) \ + REGEX_REALLOCATE ((fail_stack).stack, \ + (fail_stack).size * sizeof (fail_stack_elt_t), \ + ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ + \ + (fail_stack).stack == NULL \ + ? 0 \ + : ((fail_stack).size <<= 1, \ + 1))) + +/* Push PATTERN_OP on FAIL_STACK. + * + * Return 1 if was able to do so and 0 if ran out of memory allocating + * space to do so. */ +#define PUSH_PATTERN_OP(pattern_op, fail_stack) \ + ((FAIL_STACK_FULL () \ + && !DOUBLE_FAIL_STACK (fail_stack)) \ + ? 0 \ + : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ + 1)) + +/* This pushes an item onto the failure stack. Must be a four-byte + * value. Assumes the variable `fail_stack'. Probably should only + * be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_ITEM(item) \ + fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item + +/* The complement operation. Assumes `fail_stack' is nonempty. */ +#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] + +/* Used to omit pushing failure point id's when we're not debugging. */ +#ifdef DEBUG +#define DEBUG_PUSH PUSH_FAILURE_ITEM +#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () +#else +#define DEBUG_PUSH(item) +#define DEBUG_POP(item_addr) +#endif + +/* Push the information about the state we will need + * if we ever fail back to it. + * + * Requires variables fail_stack, regstart, regend, reg_info, and + * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be + * declared. + * + * Does `return FAILURE_CODE' if runs out of memory. */ + +#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ + do { \ + char *destination; \ + /* Must be int, so when we don't save any registers, the arithmetic \ + of 0 + -1 isn't done as unsigned. */ \ + int this_reg; \ + \ + DEBUG_STATEMENT (failure_id++); \ + DEBUG_STATEMENT (nfailure_points_pushed++); \ + DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ + DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ + DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ + \ + DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ + DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ + \ + /* Ensure we have enough space allocated for what we will push. */ \ + while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ + { \ + if (!DOUBLE_FAIL_STACK (fail_stack)) \ + return failure_code; \ + \ + DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ + (fail_stack).size); \ + DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ + } \ + \ + /* Push the info, starting with the registers. */ \ + DEBUG_PRINT1 ("\n"); \ + \ + for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ + this_reg++) \ + { \ + DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ + DEBUG_STATEMENT (num_regs_pushed++); \ + \ + DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ + PUSH_FAILURE_ITEM (regstart[this_reg]); \ + \ + DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ + PUSH_FAILURE_ITEM (regend[this_reg]); \ + \ + DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ + DEBUG_PRINT2 (" match_null=%d", \ + REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ + DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ + DEBUG_PRINT2 (" matched_something=%d", \ + MATCHED_SOMETHING (reg_info[this_reg])); \ + DEBUG_PRINT2 (" ever_matched=%d", \ + EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ + DEBUG_PRINT1 ("\n"); \ + PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ + } \ + \ + DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ + PUSH_FAILURE_ITEM (lowest_active_reg); \ + \ + DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ + PUSH_FAILURE_ITEM (highest_active_reg); \ + \ + DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ + PUSH_FAILURE_ITEM (pattern_place); \ + \ + DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ + DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ + size2); \ + DEBUG_PRINT1 ("'\n"); \ + PUSH_FAILURE_ITEM (string_place); \ + \ + DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ + DEBUG_PUSH (failure_id); \ + } while (0) + +/* This is the number of items that are pushed and popped on the stack + * for each register. */ +#define NUM_REG_ITEMS 3 + +/* Individual items aside from the registers. */ +#ifdef DEBUG +#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ +#else +#define NUM_NONREG_ITEMS 4 +#endif + +/* We push at most this many items on the stack. */ +#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) + +/* We actually push this many items. */ +#define NUM_FAILURE_ITEMS \ + ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ + + NUM_NONREG_ITEMS) + +/* How many items can still be added to the stack without overflowing it. */ +#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) + +/* Pops what PUSH_FAIL_STACK pushes. + * + * We restore into the parameters, all of which should be lvalues: + * STR -- the saved data position. + * PAT -- the saved pattern position. + * LOW_REG, HIGH_REG -- the highest and lowest active registers. + * REGSTART, REGEND -- arrays of string positions. + * REG_INFO -- array of information about each subexpression. + * + * Also assumes the variables `fail_stack' and (if debugging), `bufp', + * `pend', `string1', `size1', `string2', and `size2'. */ + +#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ +{ \ + DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ + int this_reg; \ + const unsigned char *string_temp; \ + \ + assert (!FAIL_STACK_EMPTY ()); \ + \ + /* Remove failure points and point to how many regs pushed. */ \ + DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ + DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ + DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ + \ + assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ + \ + DEBUG_POP (&failure_id); \ + DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ + \ + /* If the saved string location is NULL, it came from an \ + on_failure_keep_string_jump opcode, and we want to throw away the \ + saved NULL, thus retaining our current position in the string. */ \ + string_temp = POP_FAILURE_ITEM (); \ + if (string_temp != NULL) \ + str = (const char *) string_temp; \ + \ + DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ + DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ + DEBUG_PRINT1 ("'\n"); \ + \ + pat = (unsigned char *) POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ + \ + /* Restore register info. */ \ + high_reg = (unsigned long) POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ + \ + low_reg = (unsigned long) POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ + \ + for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ + { \ + DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ + \ + reg_info[this_reg].word = POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ + \ + regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ + \ + regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ + DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ + } \ + \ + DEBUG_STATEMENT (nfailure_points_popped++); \ +} /* POP_FAILURE_POINT */ + +/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in + * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible + * characters can start a string that matches the pattern. This fastmap + * is used by re_search to skip quickly over impossible starting points. + * + * The caller must supply the address of a (1 << BYTEWIDTH)-byte data + * area as BUFP->fastmap. + * + * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in + * the pattern buffer. + * + * Returns 0 if we succeed, -2 if an internal error. */ +#ifdef STDC_HEADERS +int +re_compile_fastmap(struct re_pattern_buffer *bufp) +#else +int +re_compile_fastmap(bufp) +struct re_pattern_buffer *bufp; +#endif +{ + int j, k; + fail_stack_type fail_stack; +#ifndef REGEX_MALLOC + char *destination; +#endif + /* We don't push any register information onto the failure stack. */ + unsigned num_regs = 0; + + register char *fastmap = bufp->fastmap; + unsigned char *pattern = bufp->buffer; + unsigned long size = bufp->used; + const unsigned char *p = pattern; + register unsigned char *pend = pattern + size; + + /* Assume that each path through the pattern can be null until + * proven otherwise. We set this false at the bottom of switch + * statement, to which we get only if a particular path doesn't + * match the empty string. */ + boolean path_can_be_null = true; + + /* We aren't doing a `succeed_n' to begin with. */ + boolean succeed_n_p = false; + + assert(fastmap != NULL && p != NULL); + + INIT_FAIL_STACK(); + memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */ + bufp->fastmap_accurate = 1; /* It will be when we're done. */ + bufp->can_be_null = 0; + + while (p != pend || !FAIL_STACK_EMPTY()) { + if (p == pend) { + bufp->can_be_null |= path_can_be_null; + + /* Reset for next path. */ + path_can_be_null = true; + + p = fail_stack.stack[--fail_stack.avail]; + } + /* We should never be about to go beyond the end of the pattern. */ + assert(p < pend); + +#ifdef SWITCH_ENUM_BUG + switch ((int) ((re_opcode_t) * p++)) +#else + switch ((re_opcode_t) * p++) +#endif + { + + /* I guess the idea here is to simply not bother with a fastmap + * if a backreference is used, since it's too hard to figure out + * the fastmap for the corresponding group. Setting + * `can_be_null' stops `re_search_2' from using the fastmap, so + * that is all we do. */ + case duplicate: + bufp->can_be_null = 1; + return 0; + + /* Following are the cases which match a character. These end + * with `break'. */ + + case exactn: + fastmap[p[1]] = 1; + break; + + case charset: + for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) + if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) + fastmap[j] = 1; + break; + + case charset_not: + /* Chars beyond end of map must be allowed. */ + for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) + fastmap[j] = 1; + + for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) + if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) + fastmap[j] = 1; + break; + + case wordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (re_syntax_table[j] == Sword) + fastmap[j] = 1; + break; + + case notwordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (re_syntax_table[j] != Sword) + fastmap[j] = 1; + break; + + case anychar: + /* `.' matches anything ... */ + for (j = 0; j < (1 << BYTEWIDTH); j++) + fastmap[j] = 1; + + /* ... except perhaps newline. */ + if (!