Pierre Muller [Sat, 2 May 2015 16:21:50 +0000 (18:21 +0200)]
Subject: [PATCH] Fix pascal behavior for class fields with testcase
Problem reported as PR pascal/17815
Part 1/3: Remember the case pattern that allowed finding a field of this.
File gdb/p-exp.y modified
This is the fix in the pascal parser (p-exp.y),
to avoid the error that GDB does find normal variables
case insensitively, but not fields of this,
inside a class or object method.
Part 2/3: Add "class" option for pascal compiler
File gdb/testsuite/lib/pascal.exp
This part of the patch series is unchanged.
It adds class option to pascal compiler
which adds the required command line option to
accept pascal class types.
Part 3/3:
New file: gdb/testsuite/gdb.pascal/case-insensitive-symbols.exp
New file: gdb/testsuite/gdb.pascal/case-insensitive-symbols.pas
Here is an updated version of this test, using Pedro's suggestions.
Test to check that PR 17815 is fixed.
Eli Zaretskii [Sat, 21 Mar 2015 08:48:34 +0000 (10:48 +0200)]
Fix undefined behavior in TUI's TAB expansion
gdb/ChangeLog:
* tui/tui-io.c (tui_expand_tabs): Reinitialize the column counter
before the second loop, to avoid undefined behavior. Reported by
Anton Blanchard <anton@samba.org>.
David Taylor [Thu, 19 Feb 2015 14:53:50 +0000 (18:53 +0400)]
[gdb/ax] small "setv" fix and documentation's adjustment.
gdb/doc/agentexpr.texi documents the "setv" opcode as follow:
@item @code{setv} (0x2d) @var{n}: @result{} @var{v}
Set trace state variable number @var{n} to the value found on the top
of the stack. The stack is unchanged, so that the value is readily
available if the assignment is part of a larger expression. The
handling of @var{n} is as described for @code{getv}.
The @item line is incorrect (and does not match with its
description), so this patch fixes it.
Additionally, in gdb/common/ax.def we find the line:
DEFOP (setv, 2, 0, 0, 1, 0x2d)
From the comment earlier in the file:
Each line is of the form:
DEFOP (name, size, data_size, consumed, produced, opcode)
[...]
CONSUMED is the number of stack elements consumed.
PRODUCED is the number of stack elements produced.
which is saying that nothing is consumed and one item is produced.
Both should be 0 or both should be 1.
This patch sets them both to 1, which seems better since if nothing
is on the stack an error will occur.
gdb/ChangeLog:
* common/ax.def (setv): Fix consumed entry in setv DEFOP.
gdb/doc/ChangeLog:
* agentexpr.texi (Bytecode Descriptions): Fix summary line for setv.
Andreas Arnez [Wed, 14 Jan 2015 12:01:38 +0000 (12:01 +0000)]
Fix internal error when core file section is too big
As reported in PR 17808, a test case with a forged (invalid) core file
can crash GDB with an assertion failure. In that particular case the
prstatus of an i386 core file looks like that from an AMD64 core file.
Consequently the respective regset supply function i386_supply_gregset
is invoked with a larger buffer than usual. But i386_supply_gregset
asserts a specific buffer size, and this assertion fails.
The patch relaxes all buffer size assertions in regset supply
functions such that they merely check for a sufficiently large buffer.
For consistency the regset collect functions are adjusted as well.
gdb/ChangeLog:
PR corefiles/17808:
* gdbarch.sh (iterate_over_regset_sections_cb): Document this
function type, particularly its SIZE parameter.
* gdbarch.h: Regenerate.
* amd64-tdep.c (amd64_supply_fpregset): In gdb_assert, compare
actual against required size using ">=" instead of "==".
(amd64_collect_fpregset): Likewise.
* i386-tdep.c (i386_supply_gregset): Likewise.
(i386_collect_gregset): Likewise.
(i386_supply_fpregset): Likewise.
(i386_collect_fpregset): Likewise.
* mips-linux-tdep.c (mips_supply_gregset_wrapper): Likewise.
(mips_fill_gregset_wrapper): Likewise.
(mips_supply_fpregset_wrapper): Likewise.
(mips_fill_fpregset_wrapper): Likewise.
(mips64_supply_gregset_wrapper): Likewise.
(mips64_fill_gregset_wrapper): Likewise.
(mips64_supply_fpregset_wrapper): Likewise.
(mips64_fill_fpregset_wrapper): Likewise.
* mn10300-linux-tdep.c (am33_supply_gregset_method): Likewise.
(am33_supply_fpregset_method): Likewise.
(am33_collect_gregset_method): Likewise.
(am33_collect_fpregset_method): Likewise.
Even with the previous patch installed, we'll still see
sigall-reverse.exp occasionally fail. The problem is that the event
loop's event handling processing is done in two steps:
#1 - poll all event sources, and push new event objects to the event
queue, until all event sources are drained.
