]> git.ipfire.org Git - thirdparty/linux.git/blob
0c216e71cec7
[thirdparty/linux.git] /
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 const struct seq_operations *seq_ops;
75 bpf_iter_init_seq_priv_t init_seq_private;
76 bpf_iter_fini_seq_priv_t fini_seq_private;
77 u32 seq_priv_size;
78 };
79
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 /* funcs callable from userspace (via syscall) */
83 int (*map_alloc_check)(union bpf_attr *attr);
84 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 void (*map_release)(struct bpf_map *map, struct file *map_file);
86 void (*map_free)(struct bpf_map *map);
87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 void (*map_release_uref)(struct bpf_map *map);
89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 union bpf_attr __user *uattr);
92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 void *value, u64 flags);
94 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 const union bpf_attr *attr,
96 union bpf_attr __user *uattr);
97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 const union bpf_attr *attr,
99 union bpf_attr __user *uattr);
100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 union bpf_attr __user *uattr);
102
103 /* funcs callable from userspace and from eBPF programs */
104 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 long (*map_delete_elem)(struct bpf_map *map, void *key);
107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 long (*map_pop_elem)(struct bpf_map *map, void *value);
109 long (*map_peek_elem)(struct bpf_map *map, void *value);
110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111
112 /* funcs called by prog_array and perf_event_array map */
113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 int fd);
115 /* If need_defer is true, the implementation should guarantee that
116 * the to-be-put element is still alive before the bpf program, which
117 * may manipulate it, exists.
118 */
119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 struct seq_file *m);
124 int (*map_check_btf)(const struct bpf_map *map,
125 const struct btf *btf,
126 const struct btf_type *key_type,
127 const struct btf_type *value_type);
128
129 /* Prog poke tracking helpers. */
130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 struct bpf_prog *new);
134
135 /* Direct value access helpers. */
136 int (*map_direct_value_addr)(const struct bpf_map *map,
137 u64 *imm, u32 off);
138 int (*map_direct_value_meta)(const struct bpf_map *map,
139 u64 imm, u32 *off);
140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 struct poll_table_struct *pts);
143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 unsigned long len, unsigned long pgoff,
145 unsigned long flags);
146
147 /* Functions called by bpf_local_storage maps */
148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 void *owner, u32 size);
150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 void *owner, u32 size);
152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153
154 /* Misc helpers.*/
155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156
157 /* map_meta_equal must be implemented for maps that can be
158 * used as an inner map. It is a runtime check to ensure
159 * an inner map can be inserted to an outer map.
160 *
161 * Some properties of the inner map has been used during the
162 * verification time. When inserting an inner map at the runtime,
163 * map_meta_equal has to ensure the inserting map has the same