(bufp->syntax & RE_DOT_NEWLINE)) + fastmap['\n'] = 0; + + /* Return if we have already set `can_be_null'; if we have, + * then the fastmap is irrelevant. Something's wrong here. */ + else if (bufp->can_be_null) + return 0; + + /* Otherwise, have to check alternative paths. */ + break; + + case no_op: + case begline: + case endline: + case begbuf: + case endbuf: + case wordbound: + case notwordbound: + case wordbeg: + case wordend: + case push_dummy_failure: + continue; + + case jump_n: + case pop_failure_jump: + case maybe_pop_jump: + case jump: + case jump_past_alt: + case dummy_failure_jump: + EXTRACT_NUMBER_AND_INCR(j, p); + p += j; + if (j > 0) + continue; + + /* Jump backward implies we just went through the body of a + * loop and matched nothing. Opcode jumped to should be + * `on_failure_jump' or `succeed_n'. Just treat it like an + * ordinary jump. For a * loop, it has pushed its failure + * point already; if so, discard that as redundant. */ + if ((re_opcode_t) * p != on_failure_jump + && (re_opcode_t) * p != succeed_n) + continue; + + p++; + EXTRACT_NUMBER_AND_INCR(j, p); + p += j; + + /* If what's on the stack is where we are now, pop it. */ + if (!FAIL_STACK_EMPTY() + && fail_stack.stack[fail_stack.avail - 1] == p) + fail_stack.avail--; + + continue; + + case on_failure_jump: + case on_failure_keep_string_jump: +handle_on_failure_jump: + EXTRACT_NUMBER_AND_INCR(j, p); + + /* For some patterns, e.g., `(a?)?', `p+j' here points to the + * end of the pattern. We don't want to push such a point, + * since when we restore it above, entering the switch will + * increment `p' past the end of the pattern. We don't need + * to push such a point since we obviously won't find any more + * fastmap entries beyond `pend'. Such a pattern can match + * the null string, though. */ + if (p + j < pend) { + if (!PUSH_PATTERN_OP(p + j, fail_stack)) + return -2; + } else + bufp->can_be_null = 1; + + if (succeed_n_p) { + EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */ + succeed_n_p = false; + } + continue; + + case succeed_n: + /* Get to the number of times to succeed. */ + p += 2; + + /* Increment p past the n for when k != 0. */ + EXTRACT_NUMBER_AND_INCR(k, p); + if (k == 0) { + p -= 4; + succeed_n_p = true; /* Spaghetti code alert. */ + goto handle_on_failure_jump; + } + continue; + + case set_number_at: + p += 4; + continue; + + case start_memory: + case stop_memory: + p += 2; + continue; + + default: + abort(); /* We have listed all the cases. */ + } /* switch *p++ */ + + /* Getting here means we have found the possible starting + * characters for one path of the pattern -- and that the empty + * string does not match. We need not follow this path further. + * Instead, look at the next alternative (remembered on the + * stack), or quit if no more. The test at the top of the loop + * does these things. */ + path_can_be_null = false; + p = pend; + } /* while p */ + + /* Set `can_be_null' for the last path (also the first path, if the + * pattern is empty). */ + bufp->can_be_null |= path_can_be_null; + return 0; +} /* re_compile_fastmap */ + +/* Searching routines. */ + +/* Like re_search_2, below, but only one string is specified, and + * doesn't let you say where to stop matching. */ + +static int +re_search(bufp, string, size, startpos, range, regs) +struct re_pattern_buffer *bufp; +const char *string; +int size, startpos, range; +struct re_registers *regs; +{ + return re_search_2(bufp, NULL, 0, string, size, startpos, range, + regs, size); +} + +/* Using the compiled pattern in BUFP->buffer, first tries to match the + * virtual concatenation of STRING1 and STRING2, starting first at index + * STARTPOS, then at STARTPOS + 1, and so on. + * + * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. + * + * RANGE is how far to scan while trying to match. RANGE = 0 means try + * only at STARTPOS; in general, the last start tried is STARTPOS + + * RANGE. + * + * In REGS, return the indices of the virtual concatenation of STRING1 + * and STRING2 that matched the entire BUFP->buffer and its contained + * subexpressions. + * + * Do not consider matching one past the index STOP in the virtual + * concatenation of STRING1 and STRING2. + * + * We return either the position in the strings at which the match was + * found, -1 if no match, or -2 if error (such as failure + * stack overflow). */ + +static int +re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop) +struct re_pattern_buffer *bufp; +const char *string1, *string2; +int size1, size2; +int startpos; +int range; +struct re_registers *regs; +int stop; +{ + int val; + register char *fastmap = bufp->fastmap; + register char *translate = bufp->translate; + int total_size = size1 + size2; + int endpos = startpos + range; + + /* Check for out-of-range STARTPOS. */ + if (startpos < 0 || startpos > total_size) + return -1; + + /* Fix up RANGE if it might eventually take us outside + * the virtual concatenation of STRING1 and STRING2. */ + if (endpos < -1) + range = -1 - startpos; + else if (endpos > total_size) + range = total_size - startpos; + + /* If the search isn't to be a backwards one, don't waste time in a + * search for a pattern that must be anchored. */ + if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) { + if (startpos > 0) + return -1; + else + range = 1; + } + /* Update the fastmap now if not correct already. */ + if (fastmap && !bufp->fastmap_accurate) + if (re_compile_fastmap(bufp) == -2) + return -2; + + /* Loop through the string, looking for a place to start matching. */ + for (;;) { + /* If a fastmap is supplied, skip quickly over characters that + * cannot be the start of a match. If the pattern can match the + * null string, however, we don't need to skip characters; we want + * the first null string. */ + if (fastmap && startpos < total_size && !bufp->can_be_null) { + if (range > 0) { /* Searching forwards. */ + register const char *d; + register int lim = 0; + int irange = range; + + if (startpos < size1 && startpos + range >= size1) + lim = range - (size1 - startpos); + + d = (startpos >= size1 ? string2 - size1 : string1) + startpos; + + /* Written out as an if-else to avoid testing `translate' + * inside the loop. */ + if (translate) + while (range > lim + && !fastmap[(unsigned char) + translate[(unsigned char) *d++]]) + range--; + else + while (range > lim && !fastmap[(unsigned char) *d++]) + range--; + + startpos += irange - range; + } else { /* Searching backwards. */ + register char c = (size1 == 0 || startpos >= size1 + ? string2[startpos - size1] + : string1[startpos]); + + if (!fastmap[(unsigned char) TRANSLATE(c)]) + goto advance; + } + } + /* If can't match the null string, and that's all we have left, fail. */ + if (range >= 0 && startpos == total_size && fastmap + && !bufp->can_be_null) + return -1; + + val = re_match_2(bufp, string1, size1, string2, size2, + startpos, regs, stop); + if (val >= 0) + return startpos; + + if (val == -2) + return -2; + +advance: + if (!range) + break; + else if (range > 0) { + range--; + startpos++; + } else { + range++; + startpos--; + } + } + return -1; +} /* re_search_2 */ + +/* Declarations and macros for re_match_2. */ + +/* Structure for per-register (a.k.a. per-group) information. + * This must not be longer than one word, because we push this value + * onto the failure stack. Other register information, such as the + * starting and ending positions (which are addresses), and the list of + * inner groups (which is a bits list) are maintained in separate + * variables. + * + * We are making a (strictly speaking) nonportable assumption here: that + * the compiler will pack our bit fields into something that fits into + * the type of `word', i.e., is something that fits into one item on the + * failure stack. */ +typedef union { + fail_stack_elt_t word; + struct { + /* This field is one if this group can match the empty string, + * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ +#define MATCH_NULL_UNSET_VALUE 3 + unsigned match_null_string_p:2; + unsigned is_active:1; + unsigned matched_something:1; + unsigned ever_matched_something:1; + } bits; +} register_info_type; +static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info); +static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info); +static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate); +static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info); + +#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) +#define IS_ACTIVE(R) ((R).bits.is_active) +#define MATCHED_SOMETHING(R) ((R).bits.matched_something) +#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) + +/* Call this when have matched a real character; it sets `matched' flags + * for the subexpressions which we are currently inside. Also records + * that those subexprs have matched. */ +#define SET_REGS_MATCHED() \ + do \ + { \ + unsigned r; \ + for (r = lowest_active_reg; r <= highest_active_reg; r++) \ + { \ + MATCHED_SOMETHING (reg_info[r]) \ + = EVER_MATCHED_SOMETHING (reg_info[r]) \ + = 1; \ + } \ + } \ + while (0) + +/* This converts PTR, a pointer into one of the search strings `string1' + * and `string2' into an offset from the beginning of that string. */ +#define POINTER_TO_OFFSET(ptr) \ + (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1) + +/* Registers are set to a sentinel when they haven't yet matched. */ +#define REG_UNSET_VALUE ((char *) -1) +#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) + +/* Macros for dealing with the split strings in re_match_2. */ + +#define MATCHING_IN_FIRST_STRING (dend == end_match_1) + +/* Call before fetching a character with *d. This switches over to + * string2 if necessary. */ +#define PREFETCH() \ + while (d == dend) \ + { \ + /* End of string2 => fail. */ \ + if (dend == end_match_2) \ + goto fail; \ + /* End of string1 => advance to string2. */ \ + d = string2; \ + dend = end_match_2; \ + } + +/* Test if at very beginning or at very end of the virtual concatenation + * of `string1' and `string2'. If only one string, it's `string2'. */ +#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) +static int at_strings_end(const char *d, const char *end2) +{ + return d == end2; +} + +/* Test if D points to a character which is word-constituent. We have + * two special cases to check for: if past the end of string1, look at + * the first character in string2; and if before the beginning of + * string2, look at the last character in string1. */ +#define WORDCHAR_P(d) \ + (re_syntax_table[(d) == end1 ? *string2 \ + : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \ + == Sword) +static int +wordchar_p(const char *d, const char *end1, const char *string2) +{ + return re_syntax_table[(d) == end1 ? *string2 + : (d) == string2 - 1 ? *(end1 - 1) : *(d)] + == Sword; +} + +/* Test if the character before D and the one at D differ with respect + * to being word-constituent. */ +#define AT_WORD_BOUNDARY(d) \ + (AT_STRINGS_BEG (d) || at_strings_end(d,end2) \ + || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) + +/* Free everything we malloc. */ +#ifdef REGEX_MALLOC +#define FREE_VAR(var) if (var) free (var); var = NULL +#define FREE_VARIABLES() \ + do { \ + FREE_VAR (fail_stack.stack); \ + FREE_VAR (regstart); \ + FREE_VAR (regend); \ + FREE_VAR (old_regstart); \ + FREE_VAR (old_regend); \ + FREE_VAR (best_regstart); \ + FREE_VAR (best_regend); \ + FREE_VAR (reg_info); \ + FREE_VAR (reg_dummy); \ + FREE_VAR (reg_info_dummy); \ + } while (0) +#else /* not REGEX_MALLOC */ +/* Some MIPS systems (at least) want this to free alloca'd storage. */ +#define