H.J. Lu [Sun, 15 Sep 2024 23:11:39 +0000 (07:11 +0800)]
x86/APX: Don't promote AVX/AVX2 instructions out of APX spec
V{BROADCAST,EXTRACT,INSERT}{F,I}128 and VROUND{P,S}{S,D} aren't promoted
to support EGPR in APX spec. Don't promote them out of APX spec. This
commit effectively reverted:
ec3babb8c10 x86/APX: V{BROADCAST,EXTRACT,INSERT}{F,I}128 can also be expressed 5a635f1f59a x86/APX: VROUND{P,S}{S,D} encodings require AVX512{F,VL} eea4357967b x86/APX: VROUND{P,S}{S,D} can generally be encoded
H.J. Lu [Mon, 9 Sep 2024 00:27:00 +0000 (17:27 -0700)]
bfd: Pass true to ld_plugin_object_p
Since linker calls bfd_plugin_object_p, which calls ld_plugin_object_p,
only for command-line input objects, pass true to ld_plugin_object_p so
that the same input IR file won't be included twice if the new LTO hook,
LDPT_REGISTER_CLAIM_FILE_HOOK_V2 isn't used.
PR ld/32153
* plugin.c (bfd_plugin_object_p): Pass true to ld_plugin_object_p.
Alan Modra [Sun, 25 Aug 2024 05:50:21 +0000 (15:20 +0930)]
PR32109, aborting at bfd/bfd.c:1236 in int _bfd_doprnt
Since bfd_section for .strtab isn't set, print the section index
instead. Also, don't return NULL on this error as that results in
multiple mmap/read of the string table. (We could return NULL if we
arranged to set sh_size zero first, but just what we do with fuzzed
object files is of no concern, and terminating the table might make a
faulty object file usable.)
PR 32109
* elf.c (bfd_elf_get_str_section): Remove outdated comment, and
tweak shstrtabsize test to suit. Don't use string tab bfd_section
in error message, use index instead. Don't return NULL on
unterminated string section, terminate it.
(_bfd_elf_get_dynamic_symbols): Similarly terminate string table
section.
H.J. Lu [Wed, 14 Aug 2024 15:29:15 +0000 (08:29 -0700)]
ld: Add an LTO test for common symbol override
Linker checks if a symbol in an archive member is a real definition, not
common, before including the archive member in the link output so that
only a real definition in archive will override the common symbol in
object file. Add an LTO test to verify that a real definition in archive
overrides the common symbol in object file.
* testsuite/ld-plugin/common-1.c: New file.
* testsuite/ld-plugin/definition-1.c: Likewise.
* testsuite/ld-plugin/lto.exp: Run common tests.
H.J. Lu [Thu, 15 Aug 2024 03:50:02 +0000 (20:50 -0700)]
lto: Don't include unused LTO archive members in output
When plugin_object_p is called by elf_link_is_defined_archive_symbol to
check if a symbol in archive is a real definition, set archive member
plugin_format to bfd_plugin_yes_unused to avoid including the unused LTO
archive members in linker output. When plugin_object_p is called as
known used, call plugin claim_file if plugin_format is bfd_plugin_unknown
or bfd_plugin_yes_unused.
To get the proper support for archives with LTO common symbols with GCC,
the GCC fix for
PR ld/32083
* archures.c (bfd_arch_get_compatible): Treat bfd_plugin_yes_unused
the same as bfd_plugin_yes.
* elflink.c (elf_link_is_defined_archive_symbol): Likewise.
* bfd.c (bfd_plugin_format): Add bfd_plugin_yes_unused.
* plugin.c (try_claim): Try claim_file_v2 first.
* bfd-in2.h: Regenerated.
ld/
PR ld/32083
* plugin.c (plugin_call_claim_file): Add an argument to return
if LDPT_REGISTER_CLAIM_FILE_HOOK_V2 is used.
(plugin_object_p): When KNOWN_USED is false, we call plugin
claim_file if plugin_format is bfd_plugin_unknown and set
plugin_format to bfd_plugin_yes_unused on LTO object. When
KNOWN_USED is true, we call plugin claim_file if plugin_format
is bfd_plugin_unknown or bfd_plugin_yes_unused.
Jan Beulich [Wed, 14 Aug 2024 09:25:12 +0000 (11:25 +0200)]
x86: correct .insn with opcode extension and VEX/XOP/EVEX encoding
When VexVVVV handling was re-worked, .insn broke: When an opcode
extension is in use, VexVVVV_DST needs using now, as ModR/M.reg is
already occupied, matching what c8866e3ec5e2 ("x86: Drop using
extension_opcode to encode vvvv register") did.