164 * properties that the verifier has used earlier.
165 */
166 bool (*map_meta_equal)(const struct bpf_map *meta0,
167 const struct bpf_map *meta1);
168
169
170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 struct bpf_func_state *caller,
172 struct bpf_func_state *callee);
173 long (*map_for_each_callback)(struct bpf_map *map,
174 bpf_callback_t callback_fn,
175 void *callback_ctx, u64 flags);
176
177 u64 (*map_mem_usage)(const struct bpf_map *map);
178
179 /* BTF id of struct allocated by map_alloc */
180 int *map_btf_id;
181
182 /* bpf_iter info used to open a seq_file */
183 const struct bpf_iter_seq_info *iter_seq_info;
184 };
185
186 enum {
187 /* Support at most 11 fields in a BTF type */
188 BTF_FIELDS_MAX = 11,
189 };
190
191 enum btf_field_type {
192 BPF_SPIN_LOCK = (1 << 0),
193 BPF_TIMER = (1 << 1),
194 BPF_KPTR_UNREF = (1 << 2),
195 BPF_KPTR_REF = (1 << 3),
196 BPF_KPTR_PERCPU = (1 << 4),
197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 BPF_LIST_HEAD = (1 << 5),
199 BPF_LIST_NODE = (1 << 6),
200 BPF_RB_ROOT = (1 << 7),
201 BPF_RB_NODE = (1 << 8),
202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 BPF_REFCOUNT = (1 << 9),
205 BPF_WORKQUEUE = (1 << 10),
206 };
207
208 typedef void (*btf_dtor_kfunc_t)(void *);
209
210 struct btf_field_kptr {
211 struct btf *btf;
212 struct module *module;
213 /* dtor used if btf_is_kernel(btf), otherwise the type is
214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
215 */
216 btf_dtor_kfunc_t dtor;
217 u32 btf_id;
218 };
219
220 struct btf_field_graph_root {
221 struct btf *btf;
222 u32 value_btf_id;
223 u32 node_offset;
224 struct btf_record *value_rec;
225 };
226
227 struct btf_field {
228 u32 offset;
229 u32 size;
230 enum btf_field_type type;
231 union {
232 struct btf_field_kptr kptr;
233 struct btf_field_graph_root graph_root;
234 };
235 };
236
237 struct btf_record {
238 u32 cnt;
239 u32 field_mask;
240 int spin_lock_off;
241 int timer_off;
242 int wq_off;
243 int refcount_off;
244 struct btf_field fields[];
245 };
246
247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
248 struct bpf_rb_node_kern {
249 struct rb_node rb_node;
250 void *owner;
251 } __attribute__((aligned(8)));
252
253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
254 struct bpf_list_node_kern {
255 struct list_head list_head;
256 void *owner;
257 } __attribute__((aligned(8)));
258
259 struct bpf_map {
260 const struct bpf_map_ops *ops;
261 struct bpf_map *inner_map_meta;
262 #ifdef CONFIG_SECURITY
263 void *security;
264 #endif
265 enum bpf_map_type map_type;
266 u32 key_size;
267 u32 value_size;
268 u32 max_entries;
269 u64 map_extra; /* any per-map-type extra fields */
270 u32 map_flags;
271 u32 id;
272 struct btf_record *record;
273 int numa_node;
274 u32 btf_key_type_id;
275 u32 btf_value_type_id;
276 u32 btf_vmlinux_value_type_id;
277 struct btf *btf;
278 #ifdef CONFIG_MEMCG
279 struct obj_cgroup *objcg;
280 #endif
281 char name[BPF_OBJ_NAME_LEN];
282 struct mutex freeze_mutex;
283 atomic64_t refcnt;
284 atomic64_t usercnt;
285 /* rcu is used before freeing and work is only used during freeing */
286 union {
287 struct work_struct work;
288 struct rcu_head rcu;
289 };
290 atomic64_t writecnt;
291 /* 'Ownership' of program-containing map is claimed by the first program
292 * that is going to use this map or by the first program which FD is
293 * stored in the map to make sure that all callers and callees have the
294 * same prog type, JITed flag and xdp_has_frags flag.
