From: Kuan-Wei Chiu Date: Fri, 10 Nov 2023 16:53:14 +0000 (+0800) Subject: platform/chrome: sensorhub: Implement quickselect for median calculation X-Git-Tag: v6.8-rc1~166^2~2 X-Git-Url: http://git.ipfire.org/?a=commitdiff_plain;h=d131f1f3b459980d38a59adc3598c96cc3a6ad5e;p=thirdparty%2Fkernel%2Flinux.git platform/chrome: sensorhub: Implement quickselect for median calculation The cros_ec_sensor_ring_median function currently uses an inefficient sorting algorithm (> O(n)) to find the median of an array. This patch replaces the sorting approach with the quickselect algorithm, which achieves an average time complexity of O(n). The algorithm employs the median-of-three rule to select the pivot, mitigating worst-case scenarios and reducing the expected number of necessary comparisons. This strategy enhances the algorithm's efficiency and ensures a more balanced partitioning. In the worst case, the runtime of quickselect could regress to O(n^2). To address this, alternative algorithms like median-of-medians that can guarantee O(n) even in the worst case. However, due to higher overhead and increased complexity of implementation, quickselect remains a pragmatic choice for our use case. Signed-off-by: Kuan-Wei Chiu Link: https://lore.kernel.org/r/20231110165314.1559285-1-visitorckw@gmail.com Signed-off-by: Tzung-Bi Shih --- diff --git a/drivers/platform/chrome/cros_ec_sensorhub_ring.c b/drivers/platform/chrome/cros_ec_sensorhub_ring.c index 9e17f7483ca05..1205219515d67 100644 --- a/drivers/platform/chrome/cros_ec_sensorhub_ring.c +++ b/drivers/platform/chrome/cros_ec_sensorhub_ring.c @@ -133,33 +133,61 @@ int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, return ret; } -static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2) +static void cros_ec_sensor_ring_median_swap(s64 *a, s64 *b) { - s64 v1 = *(s64 *)pv1; - s64 v2 = *(s64 *)pv2; - - if (v1 > v2) - return 1; - else if (v1 < v2) - return -1; - else - return 0; + s64 tmp = *a; + *a = *b; + *b = tmp; } /* * cros_ec_sensor_ring_median: Gets median of an array of numbers * - * For now it's implemented using an inefficient > O(n) sort then return - * the middle element. A more optimal method would be something like - * quickselect, but given that n = 64 we can probably live with it in the - * name of clarity. + * It's implemented using the quickselect algorithm, which achieves an + * average time complexity of O(n) the middle element. In the worst case, + * the runtime of quickselect could regress to O(n^2). To mitigate this, + * algorithms like median-of-medians exist, which can guarantee O(n) even + * in the worst case. However, these algorithms come with a higher + * overhead and are more complex to implement, making quickselect a + * pragmatic choice for our use case. * - * Warning: the input array gets modified (sorted)! + * Warning: the input array gets modified! */ static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) { - sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL); - return array[length / 2]; + int lo = 0; + int hi = length - 1; + + while (lo <= hi) { + int mid = lo + (hi - lo) / 2; + int pivot, i; + + if (array[lo] > array[mid]) + cros_ec_sensor_ring_median_swap(&array[lo], &array[mid]); + if (array[lo] > array[hi]) + cros_ec_sensor_ring_median_swap(&array[lo], &array[hi]); + if (array[mid] < array[hi]) + cros_ec_sensor_ring_median_swap(&array[mid], &array[hi]); + + pivot = array[hi]; + i = lo - 1; + + for (int j = lo; j < hi; j++) + if (array[j] < pivot) + cros_ec_sensor_ring_median_swap(&array[++i], &array[j]); + + /* The pivot's index corresponds to i+1. */ + cros_ec_sensor_ring_median_swap(&array[i + 1], &array[hi]); + if (i + 1 == length / 2) + return array[i + 1]; + if (i + 1 > length / 2) + hi = i; + else + lo = i + 2; + } + + /* Should never reach here. */ + return -1; } /*