While adding (bad) POP2 forms, also slightly adjust existing ones:
No need to use XMM registers, and no need to specify %r8 when really
%rax is meant twice (EVEX.vvvv not really being the culprit there, or
else EVEX.V' would also have needed mentioning).
Alan Modra [Fri, 9 Aug 2024 23:11:16 +0000 (08:41 +0930)]
PR32067, ld -Wl,--oformat,binary crash in _bfd_elf_link_keep_memory
The direct fix for this segfault is to test for a non-NULL bed in
_bfd_elf_link_keep_memory, but also there isn't much point in running
code for LTO if the output is binary.
PR 32067
* elflink.c (_bfd_elf_link_keep_memory): Test for non-NULL bed.
(elf_link_add_object_symbols): Don't run the loop setting
non_ir_ref_regular if the output hash table is not ELF.
gas: sparc: Fix faligndatai assembly and disassembly
The first operand is a general register, not an fp register;
the third operand is encoded into RS2, not RS3;
the second operand must match the destination operand.
H.J. Lu [Sat, 3 Aug 2024 02:52:00 +0000 (19:52 -0700)]
LTO: Restore the wrapper symbol check for standard function
Call unwrap_hash_lookup to restore the wrapper symbol check for standard
function since reference to standard function may not show up in LTO
symbol table:
[hjl@gnu-tgl-3 pr31956-3]$ nm foo.o 00000000 T main
U __real_malloc 00000000 T __wrap_malloc
[hjl@gnu-tgl-3 pr31956-3]$ lto-dump -list foo.o
Type Visibility Size Name
function default 0 malloc
function default 0 __real_malloc
function default 3 main
function default 5 __wrap_malloc
[hjl@gnu-tgl-3 pr31956-3]$ make
gcc -O2 -flto -Wall -c -o foo.o foo.c
gcc -Wl,--wrap=malloc -O2 -flto -Wall -o x foo.o
/usr/local/bin/ld: /tmp/ccsPW0a9.ltrans0.ltrans.o: in function `main':
<artificial>:(.text.startup+0xa): undefined reference to `__wrap_malloc'
collect2: error: ld returned 1 exit status
make: *** [Makefile:22: x] Error 1
[hjl@gnu-tgl-3 pr31956-3]$
Also add a test to verify that the unused wrapper is removed.
PR ld/31956
* plugin.c (get_symbols): Restore the wrapper symbol check for
standard function.
* testsuite/ld-plugin/lto.exp: Run the malloc test and the
unused test.
* testsuite/ld-plugin/pr31956c.c: New file.
* testsuite/ld-plugin/pr31956d.c: New file.
* testsuite/ld-plugin/pr31956d.d: New file.
gprofng: 32018 Compilation of binutils 2.43 failed on CentOS 6
strchr is redefined as a macro in /usr/include/bits/string.h on CentOS 6/7.
In this case, we may not use our CALL_UTIL macro for strchr.
Use __collector_strchr instead of "CALL_UTIL (strchr)".
gprofng/ChangeLog
2024-07-28 Vladimir Mezentsev <vladimir.mezentsev@oracle.com>
PR 32018
* libcollector/hwprofile.c (open_experiment): Use __collector_strchr.
Nick Alcock [Tue, 30 Jul 2024 11:28:04 +0000 (12:28 +0100)]
libctf: fix ctf_archive_count return value on big-endian
This failed to properly byteswap its return value.
The ctf_archive format predates the idea of "just write natively and
flip on open", and byteswaps all over the place. It's too easy to
forget one. The next revision of the archive format (not versioned,
so we just tweak the magic number instead) should be native-endianned
like the dicts inside it are.
Nick Alcock [Mon, 29 Jul 2024 11:45:09 +0000 (12:45 +0100)]
libctf: fix ref leak of names of newly-inserted non-root-visible types
A bug in ctf_dtd_delete led to refs in the string table to the
names of non-root-visible types not being removed when the DTD
was. This seems harmless, but actually it would lead to a write
down a pointer into freed memory if such a type was ctf_rollback()ed
over and then the dict was serialized (updating all the refs as the
strtab was serialized in turn).
Bug introduced in commit fe4c2d55634c700ba527ac4183e05c66e9f93c62
("libctf: create: non-root-visible types should not appear in name tables")
which is included in binutils 2.35.
libctf/
* ctf-create.c (ctf_dtd_delete): Remove refs for all types
with names, not just root-visible ones.