295 */
296 struct {
297 const struct btf_type *attach_func_proto;
298 spinlock_t lock;
299 enum bpf_prog_type type;
300 bool jited;
301 bool xdp_has_frags;
302 } owner;
303 bool bypass_spec_v1;
304 bool frozen; /* write-once; write-protected by freeze_mutex */
305 bool free_after_mult_rcu_gp;
306 bool free_after_rcu_gp;
307 atomic64_t sleepable_refcnt;
308 s64 __percpu *elem_count;
309 };
310
311 static inline const char *btf_field_type_name(enum btf_field_type type)
312 {
313 switch (type) {
314 case BPF_SPIN_LOCK:
315 return "bpf_spin_lock";
316 case BPF_TIMER:
317 return "bpf_timer";
318 case BPF_WORKQUEUE:
319 return "bpf_wq";
320 case BPF_KPTR_UNREF:
321 case BPF_KPTR_REF:
322 return "kptr";
323 case BPF_KPTR_PERCPU:
324 return "percpu_kptr";
325 case BPF_LIST_HEAD:
326 return "bpf_list_head";
327 case BPF_LIST_NODE:
328 return "bpf_list_node";
329 case BPF_RB_ROOT:
330 return "bpf_rb_root";
331 case BPF_RB_NODE:
332 return "bpf_rb_node";
333 case BPF_REFCOUNT:
334 return "bpf_refcount";
335 default:
336 WARN_ON_ONCE(1);
337 return "unknown";
338 }
339 }
340
341 static inline u32 btf_field_type_size(enum btf_field_type type)
342 {
343 switch (type) {
344 case BPF_SPIN_LOCK:
345 return sizeof(struct bpf_spin_lock);
346 case BPF_TIMER:
347 return sizeof(struct bpf_timer);
348 case BPF_WORKQUEUE:
349 return sizeof(struct bpf_wq);
350 case BPF_KPTR_UNREF:
351 case BPF_KPTR_REF:
352 case BPF_KPTR_PERCPU:
353 return sizeof(u64);
354 case BPF_LIST_HEAD:
355 return sizeof(struct bpf_list_head);
356 case BPF_LIST_NODE:
357 return sizeof(struct bpf_list_node);
358 case BPF_RB_ROOT:
359 return sizeof(struct bpf_rb_root);
360 case BPF_RB_NODE:
361 return sizeof(struct bpf_rb_node);
362 case BPF_REFCOUNT:
363 return sizeof(struct bpf_refcount);
364 default:
365 WARN_ON_ONCE(1);
366 return 0;
367 }
368 }
369
370 static inline u32 btf_field_type_align(enum btf_field_type type)
371 {
372 switch (type) {
373 case BPF_SPIN_LOCK:
374 return __alignof__(struct bpf_spin_lock);
375 case BPF_TIMER:
376 return __alignof__(struct bpf_timer);
377 case BPF_WORKQUEUE:
378 return __alignof__(struct bpf_wq);
379 case BPF_KPTR_UNREF:
380 case BPF_KPTR_REF:
381 case BPF_KPTR_PERCPU:
382 return __alignof__(u64);
383 case BPF_LIST_HEAD:
384 return __alignof__(struct bpf_list_head);
385 case BPF_LIST_NODE:
386 return __alignof__(struct bpf_list_node);
387 case BPF_RB_ROOT:
388 return __alignof__(struct bpf_rb_root);
389 case BPF_RB_NODE:
390 return __alignof__(struct bpf_rb_node);
391 case BPF_REFCOUNT:
392 return __alignof__(struct bpf_refcount);
393 default:
394 WARN_ON_ONCE(1);
395 return 0;
396 }
397 }
398
399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
400 {
401 memset(addr, 0, field->size);
402
403 switch (field->type) {
404 case BPF_REFCOUNT:
405 refcount_set((refcount_t *)addr, 1);
406 break;
407 case BPF_RB_NODE:
408 RB_CLEAR_NODE((struct rb_node *)addr);
409 break;
410 case BPF_LIST_HEAD:
411 case BPF_LIST_NODE:
412 INIT_LIST_HEAD((struct list_head *)addr);
413 break;
414 case BPF_RB_ROOT:
415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
416 case BPF_SPIN_LOCK:
417 case BPF_TIMER:
418 case BPF_WORKQUEUE:
419 case BPF_KPTR_UNREF:
420 case BPF_KPTR_REF:
421 case BPF_KPTR_PERCPU:
422 break;
423 default:
424 WARN_ON_ONCE(1);
425 return;
426 }
427 }
428
429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
430 {
431 if (IS_ERR_OR_NULL(rec))
432 return false;
433 return rec->field_mask & type;
434 }
435
436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
437 {
438 int i;
439
440 if (IS_ERR_OR_NULL(rec))
441 return;
442 for (i = 0; i < rec->cnt; i++)
443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
444 }
445
446 /* 'dst' must be a temporary buffer and should not point to memory that is being
447 * used in parallel by a bpf program or bpf syscall, otherwise the access from
448 * the bpf program or bpf syscall may be corrupted by the reinitialization,
449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
451 * program or bpf syscall.