#2 - go through the event queue, processing each event object at a
time. For each event, call the associated callback, and deletes the
event object from the queue.
and then bad things happen if between #1 and #2 something decides that
events from an event source that has already queued events shouldn't
be processed yet. To do that, we either remove the event source from
the list of event sources, or clear its "have events" flag. However,
if an event for that source has meanwhile already been pushed in the
event queue, #2 will still process it and call the associated
callback...
One way to fix it that I considered was to do something to the event
objects already in the event queue when an event source is no longer
interesting. But then I couldn't find any good reason for the
two-step process in the first place. It's much simpler (and less
code) to call the event source callbacks as we poll the sources and
find events.
Tested on x86-64 Fedora 20, native and gdbserver.
gdb/
2015-02-17 Pedro Alves <palves@redhat.com>
* event-loop.c: Don't declare nor define a queue type for
gdb_event_p.
(event_queue): Delete.
(create_event, create_file_event, gdb_event_xfree)
(initialize_event_loop, process_event): Delete.
(gdb_do_one_event): Return as soon as one event is handled.
(handle_file_event): Change prototype. Used the passed in
file_handler pointer and ready_mask instead of looping over all
file handlers.
(gdb_wait_for_event): Update the poll/select timeouts before
blocking. Run event handlers directly instead of queueing events.
Return as soon as one event is handled.
(struct async_event_handler_data): Delete.
(invoke_async_event_handler): Delete.
(check_async_event_handlers): Change return type to int. Run
event handlers directly instead of queueing events. Return as
soon as one event is handled.
(handle_timer_event): Delete.
(update_wait_timeout): New function, factored out from
poll_timers.
(poll_timers): Reimplement.
* event-loop.h (initialize_event_loop): Delete declaration.
* top.c (gdb_init): Don't call initialize_event_loop.
Pedro Alves [Tue, 17 Feb 2015 11:36:54 +0000 (11:36 +0000)]
When disabling target async, remove all target event sources from the event loop
The sigall-reverse.exp test occasionally fails with something like this:
(gdb) PASS: gdb.reverse/sigall-reverse.exp: send signal TERM
continue
Continuing.
The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?([y] or n) FAIL: gdb.reverse/sigall-reverse.exp: continue to signal exit (timeout)
FAIL: gdb.reverse/sigall-reverse.exp: reverse to handler of TERM (timeout)
FAIL: gdb.reverse/sigall-reverse.exp: reverse to gen_TERM (timeout)
This is another event-loop/async related problem exposed by the patch
that made 'query' use gdb_readline_wrapper (588dcc3edbde19f9).
The problem is that even though gdb_readline_wrapper disables
target-async while the secondary prompt is in progress, the record
target's async event source is left marked. So when
gdb_readline_wrapper nests an event loop to process input, it may
happen that that event loop ends up processing a target event while
GDB is not really ready for it. Here's the relevant part of the
backtrace showing the root issue in action:
...
#14 0x000000000061cb48 in fetch_inferior_event (client_data=0x0) at src/gdb/infrun.c:4158
#15 0x0000000000642917 in inferior_event_handler (event_type=INF_REG_EVENT, client_data=0x0) at src/gdb/inf-loop.c:57
#16 0x000000000077ca5c in record_full_async_inferior_event_handler (data=0x0) at src/gdb/record-full.c:791
#17 0x0000000000640fdf in invoke_async_event_handler (data=...) at src/gdb/event-loop.c:1067
#18 0x000000000063fb01 in process_event () at src/gdb/event-loop.c:339
#19 0x000000000063fb2a in gdb_do_one_event () at src/gdb/event-loop.c:360
#20 0x000000000074d607 in gdb_readline_wrapper (prompt=0x3588f40 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?([y] or n) ") at src/gdb/top.c:842
#21 0x0000000000750bd9 in defaulted_query (ctlstr=0x8c6588 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?", defchar=121 'y', args=0x7fff70524410) at src/gdb/utils.c:1279
#22 0x0000000000750e4c in yquery (ctlstr=0x8c6588 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?") at src/gdb/utils.c:1358
#23 0x00000000004b020e in record_linux_system_call (syscall=gdb_sys_exit_group, regcache=0x3529450, tdep=0xd6c840 <amd64_linux_record_tdep>) at src/gdb/linux-record.c:1933
With my all-stop-on-top-of-non-stop series, I'm also seeing
gdb.server/ext-attach.exp fail occasionally due to the same issue.
The first part of the fix is for target_async implementations to make
sure to remove/unmark all target-related event sources from the event
loop.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/
2015-02-17 Pedro Alves <palves@redhat.com>
* event-loop.c (clear_async_event_handler): New function.
* event-loop.h (clear_async_event_handler): New declaration.
* record-btrace.c (record_btrace_async): New function.
(init_record_btrace_ops): Install record_btrace_async.
* record-full.c (record_full_async): New function.
(record_full_resume): Don't mark the async event source here.
(init_record_full_ops): Install record_full_async.
(record_full_core_resume): Don't mark the async event source here.
(init_record_full_core_ops): Install record_full_async.
* remote.c (remote_async): Mark and clear the async stop reply
queue event-loop token as appropriate.