Nick Alcock [Fri, 26 Jul 2024 20:58:03 +0000 (21:58 +0100)]
libctf: clean up hashtab error handling mess
The dict and archive opening code in libctf is somewhat unusual, because
unlike everything else, it cannot report errors by setting an error on the
dict, because in case of error there isn't one. They get passed an error
integer pointer that is set on error instead.
Inside ctf_bufopen this is implemented by calling ctf_set_open_errno and
passing it a positive error value. In turn this means that most things it
calls (including init_static_types) return zero on success and a *positive*
ECTF_* or errno value on error.
This trickles down to ctf_dynhash_insert_type, which is used by
init_static_types to add newly-detected types to the name tables. This was
returning the error value it received from a variety of functions without
alteration. ctf_dynhash_insert conformed to this contract by returning a
positive value on error (usually OOM), which is unfortunate for multiple
reasons:
- ctf_dynset_insert returns a *negative* value
- ctf_dynhash_insert and ctf_dynset_insert don't take an fp, so the value
they return is turned into the errno, so it had better be right, callers
don't just check for != 0 here
- more or less every single caller of ctf_dyn*_insert in libctf other than
ctf_dynhash_insert_type (and there are a *lot*, mostly in the
deduplicator) assumes that ctf_dynhash_insert returns a negative value
on error, even though it doesn't. In practice the only possible error is
OOM, but if OOM does happen we end up with a nonsense error value.
The simplest fix for this seems to be to make ctf_dynhash_insert and
ctf_dynset_insert conform to the usual interface contract: negative
values are errors. This in turn means that ctf_dynhash_insert_type
needs to change: let's make it consistent too, returning a negative
value on error, putting the error on the fp in non-negated form.
init_static_types_internal adapts to this by negating the error return from
ctf_dynhash_insert_type, so the value handed back to ctf_bufopen is still
positive: the new call site in ctf_track_enumerator does not need to change.
(The existing tests for this reliably detect when I get it wrong.
I know, because they did.)
libctf/
* ctf-hash.c (ctf_dynhash_insert): Negate return value.
(ctf_dynhash_insert_type): Set de-negated error on the dict:
return negated error.
* ctf-open.c (init_static_types_internal): Adapt to this change.
Nick Alcock [Fri, 26 Jul 2024 20:38:24 +0000 (21:38 +0100)]
libctf, include: add ctf_dict_set_flag: less enum dup checking by default
The recent change to detect duplicate enum values and return ECTF_DUPLICATE
when found turns out to perturb a great many callers. In particular, the
pahole-created kernel BTF has the same problem we historically did, and
gleefully emits duplicated enum constants in profusion. Handling the
resulting duplicate errors from BTF -> CTF converters reasonably is
unreasonably difficult (it amounts to forcing them to skip some types or
reimplement the deduplicator).
So let's step back a bit. What we care about mostly is that the
deduplicator treat enums with conflicting enumeration constants as
conflicting types: programs that want to look up enumeration constant ->
value mappings using the new APIs to do so might well want the same checks
to apply to any ctf_add_* operations they carry out (and since they're
*using* the new APIs, added at the same time as this restriction was
imposed, there is likely to be no negative consequence of this).
So we want some way to allow processes that know about duplicate detection
to opt into it, while allowing everyone else to stay clear of it: but we
want ctf_link to get this behaviour even if its caller has opted out.
So add a new concept to the API: dict-wide CTF flags, set via
ctf_dict_set_flag, obtained via ctf_dict_get_flag. They are not bitflags
but simple arbitrary integers and an on/off value, stored in an unspecified
manner (the one current flag, we translate into an LCTF_* flag value in the
internal ctf_dict ctf_flags word). If you pass in an invalid flag or value
you get a new ECTF_BADFLAG error, so the caller can easily tell whether
flags added in future are valid with a particular libctf or not.
We check this flag in ctf_add_enumerator, and set it around the link
(including on child per-CU dicts). The newish enumerator-iteration test is
souped up to check the semantics of the flag as well.
The fact that the flag can be set and unset at any time has curious
consequences. You can unset the flag, insert a pile of duplicates, then set
it and expect the new duplicates to be detected, not only by
ctf_add_enumerator but also by ctf_lookup_enumerator. This means we now
have to maintain the ctf_names and conflicting_enums enum-duplication
tracking as new enums are added, not purely as the dict is opened.
Move that code out of init_static_types_internal and into a new
ctf_track_enumerator function that addition can also call.
