mm/hugetlb: use online nodes for bootmem allocation
Later commits will move hugetlb bootmem allocation to earlier in init,
when N_MEMORY has not yet been set on nodes. Use online nodes instead.
At most, this wastes just a few cycles once during boot (and most likely
none).
Link: https://lkml.kernel.org/r/20250228182928.2645936-7-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In hugetlb_folio_init_tail_vmemmap, the reserved flag is cleared for the
tail page just before it is zeroed out, which is redundant. Remove the
__ClearPageReserved call.
Link: https://lkml.kernel.org/r/20250228182928.2645936-6-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
hugetlb_cma is fine with using multiple CMA ranges, as long as it can get
its gigantic pages allocated from them. So, use
cma_declare_contiguous_multi to allow for multiple ranges, increasing the
chances of getting what we want on systems with gaps in physical memory.
Link: https://lkml.kernel.org/r/20250228182928.2645936-5-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that CMA areas can have multiple physical ranges, code can't assume a
CMA struct represents a base_pfn plus a size, as returned from
cma_get_base.
Most cases are ok though, since they all explicitly refer to CMA areas
that were created using existing interfaces (cma_declare_contiguous_nid or
cma_init_reserved_mem), which guarantees they have just one physical
range.
An exception is the s390 code, which walks all CMA ranges to see if they
intersect with a range of memory that is about to be hotremoved. So, in
the future, it might run in to multi-range areas. To keep this check
working, define a cma_intersects function. This just checks if a physaddr
range intersects any of the ranges. Use it in the s390 check.
Link: https://lkml.kernel.org/r/20250228182928.2645936-4-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Acked-by: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm/cma: export total and free number of pages for CMA areas
Patch series "hugetlb/CMA improvements for large systems", v5.
On large systems, we observed some issues with hugetlb and CMA:
1) When specifying a large number of hugetlb boot pages (hugepages= on
the commandline), the kernel may run out of memory before it even gets
to HVO. For example, if you have a 3072G system, and want to use 3024
1G hugetlb pages for VMs, that should leave you plenty of space for the
hypervisor, provided you have the hugetlb vmemmap optimization (HVO)
enabled. However, since the vmemmap pages are always allocated first,
and then later in boot freed, you will actually run yourself out of
memory before you can do HVO. This means not getting all the hugetlb
pages you want, and worse, failure to boot if there is an allocation
failure in the system from which it can't recover.
2) There is a system setup where you might want to use hugetlb_cma with
a large value (say, again, 3024 out of 3072G like above), and then
lower that if system usage allows it, to make room for non-hugetlb
processes. For this, a variation of the problem above applies: the
kernel runs out of unmovable space to allocate from before you finish
boot, since your CMA area takes up all the space.
3) CMA wants to use one big contiguous area for allocations. Which
fails if you have the aforementioned 3T system with a gap in the middle
of physical memory (like the < 40bits BIOS DMA area seen on some AMD
systems). You then won't be able to set up a CMA area for one of the
NUMA nodes, leading to loss of half of your hugetlb CMA area.
4) Under the scenario mentioned in 2), when trying to grow the number
of hugetlb pages after dropping it for a while, new CMA allocations may
fail occasionally. This is not unexpected, some transient references
on pages may prevent cma_alloc from succeeding under memory pressure.
However, the hugetlb code then falls back to a normal contiguous alloc,
which may end up succeeding. This is not always desired behavior. If
you have a large CMA area, then the kernel has a restricted amount of
memory it can do unmovable allocations from (a well known issue). A
normal contiguous alloc may eat further in to this space.
To resolve these issues, do the following:
* Add hooks to the section init code to do custom initialization of
memmap pages. Hugetlb bootmem (memblock) allocated pages can then be
pre-HVOed. This avoids allocating a large number of vmemmap pages early
in boot, only to have them be freed again later, and also avoids running
out of memory as described under 1). Using these hooks for hugetlb is
optional. It requires moving hugetlb bootmem allocation to an earlier
spot by the architecture. This has been enabled on x86.
* hugetlb_cma doesn't care about the CMA area it uses being one large
contiguous range. Multiple smaller ranges are fine. The only
requirements are that the areas should be on one NUMA node, and
individual gigantic pages should be allocatable from them. So,
implement multi-range support for CMA, avoiding issue 3).
* Introduce a hugetlb_cma_only option on the commandline. This only
allows allocations from CMA for gigantic pages, if hugetlb_cma= is also
specified.
* With hugetlb_cma_only active, it also makes sense to be able to
pre-allocate gigantic hugetlb pages at boot time from the CMA area(s).
Add a rudimentary early CMA allocation interface, that just grabs a
piece of memblock-allocated space from the CMA area, which gets marked
as allocated in the CMA bitmap when the CMA area is initialized. With
this, hugepages= can be supported with hugetlb_cma=, making scenario 2)
work.
Additionally, fix some minor bugs, with one worth mentioning: since
hugetlb gigantic bootmem pages are allocated by memblock, they may span
multiple zones, as memblock doesn't (and mostly can't) know about zones.
This can cause problems. A hugetlb page spanning multiple zones is bad,
and it's worse with HVO, when the de-HVO step effectively sneakily
re-assigns pages to a different zone than originally configured, since the
tail pages all inherit the zone from the first 60 tail pages. This
condition is not common, but can be easily reproduced using ZONE_MOVABLE.
To fix this, add checks to see if gigantic bootmem pages intersect with
multiple zones, and do not use them if they do, giving them back to the
page allocator instead.
The first patch is kind of along for the ride, except that maintaining an
available_count for a CMA area is convenient for the multiple range
support.
This patch (of 27):
In addition to the number of allocations and releases, system management
software may like to be aware of the size of CMA areas, and how many pages
are available in it. This information is currently not available, so
export it in total_page and available_pages, respectively.
The name 'available_pages' was picked over 'free_pages' because 'free'
implies that the pages are unused. But they might not be, they just
haven't been used by cma_alloc
The number of available pages is tracked regardless of CONFIG_CMA_SYSFS,
allowing for a few minor shortcuts in the code, avoiding bitmap
operations.
Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
SeongJae Park [Tue, 18 Feb 2025 22:37:08 +0000 (14:37 -0800)]
Docs/mm/damon/design: categorize DAMOS filter types based on handling layer
On what DAMON layer a DAMOS filter is handled is important to expect in
what order filters will be evaluated. Re-organize the DAMOS filter types
list on the design doc to categorize types based on the handling layer, to
let users more easily understand the handling order.
SeongJae Park [Tue, 18 Feb 2025 22:37:07 +0000 (14:37 -0800)]
Docs/mm/damon/design: clarify handling layer based filters evaluation sequence
If an element of memory matches a DAMOS filter, filters that installed
after that get no chance to make any effect to the element. Hence in what
order DAMOS filters are handled is important, if both allow filters and
reject filters are used together.
The ordering is affected by both the installation order and which layter
the filters are handled. The design document is not clearly documenting
the latter part. Clarify it on the design doc.
SeongJae Park [Tue, 18 Feb 2025 22:37:06 +0000 (14:37 -0800)]
Docs/damon: move DAMOS filter type names and meaning to design doc
DAMON sysfs usage doc is describing DAMOS filter type names and their
meanings in short. The design doc is providing the short meaning and
detailed descriptions, too. This is unnecessary duplicates and confuses
where to document new DAMOS filter types and features. Move the details
from usage to design doc.
SeongJae Park [Tue, 18 Feb 2025 22:37:04 +0000 (14:37 -0800)]
Docs/mm/damon/design: fix typo on DAMOS filters usage doc link
Patch series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves".
Fix and improve DAMOS filters documentation by fixing a copy-paste typo,
adding hugepage_size filter documentation on design doc, moving logic
details from usage to design, clarify DAMOS filters handling sequence
based on handling layer, and re-organizing the filters type list for
easier understanding of the handling sequence.
This patch (of 5):
The link from DAMOS filters design doc to usage doc has a typo calling
filters as watermarks. Fix it.
Ryan Roberts [Tue, 18 Feb 2025 10:19:54 +0000 (15:49 +0530)]
mm/ioremap: pass pgprot_t to ioremap_prot() instead of unsigned long
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long,
thus implicitly assuming that pgprot_val and pgprot_t could never be
bigger than unsigned long. But this assumption soon will not be true on
arm64 when using D128 pgtables. In 128 bit page table configuration,
unsigned long is 64 bit, but pgprot_t is 128 bit.
Passing platform abstracted pgprot_t argument is better as compared to
size based data types. Let's change the parameter to directly pass
pgprot_t like another similar helper generic_ioremap_prot().
Without this change in place, D128 configuration does not work on arm64 as
the top 64 bits gets silently stripped when passing the protection value
to this function.
Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change the documentation to reflect that vm_lock is integrated into vma
and replaced with vm_refcnt. Document newly introduced
vma_start_read_locked{_nested} functions.
Link: https://lkml.kernel.org/r/20250213224655.1680278-19-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To enable SLAB_TYPESAFE_BY_RCU for vma cache we need to ensure that
object reuse before RCU grace period is over will be detected by
lock_vma_under_rcu().
Current checks are sufficient as long as vma is detached before it is
freed. The only place this is not currently happening is in exit_mmap().
Add the missing vma_mark_detached() in exit_mmap().
Another issue which might trick lock_vma_under_rcu() during vma reuse is
vm_area_dup(), which copies the entire content of the vma into a new one,
overriding new vma's vm_refcnt and temporarily making it appear as
attached. This might trick a racing lock_vma_under_rcu() to operate on a
reused vma if it found the vma before it got reused. To prevent this
situation, we should ensure that vm_refcnt stays at detached state (0)
when it is copied and advances to attached state only after it is added
into the vma tree. Introduce vm_area_init_from() which preserves new
vma's vm_refcnt and use it in vm_area_dup(). Since all vmas are in
detached state with no current readers when they are freed,
lock_vma_under_rcu() will not be able to take vm_refcnt after vma got
detached even if vma is reused. vma_mark_attached() in modified to
include a release fence to ensure all stores to the vma happen before
vm_refcnt gets initialized.