452 */
453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
454 {
455 bpf_obj_init(map->record, dst);
456 }
457
458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
459 * forced to use 'long' read/writes to try to atomically copy long counters.
460 * Best-effort only. No barriers here, since it _will_ race with concurrent
461 * updates from BPF programs. Called from bpf syscall and mostly used with
462 * size 8 or 16 bytes, so ask compiler to inline it.
463 */
464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
465 {
466 const long *lsrc = src;
467 long *ldst = dst;
468
469 size /= sizeof(long);
470 while (size--)
471 data_race(*ldst++ = *lsrc++);
472 }
473
474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
475 static inline void bpf_obj_memcpy(struct btf_record *rec,
476 void *dst, void *src, u32 size,
477 bool long_memcpy)
478 {
479 u32 curr_off = 0;
480 int i;
481
482 if (IS_ERR_OR_NULL(rec)) {
483 if (long_memcpy)
484 bpf_long_memcpy(dst, src, round_up(size, 8));
485 else
486 memcpy(dst, src, size);
487 return;
488 }
489
490 for (i = 0; i < rec->cnt; i++) {
491 u32 next_off = rec->fields[i].offset;
492 u32 sz = next_off - curr_off;
493
494 memcpy(dst + curr_off, src + curr_off, sz);
495 curr_off += rec->fields[i].size + sz;
496 }
497 memcpy(dst + curr_off, src + curr_off, size - curr_off);
498 }
499
500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
501 {
502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
503 }
504
505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
506 {
507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
508 }
509
510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
511 {
512 u32 curr_off = 0;
513 int i;
514
515 if (IS_ERR_OR_NULL(rec)) {
516 memset(dst, 0, size);
517 return;
518 }
519
520 for (i = 0; i < rec->cnt; i++) {
521 u32 next_off = rec->fields[i].offset;
522 u32 sz = next_off - curr_off;
523
524 memset(dst + curr_off, 0, sz);
525 curr_off += rec->fields[i].size + sz;
526 }
527 memset(dst + curr_off, 0, size - curr_off);
528 }
529
530 static inline void zero_map_value(struct bpf_map *map, void *dst)
531 {
532 bpf_obj_memzero(map->record, dst, map->value_size);
533 }
534
535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
536 bool lock_src);
537 void bpf_timer_cancel_and_free(void *timer);
538 void bpf_wq_cancel_and_free(void *timer);
539 void bpf_list_head_free(const struct btf_field *field, void *list_head,
540 struct bpf_spin_lock *spin_lock);
541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
542 struct bpf_spin_lock *spin_lock);
543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
546
547 struct bpf_offload_dev;
548 struct bpf_offloaded_map;
549
550 struct bpf_map_dev_ops {
551 int (*map_get_next_key)(struct bpf_offloaded_map *map,
552 void *key, void *next_key);
553 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
554 void *key, void *value);
555 int (*map_update_elem)(struct bpf_offloaded_map *map,
556 void *key, void *value, u64 flags);
557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
558 };
559
560 struct bpf_offloaded_map {
561 struct bpf_map map;
562 struct net_device *netdev;
563 const struct bpf_map_dev_ops *dev_ops;
564 void *dev_priv;
565 struct list_head offloads;
566 };
567
568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
569 {
570 return container_of(map, struct bpf_offloaded_map, map);
571 }
572
573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
574 {
575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
576 }
577
578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
579 {
580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
581 map->ops->map_seq_show_elem;
582 }
583
584 int map_check_no_btf(const struct bpf_map *map,
585 const struct btf *btf,
586 const struct btf_type *key_type,
587 const struct btf_type *value_type);
588
589 bool bpf_map_meta_equal(const struct bpf_map *meta0,
590 const struct bpf_map *meta1);
591
592 extern const struct bpf_map_ops bpf_map_offload_ops;
593
594 /* bpf_type_flag contains a set of flags that are applicable to the values of
595 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
596 * or a memory is read-only. We classify types into two categories: base types
597 * and extended types. Extended types are base types combined with a type flag.