(None of this affects the file format or serialization machinery, which has
to be able to handle duplicate enumeration constants no matter what.)
include/
* ctf-api.h (CTF_ERRORS) [ECTF_BADFLAG]: New.
(ECTF_NERR): Update.
(CTF_STRICT_NO_DUP_ENUMERATORS): New flag.
(ctf_dict_set_flag): New function.
(ctf_dict_get_flag): Likewise.
libctf/
* ctf-impl.h (LCTF_STRICT_NO_DUP_ENUMERATORS): New flag.
(ctf_track_enumerator): Declare.
* ctf-dedup.c (ctf_dedup_emit_type): Set it.
* ctf-link.c (ctf_create_per_cu): Likewise.
(ctf_link_deduplicating_per_cu): Likewise.
(ctf_link): Likewise.
(ctf_link_write): Likewise.
* ctf-subr.c (ctf_dict_set_flag): New function.
(ctf_dict_get_flag): New function.
* ctf-open.c (init_static_types_internal): Move enum tracking to...
* ctf-create.c (ctf_track_enumerator): ... this new function.
(ctf_add_enumerator): Call it.
* libctf.ver: Add the new functions.
* testsuite/libctf-lookup/enumerator-iteration.c: Test them.
Nick Alcock [Mon, 15 Jul 2024 22:25:25 +0000 (23:25 +0100)]
libctf: link: remember to turn off the LCTF_LINKING flag after ctf_link_write
We set this flag at the top of ctf_link_write (to tell ctf_serialize, way
down under the archive file writing functions, to do the various link- time
serialization things like symbol filtering and the like), but we never
remember to clear it except on error. This is probably bad if you want to
serialize the dict yourself directly in the future after linking it (which
is... definitely a *possible* use of the API, if rather strange).
libctf/
* ctf-link.c (ctf_link_write): Clear LCTF_LINKING before exit.
Nick Alcock [Mon, 15 Jul 2024 19:50:25 +0000 (20:50 +0100)]
libctf: fix dynset insertion
libctf's dynsets are a straight wrapper around libiberty hashtab, storing
the key directly in the hashtab slot. However, we'd often like to be able
to store 0 and 1 (HTAB_EMPTY_ENTRY and HTAB_DELETED_ENTRY) in there, so we
move them out of the way and replace them with huge unlikely values
instead. Unfortunately we failed to do this replacement in one place, so
insertion of 0 or 1 ended up misinforming the hashtab machinery that an
entry was empty or deleted when it wasn't.
Nick Alcock [Mon, 15 Jul 2024 18:59:13 +0000 (19:59 +0100)]
libctf: improve ECTF_NOPARENT error message
This erorr doesn't just indicate that there is no parent dictionary
(that's routine, and true of all dicts that are parents themselves)
but that a parent is *needed* but wasn't found.
Nick Alcock [Mon, 15 Jul 2024 18:55:40 +0000 (19:55 +0100)]
libctf: fix CTF dict compression
Commit 483546ce4f3 ("libctf: make ctf_serialize() actually serialize")
accidentally broke dict compression. There were two bugs:
- ctf_arc_write_one_ctf was still making its own decision about
whether to compress the dict via direct ctf_size comparison, which is
unfortunate because now that it no longer calls ctf_serialize itself,
ctf_size is always zero when it does this: it should let the writing
functions decide on the threshold, which they contain code to do which is
simply not used for lack of one trivial wrapper to write to an fd and
also provide a compression threshold
- ctf_write_mem, the function underlying all writing as of the commit
above, was calling zlib's compressBound and avoiding compression if this
returned a value larger than the input. Unfortunately compressBound does
not do a trial compression and determine whether the result is
compressible: it just adds zlib header sizes to the value passed in, so
our test would *always* have concluded that the value was incompressible!
Avoid by simply always compressing if the raw size is larger than the
threshold: zlib is quite clever enough to avoid actually compressing
if the data is incompressible.
Add a testcase for this.
libctf/
* ctf-impl.h (ctf_write_thresholded): New...
* ctf-serialize.c (ctf_write_thresholded): ... defined here,
a wrapper around...
(ctf_write_mem): ... this. Don't check compressibility.
(ctf_compress_write): Reimplement as a ctf_write_thresholded
wrapper.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Just call
ctf_write_thresholded rather than trying to work out whether
to compress.
* testsuite/libctf-writable/ctf-compressed.*: New test.