Finally, make vm_area_cachep SLAB_TYPESAFE_BY_RCU. This will facilitate
vm_area_struct reuse and will minimize the number of call_rcu() calls.
[surenb@google.com: remove atomic_set_release() usage in tools/] Link: https://lkml.kernel.org/r/20250217054351.2973666-1-surenb@google.com Link: https://lkml.kernel.org/r/20250213224655.1680278-18-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: prepare lock_vma_under_rcu() for vma reuse possibility
Once we make vma cache SLAB_TYPESAFE_BY_RCU, it will be possible for a vma
to be reused and attached to another mm after lock_vma_under_rcu() locks
the vma. lock_vma_under_rcu() should ensure that vma_start_read() is
using the original mm and after locking the vma it should ensure that
vma->vm_mm has not changed from under us.
Link: https://lkml.kernel.org/r/20250213224655.1680278-17-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm/debug: print vm_refcnt state when dumping the vma
vm_refcnt encodes a number of useful states:
- whether vma is attached or detached
- the number of current vma readers
- presence of a vma writer
Let's include it in the vma dump.
Link: https://lkml.kernel.org/r/20250213224655.1680278-15-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: move lesser used vma_area_struct members into the last cacheline
Move several vma_area_struct members which are rarely or never used during
page fault handling into the last cacheline to better pack vm_area_struct.
As a result vm_area_struct will fit into 3 as opposed to 4 cachelines.
New typical vm_area_struct layout:
mm: replace vm_lock and detached flag with a reference count
rw_semaphore is a sizable structure of 40 bytes and consumes considerable
space for each vm_area_struct. However vma_lock has two important
specifics which can be used to replace rw_semaphore with a simpler
structure:
1. Readers never wait. They try to take the vma_lock and fall back to
mmap_lock if that fails.
2. Only one writer at a time will ever try to write-lock a vma_lock
because writers first take mmap_lock in write mode. Because of these
requirements, full rw_semaphore functionality is not needed and we can
replace rw_semaphore and the vma->detached flag with a refcount
(vm_refcnt).
When vma is in detached state, vm_refcnt is 0 and only a call to
vma_mark_attached() can take it out of this state. Note that unlike
before, now we enforce both vma_mark_attached() and vma_mark_detached() to
be done only after vma has been write-locked. vma_mark_attached() changes
vm_refcnt to 1 to indicate that it has been attached to the vma tree.
When a reader takes read lock, it increments vm_refcnt, unless the top
usable bit of vm_refcnt (0x40000000) is set, indicating presence of a
writer. When writer takes write lock, it sets the top usable bit to
indicate its presence. If there are readers, writer will wait using newly
introduced mm->vma_writer_wait. Since all writers take mmap_lock in write
mode first, there can be only one writer at a time. The last reader to
release the lock will signal the writer to wake up. refcount might
overflow if there are many competing readers, in which case read-locking
will fail. Readers are expected to handle such failures.
In summary:
1. all readers increment the vm_refcnt;
2. writer sets top usable (writer) bit of vm_refcnt;
3. readers cannot increment the vm_refcnt if the writer bit is set;
4. in the presence of readers, writer must wait for the vm_refcnt to drop
to 1 (plus the VMA_LOCK_OFFSET writer bit), indicating an attached vma
with no readers;
5. vm_refcnt overflow is handled by the readers.
While this vm_lock replacement does not yet result in a smaller
vm_area_struct (it stays at 256 bytes due to cacheline alignment), it
allows for further size optimization by structure member regrouping to
bring the size of vm_area_struct below 192 bytes.
[surenb@google.com: fix a crash due to vma_end_read() that should have been removed] Link: https://lkml.kernel.org/r/20250220200208.323769-1-surenb@google.com Link: https://lkml.kernel.org/r/20250213224655.1680278-13-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Matthew Wilcox <willy@infradead.org> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce functions to increase refcount but with a top limit above which
they will fail to increase (the limit is inclusive). Setting the limit to
INT_MAX indicates no limit.
Link: https://lkml.kernel.org/r/20250213224655.1680278-12-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
refcount: provide ops for cases when object's memory can be reused
For speculative lookups where a successful inc_not_zero() pins the object,
but where we still need to double check if the object acquired is indeed
the one we set out to acquire (identity check), needs this validation to
happen *after* the increment. Similarly, when a new object is initialized
and its memory might have been previously occupied by another object, all
stores to initialize the object should happen *before* refcount
initialization.
Notably SLAB_TYPESAFE_BY_RCU is one such an example when this ordering is
required for reference counting.
Add refcount_{add|inc}_not_zero_acquire() to guarantee the proper ordering
between acquiring a reference count on an object and performing the
identity check for that object.
Add refcount_set_release() to guarantee proper ordering between stores
initializing object attributes and the store initializing the refcount.
refcount_set_release() should be done after all other object attributes
are initialized. Once refcount_set_release() is called, the object should
be considered visible to other tasks even if it was not yet added into an
object collection normally used to discover it. This is because other
tasks might have discovered the object previously occupying the same
memory and after memory reuse they can succeed in taking refcount for the
new object and start using it.
if (!refcount_inc_not_zero_acquire(&obj->ref))
return;
if (READ_ONCE(obj->key) != key) { /* pass since new_key == old_key */
put_ref(obj);
return;
}
use(obj->value); /* USING STALE obj->value */
obj->value = new_value; /* reordered store */
add(collection, key, obj);
[surenb@google.com: fix title underlines in refcount-vs-atomic.rst] Link: https://lkml.kernel.org/r/20250217161645.3137927-1-surenb@google.com Link: https://lkml.kernel.org/r/20250213224655.1680278-11-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> [slab] Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_start_write() is used in many places and will grow in size very soon.
It is not used in performance critical paths and uninlining it should
limit the future code size growth. No functional changes.
Link: https://lkml.kernel.org/r/20250213224655.1680278-10-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mmap_init_lock() is used only from mm_init() in fork.c, therefore it does
not have to reside in the header file. This move lets us avoid including
additional headers in mmap_lock.h later, when mmap_init_lock() needs to
initialize rcuwait object.
Link: https://lkml.kernel.org/r/20250213224655.1680278-9-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: allow vma_start_read_locked/vma_start_read_locked_nested to fail
With upcoming replacement of vm_lock with vm_refcnt, we need to handle a
possibility of vma_start_read_locked/vma_start_read_locked_nested failing
due to refcount overflow. Prepare for such possibility by changing these
APIs and adjusting their users.
Link: https://lkml.kernel.org/r/20250213224655.1680278-8-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move rcuwait struct definition into types.h so that rcuwait can be used
without including rcuwait.h which includes other headers. Without this
change mm_types.h can't use rcuwait due to a the following circular
dependency:
mm_types.h -> rcuwait.h -> signal.h -> mm_types.h
Link: https://lkml.kernel.org/r/20250213224655.1680278-7-surenb@google.com Suggested-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When exit_mmap() removes vmas belonging to an exiting task, it does not
mark them as detached since they can't be reached by other tasks and they
will be freed shortly. Once we introduce vma reuse, all vmas will have to
be in detached state before they are freed to ensure vma when reused is in
a consistent state. Add missing vma_mark_detached() before freeing the
vma.
Link: https://lkml.kernel.org/r/20250213224655.1680278-6-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: introduce vma_iter_store_attached() to use with attached vmas
vma_iter_store() functions can be used both when adding a new vma and when
updating an existing one. However for existing ones we do not need to
mark them attached as they are already marked that way. With
vma->detached being a separate flag, double-marking a vmas as attached or
detached is not an issue because the flag will simply be overwritten with
the same value. However once we fold this flag into the refcount later in
this series, re-attaching or re-detaching a vma becomes an issue since
these operations will be incrementing/decrementing a refcount.
Introduce vma_iter_store_new() and vma_iter_store_overwrite() to replace
vma_iter_store() and avoid re-attaching a vma during vma update. Add
assertions in vma_mark_attached()/vma_mark_detached() to catch invalid
usage. Update vma tests to check for vma detached state correctness.
Link: https://lkml.kernel.org/r/20250213224655.1680278-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: mark vma as detached until it's added into vma tree
Current implementation does not set detached flag when a VMA is first
allocated. This does not represent the real state of the VMA, which is
detached until it is added into mm's VMA tree. Fix this by marking new
VMAs as detached and resetting detached flag only after VMA is added into
a tree.
Introduce vma_mark_attached() to make the API more readable and to
simplify possible future cleanup when vma->vm_mm might be used to indicate
detached vma and vma_mark_attached() will need an additional mm parameter.
Link: https://lkml.kernel.org/r/20250213224655.1680278-4-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Back when per-vma locks were introduces, vm_lock was moved out of
vm_area_struct in [1] because of the performance regression caused by
false cacheline sharing. Recent investigation [2] revealed that the
regressions is limited to a rather old Broadwell microarchitecture and
even there it can be mitigated by disabling adjacent cacheline
prefetching, see [3].
Splitting single logical structure into multiple ones leads to more
complicated management, extra pointer dereferences and overall less
maintainable code. When that split-away part is a lock, it complicates
things even further. With no performance benefits, there are no reasons
for this split. Merging the vm_lock back into vm_area_struct also allows
vm_area_struct to use SLAB_TYPESAFE_BY_RCU later in this patchset. Move
vm_lock back into vm_area_struct, aligning it at the cacheline boundary
and changing the cache to be cacheline-aligned as well. With kernel
compiled using defconfig, this causes VMA memory consumption to grow from
160 (vm_area_struct) + 40 (vm_lock) bytes to 256 bytes:
Aggregate VMA memory consumption per 1000 VMAs grows from 50 to 64 pages,
which is 5.5MB per 100000 VMAs. Note that the size of this structure is
dependent on the kernel configuration and typically the original size is
higher than 160 bytes. Therefore these calculations are close to the
worst case scenario. A more realistic vm_area_struct usage before this
change is:
Aggregate VMA memory consumption per 1000 VMAs grows from 54 to 64 pages,
which is 3.9MB per 100000 VMAs. This memory consumption growth can be
addressed later by optimizing the vm_lock.