FREE_VARIABLES() alloca (0) +#endif /* not REGEX_MALLOC */ + +/* These values must meet several constraints. They must not be valid + * register values; since we have a limit of 255 registers (because + * we use only one byte in the pattern for the register number), we can + * use numbers larger than 255. They must differ by 1, because of + * NUM_FAILURE_ITEMS above. And the value for the lowest register must + * be larger than the value for the highest register, so we do not try + * to actually save any registers when none are active. */ +#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) +#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) + +/* Matching routines. */ + +/* re_match_2 matches the compiled pattern in BUFP against the + * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 + * and SIZE2, respectively). We start matching at POS, and stop + * matching at STOP. + * + * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we + * store offsets for the substring each group matched in REGS. See the + * documentation for exactly how many groups we fill. + * + * We return -1 if no match, -2 if an internal error (such as the + * failure stack overflowing). Otherwise, we return the length of the + * matched substring. */ + +int +re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) +struct re_pattern_buffer *bufp; +const char *string1, *string2; +int size1, size2; +int pos; +struct re_registers *regs; +int stop; +{ + /* General temporaries. */ + int mcnt; + unsigned char *p1; + + /* Just past the end of the corresponding string. */ + const char *end1, *end2; + + /* Pointers into string1 and string2, just past the last characters in + * each to consider matching. */ + const char *end_match_1, *end_match_2; + + /* Where we are in the data, and the end of the current string. */ + const char *d, *dend; + + /* Where we are in the pattern, and the end of the pattern. */ + unsigned char *p = bufp->buffer; + register unsigned char *pend = p + bufp->used; + + /* We use this to map every character in the string. */ + char *translate = bufp->translate; + + /* Failure point stack. Each place that can handle a failure further + * down the line pushes a failure point on this stack. It consists of + * restart, regend, and reg_info for all registers corresponding to + * the subexpressions we're currently inside, plus the number of such + * registers, and, finally, two char *'s. The first char * is where + * to resume scanning the pattern; the second one is where to resume + * scanning the strings. If the latter is zero, the failure point is + * a ``dummy''; if a failure happens and the failure point is a dummy, + * it gets discarded and the next next one is tried. */ + fail_stack_type fail_stack; +#ifdef DEBUG + static unsigned failure_id = 0; + unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; +#endif + + /* We fill all the registers internally, independent of what we + * return, for use in backreferences. The number here includes + * an element for register zero. */ + unsigned num_regs = bufp->re_nsub + 1; + + /* The currently active registers. */ + unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG; + unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG; + + /* Information on the contents of registers. These are pointers into + * the input strings; they record just what was matched (on this + * attempt) by a subexpression part of the pattern, that is, the + * regnum-th regstart pointer points to where in the pattern we began + * matching and the regnum-th regend points to right after where we + * stopped matching the regnum-th subexpression. (The zeroth register + * keeps track of what the whole pattern matches.) */ + const char **regstart = NULL, **regend = NULL; + + /* If a group that's operated upon by a repetition operator fails to + * match anything, then the register for its start will need to be + * restored because it will have been set to wherever in the string we + * are when we last see its open-group operator. Similarly for a + * register's end. */ + const char **old_regstart = NULL, **old_regend = NULL; + + /* The is_active field of reg_info helps us keep track of which (possibly + * nested) subexpressions we are currently in. The matched_something + * field of reg_info[reg_num] helps us tell whether or not we have + * matched any of the pattern so far this time through the reg_num-th + * subexpression. These two fields get reset each time through any + * loop their register is in. */ + register_info_type *reg_info = NULL; + + /* The following record the register info as found in the above + * variables when we find a match better than any we've seen before. + * This happens as we backtrack through the failure points, which in + * turn happens only if we have not yet matched the entire string. */ + unsigned best_regs_set = false; + const char **best_regstart = NULL, **best_regend = NULL; + + /* Logically, this is `best_regend[0]'. But we don't want to have to + * allocate space for that if we're not allocating space for anything + * else (see below). Also, we never need info about register 0 for + * any of the other register vectors, and it seems rather a kludge to + * treat `best_regend' differently than the rest. So we keep track of + * the end of the best match so far in a separate variable. We + * initialize this to NULL so that when we backtrack the first time + * and need to test it, it's not garbage. */ + const char *match_end = NULL; + + /* Used when we pop values we don't care about. */ + const char **reg_dummy = NULL; + register_info_type *reg_info_dummy = NULL; + +#ifdef DEBUG + /* Counts the total number of registers pushed. */ + unsigned num_regs_pushed = 0; +#endif + + DEBUG_PRINT1("\n\nEntering re_match_2.\n"); + + INIT_FAIL_STACK(); + + /* Do not bother to initialize all the register variables if there are + * no groups in the pattern, as it takes a fair amount of time. If + * there are groups, we include space for register 0 (the whole + * pattern), even though we never use it, since it simplifies the + * array indexing. We should fix this. */ + if (bufp->re_nsub) { + regstart = REGEX_TALLOC(num_regs, const char *); + regend = REGEX_TALLOC(num_regs, const char *); + old_regstart = REGEX_TALLOC(num_regs, const char *); + old_regend = REGEX_TALLOC(num_regs, const char *); + best_regstart = REGEX_TALLOC(num_regs, const char *); + best_regend = REGEX_TALLOC(num_regs, const char *); + reg_info = REGEX_TALLOC(num_regs, register_info_type); + reg_dummy = REGEX_TALLOC(num_regs, const char *); + reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type); + + if (!(regstart && regend && old_regstart && old_regend && reg_info + && best_regstart && best_regend && reg_dummy && reg_info_dummy)) { + FREE_VARIABLES(); + return -2; + } + } +#ifdef REGEX_MALLOC + else { + /* We must initialize all our variables to NULL, so that + * `FREE_VARIABLES' doesn't try to free them. */ + regstart = regend = old_regstart = old_regend = best_regstart + = best_regend = reg_dummy = NULL; + reg_info = reg_info_dummy = (register_info_type *) NULL; + } +#endif /* REGEX_MALLOC */ + + /* The starting position is bogus. */ + if (pos < 0 || pos > size1 + size2) { + FREE_VARIABLES(); + return -1; + } + /* Initialize subexpression text positions to -1 to mark ones that no + * start_memory/stop_memory has been seen for. Also initialize the + * register information struct. */ + for (mcnt = 1; mcnt < num_regs; mcnt++) { + regstart[mcnt] = regend[mcnt] + = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; + + REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; + IS_ACTIVE(reg_info[mcnt]) = 0; + MATCHED_SOMETHING(reg_info[mcnt]) = 0; + EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0; + } + + /* We move `string1' into `string2' if the latter's empty -- but not if + * `string1' is null. */ + if (size2 == 0 && string1 != NULL) { + string2 = string1; + size2 = size1; + string1 = 0; + size1 = 0; + } + end1 = string1 + size1; + end2 = string2 + size2; + + /* Compute where to stop matching, within the two strings. */ + if (stop <= size1) { + end_match_1 = string1 + stop; + end_match_2 = string2; + } else { + end_match_1 = end1; + end_match_2 = string2 + stop - size1; + } + + /* `p' scans through the pattern as `d' scans through the data. + * `dend' is the end of the input string that `d' points within. `d' + * is advanced into the following input string whenever necessary, but + * this happens before fetching; therefore, at the beginning of the + * loop, `d' can be pointing at the end of a string, but it cannot + * equal `string2'. */ + if (size1 > 0 && pos <= size1) { + d = string1 + pos; + dend = end_match_1; + } else { + d = string2 + pos - size1; + dend = end_match_2; + } + + DEBUG_PRINT1("The compiled pattern is: "); + DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend); + DEBUG_PRINT1("The string to match is: `"); + DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2); + DEBUG_PRINT1("'\n"); + + /* This loops over pattern commands. It exits by returning from the + * function if the match is complete, or it drops through if the match + * fails at this starting point in the input data. */ + for (;;) { + DEBUG_PRINT2("\n0x%x: ", p); + + if (p == pend) { /* End of pattern means we might have succeeded. */ + DEBUG_PRINT1("end of pattern ... "); + + /* If we haven't matched the entire string, and we want the + * longest match, try backtracking. */ + if (d != end_match_2) { + DEBUG_PRINT1("backtracking.\n"); + + if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */ + boolean same_str_p = (FIRST_STRING_P(match_end) + == MATCHING_IN_FIRST_STRING); + + /* If exceeds best match so far, save it. */ + if (!best_regs_set + || (same_str_p && d > match_end) + || (!same_str_p && !MATCHING_IN_FIRST_STRING)) { + best_regs_set = true; + match_end = d; + + DEBUG_PRINT1("\nSAVING match as best so far.\n"); + + for (mcnt = 1; mcnt < num_regs; mcnt++) { + best_regstart[mcnt] = regstart[mcnt]; + best_regend[mcnt] = regend[mcnt]; + } + } + goto fail; + } + /* If no failure points, don't restore garbage. */ + else if (best_regs_set) { +restore_best_regs: + /* Restore best match. It may happen that `dend == + * end_match_1' while the restored d is in string2. + * For example, the pattern `x.*y.*z' against the + * strings `x-' and `y-z-', if the two strings are + * not consecutive in memory. */ + DEBUG_PRINT1("Restoring best registers.\n"); + + d = match_end; + dend = ((d >= string1 && d <= end1) + ? end_match_1 : end_match_2); + + for (mcnt = 1; mcnt < num_regs; mcnt++) { + regstart[mcnt] = best_regstart[mcnt]; + regend[mcnt] = best_regend[mcnt]; + } + } + } /* d != end_match_2 */ + DEBUG_PRINT1("Accepting match.