Nick Alcock [Mon, 15 Jul 2024 18:42:10 +0000 (19:42 +0100)]
libctf: fix linking of non-root-visible types
If you deduplicate non-root-visible types, the resulting type should still
be non-root-visible! We were promoting all such types to root-visible, and
re-demoting them only if their names collided (which might happen on
cu-mapped links if multiple compilation units with conflicting types are
fused into one child dict).
This "worked" before now, in that linking at least didn't fail (if you don't
mind having your non-root flag value destroyed if you're adding
non-root-visible types), but now that conflicting enumerators cause their
containing enums to become conflicted (enums which might have *different
names*), this caused the linker to crash when it hit two enumerators with
conflicting values.
Not testable in ld because cu-mapped links are not exposed to ld, but can be
tested via direct creation of libraries and calls to ctf_link directly.
(This also tests the ctf_dump non-root type printout, which before now
was untested.)
libctf/
* ctf-dedup.c (ctf_dedup_emit_type): Non-root-visible input types
should be emitted as non-root-visible output types.
* testsuite/libctf-writable/ctf-nonroot-linking.c: New test.
* testsuite/libctf-writable/ctf-nonroot-linking.lk: New test.
The flag test when dumping non-root-visible tyeps was doubly wrong: the
flags word is a *bitfield* containing CTF_ADD_ROOT as one possible
value, so needs | and & testing, not just ==, and CTF_ADD_NONROOT is 0,
so cannot be tested for this way: one must check for the non-presence of
CTF_ADD_ROOT.
libctf/
* ctf-dump.c (ctf_dump_format_type): Fix non-root flag test.
Nick Alcock [Fri, 12 Jul 2024 11:44:02 +0000 (12:44 +0100)]
libctf, string: split the movable refs out of the ref list
In commit 149ce5c263616e65 we introduced the concept of "movable" refs,
which are refs that can be moved in batches, to let us maintain valid ref
lists even when adding refs to blocks of memory that can be realloced (which
is any type containing a vlen which can expand, like names contained within
enum or struct members). Movable refs need a backpointer to the movable
refs dynhash for this dict; since non-movable refs are very common, we tried
to save memory by having a slightly bigger struct for moveable refs with a
backpointer in it, and casting appropriately, indicating which sort of ref
we were dealing with via a flag on the atom.
Unfortunately this doesn't work reliably, because you can perfectly well
have a string ("foo", say) which has both non-movable refs (say, an external
symbol and a variable name) and movable refs (say, a structure member name)
to the same atom. Indicate which struct we're dealing with with an atom
flag and suddenly you're casting a ctf_str_atom_ref to a
ctf_str_atom_ref_movable (which is bigger) and dereferencing random memory
off the end of it and interpreting it as a backpointer to the movable refs
dynhash. This is unlikely to work well.
So bite the bullet and split refs into two separate lists, one for movable
refs, one for immovable refs. It means some annoying code duplication, but
there's not very much of it, and it means we can keep the movable refs
hashtab (which in turn means we don't have to do linear searches to find all
relevant refs when moving refs, which in turn means that
structure/union/enum member additions remain amortized O(n) time, not
O(n^2).
Callers can now purge movable and non-movable refs independently of each
other. We don't use this yet, but a use is coming.
Nick Alcock [Tue, 9 Jul 2024 14:30:39 +0000 (15:30 +0100)]
libctf, dedup: drop unnecessary arg from ctf_dedup()
The PARENTS arg is carefully passed down through all the layers of hash
functions and then never used for anything. (In the distant past it was
used for cycle detection, but the algorithm eventually committed doesn't
need to do cycle detection...)
The PARENTS arg is still used by ctf_dedup_emit(), but even there we can
loosen the requirements and state that you can just leave entries
corresponding to dicts with no parents at zero (which will be useful
in an upcoming commit).
libctf/
* ctf-dedup.c (ctf_dedup_hash_type): Drop PARENTS arg.
(ctf_dedup_rhash_type): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_emit_struct_members): Mention what you can do to
PARENTS entries for parent dicts.
* ctf-impl.h (ctf_dedup): Adjust accordingly.
* ctf-link.c (ctf_link_deduplicating_per_cu): Likewise.
(ctf_link_deduplicating): Likewise.
Nick Alcock [Fri, 5 Jul 2024 14:53:14 +0000 (15:53 +0100)]
libctf: we do in fact support foreign-endian old versions
The worry that caused this to not be supported was because we don't
bother endian-flipping version-related fields before checking them.
But they're all unsigned chars anyway, and don't need any flipping at
all.
This should be supported and should already work. Enable it.