Patch series "reimplement per-vma lock as a refcount", v10.
Back when per-vma locks were introduces, vm_lock was moved out of
vm_area_struct in [1] because of the performance regression caused by
false cacheline sharing. Recent investigation [2] revealed that the
regressions is limited to a rather old Broadwell microarchitecture and
even there it can be mitigated by disabling adjacent cacheline
prefetching, see [3].
Splitting single logical structure into multiple ones leads to more
complicated management, extra pointer dereferences and overall less
maintainable code. When that split-away part is a lock, it complicates
things even further. With no performance benefits, there are no reasons
for this split. Merging the vm_lock back into vm_area_struct also allows
vm_area_struct to use SLAB_TYPESAFE_BY_RCU later in this patchset.
This patchset:
1. moves vm_lock back into vm_area_struct, aligning it at the
cacheline boundary and changing the cache to be cacheline-aligned to
minimize cacheline sharing;
2. changes vm_area_struct initialization to mark new vma as detached
until it is inserted into vma tree;
3. replaces vm_lock and vma->detached flag with a reference counter;
4. regroups vm_area_struct members to fit them into 3 cachelines;
5. changes vm_area_struct cache to SLAB_TYPESAFE_BY_RCU to allow for
their reuse and to minimize call_rcu() calls.
Introduce helper functions which can be used to read-lock a VMA when
holding mmap_lock for read. Replace direct accesses to vma->vm_lock with
these new helpers.
Link: https://lkml.kernel.org/r/20250213224655.1680278-1-surenb@google.com Link: https://lkml.kernel.org/r/20250213224655.1680278-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: Shivank Garg <shivankg@amd.com> Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Klara Modin <klarasmodin@gmail.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Barry Song [Fri, 14 Feb 2025 09:30:15 +0000 (22:30 +1300)]
mm: avoid splitting pmd for lazyfree pmd-mapped THP in try_to_unmap
The try_to_unmap_one() function currently handles PMD-mapped THPs
inefficiently. It first splits the PMD into PTEs, copies the dirty state
from the PMD to the PTEs, iterates over the PTEs to locate the dirty
state, and then marks the THP as swap-backed. This process involves
unnecessary PMD splitting and redundant iteration. Instead, this
functionality can be efficiently managed in
__discard_anon_folio_pmd_locked(), avoiding the extra steps and improving
performance.
The following microbenchmark redirties folios after invoking MADV_FREE,
then measures the time taken to perform memory reclamation (actually set
those folios swapbacked again) on the redirtied folios.
double elapsed_time = (double)(end_time - start_time) / CLOCKS_PER_SEC;
printf("Time taken by reclamation: %f seconds\n", elapsed_time);
munmap((void *)p, SIZE);
}
return 0;
}
Testing results are as below,
w/o patch:
~ # ./a.out
Time taken by reclamation: 0.007300 seconds
Time taken by reclamation: 0.007226 seconds
Time taken by reclamation: 0.007295 seconds
Time taken by reclamation: 0.007731 seconds
Time taken by reclamation: 0.007134 seconds
Time taken by reclamation: 0.007285 seconds
Time taken by reclamation: 0.007720 seconds
Time taken by reclamation: 0.007128 seconds
Time taken by reclamation: 0.007710 seconds
Time taken by reclamation: 0.007712 seconds
Time taken by reclamation: 0.007236 seconds
Time taken by reclamation: 0.007690 seconds
Time taken by reclamation: 0.007174 seconds
Time taken by reclamation: 0.007670 seconds
Time taken by reclamation: 0.007169 seconds
Time taken by reclamation: 0.007305 seconds
Time taken by reclamation: 0.007432 seconds
Time taken by reclamation: 0.007158 seconds
Time taken by reclamation: 0.007133 seconds
…
w/ patch
~ # ./a.out
Time taken by reclamation: 0.002124 seconds
Time taken by reclamation: 0.002116 seconds
Time taken by reclamation: 0.002150 seconds
Time taken by reclamation: 0.002261 seconds
Time taken by reclamation: 0.002137 seconds
Time taken by reclamation: 0.002173 seconds
Time taken by reclamation: 0.002063 seconds
Time taken by reclamation: 0.002088 seconds
Time taken by reclamation: 0.002169 seconds
Time taken by reclamation: 0.002124 seconds
Time taken by reclamation: 0.002111 seconds
Time taken by reclamation: 0.002224 seconds
Time taken by reclamation: 0.002297 seconds
Time taken by reclamation: 0.002260 seconds
Time taken by reclamation: 0.002246 seconds
Time taken by reclamation: 0.002272 seconds
Time taken by reclamation: 0.002277 seconds
Time taken by reclamation: 0.002462 seconds
…
This patch significantly speeds up try_to_unmap_one() by allowing it
to skip redirtied THPs without splitting the PMD.
Link: https://lkml.kernel.org/r/20250214093015.51024-5-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Suggested-by: Lance Yang <ioworker0@gmail.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Lance Yang <ioworker0@gmail.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chis Li <chrisl@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kairui Song <kasong@tencent.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Barry Song [Fri, 14 Feb 2025 09:30:14 +0000 (22:30 +1300)]
mm: support batched unmap for lazyfree large folios during reclamation
Currently, the PTEs and rmap of a large folio are removed one at a time.
This is not only slow but also causes the large folio to be unnecessarily
added to deferred_split, which can lead to races between the
deferred_split shrinker callback and memory reclamation. This patch
releases all PTEs and rmap entries in a batch. Currently, it only handles
lazyfree large folios.
The below microbench tries to reclaim 128MB lazyfree large folios
whose sizes are 64KiB:
double elapsed_time = (double)(end_time - start_time) / CLOCKS_PER_SEC;
printf("Time taken by reclamation: %f seconds, split_deferred: %ld\n",
elapsed_time, end_split - start_split);
munmap((void *)p, SIZE);
}
return 0;
}
w/o patch:
~ # ./a.out
Time taken by reclamation: 0.177418 seconds, split_deferred: 2048
Time taken by reclamation: 0.178348 seconds, split_deferred: 2048
Time taken by reclamation: 0.174525 seconds, split_deferred: 2048
Time taken by reclamation: 0.171620 seconds, split_deferred: 2048
Time taken by reclamation: 0.172241 seconds, split_deferred: 2048
Time taken by reclamation: 0.174003 seconds, split_deferred: 2048
Time taken by reclamation: 0.171058 seconds, split_deferred: 2048
Time taken by reclamation: 0.171993 seconds, split_deferred: 2048
Time taken by reclamation: 0.169829 seconds, split_deferred: 2048
Time taken by reclamation: 0.172895 seconds, split_deferred: 2048
Time taken by reclamation: 0.176063 seconds, split_deferred: 2048
Time taken by reclamation: 0.172568 seconds, split_deferred: 2048
Time taken by reclamation: 0.171185 seconds, split_deferred: 2048
Time taken by reclamation: 0.170632 seconds, split_deferred: 2048
Time taken by reclamation: 0.170208 seconds, split_deferred: 2048
Time taken by reclamation: 0.174192 seconds, split_deferred: 2048
...
w/ patch:
~ # ./a.out
Time taken by reclamation: 0.074231 seconds, split_deferred: 0
Time taken by reclamation: 0.071026 seconds, split_deferred: 0
Time taken by reclamation: 0.072029 seconds, split_deferred: 0
Time taken by reclamation: 0.071873 seconds, split_deferred: 0
Time taken by reclamation: 0.073573 seconds, split_deferred: 0
Time taken by reclamation: 0.071906 seconds, split_deferred: 0
Time taken by reclamation: 0.073604 seconds, split_deferred: 0
Time taken by reclamation: 0.075903 seconds, split_deferred: 0
Time taken by reclamation: 0.073191 seconds, split_deferred: 0
Time taken by reclamation: 0.071228 seconds, split_deferred: 0
Time taken by reclamation: 0.071391 seconds, split_deferred: 0
Time taken by reclamation: 0.071468 seconds, split_deferred: 0
Time taken by reclamation: 0.071896 seconds, split_deferred: 0
Time taken by reclamation: 0.072508 seconds, split_deferred: 0
Time taken by reclamation: 0.071884 seconds, split_deferred: 0
Time taken by reclamation: 0.072433 seconds, split_deferred: 0
Time taken by reclamation: 0.071939 seconds, split_deferred: 0
...
Link: https://lkml.kernel.org/r/20250214093015.51024-4-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chis Li <chrisl@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kairui Song <kasong@tencent.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Barry Song [Fri, 14 Feb 2025 09:30:13 +0000 (22:30 +1300)]
mm: support tlbbatch flush for a range of PTEs
This patch lays the groundwork for supporting batch PTE unmapping in
try_to_unmap_one(). It introduces range handling for TLB batch flushing,
with the range currently set to the size of PAGE_SIZE.
The function __flush_tlb_range_nosync() is architecture-specific and is
only used within arch/arm64. This function requires the mm structure
instead of the vma structure. To allow its reuse by
arch_tlbbatch_add_pending(), which operates with mm but not vma, this
patch modifies the argument of __flush_tlb_range_nosync() to take mm as
its parameter.
Link: https://lkml.kernel.org/r/20250214093015.51024-3-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Acked-by: Will Deacon <will@kernel.org> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chis Li <chrisl@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kairui Song <kasong@tencent.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Barry Song [Fri, 14 Feb 2025 09:30:12 +0000 (22:30 +1300)]
mm: set folio swapbacked iff folios are dirty in try_to_unmap_one
Patch series "mm: batched unmap lazyfree large folios during reclamation",
v4.