\n"); + + /* If caller wants register contents data back, do it. */ + if (regs && !bufp->no_sub) { + /* Have the register data arrays been allocated? */ + if (bufp->regs_allocated == REGS_UNALLOCATED) { + /* No. So allocate them with malloc. We need one + * extra element beyond `num_regs' for the `-1' marker + * GNU code uses. */ + regs->num_regs = max(RE_NREGS, num_regs + 1); + regs->start = TALLOC(regs->num_regs, regoff_t); + regs->end = TALLOC(regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) + return -2; + bufp->regs_allocated = REGS_REALLOCATE; + } else if (bufp->regs_allocated == REGS_REALLOCATE) { + /* Yes. If we need more elements than were already + * allocated, reallocate them. If we need fewer, just + * leave it alone. */ + if (regs->num_regs < num_regs + 1) { + regs->num_regs = num_regs + 1; + RETALLOC(regs->start, regs->num_regs, regoff_t); + RETALLOC(regs->end, regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) + return -2; + } + } else + assert(bufp->regs_allocated == REGS_FIXED); + + /* Convert the pointer data in `regstart' and `regend' to + * indices. Register zero has to be set differently, + * since we haven't kept track of any info for it. */ + if (regs->num_regs > 0) { + regs->start[0] = pos; + regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1 + : d - string2 + size1); + } + /* Go through the first `min (num_regs, regs->num_regs)' + * registers, since that is all we initialized. */ + for (mcnt = 1; mcnt < min(num_regs, regs->num_regs); mcnt++) { + if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt])) + regs->start[mcnt] = regs->end[mcnt] = -1; + else { + regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]); + regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]); + } + } + + /* If the regs structure we return has more elements than + * were in the pattern, set the extra elements to -1. If + * we (re)allocated the registers, this is the case, + * because we always allocate enough to have at least one + * -1 at the end. */ + for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) + regs->start[mcnt] = regs->end[mcnt] = -1; + } /* regs && !bufp->no_sub */ + FREE_VARIABLES(); + DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n", + nfailure_points_pushed, nfailure_points_popped, + nfailure_points_pushed - nfailure_points_popped); + DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed); + + mcnt = d - pos - (MATCHING_IN_FIRST_STRING + ? string1 + : string2 - size1); + + DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt); + + return mcnt; + } + /* Otherwise match next pattern command. */ +#ifdef SWITCH_ENUM_BUG + switch ((int) ((re_opcode_t) * p++)) +#else + switch ((re_opcode_t) * p++) +#endif + { + /* Ignore these. Used to ignore the n of succeed_n's which + * currently have n == 0. */ + case no_op: + DEBUG_PRINT1("EXECUTING no_op.\n"); + break; + + /* Match the next n pattern characters exactly. The following + * byte in the pattern defines n, and the n bytes after that + * are the characters to match. */ + case exactn: + mcnt = *p++; + DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt); + + /* This is written out as an if-else so we don't waste time + * testing `translate' inside the loop. */ + if (translate) { + do { + PREFETCH(); + if (translate[(unsigned char) *d++] != (char) *p++) + goto fail; + } while (--mcnt); + } else { + do { + PREFETCH(); + if (*d++ != (char) *p++) + goto fail; + } while (--mcnt); + } + SET_REGS_MATCHED(); + break; + + /* Match any character except possibly a newline or a null. */ + case anychar: + DEBUG_PRINT1("EXECUTING anychar.\n"); + + PREFETCH(); + + if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n') + || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000')) + goto fail; + + SET_REGS_MATCHED(); + DEBUG_PRINT2(" Matched `%d'.\n", *d); + d++; + break; + + case charset: + case charset_not: { + register unsigned char c; + boolean not = (re_opcode_t) * (p - 1) == charset_not; + + DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : ""); + + PREFETCH(); + c = TRANSLATE(*d); /* The character to match. */ + + /* Cast to `unsigned' instead of `unsigned char' in case the + * bit list is a full 32 bytes long. */ + if (c < (unsigned) (*p * BYTEWIDTH) + && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) + not = !not; + + p += 1 + *p; + + if (!not) + goto fail; + + SET_REGS_MATCHED(); + d++; + break; + } + + /* The beginning of a group is represented by start_memory. + * The arguments are the register number in the next byte, and the + * number of groups inner to this one in the next. The text + * matched within the group is recorded (in the internal + * registers data structure) under the register number. */ + case start_memory: + DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]); + + /* Find out if this group can match the empty string. */ + p1 = p; /* To send to group_match_null_string_p. */ + + if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE) + REG_MATCH_NULL_STRING_P(reg_info[*p]) + = group_match_null_string_p(&p1, pend, reg_info); + + /* Save the position in the string where we were the last time + * we were at this open-group operator in case the group is + * operated upon by a repetition operator, e.g., with `(a*)*b' + * against `ab'; then we want to ignore where we are now in + * the string in case this attempt to match fails. */ + old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) + ? REG_UNSET(regstart[*p]) ? d : regstart[*p] + : regstart[*p]; + DEBUG_PRINT2(" old_regstart: %d\n", + POINTER_TO_OFFSET(old_regstart[*p])); + + regstart[*p] = d; + DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p])); + + IS_ACTIVE(reg_info[*p]) = 1; + MATCHED_SOMETHING(reg_info[*p]) = 0; + + /* This is the new highest active register. */ + highest_active_reg = *p; + + /* If nothing was active before, this is the new lowest active + * register. */ + if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) + lowest_active_reg = *p; + + /* Move past the register number and inner group count. */ + p += 2; + break; + + /* The stop_memory opcode represents the end of a group. Its + * arguments are the same as start_memory's: the register + * number, and the number of inner groups. */ + case stop_memory: + DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]); + + /* We need to save the string position the last time we were at + * this close-group operator in case the group is operated + * upon by a repetition operator, e.g., with `((a*)*(b*)*)*' + * against `aba'; then we want to ignore where we are now in + * the string in case this attempt to match fails. */ + old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) + ? REG_UNSET(regend[*p]) ? d : regend[*p] + : regend[*p]; + DEBUG_PRINT2(" old_regend: %d\n", + POINTER_TO_OFFSET(old_regend[*p])); + + regend[*p] = d; + DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p])); + + /* This register isn't active anymore. */ + IS_ACTIVE(reg_info[*p]) = 0; + + /* If this was the only register active, nothing is active + * anymore. */ + if (lowest_active_reg == highest_active_reg) { + lowest_active_reg = NO_LOWEST_ACTIVE_REG; + highest_active_reg = NO_HIGHEST_ACTIVE_REG; + } else { + /* We must scan for the new highest active register, since + * it isn't necessarily one less than now: consider + * (a(b)c(d(e)f)g). When group 3 ends, after the f), the + * new highest active register is 1. */ + unsigned char r = *p - 1; + while (r > 0 && !IS_ACTIVE(reg_info[r])) + r--; + + /* If we end up at register zero, that means that we saved + * the registers as the result of an `on_failure_jump', not + * a `start_memory', and we jumped to past the innermost + * `stop_memory'. For example, in ((.)*) we save + * registers 1 and 2 as a result of the *, but when we pop + * back to the second ), we are at the stop_memory 1. + * Thus, nothing is active. */ + if (r == 0) { + lowest_active_reg = NO_LOWEST_ACTIVE_REG; + highest_active_reg = NO_HIGHEST_ACTIVE_REG; + } else + highest_active_reg = r; + } + + /* If just failed to match something this time around with a + * group that's operated on by a repetition operator, try to + * force exit from the ``loop'', and restore the register + * information for this group that we had before trying this + * last match. */ + if ((!MATCHED_SOMETHING(reg_info[*p]) + || (re_opcode_t) p[-3] == start_memory) + && (p + 2) < pend) { + boolean is_a_jump_n = false; + + p1 = p + 2; + mcnt = 0; + switch ((re_opcode_t) * p1++) { + case jump_n: + is_a_jump_n = true; + case pop_failure_jump: + case maybe_pop_jump: + case jump: + case dummy_failure_jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if (is_a_jump_n) + p1 += 2; + break; + + default: + /* do nothing */ + ; + } + p1 += mcnt; + + /* If the next operation is a jump backwards in the pattern + * to an on_failure_jump right before the start_memory + * corresponding to this stop_memory, exit from the loop + * by forcing a failure after pushing on the stack the + * on_failure_jump's jump in the pattern, and d. */ + if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump + && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) { + /* If this group ever matched anything, then restore + * what its registers were before trying this last + * failed match, e.g., with `(a*)*b' against `ab' for + * regstart[1], and, e.g., with `((a*)*(b*)*)*' + * against `aba' for regend[3]. + * + * Also restore the registers for inner groups for, + * e.g., `((a*)(b*))*' against `aba' (register 3 would + * otherwise get trashed). */ + + if (EVER_MATCHED_SOMETHING(reg_info[*p])) { + unsigned r; + + EVER_MATCHED_SOMETHING(reg_info[*p]) = 0; + + /* Restore this and inner groups' (if any) registers. */ + for (r = *p; r < *p + *(p + 1); r++) { + regstart[r] = old_regstart[r]; + + /* xx why this test? */ + if ((long) old_regend[r] >= (long) regstart[r]) + regend[r] = old_regend[r]; + } + } + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + PUSH_FAILURE_POINT(p1 + mcnt, d, -2); + + goto fail; + } + } + /* Move past the register number and the inner group count. */ + p += 2; + break; + + /* \ has been turned into a `duplicate' command which is + * followed by the numeric value of as the register number. */ + case duplicate: { + register const char *d2, *dend2; + int regno = *p++; /* Get which register to match against. */ + DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno); + + /* Can't back reference a group which we've never matched. */ + if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) + goto fail; + + /* Where in input to try to start matching. */ + d2 = regstart[regno]; + + /* Where to stop matching; if both the place to start and + * the place to stop matching are in the same string, then + * set to the place to stop, otherwise, for now have to use + * the end of the first string. */ + + dend2 = ((FIRST_STRING_P(regstart[regno]) + == FIRST_STRING_P(regend[regno])) + ? regend[regno] : end_match_1); + for (;;) { + /* If necessary, advance to next segment in register + * contents. */ + while (d2 == dend2) { + if (dend2 == end_match_2) + break; + if (dend2 == regend[regno]) + break; + + /* End of string1 => advance to string2. */ + d2 = string2; + dend2 = regend[regno]; + } + /* At end of register contents => success */ + if (d2 == dend2) + break; + + /* If necessary, advance to next segment in data. */ + PREFETCH(); + + /* How many characters left in this segment to match. */ + mcnt = dend - d; + + /* Want how many consecutive characters we can match in + * one shot, so, if necessary, adjust the count. */ + if (mcnt > dend2 - d2) + mcnt = dend2 - d2; + + /* Compare that many; failure if mismatch, else move + * past them. */ + if (translate + ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate) + : memcmp(d, d2, mcnt)) + goto fail; + d += mcnt, d2 += mcnt; + } + } + break; + + /* begline matches the empty string at the beginning of the string + * (unless `not_bol' is set in `bufp'), and, if + * `newline_anchor' is set, after newlines. */ + case begline: + DEBUG_PRINT1("EXECUTING begline.