598 *
599 * Currently there are no more than 32 base types in arg_type, ret_type and
600 * reg_types.
601 */
602 #define BPF_BASE_TYPE_BITS 8
603
604 enum bpf_type_flag {
605 /* PTR may be NULL. */
606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
607
608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
609 * compatible with both mutable and immutable memory.
610 */
611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
612
613 /* MEM points to BPF ring buffer reservation. */
614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
615
616 /* MEM is in user address space. */
617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
618
619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
623 * to the specified cpu.
624 */
625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
626
627 /* Indicates that the argument will be released. */
628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
629
630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
631 * unreferenced and referenced kptr loaded from map value using a load
632 * instruction, so that they can only be dereferenced but not escape the
633 * BPF program into the kernel (i.e. cannot be passed as arguments to
634 * kfunc or bpf helpers).
635 */
636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
637
638 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
639
640 /* DYNPTR points to memory local to the bpf program. */
641 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
642
643 /* DYNPTR points to a kernel-produced ringbuf record. */
644 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
645
646 /* Size is known at compile time. */
647 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
648
649 /* MEM is of an allocated object of type in program BTF. This is used to
650 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
651 */
652 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
653
654 /* PTR was passed from the kernel in a trusted context, and may be
655 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
656 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
657 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
658 * without invoking bpf_kptr_xchg(). What we really need to know is
659 * whether a pointer is safe to pass to a kfunc or BPF helper function.
660 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
661 * helpers, they do not cover all possible instances of unsafe
662 * pointers. For example, a pointer that was obtained from walking a
663 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
664 * fact that it may be NULL, invalid, etc. This is due to backwards
665 * compatibility requirements, as this was the behavior that was first
666 * introduced when kptrs were added. The behavior is now considered
667 * deprecated, and PTR_UNTRUSTED will eventually be removed.
668 *
669 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
670 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
671 * For example, pointers passed to tracepoint arguments are considered
672 * PTR_TRUSTED, as are pointers that are passed to struct_ops
673 * callbacks. As alluded to above, pointers that are obtained from
674 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
675 * struct task_struct *task is PTR_TRUSTED, then accessing
676 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
677 * in a BPF register. Similarly, pointers passed to certain programs
678 * types such as kretprobes are not guaranteed to be valid, as they may
679 * for example contain an object that was recently freed.
680 */
681 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
682
683 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
684 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
685
686 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
687 * Currently only valid for linked-list and rbtree nodes. If the nodes
688 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
689 */
690 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
691
692 /* DYNPTR points to sk_buff */
693 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
694
695 /* DYNPTR points to xdp_buff */
696 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
697
698 /* Memory must be aligned on some architectures, used in combination with
699 * MEM_FIXED_SIZE.
700 */
701 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
702
703 __BPF_TYPE_FLAG_MAX,
704 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
705 };
706
707 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
708 | DYNPTR_TYPE_XDP)
709
710 /* Max number of base types. */
711 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
712
713 /* Max number of all types. */
714 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
715
716 /* function argument constraints */
717 enum bpf_arg_type {
718 ARG_DONTCARE = 0, /* unused argument in helper function */
719
720 /* the following constraints used to prototype
721 * bpf_map_lookup/update/delete_elem() functions
722 */
723 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
724 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
725 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
726
727 /* Used to prototype bpf_memcmp() and other functions that access data
728 * on eBPF program stack
729 */
730 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
731 ARG_PTR_TO_ARENA,
732
733 ARG_CONST_SIZE, /* number of bytes accessed from memory */
734 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
735
736 ARG_PTR_TO_CTX, /* pointer to context */
737 ARG_ANYTHING, /* any (initialized) argument is ok */
738 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
739 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
740 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
741 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
742 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
743 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
744 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
745 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
746 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
747 ARG_PTR_TO_STACK, /* pointer to stack */
748 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
749 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
750 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
751 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
752 __BPF_ARG_TYPE_MAX,
753
754 /* Extended arg_types. */
755 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
756 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
757 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
758 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
759 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
760 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
761 /* pointer to memory does not need to be initialized, helper function must fill
762 * all bytes or clear them in error case.