Commit 735ecdfaf4e8 ("mm/vmscan: avoid split lazyfree THP during
shrink_folio_list()") prevents the splitting of MADV_FREE'd THP in
madvise.c.
However, those folios are still added to the deferred_split list in
try_to_unmap_one() because we are unmapping PTEs and removing rmap entries
one by one.
Firstly, this has rendered the following counter somewhat confusing,
/sys/kernel/mm/transparent_hugepage/hugepages-size/stats/split_deferred
The split_deferred counter was originally designed to track operations
such as partial unmap or madvise of large folios. However, in practice,
most split_deferred cases arise from memory reclamation of aligned
lazyfree mTHPs as observed by Tangquan. This discrepancy has made the
split_deferred counter highly misleading.
Secondly, this approach is slow because it requires iterating through each
PTE and removing the rmap one by one for a large folio. In fact, all PTEs
of a pte-mapped large folio should be unmapped at once, and the entire
folio should be removed from the rmap as a whole.
Thirdly, it also increases the risk of a race condition where lazyfree
folios are incorrectly set back to swapbacked, as a speculative folio_get
may occur in the shrinker's callback.
deferred_split_scan() might call folio_try_get(folio) since we have added
the folio to split_deferred list while removing rmap for the 1st subpage,
and while we are scanning the 2nd to nr_pages PTEs of this folio in
try_to_unmap_one(), the entire mTHP could be transitioned back to
swap-backed because the reference count is incremented, which can make
"ref_count == 1 + map_count" within try_to_unmap_one() false.
/*
* The only page refs must be one from isolation
* plus the rmap(s) (dropped by discard:).
*/
if (ref_count == 1 + map_count &&
(!folio_test_dirty(folio) ||
...
(vma->vm_flags & VM_DROPPABLE))) {
dec_mm_counter(mm, MM_ANONPAGES);
goto discard;
}
This patchset resolves the issue by marking only genuinely dirty folios as
swap-backed, as suggested by David, and transitioning to batched unmapping
of entire folios in try_to_unmap_one(). Consequently, the deferred_split
count drops to zero, and memory reclamation performance improves
significantly — reclaiming 64KiB lazyfree large folios is now 2.5x
faster(The specific data is embedded in the changelog of patch 3/4).
By the way, while the patchset is primarily aimed at PTE-mapped large
folios, Baolin and Lance also found that try_to_unmap_one() handles
lazyfree redirtied PMD-mapped large folios inefficiently — it splits the
PMD into PTEs and iterates over them. This patchset removes the
unnecessary splitting, enabling us to skip redirtied PMD-mapped large
folios 3.5X faster during memory reclamation. (The specific data can be
found in the changelog of patch 4/4).
This patch (of 4):
The refcount may be temporarily or long-term increased, but this does not
change the fundamental nature of the folio already being lazy- freed.
Therefore, we only reset 'swapbacked' when we are certain the folio is
dirty and not droppable.
Link: https://lkml.kernel.org/r/20250214093015.51024-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20250214093015.51024-2-21cnbao@gmail.com Fixes: 6c8e2a256915 ("mm: fix race between MADV_FREE reclaim and blkdev direct IO read") Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Lance Yang <ioworker0@gmail.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Chis Li <chrisl@kernel.org> (Google) Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kairui Song <kasong@tencent.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Gavin Shan <gshan@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Guanjun [Thu, 13 Feb 2025 05:56:12 +0000 (13:56 +0800)]
filemap: remove redundant folio_test_large check in filemap_free_folio
The folio_test_large() check in filemap_free_folio() is unnecessary
because folio_nr_pages(), which is called internally already performs this
check. Removing the redundant condition simplifies the code and avoids
double validation.
This change improves code readability and reduces unnecessary operations
in the folio freeing path.
Petr Tesarik [Thu, 13 Feb 2025 11:44:53 +0000 (12:44 +0100)]
maple_tree: remove a BUG_ON() in mas_alloc_nodes()
Remove a BUG_ON() right before a WARN_ON() with the same condition.
Calling WARN_ON() and BUG_ON() here is definitely wrong. Since the goal is
generally to remove BUG_ON() invocations from the kernel, keep only the
WARN_ON().
Link: https://lkml.kernel.org/r/20250213114453.1078318-1-ptesarik@suse.com Fixes: 067311d33e65 ("maple_tree: separate ma_state node from status") Signed-off-by: Petr Tesarik <ptesarik@suse.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lorenzo Stoakes [Thu, 13 Feb 2025 18:17:03 +0000 (18:17 +0000)]
tools/selftests: add file/shmem-backed mapping guard region tests
Extend the guard region self tests to explicitly assert that guard regions
work correctly for functionality specific to file-backed and shmem
mappings.
In addition to testing all of the existing guard region functionality that
is currently tested against anonymous mappings against file-backed and
shmem mappings (except those which are exclusive to anonymous mapping), we
now also:
* Test that MADV_SEQUENTIAL does not cause unexpected readahead behaviour.
* Test that MAP_PRIVATE behaves as expected with guard regions installed in
both a shared and private mapping of an fd.
* Test that a read-only file can correctly establish guard regions.
* Test a probable fault-around case does not interfere with guard regions
(or vice-versa).
* Test that truncation does not eliminate guard regions.
* Test that hole punching functions as expected in the presence of guard
regions.
* Test that a read-only mapping of a memfd write sealed mapping can have
guard regions established within it and function correctly without
violation of the seal.
* Test that guard regions installed into a mapping of the anonymous zero
page function correctly.
Lorenzo Stoakes [Thu, 13 Feb 2025 18:17:02 +0000 (18:17 +0000)]
tools/selftests: expand all guard region tests to file-backed
Extend the guard region tests to allow for test fixture variants for anon,
shmem, and local file files.
This allows us to assert that each of the expected behaviours of anonymous
memory also applies correctly to file-backed (both shmem and an a file
created locally in the current working directory) and thus asserts the
same correctness guarantees as all the remaining tests do.
The fixture teardown is now performed in the parent process rather than
child forked ones, meaning cleanup is always performed, including
unlinking any generated temporary files.
Additionally the variant fixture data type now contains an enum value
indicating the type of backing store and the mmap() invocation is
abstracted to allow for the mapping of whichever backing store the variant
is testing.
We adjust tests as necessary to account for the fact they may now
reference files rather than anonymous memory.
Link: https://lkml.kernel.org/r/ab42228d2bd9b8aa18e9faebcd5c88732a7e5820.1739469950.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lorenzo Stoakes [Thu, 13 Feb 2025 18:17:01 +0000 (18:17 +0000)]
selftests/mm: rename guard-pages to guard-regions
The feature formerly referred to as guard pages is more correctly referred
to as 'guard regions', as in fact no pages are ever allocated in the
process of installing the regions.
To avoid confusion, rename the tests accordingly.
[lorenzo.stoakes@oracle.com: fix guard regions invocation] Link: https://lkml.kernel.org/r/13426c71-d069-4407-9340-b227ff8b8736@lucifer.local Link: https://lkml.kernel.org/r/1c3cd04a3f69b5756b94bda701ac88325a9be18b.1739469950.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lorenzo Stoakes [Thu, 13 Feb 2025 18:17:00 +0000 (18:17 +0000)]
mm: allow guard regions in file-backed and read-only mappings
Patch series "mm: permit guard regions for file-backed/shmem mappings".
The guard regions feature was initially implemented to support anonymous
mappings only, excluding shmem.
This was done so as to introduce the feature carefully and incrementally
and to be conservative when considering the various caveats and corner
cases that are applicable to file-backed mappings but not to anonymous
ones.
Now this feature has landed in 6.13, it is time to revisit this and to
extend this functionality to file-backed and shmem mappings.
In order to make this maximally useful, and since one may map file-backed
mappings read-only (for instance ELF images), we also remove the
restriction on read-only mappings and permit the establishment of guard
regions in any non-hugetlb, non-mlock()'d mapping.
It is permissible to permit the establishment of guard regions in
read-only mappings because the guard regions only reduce access to the
mapping, and when removed simply reinstate the existing attributes of the
underlying VMA, meaning no access violations can occur.
While the change in kernel code introduced in this series is small, the
majority of the effort here is spent in extending the testing to assert
that the feature works correctly across numerous file-backed mapping
scenarios.
Every single guard region self-test performed against anonymous memory
(which is relevant and not anon-only) has now been updated to also be
performed against shmem and a mapping of a file in the working directory.
This confirms that all cases also function correctly for file-backed guard
regions.
In addition a number of other tests are added for specific file-backed
mapping scenarios.
There are a number of other concerns that one might have with regard to
guard regions, addressed below:
Readahead
~~~~~~~~~
Readahead is a process through which the page cache is populated on the
assumption that sequential reads will occur, thus amortising I/O and,
through a clever use of the PG_readahead folio flag establishing during
major fault and checked upon minor fault, provides for asynchronous I/O to
occur as dat is processed, reducing I/O stalls as data is faulted in.
Guard regions do not alter this mechanism which operates at the folio and
fault level, but does of course prevent the faulting of folios that would
otherwise be mapped.
In the instance of a major fault prior to a guard region, synchronous
readahead will occur including populating folios in the page cache which
the guard regions will, in the case of the mapping in question, prevent
access to.
In addition, if PG_readahead is placed in a folio that is now
inaccessible, this will prevent asynchronous readahead from occurring as
it would otherwise do.
However, there are mechanisms for heuristically resetting this within
readahead regardless, which will 'recover' correct readahead behaviour.
Readahead presumes sequential data access, the presence of a guard region
clearly indicates that, at least in the guard region, no such sequential
access will occur, as it cannot occur there.