\n"); + + if (AT_STRINGS_BEG(d)) { + if (!bufp->not_bol) + break; + } else if (d[-1] == '\n' && bufp->newline_anchor) { + break; + } + /* In all other cases, we fail. */ + goto fail; + + /* endline is the dual of begline. */ + case endline: + DEBUG_PRINT1("EXECUTING endline.\n"); + + if (at_strings_end(d,end2)) { + if (!bufp->not_eol) + break; + } + /* We have to ``prefetch'' the next character. */ + else if ((d == end1 ? *string2 : *d) == '\n' + && bufp->newline_anchor) { + break; + } + goto fail; + + /* Match at the very beginning of the data. */ + case begbuf: + DEBUG_PRINT1("EXECUTING begbuf.\n"); + if (AT_STRINGS_BEG(d)) + break; + goto fail; + + /* Match at the very end of the data. */ + case endbuf: + DEBUG_PRINT1("EXECUTING endbuf.\n"); + if (at_strings_end(d,end2)) + break; + goto fail; + + /* on_failure_keep_string_jump is used to optimize `.*\n'. It + * pushes NULL as the value for the string on the stack. Then + * `pop_failure_point' will keep the current value for the + * string, instead of restoring it. To see why, consider + * matching `foo\nbar' against `.*\n'. The .* matches the foo; + * then the . fails against the \n. But the next thing we want + * to do is match the \n against the \n; if we restored the + * string value, we would be back at the foo. + * + * Because this is used only in specific cases, we don't need to + * check all the things that `on_failure_jump' does, to make + * sure the right things get saved on the stack. Hence we don't + * share its code. The only reason to push anything on the + * stack at all is that otherwise we would have to change + * `anychar's code to do something besides goto fail in this + * case; that seems worse than this. */ + case on_failure_keep_string_jump: + DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); + DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt); + + PUSH_FAILURE_POINT(p + mcnt, NULL, -2); + break; + + /* Uses of on_failure_jump: + * + * Each alternative starts with an on_failure_jump that points + * to the beginning of the next alternative. Each alternative + * except the last ends with a jump that in effect jumps past + * the rest of the alternatives. (They really jump to the + * ending jump of the following alternative, because tensioning + * these jumps is a hassle.) + * + * Repeats start with an on_failure_jump that points past both + * the repetition text and either the following jump or + * pop_failure_jump back to this on_failure_jump. */ + case on_failure_jump: +on_failure: + DEBUG_PRINT1("EXECUTING on_failure_jump"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); + DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt); + + /* If this on_failure_jump comes right before a group (i.e., + * the original * applied to a group), save the information + * for that group and all inner ones, so that if we fail back + * to this point, the group's information will be correct. + * For example, in \(a*\)*\1, we need the preceding group, + * and in \(\(a*\)b*\)\2, we need the inner group. */ + + /* We can't use `p' to check ahead because we push + * a failure point to `p + mcnt' after we do this. */ + p1 = p; + + /* We need to skip no_op's before we look for the + * start_memory in case this on_failure_jump is happening as + * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 + * against aba. */ + while (p1 < pend && (re_opcode_t) * p1 == no_op) + p1++; + + if (p1 < pend && (re_opcode_t) * p1 == start_memory) { + /* We have a new highest active register now. This will + * get reset at the start_memory we are about to get to, + * but we will have saved all the registers relevant to + * this repetition op, as described above. */ + highest_active_reg = *(p1 + 1) + *(p1 + 2); + if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) + lowest_active_reg = *(p1 + 1); + } + DEBUG_PRINT1(":\n"); + PUSH_FAILURE_POINT(p + mcnt, d, -2); + break; + + /* A smart repeat ends with `maybe_pop_jump'. + * We change it to either `pop_failure_jump' or `jump'. */ + case maybe_pop_jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p); + DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt); + { + register unsigned char *p2 = p; + + /* Compare the beginning of the repeat with what in the + * pattern follows its end. If we can establish that there + * is nothing that they would both match, i.e., that we + * would have to backtrack because of (as in, e.g., `a*a') + * then we can change to pop_failure_jump, because we'll + * never have to backtrack. + * + * This is not true in the case of alternatives: in + * `(a|ab)*' we do need to backtrack to the `ab' alternative + * (e.g., if the string was `ab'). But instead of trying to + * detect that here, the alternative has put on a dummy + * failure point which is what we will end up popping. */ + + /* Skip over open/close-group commands. */ + while (p2 + 2 < pend + && ((re_opcode_t) * p2 == stop_memory + || (re_opcode_t) * p2 == start_memory)) + p2 += 3; /* Skip over args, too. */ + + /* If we're at the end of the pattern, we can change. */ + if (p2 == pend) { + /* Consider what happens when matching ":\(.*\)" + * against ":/". I don't really understand this code + * yet. */ + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1 + (" End of pattern: change to `pop_failure_jump'.\n"); + } else if ((re_opcode_t) * p2 == exactn + || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) { + register unsigned char c + = *p2 == (unsigned char) endline ? '\n' : p2[2]; + p1 = p + mcnt; + + /* p1[0] ... p1[2] are the `on_failure_jump' corresponding + * to the `maybe_finalize_jump' of this case. Examine what + * follows. */ + if ((re_opcode_t) p1[3] == exactn && p1[5] != c) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n", + c, p1[5]); + } else if ((re_opcode_t) p1[3] == charset + || (re_opcode_t) p1[3] == charset_not) { + int not = (re_opcode_t) p1[3] == charset_not; + + if (c < (unsigned char) (p1[4] * BYTEWIDTH) + && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) + not = !not; + + /* `not' is equal to 1 if c would match, which means + * that we can't change to pop_failure_jump. */ + if (!not) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1(" No match => pop_failure_jump.\n"); + } + } + } + } + p -= 2; /* Point at relative address again. */ + if ((re_opcode_t) p[-1] != pop_failure_jump) { + p[-1] = (unsigned char) jump; + DEBUG_PRINT1(" Match => jump.\n"); + goto unconditional_jump; + } + /* Note fall through. */ + + /* The end of a simple repeat has a pop_failure_jump back to + * its matching on_failure_jump, where the latter will push a + * failure point. The pop_failure_jump takes off failure + * points put on by this pop_failure_jump's matching + * on_failure_jump; we got through the pattern to here from the + * matching on_failure_jump, so didn't fail. */ + case pop_failure_jump: { + /* We need to pass separate storage for the lowest and + * highest registers, even though we don't care about the + * actual values. Otherwise, we will restore only one + * register from the stack, since lowest will == highest in + * `pop_failure_point'. */ + unsigned long dummy_low_reg, dummy_high_reg; + unsigned char *pdummy; + const char *sdummy; + + DEBUG_PRINT1("EXECUTING pop_failure_jump.\n"); + POP_FAILURE_POINT(sdummy, pdummy, + dummy_low_reg, dummy_high_reg, + reg_dummy, reg_dummy, reg_info_dummy); + /* avoid GCC 4.6 set but unused variables warning. Does not matter here. */ + if (pdummy || sdummy) + (void)0; + } + /* Note fall through. */ + + /* Unconditionally jump (without popping any failure points). */ + case jump: +unconditional_jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */ + DEBUG_PRINT2("EXECUTING jump %d ", mcnt); + p += mcnt; /* Do the jump. */ + DEBUG_PRINT2("(to 0x%x).\n", p); + break; + + /* We need this opcode so we can detect where alternatives end + * in `group_match_null_string_p' et al. */ + case jump_past_alt: + DEBUG_PRINT1("EXECUTING jump_past_alt.\n"); + goto unconditional_jump; + + /* Normally, the on_failure_jump pushes a failure point, which + * then gets popped at pop_failure_jump. We will end up at + * pop_failure_jump, also, and with a pattern of, say, `a+', we + * are skipping over the on_failure_jump, so we have to push + * something meaningless for pop_failure_jump to pop. */ + case dummy_failure_jump: + DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n"); + /* It doesn't matter what we push for the string here. What + * the code at `fail' tests is the value for the pattern. */ + PUSH_FAILURE_POINT(0, 0, -2); + goto unconditional_jump; + + /* At the end of an alternative, we need to push a dummy failure + * point in case we are followed by a `pop_failure_jump', because + * we don't want the failure point for the alternative to be + * popped. For example, matching `(a|ab)*' against `aab' + * requires that we match the `ab' alternative. */ + case push_dummy_failure: + DEBUG_PRINT1("EXECUTING push_dummy_failure.\n"); + /* See comments just above at `dummy_failure_jump' about the + * two zeroes. */ + PUSH_FAILURE_POINT(0, 0, -2); + break; + + /* Have to succeed matching what follows at least n times. + * After that, handle like `on_failure_jump'. */ + case succeed_n: + EXTRACT_NUMBER(mcnt, p + 2); + DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt); + + assert(mcnt >= 0); + /* Originally, this is how many times we HAVE to succeed. */ + if (mcnt > 0) { + mcnt--; + p += 2; + STORE_NUMBER_AND_INCR(p, mcnt); + DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt); + } else if (mcnt == 0) { + DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2); + p[2] = (unsigned char) no_op; + p[3] = (unsigned char) no_op; + goto on_failure; + } + break; + + case jump_n: + EXTRACT_NUMBER(mcnt, p + 2); + DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt); + + /* Originally, this is how many times we CAN jump. */ + if (mcnt) { + mcnt--; + STORE_NUMBER(p + 2, mcnt); + goto unconditional_jump; + } + /* If don't have to jump any more, skip over the rest of command. */ + else + p += 4; + break; + + case set_number_at: { + DEBUG_PRINT1("EXECUTING set_number_at.\n"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); + p1 = p + mcnt; + EXTRACT_NUMBER_AND_INCR(mcnt, p); + DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt); + STORE_NUMBER(p1, mcnt); + break; + } + + case wordbound: + DEBUG_PRINT1("EXECUTING wordbound.