763 */
764 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
765 /* Pointer to valid memory of size known at compile time. */
766 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
767
768 /* This must be the last entry. Its purpose is to ensure the enum is
769 * wide enough to hold the higher bits reserved for bpf_type_flag.
770 */
771 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
772 };
773 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
774
775 /* type of values returned from helper functions */
776 enum bpf_return_type {
777 RET_INTEGER, /* function returns integer */
778 RET_VOID, /* function doesn't return anything */
779 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
780 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
781 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
782 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
783 RET_PTR_TO_MEM, /* returns a pointer to memory */
784 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
785 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
786 __BPF_RET_TYPE_MAX,
787
788 /* Extended ret_types. */
789 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
790 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
791 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
792 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
793 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
794 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
795 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
796 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
797
798 /* This must be the last entry. Its purpose is to ensure the enum is
799 * wide enough to hold the higher bits reserved for bpf_type_flag.
800 */
801 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
802 };
803 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
804
805 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
806 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
807 * instructions after verifying
808 */
809 struct bpf_func_proto {
810 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
811 bool gpl_only;
812 bool pkt_access;
813 bool might_sleep;
814 /* set to true if helper follows contract for llvm
815 * attribute bpf_fastcall:
816 * - void functions do not scratch r0
817 * - functions taking N arguments scratch only registers r1-rN
818 */
819 bool allow_fastcall;
820 enum bpf_return_type ret_type;
821 union {
822 struct {
823 enum bpf_arg_type arg1_type;
824 enum bpf_arg_type arg2_type;
825 enum bpf_arg_type arg3_type;
826 enum bpf_arg_type arg4_type;
827 enum bpf_arg_type arg5_type;
828 };
829 enum bpf_arg_type arg_type[5];
830 };
831 union {
832 struct {
833 u32 *arg1_btf_id;
834 u32 *arg2_btf_id;
835 u32 *arg3_btf_id;
836 u32 *arg4_btf_id;
837 u32 *arg5_btf_id;
838 };
839 u32 *arg_btf_id[5];
840 struct {
841 size_t arg1_size;
842 size_t arg2_size;
843 size_t arg3_size;
844 size_t arg4_size;
845 size_t arg5_size;
846 };
847 size_t arg_size[5];
848 };
849 int *ret_btf_id; /* return value btf_id */
850 bool (*allowed)(const struct bpf_prog *prog);
851 };
852
853 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
854 * the first argument to eBPF programs.
855 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
856 */
857 struct bpf_context;
858
859 enum bpf_access_type {
860 BPF_READ = 1,
861 BPF_WRITE = 2
862 };
863
864 /* types of values stored in eBPF registers */
865 /* Pointer types represent:
866 * pointer
867 * pointer + imm
868 * pointer + (u16) var
869 * pointer + (u16) var + imm
870 * if (range > 0) then [ptr, ptr + range - off) is safe to access
871 * if (id > 0) means that some 'var' was added
872 * if (off > 0) means that 'imm' was added
873 */
874 enum bpf_reg_type {
875 NOT_INIT = 0, /* nothing was written into register */
876 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
877 PTR_TO_CTX, /* reg points to bpf_context */
878 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
879 PTR_TO_MAP_VALUE, /* reg points to map element value */
880 PTR_TO_MAP_KEY, /* reg points to a map element key */
881 PTR_TO_STACK, /* reg == frame_pointer + offset */
882 PTR_TO_PACKET_META, /* skb->data - meta_len */
883 PTR_TO_PACKET, /* reg points to skb->data */
884 PTR_TO_PACKET_END, /* skb->data + headlen */
885 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
886 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
887 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
888 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
889 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
890 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
891 /* PTR_TO_BTF_ID points to a kernel struct that does not need
892 * to be null checked by the BPF program. This does not imply the
893 * pointer is _not_ null and in practice this can easily be a null
894 * pointer when reading pointer chains. The assumption is program
895 * context will handle null pointer dereference typically via fault
896 * handling. The verifier must keep this in mind and can make no
897 * assumptions about null or non-null when doing branch analysis.