So this should have very little impact on any real workload. The far more
important point is as to whether readahead causes incorrect or
inappropriate mapping of ranges disallowed by the presence of guard
regions - this is not the case, as readahead does not 'pre-fault' memory
in this fashion.
At any rate, any mechanism which would attempt to do so would hit the
usual page fault paths, which correctly handle PTE markers as with
anonymous mappings.
Fault-Around
~~~~~~~~~~~~
The fault-around logic, in a similar vein to readahead, attempts to
improve efficiency with regard to file-backed memory mappings, however it
differs in that it does not try to fetch folios into the page cache that
are about to be accessed, but rather pre-maps a range of folios around the
faulting address.
Guard regions making use of PTE markers makes this relatively trivial, as
this case is already handled - see filemap_map_folio_range() and
filemap_map_order0_folio() - in both instances, the solution is to simply
keep the established page table mappings and let the fault handler take
care of PTE markers, as per the comment:
/*
* NOTE: If there're PTE markers, we'll leave them to be
* handled in the specific fault path, and it'll prohibit
* the fault-around logic.
*/
This works, as establishing guard regions results in page table mappings
with PTE markers, and clearing them removes them.
Truncation
~~~~~~~~~~
File truncation will not eliminate existing guard regions, as the
truncation operation will ultimately zap the range via
unmap_mapping_range(), which specifically excludes PTE markers.
Zapping
~~~~~~~
Zapping is, as with anonymous mappings, handled by zap_nonpresent_ptes(),
which specifically deals with guard entries, leaving them intact except in
instances such as process teardown or munmap() where they need to be
removed.
Reclaim
~~~~~~~
When reclaim is performed on file-backed folios, it ultimately invokes
try_to_unmap_one() via the rmap. If the folio is non-large, then
map_pte() will ultimately abort the operation for the guard region
mapping. If large, then check_pte() will determine that this is a
non-device private entry/device-exclusive entry 'swap' PTE and thus abort
the operation in that instance.
Therefore, no odd things happen in the instance of reclaim being attempted
upon a file-backed guard region.
Hole Punching
~~~~~~~~~~~~~
This updates the page cache and ultimately invokes unmap_mapping_range(),
which explicitly leaves PTE markers in place.
Because the establishment of guard regions zapped any existing mappings to
file-backed folios, once the guard regions are removed then the
hole-punched region will be faulted in as usual and everything will behave
as expected.
One thing to note with this series is that it now implies file-backed
VMAs which install guard regions will now have an anon_vma installed if
not already present (i.e. if not post-CoW MAP_PRIVATE).
I have audited kernel source for instances of vma->anon_vma checks and
found nowhere where this would be problematic for pure file-backed
mappings.
I also discussed (off-list) with Matthew who confirmed he can't see any
issue with this.
In effect, we treat these VMAs as if they are MAP_PRIVATE, only with 0
CoW'd pages. As a result, the rmap never has a reason to reference the
anon_vma from folios at any point and thus no unexpected or weird
behaviour results.
The anon_vma logic tries to avoid unnecessary anon_vma propagation on
fork so we ought to at least minimise overhead.
However, this is still overhead, and unwelcome overhead.
The whole reason we do this (in madvise_guard_install()) is to ensure
that fork _copies page tables_. Otherwise, in vma_needs_copy(),
nothing will indicate that we should do so.
This was already an unpleasant thing to have to do, but without a new
VMA flag we really have no reasonable means of ensuring this happens.
Going forward, I intend to add a new VMA flag, VM_MAYBE_GUARDED or
something like this.
This would have specific behaviour - for the purposes of merging, it
would be ignored. However on both split and merge, it will be
propagated. It is therefore 'sticky'.
This is to avoid having to traverse page tables to determine which
parts of a VMA contain guard regions and of course to maintain the
desirable qualities of guard regions - the lack of VMA propagation (+
thus slab allocations of VMAs).
Adding this flag and adjusting vma_needs_copy() to reference it would
resolve the issue.
However :) we have a VMA flag space issue, so it'd render this a 64-bit
feature only.
Having discussed with Matthew a plan by which to perhaps extend
available flags for 32-bit we may going forward be able to avoid this.
But this may be a longer term project.
In the meantime, we'd have to resort to the anon_vma hack for 32-bit,
using the flag for 64-bit. The issue with this however is if we do
then intend to allow the flag to enable /proc/$pid/maps visibility
(something this could allow), it would also end up being 64-bit only
which would be a pity.
Regardless - I wanted to highlight this behaviour as it is perhaps
somewhat surprising.
This patch (of 4):
There is no reason to disallow guard regions in file-backed mappings -
readahead and fault-around both function correctly in the presence of PTE
markers, equally other operations relating to memory-mapped files function
correctly.
Additionally, read-only mappings if introducing guard-regions, only
restrict the mapping further, which means there is no violation of any
access rights by permitting this to be so.
Removing this restriction allows for read-only mapped files (such as
executable files) correctly which would otherwise not be permitted.
Link: https://lkml.kernel.org/r/cover.1739469950.git.lorenzo.stoakes@oracle.com Link: https://lkml.kernel.org/r/d885cb259174736c2830a5dfe07f81b214ef3faa.1739469950.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Mark Brown [Wed, 12 Feb 2025 17:44:26 +0000 (17:44 +0000)]
selftests/mm: allow tests to run with no huge pages support
Currently the mm selftests refuse to run if huge pages are not available
in the current system but this is an optional feature and not all the
tests actually require them. Change the test during startup to be
non-fatal and skip or omit tests which actually rely on having huge pages,
allowing the other tests to be run.
The gup_test does support using madvise() to configure huge pages but it
ignores the error code so we just let it run.
Baoquan He [Tue, 11 Feb 2025 03:43:48 +0000 (11:43 +0800)]
mm/mmu_gather: clean up the stale code comment
In commit d7f861b9c43a ("mm/mmu_gather: add __tlb_remove_folio_pages()"),
helper function __tlb_remove_folio_pages_size() was added. And based on
the helper, wrapper functions __tlb_remove_folio_pages() and
__tlb_remove_page_size() are created and used by upper level functions.
So let's update the code comment to reflect the current code about
tlb_remove_page()/tlb_remove_page_size(), etc.
Link: https://lkml.kernel.org/r/20250211034348.39531-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Usama Arif [Tue, 11 Feb 2025 12:43:43 +0000 (12:43 +0000)]
Docs/admin-guide/mm/damon/usage: document hugepage_size filter type
This includes both the 'hugepage_size' filter type and the min/max files
used to decide range of sizes to filter on.
Link: https://lkml.kernel.org/r/20250211124437.278873-5-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Usama Arif [Tue, 11 Feb 2025 12:43:42 +0000 (12:43 +0000)]
Docs/ABI/damon: document DAMOS sysfs files to set the min/max folio_size
This will be used to decide the min and max folio size to operate on for
pa_stat.
Link: https://lkml.kernel.org/r/20250211124437.278873-4-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Usama Arif [Tue, 11 Feb 2025 12:43:41 +0000 (12:43 +0000)]
mm/damon/sysfs-schemes: add files for setting damos_filter->sz_range
Add min and max files for damon filters to let the userspace decide the
min/max folio size to operate on. This will be needed to decide what
folio sizes to give pa_stat for.
Link: https://lkml.kernel.org/r/20250211124437.278873-3-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Usama Arif [Tue, 11 Feb 2025 12:43:40 +0000 (12:43 +0000)]
mm/damon: introduce DAMOS filter type hugepage_size
Patch series "mm/damon: add support for hugepage_size DAMOS filter", v5.
hugepage_size DAMOS filter can be used to gather statistics to check if
memory regions of specific access tempratures are backed by hugepages of a
size in a specific range. This filter can help to observe and prove the
effectivenes of different schemes for shrinking/collapsing hugepages.
This patch (of 4):
This is to gather statistics to check if memory regions of specific access
tempratures are backed by pages of a size in a specific range. This
filter can help to observe and prove the effectivenes of different schemes
for shrinking/collapsing hugepages.
Brendan Jackman [Tue, 11 Feb 2025 13:00:23 +0000 (13:00 +0000)]
mm/mmu_gather: update comment on RCU freeing
Some recent discussion on LMKL [0] brought up some interesting and useful
additional context on RCU-freeing for pagetables.
Note down some extra info in here, in particular a) be concrete about the
reason why an arch might not have an IPI and b) add the interesting
paravirt details.
Bart Van Assche [Tue, 11 Feb 2025 20:59:11 +0000 (12:59 -0800)]
mm/vmstat: revert "fix a W=1 clang compiler warning"
Commit 75b5ab134bb5 enabled -Wenum-enum-conversion in W=1 builds. Commit 30c2de0a267c ("mm/vmstat: fix a W=1 clang compiler warning") fixed a
-Wenum-enum-conversion warning. Commit 8f6629c004b1 removed the
-Wenum-enum-conversion option again from W=1 builds. Since the W=1
compiler warning fix is no longer necessary, revert it.
Link: https://lkml.kernel.org/r/20250211205911.1707684-1-bvanassche@acm.org Signed-off-by: Bart Van Assche <bvanassche@acm.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ivan Shapovalov <intelfx@intelfx.name> Cc: David Laight <david.laight@aculab.com> Cc: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lorenzo Stoakes [Sat, 8 Feb 2025 15:52:56 +0000 (15:52 +0000)]
fb_defio: do not use deprecated page->mapping, index fields
With the introduction of mapping_wrprotect_range() there is no need to use
folio_mkclean() in order to write-protect mappings of frame buffer pages,
and therefore no need to inappropriately set kernel-allocated page->index,
mapping fields to permit this operation.
Instead, store the pointer to the page cache object for the mapped driver
in the fb_deferred_io object, and use the already stored page offset from
the pageref object to look up mappings in order to write-protect them.
This is justified, as for the page objects to store a mapping pointer at
the point of assignment of pages, they must all reference the same
underlying address_space object. Since the life time of the pagerefs is
also the lifetime of the fb_deferred_io object, storing the pointer here
makes sense.