\n"); + if (AT_WORD_BOUNDARY(d)) + break; + goto fail; + + case notwordbound: + DEBUG_PRINT1("EXECUTING notwordbound.\n"); + if (AT_WORD_BOUNDARY(d)) + goto fail; + break; + + case wordbeg: + DEBUG_PRINT1("EXECUTING wordbeg.\n"); + if (wordchar_p(d,end1,string2) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1))) + break; + goto fail; + + case wordend: + DEBUG_PRINT1("EXECUTING wordend.\n"); + if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1) + && (!wordchar_p(d,end1,string2) || at_strings_end(d,end2))) + break; + goto fail; + + case wordchar: + DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n"); + PREFETCH(); + if (!wordchar_p(d,end1,string2)) + goto fail; + SET_REGS_MATCHED(); + d++; + break; + + case notwordchar: + DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n"); + PREFETCH(); + if (wordchar_p(d,end1,string2)) + goto fail; + SET_REGS_MATCHED(); + d++; + break; + + default: + abort(); + } + continue; /* Successfully executed one pattern command; keep going. */ + + /* We goto here if a matching operation fails. */ +fail: + if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */ + DEBUG_PRINT1("\nFAIL:\n"); + POP_FAILURE_POINT(d, p, + lowest_active_reg, highest_active_reg, + regstart, regend, reg_info); + + /* If this failure point is a dummy, try the next one. */ + if (!p) + goto fail; + + /* If we failed to the end of the pattern, don't examine *p. */ + assert(p <= pend); + if (p < pend) { + boolean is_a_jump_n = false; + + /* If failed to a backwards jump that's part of a repetition + * loop, need to pop this failure point and use the next one. */ + switch ((re_opcode_t) * p) { + case jump_n: + is_a_jump_n = true; + case maybe_pop_jump: + case pop_failure_jump: + case jump: + p1 = p + 1; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + + if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n) + || (!is_a_jump_n + && (re_opcode_t) * p1 == on_failure_jump)) + goto fail; + break; + default: + /* do nothing */ + ; + } + } + if (d >= string1 && d <= end1) + dend = end_match_1; + } else + break; /* Matching at this starting point really fails. */ + } /* for (;;) */ + + if (best_regs_set) + goto restore_best_regs; + + FREE_VARIABLES(); + + return -1; /* Failure to match. */ +} /* re_match_2 */ + +/* Subroutine definitions for re_match_2. */ + +/* We are passed P pointing to a register number after a start_memory. + * + * Return true if the pattern up to the corresponding stop_memory can + * match the empty string, and false otherwise. + * + * If we find the matching stop_memory, sets P to point to one past its number. + * Otherwise, sets P to an undefined byte less than or equal to END. + * + * We don't handle duplicates properly (yet). */ + +boolean +group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info) +{ + int mcnt; + /* Point to after the args to the start_memory. */ + unsigned char *p1 = *p + 2; + + while (p1 < end) { + /* Skip over opcodes that can match nothing, and return true or + * false, as appropriate, when we get to one that can't, or to the + * matching stop_memory. */ + + switch ((re_opcode_t) * p1) { + /* Could be either a loop or a series of alternatives. */ + case on_failure_jump: + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + + /* If the next operation is not a jump backwards in the + * pattern. */ + + if (mcnt >= 0) { + /* Go through the on_failure_jumps of the alternatives, + * seeing if any of the alternatives cannot match nothing. + * The last alternative starts with only a jump, + * whereas the rest start with on_failure_jump and end + * with a jump, e.g., here is the pattern for `a|b|c': + * + * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 + * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 + * /exactn/1/c + * + * So, we have to first go through the first (n-1) + * alternatives and then deal with the last one separately. */ + + /* Deal with the first (n-1) alternatives, which start + * with an on_failure_jump (see above) that jumps to right + * past a jump_past_alt. */ + + while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) { + /* `mcnt' holds how many bytes long the alternative + * is, including the ending `jump_past_alt' and + * its number. */ + + if (!alt_match_null_string_p(p1, p1 + mcnt - 3, + reg_info)) + return false; + + /* Move to right after this alternative, including the + * jump_past_alt. */ + p1 += mcnt; + + /* Break if it's the beginning of an n-th alternative + * that doesn't begin with an on_failure_jump. */ + if ((re_opcode_t) * p1 != on_failure_jump) + break; + + /* Still have to check that it's not an n-th + * alternative that starts with an on_failure_jump. */ + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) { + /* Get to the beginning of the n-th alternative. */ + p1 -= 3; + break; + } + } + + /* Deal with the last alternative: go back and get number + * of the `jump_past_alt' just before it. `mcnt' contains + * the length of the alternative. */ + EXTRACT_NUMBER(mcnt, p1 - 2); + + if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info)) + return false; + + p1 += mcnt; /* Get past the n-th alternative. */ + } /* if mcnt > 0 */ + break; + + case stop_memory: + assert(p1[1] == **p); + *p = p1 + 2; + return true; + + default: + if (!common_op_match_null_string_p(&p1, end, reg_info)) + return false; + } + } /* while p1 < end */ + + return false; +} /* group_match_null_string_p */ + +/* Similar to group_match_null_string_p, but doesn't deal with alternatives: + * It expects P to be the first byte of a single alternative and END one + * byte past the last. The alternative can contain groups. */ + +boolean +alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info) +{ + int mcnt; + unsigned char *p1 = p; + + while (p1 < end) { + /* Skip over opcodes that can match nothing, and break when we get + * to one that can't. */ + + switch ((re_opcode_t) * p1) { + /* It's a loop. */ + case on_failure_jump: + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + break; + + default: + if (!common_op_match_null_string_p(&p1, end, reg_info)) + return false; + } + } /* while p1 < end */ + + return true; +} /* alt_match_null_string_p */ + +/* Deals with the ops common to group_match_null_string_p and + * alt_match_null_string_p. + * + * Sets P to one after the op and its arguments, if any. */ + +boolean +common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info) +{ + int mcnt; + boolean ret; + int reg_no; + unsigned char *p1 = *p; + + switch ((re_opcode_t) * p1++) { + case no_op: + case begline: + case endline: + case begbuf: + case endbuf: + case wordbeg: + case wordend: + case wordbound: + case notwordbound: + break; + + case start_memory: + reg_no = *p1; + assert(reg_no > 0 && reg_no <= MAX_REGNUM); + ret = group_match_null_string_p(&p1, end, reg_info); + + /* Have to set this here in case we're checking a group which + * contains a group and a back reference to it. */ + + if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) + REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret; + + if (!ret) + return false; + break; + + /* If this is an optimized succeed_n for zero times, make the jump. */ + case jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if (mcnt >= 0) + p1 += mcnt; + else + return false; + break; + + case succeed_n: + /* Get to the number of times to succeed. */ + p1 += 2; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + + if (mcnt == 0) { + p1 -= 4; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + } else + return false; + break; + + case duplicate: + if (!REG_MATCH_NULL_STRING_P(reg_info[*p1])) + return false; + break; + + case set_number_at: + p1 += 4; + + default: + /* All other opcodes mean we cannot match the empty string. */ + return false; + } + + *p = p1; + return true; +} /* common_op_match_null_string_p */ + +/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN + * bytes; nonzero otherwise. */ + +int +bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate) +{ + register unsigned char const *p1 = s1, *p2 = s2; + while (len) { + if (translate[*p1++] != translate[*p2++]) + return 1; + len--; + } + return 0; +} + +/* Entry points for GNU code. */ + +/* POSIX.2 functions */ + +/* regcomp takes a regular expression as a string and compiles it. + * + * PREG is a regex_t *. We do not expect any fields to be initialized, + * since POSIX says we shouldn't. Thus, we set + * + * `buffer' to the compiled pattern; + * `used' to the length of the compiled pattern; + * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the + * REG_EXTENDED bit in CFLAGS is set; otherwise, to + * RE_SYNTAX_POSIX_BASIC; + * `newline_anchor' to REG_NEWLINE being set in CFLAGS; + * `fastmap' and `fastmap_accurate' to zero; + * `re_nsub' to the number of subexpressions in PATTERN. + * + * PATTERN is the address of the pattern string. + * + * CFLAGS is a series of bits which affect compilation. + * + * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we + * use POSIX basic syntax. + * + * If REG_NEWLINE is set, then . and [^...] don't match newline. + * Also, regexec will try a match beginning after every newline. + * + * If REG_ICASE is set, then we considers upper- and lowercase + * versions of letters to be equivalent when matching. + * + * If REG_NOSUB is set, then when PREG is passed to regexec, that + * routine will report only success or failure, and nothing about the + * registers. + * + * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for + * the return codes and their meanings.) */ + +int +regcomp(preg, pattern, cflags) +regex_t *preg; +const char *pattern; +int cflags; +{ + reg_errcode_t ret; + unsigned syntax + = (cflags & REG_EXTENDED) ? + RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; + + /* regex_compile will allocate the space for the compiled pattern. */ + preg->buffer = 0; + preg->allocated = 0; + + /* Don't bother to use a fastmap when searching. This simplifies the + * REG_NEWLINE case: if we used a fastmap, we'd have to put all the + * characters after newlines into the fastmap. This way, we just try + * every character. */ + preg->fastmap = 0; + + if (cflags & REG_ICASE) { + unsigned i; + + preg->translate = (char *) malloc(CHAR_SET_SIZE); + if (preg->translate == NULL) + return (int) REG_ESPACE; + + /* Map uppercase characters to corresponding lowercase ones. */ + for (i = 0; i < CHAR_SET_SIZE; i++) + preg->translate[i] = ISUPPER(i) ? tolower(i) : i; + } else + preg->translate = NULL; + + /* If REG_NEWLINE is set, newlines are treated differently. */ + if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */ + syntax &= ~RE_DOT_NEWLINE; + syntax |= RE_HAT_LISTS_NOT_NEWLINE; + /* It also changes the matching behavior. */ + preg->newline_anchor = 1; + } else + preg->newline_anchor = 0; + + preg->no_sub = !!