This eliminates the need for all of the logic around setting and
maintaining page->index,mapping which we remove.
This eliminates the use of folio_mkclean() entirely but otherwise should
have no functional change.
Lorenzo Stoakes [Sat, 8 Feb 2025 15:52:55 +0000 (15:52 +0000)]
mm: provide mapping_wrprotect_range() function
In the fb_defio video driver, page dirty state is used to determine when
frame buffer pages have been changed, allowing for batched, deferred I/O
to be performed for efficiency.
This implementation had only one means of doing so effectively - the use
of the folio_mkclean() function.
However, this use of the function is inappropriate, as the fb_defio
implementation allocates kernel memory to back the framebuffer, and then
is forced to specified page->index, mapping fields in order to permit the
folio_mkclean() rmap traversal to proceed correctly.
It is not correct to specify these fields on kernel-allocated memory, and
moreover since these are not folios, page->index, mapping are deprecated
fields, soon to be removed.
We therefore need to provide a means by which we can correctly traverse
the reverse mapping and write-protect mappings for a page backing an
address_space page cache object at a given offset.
This patch provides this - mapping_wrprotect_range() - which allows for
this operation to be performed for a specified address_space, offset, PFN
and size, without requiring a folio nor, of course, an inappropriate use
of page->index, mapping.
With this provided, we can subsequently adjust the fb_defio implementation
to make use of this function and avoid incorrect invocation of
folio_mkclean() and more importantly, incorrect manipulation of
page->index and mapping fields.
Link: https://lkml.kernel.org/r/e5bf969d64e7f2f2ae944d42341fc8994b736a81.1739029358.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Jaya Kumar <jayakumar.lkml@gmail.com> Cc: Kajtar Zsolt <soci@c64.rulez.org> Cc: MaÃra Canal <mcanal@igalia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Simona Vetter <simona.vetter@ffwll.ch> Cc: Thomas Zimemrmann <tzimmermann@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lorenzo Stoakes [Sat, 8 Feb 2025 15:52:54 +0000 (15:52 +0000)]
mm: refactor rmap_walk_file() to separate out traversal logic
Patch series "expose mapping wrprotect, fix fb_defio use", v3.
Right now the only means by which we can write-protect a range using the
reverse mapping is via folio_mkclean().
However this is not always the appropriate means of doing so, specifically
in the case of the framebuffer deferred I/O logic (fb_defio enabled by
CONFIG_FB_DEFERRED_IO). There, kernel pages are mapped read-only and
write-protect faults used to batch up I/O operations.
Each time the deferred work is done, folio_mkclean() is used to mark the
framebuffer page as having had I/O performed on it. However doing so
requires the kernel page (perhaps allocated via vmalloc()) to have its
page->mapping, index fields set so the rmap can find everything that maps
it in order to write-protect.
This is problematic as firstly, these fields should not be set for
kernel-allocated memory, and secondly these are not folios (it's not user
memory) and page->index, mapping fields are now deprecated and soon to be
removed.
The removal of these fields is imminent, rendering this series more urgent
than it might first appear.
The implementers cannot be blamed for having used this however, as there
is simply no other way of performing this operation correctly.
This series fixes this - we provide the mapping_wrprotect_range() function
to allow the reverse mapping to be used to look up mappings from the page
cache object (i.e. its address_space pointer) at a specific offset.
The fb_defio logic already stores this offset, and can simply be expanded
to keep track of the page cache object, so the change then becomes
straight-forward.
This series should have no functional change.
This patch (of 3):
In order to permit the traversal of the reverse mapping at a specified
mapping and offset rather than those specified by an input folio, we need
to separate out the portion of the rmap file logic which deals with this
traversal from those parts of the logic which interact with the folio.
This patch achieves this by adding a new static __rmap_walk_file()
function which rmap_walk_file() invokes.
This function permits the ability to pass NULL folio, on the assumption
that the caller has provided for this correctly in the callbacks specified
in the rmap_walk_control object.
Though it provides for this, and adds debug asserts to ensure that, should
a folio be specified, these are equal to the mapping and offset specified
in the folio, there should be no functional change as a result of this
patch.
The reason for adding this is to enable for future changes to permit users
to be able to traverse mappings of userland-mapped kernel memory,
write-protecting those mappings to enable page_mkwrite() or pfn_mkwrite()
fault handlers to be retriggered on subsequent dirty.
David Laight [Sun, 9 Feb 2025 17:47:11 +0000 (17:47 +0000)]
mm: remove the access_ok() call from gup_fast_fallback()
Historiaclly the code relied on access_ok() to validate the address range.
Commit 26f4c328079d7 added an explicit wrap check before access_ok().
Commit c28b1fc70390d then changed the wrap test to use check_add_overflow().
Commit 6014bc27561f2 relaxed the checks in x86-64's access_ok() and added
an explicit check for TASK_SIZE here to make up for it.
That left a pointless access_ok() call with its associated 'lfence' that
can never actually fail.
So just delete the test.
Link: https://lkml.kernel.org/r/20250209174711.60889-1-david.laight.linux@gmail.com Signed-off-by: David Laight <david.laight.linux@gmail.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
I Hsin Cheng [Sun, 9 Feb 2025 18:10:23 +0000 (02:10 +0800)]
maple_tree: correct comment for mas_start()
There's no mas->status of "mas_start", what the function is checking is
whether mas->status equals to "ma_start". Correct the comment for the
function.
The macro is introduced to eliminate redundancy in the repeated iteration
over managed zones in pgdat data structure, reducing the potential for
errors. This change doesn't introduce any functional modifications.
Due to concentration of the pattern in vmscan.c the macro is placed
locally in that file.
Link: https://lkml.kernel.org/r/20250210160818.686-1-bertrand.wlodarczyk@intel.com Signed-off-by: Bertrand Wlodarczyk <bertrand.wlodarczyk@intel.com> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dwaipayan Ray <dwaipayanray1@gmail.com> Cc: Joe Perches <joe@perches.com> Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
SeongJae Park [Mon, 10 Feb 2025 18:27:36 +0000 (10:27 -0800)]
mm/damon/core: do damos walking in entire regions granularity
damos_walk_control can be installed while DAMOS is walking the regions.
This means the walk callback function invocations can be started from a
region at the middle of the regions list. This makes it hard to be used
reliably. Particularly, DAMOS tried regions update for collecting
monitoring results gets problematic results. Increase the
walk_control_lock critical section to do walking in entire regions
granularity.
SeongJae Park [Mon, 10 Feb 2025 18:27:35 +0000 (10:27 -0800)]
mm/damon/core: do not call damos_walk_control->walk() if walk is completed
damos_walk() invokes callback functions of schemes until all schemes
finishes at least one round of walks. If there are multiple DAMOS schemes
having different apply_interval, the callback functions for longer apply
interval scheme will be called for more than a round of the walk.
The behavior is different from the document (see damos_walk() kernel-doc
comment), and not useful. Make the behavior be same to the documented
one, by stopping invoking the callback if the walk for the given scheme is
completed.
SeongJae Park [Mon, 10 Feb 2025 18:27:34 +0000 (10:27 -0800)]
mm/damon/core: unset damos->walk_completed after confimed set
Patch series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors".
damos_walk() can finish working earlier or later than expected, and start
earlier than practical. First two behaviors are clearly wrong behavior
(doesn't follow the documentation) and all three behaviors are only making
the feature useless. Fix those.
This patch (of 3):
damos->walk_completed is only set, not unset. This can cause next
damos_walk() finish earlier than expected. Unset it after all
walk_completed is confirmed.
Lorenzo Stoakes [Fri, 7 Feb 2025 17:24:42 +0000 (17:24 +0000)]
mm: use READ/WRITE_ONCE() for vma->vm_flags on migrate, mprotect
According to the syzbot report referenced here, it is possible to
encounter a race between mprotect() writing to the vma->vm_flags field and
migration checking whether the VMA is locked.
There is no real problem with timing here per se, only that torn
reads/writes may occur. Therefore, as a proximate fix, ensure both
operations READ_ONCE() and WRITE_ONCE() to avoid this.
This race is possible due to the ability to look up VMAs via the rmap,
which migration does in this case, which takes no mmap or VMA lock and
therefore does not preclude an operation to modify a VMA.
When the final update of VMA flags is performed by mprotect, this will
cause the rmap lock to be taken while the VMA is inserted on split/merge.
However the means by which we perform splits/merges in the kernel is that
we perform the split/merge operation on the VMA, acquiring/releasing locks
as needed, and only then, after having done so, modifying fields.
We should carefully examine and determine whether we can combine the two
operations so as to avoid such races, and whether it might be possible to
otherwise annotate these rmap field accesses.
SeongJae Park [Fri, 7 Feb 2025 21:20:33 +0000 (13:20 -0800)]
mm/damon: avoid applying DAMOS action to same entity multiple times
'paddr' DAMON operations set can apply a DAMOS scheme's action to a large
folio multiple times in single DAMOS-regions-walk if the folio is laid on
multiple DAMON regions. Add a field for DAMOS scheme object that can be
used by the underlying ops to know what was the last entity that the
scheme's action has applied. The core layer unsets the field when each
DAMOS-regions-walk is done for the given scheme. And update 'paddr' ops
to use the infrastructure to avoid the problem.
Link: https://lkml.kernel.org/r/20250207212033.45269-3-sj@kernel.org Fixes: 57223ac29584 ("mm/damon/paddr: support the pageout scheme") Signed-off-by: SeongJae Park <sj@kernel.org> Reported-by: Usama Arif <usamaarif642@gmail.com> Closes: https://lore.kernel.org/20250203225604.44742-3-usamaarif642@gmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Usama Arif [Fri, 7 Feb 2025 21:20:32 +0000 (13:20 -0800)]
mm/damon/ops: have damon_get_folio return folio even for tail pages
Patch series "mm/damon/paddr: fix large folios access and schemes handling".
DAMON operations set for physical address space, namely 'paddr', treats
tail pages as unaccessed always. It can also apply DAMOS action to a
large folio multiple times within single DAMOS' regions walking. As a
result, the monitoring output has poor quality and DAMOS works in
unexpected ways when large folios are being used. Fix those.
The patches were parts of Usama's hugepage_size DAMOS filter patch
series[1]. The first fix has collected from there with a slight commit
message change for the subject prefix. The second fix is re-written by SJ
and posted as an RFC before this series. The second one also got a slight
commit message change for the subject prefix.
This effectively adds support for large folios in damon for paddr, as
damon_pa_mkold/young won't get a null folio from this function and won't
ignore it, hence access will be checked and reported. This also means
that larger folios will be considered for different DAMOS actions like
pageout, prioritization and migration. As these DAMOS actions will
consider larger folios, iterate through the region at folio_size and not
PAGE_SIZE intervals. This should not have an affect on vaddr, as
damon_young_pmd_entry considers pmd entries.
Catalin Marinas [Thu, 6 Feb 2025 11:45:37 +0000 (11:45 +0000)]
samples: kmemleak: print the raw pointers for debugging purposes
The kmemleak-test.c module is meant to leak some pointers for debugging
the kmemleak detection, pointer information dumping. It's no use if it
prints the hashed values of such pointers.
Change the printk() format from %p to %px. While at it, also display the
raw __percpu pointer rather than this_cpu_ptr() since kmemleak now tracks
such pointers independently of the standard allocations.
Catalin Marinas [Thu, 6 Feb 2025 11:45:36 +0000 (11:45 +0000)]
mm: kmemleak: add support for dumping physical and __percpu object info
Patch series "mm: kmemleak: Usability improvements".
Following a recent false positive tracking that led to commit 488b5b9eca68
("mm: kmemleak: fix upper boundary check for physical address objects"), I
needed kmemleak to give me more debug information about the objects it is
tracking. This lead to the first patch of this series. The second patch
changes the kmemleak-test module to show the raw pointers for debugging
purposes.
This patch (of 2):
Currently, echo dump=... > /sys/kernel/debug/kmemleak only looks up the
main virtual address object tree. However, for debugging, it's useful to
dump information about physical address and __percpu objects.
Search all three object trees for the dump= command and also print the
type of the object if not virtual: "(phys)" or "(percpu)". In addition,
allow search by alias (pointer within the object).
Michal Hocko [Thu, 6 Feb 2025 12:26:33 +0000 (13:26 +0100)]
mm, percpu: do not consider sleepable allocations atomic
28307d938fb2 ("percpu: make pcpu_alloc() aware of current gfp context")
has fixed a reclaim recursion for scoped GFP_NOFS context. It has done
that by avoiding taking pcpu_alloc_mutex. This is a correct solution as
the worker context with full GFP_KERNEL allocation/reclaim power and which
is using the same lock cannot block the NOFS pcpu_alloc caller.
On the other hand this is a very conservative approach that could lead to
failures because pcpu_alloc lockless implementation is quite limited.
We have a bug report about premature failures when scsi array of 193
devices is scanned. Sometimes (not consistently) the scanning aborts
because the iscsid daemon fails to create the queue for a random scsi
device during the scan. iscsid itslef is running with PR_SET_IO_FLUSHER
set so all allocations from this process context are GFP_NOIO. This in
turn makes any pcpu_alloc lockless (without pcpu_alloc_mutex) which leads
to pre-mature failures.
It has turned out that iscsid has worked around this by dropping
PR_SET_IO_FLUSHER (https://github.com/open-iscsi/open-iscsi/pull/382) when
scanning host. But we can do better in this case on the kernel side and
use pcpu_alloc_mutex for NOIO resp. NOFS constrained allocation scopes
too. We just need the WQ worker to never trigger IO/FS reclaim. Achieve
that by enforcing scoped GFP_NOIO for the whole execution of
pcpu_balance_workfn (this will imply NOFS constrain as well). This will
remove the dependency chain and preserve the full allocation power of the
pcpu_alloc call.
While at it make is_atomic really test for blockable allocations.
Link: https://lkml.kernel.org/r/20250206122633.167896-1-mhocko@kernel.org Fixes: 28307d938fb2 ("percpu: make pcpu_alloc() aware of current gfp context") Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dennis Zhou <dennis@kernel.org> Cc: Filipe David Manana <fdmanana@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Baoquan He [Wed, 5 Feb 2025 09:27:20 +0000 (17:27 +0800)]
mm/swapfile.c: remove the incorrect code comment
Since commit eb085574a752 ("mm, swap: fix race between swapoff and some
swap operations"), the non_swap_entry() checking has been taken off from
function __swap_duplicate(). Hence, in the kernel-doc comment, the line
'swp_entry is migration entry -> EINVAL' is obsolete. Remove that line to
avoid misleading people.
Baoquan He [Wed, 5 Feb 2025 09:27:19 +0000 (17:27 +0800)]
mm/swap: rename swap_swapcount() to swap_entry_swapped()
The new function name can reflect the real behaviour of the function more
clearly and more accurately. And the renaming avoids the confusion
between swap_swapcount() and swp_swapcount().
Baoquan He [Wed, 5 Feb 2025 09:27:15 +0000 (17:27 +0800)]
mm/swapfile.c: update the code comment above swap_count_continued()
Now, swap_count_continued() has two callers, __swap_duplicate() and
__swap_entry_free_locked(), the relevant code comment is stale. Update it
to reflect the current situation.
Baoquan He [Wed, 5 Feb 2025 09:27:14 +0000 (17:27 +0800)]
mm/swap: rename swap_is_has_cache() to swap_only_has_cache()
There are two predicates in the name of swap_is_has_cache() which is
confusing. Renaming it to remove the confusion and can better reflect its
functionality.
Baoquan He [Wed, 5 Feb 2025 09:27:13 +0000 (17:27 +0800)]
mm/swap: skip scanning cluster range if it's empty cluster
Since ci->lock has been taken when isolating cluster from
si->free_clusters or taking si->percpu_cluster->next[order], it's
unnecessary to scan and check the cluster range availability if i'ts empty
cluster, and this can accelerate the huge page swapping.
Baoquan He [Wed, 5 Feb 2025 09:27:10 +0000 (17:27 +0800)]
mm/swap_state.c: fix the obsolete code comment
Patch series "Tiny cleanup and improvements about SWAP code".
These are all made during review and from reading the patchset "[PATCH v3
00/13] mm, swap: rework of swap allocator locks" from Kairui.
This patch (of 12):
Since commit 85a1333417a7 ("mm/swap: use dedicated entry for swap in
folio"), there's a dedicated field in folio for swap entry. Let's update
the code comment above add_to_swap_cache() accordingly.
Liu Ye [Thu, 6 Feb 2025 06:09:58 +0000 (14:09 +0800)]
mm/memfd: fix spelling and grammatical issues
The comment "If a private mapping then writability is irrelevant" contains
a typo. It should be "If a private mapping then writability is
irrelevant". The comment "SEAL_EXEC implys SEAL_WRITE, making W^X from
the start." contains a typo. It should be "SEAL_EXEC implies SEAL_WRITE,
making W^X from the start."
SeongJae Park [Thu, 6 Feb 2025 06:15:17 +0000 (22:15 -0800)]
mm/madvise: remove redundant mmap_lock operations from process_madvise()
Optimize redundant mmap lock operations from process_madvise() by directly
doing the mmap locking first, and then the remaining works for all ranges
in the loop.
[akpm@linux-foundation.org: update comment, per Lorenzo] Link: https://lkml.kernel.org/r/20250206061517.2958-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Liam R. Howlett <howlett@gmail.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
SeongJae Park [Thu, 6 Feb 2025 06:15:14 +0000 (22:15 -0800)]
mm/madvise: split out mmap locking operations for madvise()
Patch series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()".
process_madvise() calls do_madvise() for each address range. Then, each
do_madvise() invocation holds and releases same mmap_lock. Optimize the
redundant lock operations by splitting do_madvise() internal logic
including the mmap_lock operations, and calling the small logic directly
from process_madvise() in a sequence that removes the redundant locking.
As a result of this change, process_madvise() becomes more efficient and
less racy in terms of its results and latency.
Note that the potential downside of this series is that other mmap_lock
holders may take more time due to the increased length of mmap_lock
critical section for process_madvise() calls. But there is maximum limit
in the kernel space (IOV_MAX), and userspace can control the critical
section length by setting the request size. Hence, the downside would be
limited and controllable.
Evaluation
==========
I measured the time to apply MADV_DONTNEED advice to 256 MiB memory using
multiple madvise() calls, 4 KiB per each call. I also do the same with
process_madvise(), but with varying batch size (vlen) from 1 to 1024. The
source code for the measurement is available at GitHub[1]. Because the
microbenchmark result is not that stable, I ran each configuration five
times and use the average.
The measurement results are as below. 'sz_batches' column shows the batch
size of process_madvise() calls. '0' batch size is for madvise() calls
case. 'before' and 'after' columns are the measured time to apply
MADV_DONTNEED to the 256 MiB memory buffer in nanoseconds, on kernels that
built without and with the last patch of this series, respectively. So
lower value means better efficiency. 'after/before' column is the ratio
of 'after' to 'before'.
Despite the unstable nature of the test program, the trend is as we
expect. The measurement shows this patchset reduces the process_madvise()
latency, proportional to the batching size. The latency gain was about
20% with the batch size 2, and it has increased to about 28% with the
batch size 512, since more number of mmap locking is reduced with larger
batch size.
Note that the standard devitation of the measurements for each sz_batches
configuration ranged from 1.9% to 7.2%. That is, this result is not very
stable. The average of the standard deviations for different batch sizes
were 4.62% and 4.70% for the 'before' and 'after' kernel measurements.