(cflags & REG_NOSUB); + + /* POSIX says a null character in the pattern terminates it, so we + * can use strlen here in compiling the pattern. */ + ret = regex_compile(pattern, strlen(pattern), syntax, preg); + + /* POSIX doesn't distinguish between an unmatched open-group and an + * unmatched close-group: both are REG_EPAREN. */ + if (ret == REG_ERPAREN) + ret = REG_EPAREN; + + return (int) ret; +} + +/* regexec searches for a given pattern, specified by PREG, in the + * string STRING. + * + * If NMATCH is zero or REG_NOSUB was set in the cflags argument to + * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at + * least NMATCH elements, and we set them to the offsets of the + * corresponding matched substrings. + * + * EFLAGS specifies `execution flags' which affect matching: if + * REG_NOTBOL is set, then ^ does not match at the beginning of the + * string; if REG_NOTEOL is set, then $ does not match at the end. + * + * We return 0 if we find a match and REG_NOMATCH if not. */ + +int +regexec(preg, string, nmatch, pmatch, eflags) +const regex_t *preg; +const char *string; +size_t nmatch; +regmatch_t pmatch[]; +int eflags; +{ + int ret; + struct re_registers regs; + regex_t private_preg; + int len = strlen(string); + boolean want_reg_info = !preg->no_sub && nmatch > 0; + + private_preg = *preg; + + private_preg.not_bol = !!(eflags & REG_NOTBOL); + private_preg.not_eol = !!(eflags & REG_NOTEOL); + + /* The user has told us exactly how many registers to return + * information about, via `nmatch'. We have to pass that on to the + * matching routines. */ + private_preg.regs_allocated = REGS_FIXED; + + if (want_reg_info) { + regs.num_regs = nmatch; + regs.start = TALLOC(nmatch, regoff_t); + regs.end = TALLOC(nmatch, regoff_t); + if (regs.start == NULL || regs.end == NULL) + return (int) REG_NOMATCH; + } + /* Perform the searching operation. */ + ret = re_search(&private_preg, string, len, + /* start: */ 0, /* range: */ len, + want_reg_info ? ®s : (struct re_registers *) 0); + + /* Copy the register information to the POSIX structure. */ + if (want_reg_info) { + if (ret >= 0) { + unsigned r; + + for (r = 0; r < nmatch; r++) { + pmatch[r].rm_so = regs.start[r]; + pmatch[r].rm_eo = regs.end[r]; + } + } + /* If we needed the temporary register info, free the space now. */ + free(regs.start); + free(regs.end); + } + /* We want zero return to mean success, unlike `re_search'. */ + return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; +} + +/* Returns a message corresponding to an error code, ERRCODE, returned + * from either regcomp or regexec. We don't use PREG here. */ + +size_t +regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size) +{ + const char *msg; + size_t msg_size; + + if (errcode < 0 + || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0]))) + /* Only error codes returned by the rest of the code should be passed + * to this routine. If we are given anything else, or if other regex + * code generates an invalid error code, then the program has a bug. + * Dump core so we can fix it. */ + abort(); + + msg = re_error_msg[errcode]; + + /* POSIX doesn't require that we do anything in this case, but why + * not be nice. */ + if (!msg) + msg = "Success"; + + msg_size = strlen(msg) + 1; /* Includes the null. */ + + if (errbuf_size != 0) { + if (msg_size > errbuf_size) { + strncpy(errbuf, msg, errbuf_size - 1); + errbuf[errbuf_size - 1] = 0; + } else + strcpy(errbuf, msg); + } + return msg_size; +} + +/* Free dynamically allocated space used by PREG. */ + +void +regfree(preg) +regex_t *preg; +{ + if (preg->buffer != NULL) + free(preg->buffer); + preg->buffer = NULL; + + preg->allocated = 0; + preg->used = 0; + + if (preg->fastmap != NULL) + free(preg->fastmap); + preg->fastmap = NULL; + preg->fastmap_accurate = 0; + + if (preg->translate != NULL) + free(preg->translate); + preg->translate = NULL; +} +#endif /* USE_GNUREGEX */ + +/* + * Local variables: + * make-backup-files: t + * version-control: t + * trim-versions-without-asking: nil + * End: + */ + diff --git a/compat/GnuRegex.h b/compat/GnuRegex.h new file mode 100644 index 0000000000..81fd8ff2c4 --- /dev/null +++ b/compat/GnuRegex.h @@ -0,0 +1,413 @@ +/* + * Copyright (C) 1996-2016 The Squid Software Foundation and contributors + * + * Squid software is distributed under GPLv2+ license and includes + * contributions from numerous individuals and organizations. + * Please see the COPYING and CONTRIBUTORS files for details. + */ + +#ifndef SQUID_REGEXP_LIBRARY_H +#define SQUID_REGEXP_LIBRARY_H + +#if !USE_GNUREGEX /* try the system one by default */ + +/* POSIX says that must be included (by the caller) before + * . */ +#if HAVE_SYS_TYPES_H +#include +#endif +#if HAVE_REGEX_H +#include +#endif + +#else /* USE_GNUREGEX */ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Definitions for data structures and routines for the regular + * expression library, version 0.12. + * + * Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */ + +/* POSIX says that must be included (by the caller) before + * . */ + +/* The following bits are used to determine the regexp syntax we + * recognize. The set/not-set meanings are chosen so that Emacs syntax + * remains the value 0. The bits are given in alphabetical order, and + * the definitions shifted by one from the previous bit; thus, when we + * add or remove a bit, only one other definition need change. */ +typedef unsigned reg_syntax_t; + +/* If this bit is not set, then \ inside a bracket expression is literal. + * If set, then such a \ quotes the following character. */ +#define RE_BACKSLASH_ESCAPE_IN_LISTS (1) + +/* If this bit is not set, then + and ? are operators, and \+ and \? are + * literals. + * If set, then \+ and \? are operators and + and ? are literals. */ +#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) + +/* If this bit is set, then character classes are supported. They are: + * [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], + * [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. + * If not set, then character classes are not supported. */ +#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) + +/* If this bit is set, then ^ and $ are always anchors (outside bracket + * expressions, of course). + * If this bit is not set, then it depends: + * ^ is an anchor if it is at the beginning of a regular + * expression or after an open-group or an alternation operator; + * $ is an anchor if it is at the end of a regular expression, or + * before a close-group or an alternation operator. + * + * This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because + * POSIX draft 11.2 says that * etc. in leading positions is undefined. + * We already implemented a previous draft which made those constructs + * invalid, though, so we haven't changed the code back. */ +#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) + +/* If this bit is set, then special characters are always special + * regardless of where they are in the pattern. + * If this bit is not set, then special characters are special only in + * some contexts; otherwise they are ordinary. Specifically, + * * + ? and intervals are only special when not after the beginning, + * open-group, or alternation operator. */ +#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) + +/* If this bit is set, then *, +, ?, and { cannot be first in an re or + * immediately after an alternation or begin-group operator. */ +#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) + +/* If this bit is set, then . matches newline. + * If not set, then it doesn't. */ +#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) + +/* If this bit is set, then . doesn't match NUL. + * If not set, then it does. */ +#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) + +/* If this bit is set, nonmatching lists [^...] do not match newline. + * If not set, they do. */ +#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) + +/* If this bit is set, either \{...\} or {...} defines an + * interval, depending on RE_NO_BK_BRACES. + * If not set, \{, \}, {, and } are literals. */ +#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) + +/* If this bit is set, +, ? and | aren't recognized as operators. + * If not set, they are. */ +#define RE_LIMITED_OPS (RE_INTERVALS << 1) + +/* If this bit is set, newline is an alternation operator. + * If not set, newline is literal. */ +#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) + +/* If this bit is set, then `{...}' defines an interval, and \{ and \} + * are literals. + * If not set, then `\{...\}' defines an interval. */ +#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) + +/* If this bit is set, (...) defines a group, and \( and \) are literals. + * If not set, \(...\) defines a group, and ( and ) are literals. */ +#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) + +/* If this bit is set, then \ matches . + * If not set, then \ is a back-reference. */ +#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) + +/* If this bit is set, then | is an alternation operator, and \| is literal. + * If not set, then \| is an alternation operator, and | is literal. */ +#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) + +/* If this bit is set, then an ending range point collating higher + * than the starting range point, as in [z-a], is invalid. + * If not set, then when ending range point collates higher than the + * starting range point, the range is ignored. */ +#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) + +/* If this bit is set, then an unmatched ) is ordinary. + * If not set, then an unmatched ) is invalid. */ +#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) + +/* Define combinations of the above bits for the standard possibilities. + * (The [[[ comments delimit what gets put into the Texinfo file, so + * don't delete them!) */ +/* [[[begin syntaxes]]] */ +#define RE_SYNTAX_EMACS 0 + +#define RE_SYNTAX_AWK \ + (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ + | RE_NO_BK_PARENS | RE_NO_BK_REFS \ + | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ + | RE_UNMATCHED_RIGHT_PAREN_ORD) + +#define RE_SYNTAX_POSIX_AWK \ + (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS) + +#define RE_SYNTAX_GREP \ + (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ + | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \ + | RE_NEWLINE_ALT) + +#define RE_SYNTAX_EGREP \ + (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \ + | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \ + | RE_NEWLINE_ALT | RE_NO_BK_PARENS \ + | RE_NO_BK_VBAR) + +#define RE_SYNTAX_POSIX_EGREP \ + (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES) + +/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ +#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC + +#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC + +/* Syntax bits common to both basic and extended POSIX regex syntax. */ +#define _RE_SYNTAX_POSIX_COMMON \ + (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \ + | RE_INTERVALS | RE_NO_EMPTY_RANGES) + +#define RE_SYNTAX_POSIX_BASIC \ + (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM) + +/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes + * RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this + * isn't minimal, since other operators, such as \`, aren't disabled. */ +#define RE_SYNTAX_POSIX_MINIMAL_BASIC \ + (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) + +#define RE_SYNTAX_POSIX_EXTENDED \ + (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ + | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ + | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ + | RE_UNMATCHED_RIGHT_PAREN_ORD) + +/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS + * replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */ +#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ + (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ + | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ + | RE_NO_BK_PARENS | RE_NO_BK_REFS \ + | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD) +/* [[[end syntaxes]]] */ + +/* Maximum number of duplicates an interval can allow. Some systems + * (erroneously) define this in other header files, but we want our + * value, so remove any previous define. */ +#ifdef RE_DUP_MAX +#undef RE_DUP_MAX +#endif +#define RE_DUP_MAX ((1 << 15) - 1) + +/* POSIX `cflags' bits (i.e., information for `regcomp'). */ + +/* If this bit is set, then use extended regular expression syntax. + * If not set, then use basic regular expression syntax. */ +#define REG_EXTENDED 1 + +/* If this bit is set, then ignore case when matching. + * If not set, then case is significant. */ +#define REG_ICASE (REG_EXTENDED << 1) + +/* If this bit is set, then anchors do not match at newline + * characters in the string. + * If not set, then anchors do match at newlines. */ +#define REG_NEWLINE (REG_ICASE << 1) + +/* If this bit is set, then report only success or fail in regexec. + * If not set, then returns differ between not matching and errors. */ +#define REG_NOSUB (REG_NEWLINE << 1) + +/* POSIX `eflags' bits (i.e., information for regexec). */ + +/* If this bit is set, then the beginning-of-line operator doesn't match + * the beginning of the string (presumably because it's not the + * beginning of a line). + * If not set, then the beginning-of-line operator does match the + * beginning of the string. */ +#define REG_NOTBOL 1 + +/* Like REG_NOTBOL, except for the end-of-line. */ +#define REG_NOTEOL (1 << 1) + +/* If any error codes are removed, changed, or added, update the + * `re_error_msg' table in regex.c. */ +typedef enum { + REG_NOERROR = 0, /* Success. */ + REG_NOMATCH, /* Didn't find a match (for regexec). */ + + /* POSIX regcomp return error codes. (In the order listed in the + * standard.) */ + REG_BADPAT, /* Invalid pattern. */ + REG_ECOLLATE, /* Not implemented. */ + REG_ECTYPE, /* Invalid character class name. */ + REG_EESCAPE, /* Trailing backslash. */ + REG_ESUBREG, /* Invalid back reference. */ + REG_EBRACK, /* Unmatched left bracket. */ + REG_EPAREN, /* Parenthesis imbalance. */ + REG_EBRACE, /* Unmatched \{. */ + REG_BADBR, /* Invalid contents of \{\}. */ + REG_ERANGE, /* Invalid range end. */ + REG_ESPACE, /* Ran out of memory. */ + REG_BADRPT, /* No preceding re for repetition op. */ + + /* Error codes we've added. */ + REG_EEND, /* Premature end. */ + REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */ + REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */ +} reg_errcode_t; + +/* This data structure represents a compiled pattern. Before calling + * the pattern compiler, the fields `buffer', `allocated', `fastmap', + * `translate', and `no_sub' can be set. After the pattern has been + * compiled, the `re_nsub' field is available. All other fields are + * private to the regex routines. */ + +struct re_pattern_buffer { + /* [[[begin pattern_buffer]]] */ + /* Space that holds the compiled pattern. It is declared as + * `unsigned char *' because its elements are + * sometimes used as array indexes. */ + unsigned char *buffer; + + /* Number of bytes to which `buffer' points. */ + unsigned long allocated; + + /* Number of bytes actually used in `buffer'. */ + unsigned long used; + + /* Syntax setting with which the pattern was compiled. */ + reg_syntax_t syntax; + + /* Pointer to a fastmap, if any, otherwise zero. re_search uses + * the fastmap, if there is one, to skip over impossible + * starting points for matches. */ + char *fastmap; + + /* Either a translate table to apply to all characters before + * comparing them, or zero for no translation. The translation + * is applied to a pattern when it is compiled and to a string + * when it is matched. */ + char *translate; + + /* Number of subexpressions found by the compiler. */ + size_t re_nsub; + + /* Zero if this pattern cannot match the empty string, one else. + * Well, in truth it's used only in `re_search_2', to see + * whether or not we should use the fastmap, so we don't set + * this absolutely perfectly; see `re_compile_fastmap' (the + * `duplicate' case). */ + unsigned can_be_null:1; + + /* If REGS_UNALLOCATED, allocate space in the `regs' structure + * for `max (RE_NREGS, re_nsub + 1)' groups. + * If REGS_REALLOCATE, reallocate space if necessary. + * If REGS_FIXED, use what's there. */ +#define REGS_UNALLOCATED 0 +#define REGS_REALLOCATE 1 +#define REGS_FIXED 2 + unsigned regs_allocated:2; + + /* Set to zero when `regex_compile' compiles a pattern; set to one + * by `re_compile_fastmap' if it updates the fastmap. */ + unsigned fastmap_accurate:1; + + /* If set, `re_match_2' does not return information about + * subexpressions. */ + unsigned no_sub:1; + + /* If set, a beginning-of-line anchor doesn't match at the + * beginning of the string. */ + unsigned not_bol:1; + + /* Similarly for an end-of-line anchor. */ + unsigned not_eol:1; + + /* If true, an anchor at a newline matches. */ + unsigned newline_anchor:1; + + /* [[[end pattern_buffer]]] */ +}; + +typedef struct re_pattern_buffer regex_t; + +/* search.c (search_buffer) in Emacs needs this one opcode value. It is + * defined both in `regex.c' and here. */ +#define RE_EXACTN_VALUE 1 + +/* Type for byte offsets within the string. POSIX mandates this. */ +typedef int regoff_t; + +/* This is the structure we store register match data in. See + * regex.texinfo for a full description of what registers match. */ +struct re_registers { + unsigned num_regs; + regoff_t *start; + regoff_t *end; +}; + +/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, + * `re_match_2' returns information about at least this many registers + * the first time a `regs' structure is passed. */ +#ifndef RE_NREGS +#define RE_NREGS 30 +#endif + +/* POSIX specification for registers. Aside from the different names than + * `re_registers', POSIX uses an array of structures, instead of a + * structure of arrays. */ +typedef struct { + regoff_t rm_so; /* Byte offset from string's start to substring's start. */ + regoff_t rm_eo; /* Byte offset from string's start to substring's end. */ +} regmatch_t; + +/* Declarations for routines. */ + +/* To avoid duplicating every routine declaration -- once with a + * prototype (if we are ANSI), and once without (if we aren't) -- we + * use the following macro to declare argument types. This + * unfortunately clutters up the declarations a bit, but I think it's + * worth it. */ + +/* POSIX compatibility. */ +extern int regcomp(regex_t * preg, const char *pattern, int cflags); +extern int regexec(const regex_t * preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags); +extern size_t regerror(int errcode, const regex_t * preg, char *errbuf, size_t errbuf_size); +extern void regfree(regex_t * preg); + +#ifdef __cplusplus +} +#endif + +#endif /* USE_GNUREGEX */ +#endif /* SQUID_REGEXP_LIBRARY_H */ + +/* + * Local variables: + * make-backup-files: t + * version-control: t + * trim-versions-without-asking: nil + * End: + */ + diff --git a/compat/Makefile.am b/compat/Makefile.am index 552c6cfb5d..626538d4ce 100644 --- a/compat/Makefile.am +++ b/compat/Makefile.am @@ -33,6 +33,8 @@ libcompatsquid_la_SOURCES = \ getaddrinfo.h \ getnameinfo.cc \ getnameinfo.h \ + GnuRegex.c \ + GnuRegex.h \ inet_ntop.cc \ inet_ntop.h \ inet_pton.cc \ diff --git a/compat/compat.h b/compat/compat.h index 5648faeb71..32aee5884b 100644 --- a/compat/compat.h +++ b/compat/compat.h @@ -107,6 +107,13 @@ /* Valgrind API macros changed between two versions squid supports */ #include "compat/valgrind.h" +/** + * A Regular Expression library is bundled with Squid. + * Default is to use a system provided one, but the bundle + * may be used instead with explicit configuration. + */ +#include "compat/GnuRegex.h" + /* cppunit is not quite C++0x compatible yet */ #include "compat/cppunit.h" diff --git a/configure.ac b/configure.ac index 6304761e0d..8a69a29fb0 100644 --- a/configure.ac +++ b/configure.ac @@ -2807,6 +2807,7 @@ AC_CHECK_HEADERS( \ paths.h \ poll.h \ pwd.h \ + regex.h \ sched.h \ siginfo.h \ signal.h \ @@ -3341,6 +3342,9 @@ AC_CHECK_FUNCS(\ pthread_setschedparam \ pthread_sigmask \ putenv \ + regcomp \ + regexec \ + regfree \ res_init \ __res_init \ rint \ @@ -3626,6 +3630,51 @@ if test x"$enable_zph_qos" = "xyes" ; then [Enable support for QOS netfilter mark preservation]) fi + +AC_CHECK_LIB(regex, regexec, [REGEXLIB="-lregex"],[REGEXLIB='']) +AC_ARG_ENABLE(gnuregex, + AS_HELP_STRING([--enable-gnuregex], + [Compile GNUregex. Unless you have reason to use + this option, you should not enable it. + This library file is usually only required on Windows and + very old Unix boxes which do not have their own regex + library built in.]), [ +SQUID_YESNO([$enableval],[unrecognized argument to --enable-gnuregex: $enableval]) +]) +# force-enable on old solaris and nextstep +if test "x${enable_gnuregex:=auto}" = "xauto" ; then + case "$host" in + *-sun-solaris2.[[0-4]]) + enable_gnuregex="yes" + ;; + *-next-nextstep*) + enable_gnuregex="yes" + ;; + esac +fi + +# try detecting if it is needed +if test "x$enable_gnuregex" = "xauto" ; then + SQUID_CHECK_REGEX_WORKS + if test "x$squid_cv_regex_works" = "xyes" ; then + enable_gnuregex=no + else + enable_gnuregex=yes + fi +fi +AC_MSG_CHECKING(if GNUregex needs to be compiled) +AC_MSG_RESULT($enable_gnuregex) +if test "x$enable_gnuregex" = "xyes"; then + # for some reason (force-enable, test..) gnuregex was found as needed. Override any system lib + REGEXLIB="" +fi +#if no reason was found to enable gnuregex, disable it +if test "x$enable_gnuregex" = "xauto" ; then + enable_gnuregex=no +fi +SQUID_DEFINE_BOOL(USE_GNUREGEX,$enable_gnuregex,[Define if we should use GNU regex]) +AC_SUBST(REGEXLIB) + SQUID_DETECT_UDP_SND_BUFSIZE SQUID_DETECT_UDP_RECV_BUFSIZE SQUID_DETECT_TCP_SND_BUFSIZE diff --git a/doc/release-notes/release-5.sgml b/doc/release-notes/release-5.sgml index e0ed556382..ac4dafd670 100644 --- a/doc/release-notes/release-5.sgml +++ b/doc/release-notes/release-5.sgml @@ -82,16 +82,7 @@ This section gives a thorough account of those changes in three categories: Changes to existing directives