Also note that this patch has somehow decreased latencies of madvise() and
single batch size process_madvise(). Seems this code path is small enough
to significantly be affected by compiler optimizations including inlining
of split-out functions. Please focus on only the improvement amount that
changed by the batch size.
[1] https://github.com/sjp38/eval_proc_madvise
This patch (of 4):
Split out the madvise behavior-dependent mmap_lock operations from
do_madvise(), for easier reuse of the logic in an upcoming change.
Mark Brown [Tue, 4 Feb 2025 22:53:43 +0000 (22:53 +0000)]
selftests/mm: fix thuge-gen test name uniqueness
The thuge-gen test_mmap() and test_shmget() tests are repeatedly run for a
variety of sizes but always report the result of their test with the same
name, meaning that automated sysetms running the tests are unable to
distinguish between the various tests. Add the supplied sizes to the
logged test names to distinguish between runs.
My test automation was getting pretty confused about what was going on
- the test names are a pretty important external interface.
Link: https://lkml.kernel.org/r/20250204-kselftest-mm-fix-dups-v1-1-6afe417ef4bb@kernel.org Fixes: b38bd9b2c448 ("selftests/mm: thuge-gen: conform to TAP format output") Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Dev Jain <dev.jain@arm.com> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
alloc_tag: uninline code gated by mem_alloc_profiling_key in page allocator
When a sizable code section is protected by a disabled static key, that
code gets into the instruction cache even though it's not executed and
consumes the cache, increasing cache misses. This can be remedied by
moving such code into a separate uninlined function.
On a Pixel6 phone, page allocation profiling overhead measured with
CONFIG_MEM_ALLOC_PROFILING=y and profiling disabled is:
baseline modified
Big core 4.93% 1.53%
Medium core 4.39% 1.41%
Little core 1.02% 0.36%
This improvement comes at the expense of the configuration when profiling
gets enabled, since there is now an additional function call. The overhead
from this additional call on Pixel6 is:
Big core 0.24%
Middle core 0.63%
Little core 1.1%
However this is negligible when compared with the overall overhead of the
memory allocation profiling when it is enabled.
On x86 this patch does not make noticeable difference because the overhead
with mem_alloc_profiling_key disabled is much lower (under 1%) to start
with, so any improvement is less visible and hard to distinguish from the
noise. The overhead from additional call when profiling is enabled is also
within noise levels.
Link: https://lkml.kernel.org/r/20250201231803.2661189-3-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: David Wang <00107082@163.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
alloc_tag: uninline code gated by mem_alloc_profiling_key in slab allocator
When a sizable code section is protected by a disabled static key, that
code gets into the instruction cache even though it's not executed and
consumes the cache, increasing cache misses. This can be remedied by
moving such code into a separate uninlined function. On a Pixel6 phone,
slab allocation profiling overhead measured with
CONFIG_MEM_ALLOC_PROFILING=y and profiling disabled is:
baseline modified
Big core 3.31% 0.17%
Medium core 3.79% 0.57%
Little core 6.68% 1.28%
This improvement comes at the expense of the configuration when profiling
gets enabled, since there is now an additional function call. The
overhead from this additional call on Pixel6 is:
Big core 0.66%
Middle core 1.23%
Little core 2.42%
However this is negligible when compared with the overall overhead of the
memory allocation profiling when it is enabled.
On x86 this patch does not make noticeable difference because the overhead
with mem_alloc_profiling_key disabled is much lower (under 1%) to start
with, so any improvement is less visible and hard to distinguish from the
noise. The overhead from additional call when profiling is enabled is
also within noise levels.
Link: https://lkml.kernel.org/r/20250201231803.2661189-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: David Wang <00107082@163.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm: avoid extra mem_alloc_profiling_enabled() checks
Refactor code to avoid extra mem_alloc_profiling_enabled() checks inside
pgalloc_tag_get() function which is often called after that check was
already done.
Link: https://lkml.kernel.org/r/20250201231803.2661189-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: David Wang <00107082@163.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The adj_start calculation has been a constant source of confusion in the
VMA merge code.
There are two cases to consider, one where we adjust the start of the
vmg->middle VMA (i.e. the vmg->__adjust_middle_start merge flag is set),
in which case adj_start is calculated as:
(1) adj_start = vmg->end - vmg->middle->vm_start
And the case where we adjust the start of the vmg->next VMA (i.e. the
vmg->__adjust_next_start merge flag is set), in which case adj_start is
calculated as:
Therefore in each case, we simply need to adjust the start of the VMA to
vmg->end (!) and can do away with this adj_start calculation. The only
caveat is that we must ensure we update the vm_pgoff field correctly.
We therefore abstract this entire calculation to a new function
vmg_adjust_set_range() which performs this calculation and sets the
adjusted VMA's new range using the general vma_set_range() function.
We also must update vma_adjust_trans_huge() which expects the
now-abstracted adj_start parameter. It turns out this is wholly
unnecessary.
The only case where this is relevant is when vmg->__adjust_middle_start is
specified (in which case adj_next would have been positive), i.e. the one
in which the vma specified is vmg->prev and this the sought 'next' VMA
would be vmg->middle.
We can therefore eliminate the find_vma() invocation altogether and simply
provide the vmg->middle VMA in this instance, or NULL otherwise.
Again we have an adj_next offset calculation:
next->vm_start + vmg->end - vmg->middle->vm_start
Where next == vmg->middle this simplifies to vmg->end as previously
demonstrated.
Therefore nstart is equal to vmg->end, which is already passed to
vma_adjust_trans_huge() via the 'end' parameter and so this code (rather
delightfully) simplifies to:
if (next)
split_huge_pmd_if_needed(next, end);
With these changes in place, it becomes silly for commit_merge() to return
vmg->target, as it is always the same and threaded through vmg, so we
finally change commit_merge() to return an error value once again.
Lorenzo Stoakes [Fri, 31 Jan 2025 12:31:52 +0000 (12:31 +0000)]
mm: make vmg->target consistent and further simplify commit_merge()
It is confusing for vmg->target to sometimes be the target merged VMA and
in one case not.
Fix this by having commit_merge() use its awareness of the
vmg->_adjust_next_start case to know that it is manipulating a separate
vma, abstracted in the 'vma' local variable.
Place removal and adjust VMA determination logic into
init_multi_vma_prep(), as the flags give us enough information to do so,
and since this is the function that sets up the vma_prepare struct it
makes sense to do so here.
Doing this significantly simplifies commit_merge(), allowing us to
eliminate the 'merge_target' handling, initialise the VMA iterator in a
more sensible place and simply return vmg->target consistently.
This also allows us to simplify setting vmg->target in
vma_merge_existing_range() since we are then left only with two cases -
merge left (or both) where the target is vmg->prev or merge right in which
the target is vmg->next.
This makes it easy for somebody reading the code to know what VMA will
actually be the one returned and merged into and removes a great deal of
the confusing 'adjust' nonsense.
Lorenzo Stoakes [Fri, 31 Jan 2025 12:31:51 +0000 (12:31 +0000)]
mm: eliminate adj_start parameter from commit_merge()
Introduce internal vmg->__adjust_middle_start and vmg->__adjust_next_start
merge flags, enabling us to indicate to commit_merge() that we are
performing a merge which either spans only part of vmg->middle, or part of
vmg->next respectively.
In the former instance, we change the start of vmg->middle to match the
attributes of vmg->prev, without spanning all of vmg->middle.
This implies that vmg->prev->vm_end and vmg->middle->vm_start are both
increased to form the new merged VMA (vmg->prev) and the new subsequent
VMA (vmg->middle).
In the latter case, we change the end of vmg->middle to match the
attributes of vmg->next, without spanning all of vmg->next.
This implies that vmg->middle->vm_end and vmg->next->vm_start are both
decreased to form the new merged VMA (vmg->next) and the new prior VMA
(vmg->middle).
Since we now have a stable set of prev, middle, next VMAs threaded through
vmg and with these flags set know what is happening, we can perform the
calculation in commit_merge() instead.
This allows us to drop the confusing adj_start parameter and instead pass
semantic information to commit_merge().
In the latter case the -(middle->vm_end - start) calculation becomes
-(middle->vm-end - vmg->end), however this is correct as vmg->end is set
to the start parameter.
This is because in this case (rather confusingly), we manipulate
vmg->middle, but ultimately return vmg->next, whose range will be
correctly specified. At this point vmg->start, end is the new range for
the prior VMA rather than the merged one.
Lorenzo Stoakes [Fri, 31 Jan 2025 12:31:50 +0000 (12:31 +0000)]
mm: further refactor commit_merge()
The current VMA merge mechanism contains a number of confusing mechanisms
around removal of VMAs on merge and the shrinking of the VMA adjacent to
vma->target in the case of merges which result in a partial merge with
that adjacent VMA.
Since we now have a STABLE set of VMAs - prev, middle, next - we are now
able to have the caller of commit_merge() explicitly tell us which VMAs
need deleting, using newly introduced internal VMA merge flags.
Doing so allows us to embed this state within the VMG and remove the
confusing remove, remove2 parameters from commit_merge().
We additionally are able to eliminate the highly confusing and misleading
'expanded' parameter - a parameter that in reality refers to whether or
not the return VMA is the target one or the one immediately adjacent.
We can infer which is the case from whether or not the adj_start parameter
is negative. This also allows us to simplify further logic around
iterator configuration and VMA iterator stores.
Doing so means we can also eliminate the adjust parameter, as we are able
to infer which VMA ought to be adjusted from adj_start - a positive value
implies we adjust the start of 'middle', a negative one implies we adjust
the start of 'next'.
We are then able to have commit_merge() explicitly return the target VMA,
or NULL on inability to pre-allocate memory. Errors were previously
filtered so behaviour does not change.
We additionally move from the slightly odd use of a bitwise-flag enum
vmg->merge_flags field to vmg bitfields.