898 * Further, when passed into helpers the helpers can not, without
899 * additional context, assume the value is non-null.
900 */
901 PTR_TO_BTF_ID,
902 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
903 * been checked for null. Used primarily to inform the verifier
904 * an explicit null check is required for this struct.
905 */
906 PTR_TO_MEM, /* reg points to valid memory region */
907 PTR_TO_ARENA,
908 PTR_TO_BUF, /* reg points to a read/write buffer */
909 PTR_TO_FUNC, /* reg points to a bpf program function */
910 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
911 __BPF_REG_TYPE_MAX,
912
913 /* Extended reg_types. */
914 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
915 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
916 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
917 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
918 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
919
920 /* This must be the last entry. Its purpose is to ensure the enum is
921 * wide enough to hold the higher bits reserved for bpf_type_flag.
922 */
923 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
924 };
925 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
926
927 /* The information passed from prog-specific *_is_valid_access
928 * back to the verifier.
929 */
930 struct bpf_insn_access_aux {
931 enum bpf_reg_type reg_type;
932 bool is_ldsx;
933 union {
934 int ctx_field_size;
935 struct {
936 struct btf *btf;
937 u32 btf_id;
938 };
939 };
940 struct bpf_verifier_log *log; /* for verbose logs */
941 bool is_retval; /* is accessing function return value ? */
942 };
943
944 static inline void
945 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
946 {
947 aux->ctx_field_size = size;
948 }
949
950 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
951 {
952 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
953 }
954
955 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
956 {
957 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
958 }
959
960 struct bpf_prog_ops {
961 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
962 union bpf_attr __user *uattr);
963 };
964
965 struct bpf_reg_state;
966 struct bpf_verifier_ops {
967 /* return eBPF function prototype for verification */
968 const struct bpf_func_proto *
969 (*get_func_proto)(enum bpf_func_id func_id,
970 const struct bpf_prog *prog);
971
972 /* return true if 'size' wide access at offset 'off' within bpf_context
973 * with 'type' (read or write) is allowed
974 */
975 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
976 const struct bpf_prog *prog,
977 struct bpf_insn_access_aux *info);
978 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
979 const struct bpf_prog *prog);
980 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
981 s16 ctx_stack_off);
982 int (*gen_ld_abs)(const struct bpf_insn *orig,
983 struct bpf_insn *insn_buf);
984 u32 (*convert_ctx_access)(enum bpf_access_type type,
985 const struct bpf_insn *src,
986 struct bpf_insn *dst,
987 struct bpf_prog *prog, u32 *target_size);
988 int (*btf_struct_access)(struct bpf_verifier_log *log,
989 const struct bpf_reg_state *reg,
990 int off, int size);
991 };
992
993 struct bpf_prog_offload_ops {
994 /* verifier basic callbacks */
995 int (*insn_hook)(struct bpf_verifier_env *env,
996 int insn_idx, int prev_insn_idx);
997 int (*finalize)(struct bpf_verifier_env *env);
998 /* verifier optimization callbacks (called after .finalize) */
999 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1000 struct bpf_insn *insn);
1001 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1002 /* program management callbacks */
1003 int (*prepare)(struct bpf_prog *prog);
1004 int (*translate)(struct bpf_prog *prog);
1005 void (*destroy)(struct bpf_prog *prog);
1006 };
1007
1008 struct bpf_prog_offload {
1009 struct bpf_prog *prog;
1010 struct net_device *netdev;
1011 struct bpf_offload_dev *offdev;
1012 void *dev_priv;
1013 struct list_head offloads;
1014 bool dev_state;
1015 bool opt_failed;
1016 void *jited_image;
1017 u32 jited_len;
1018 };
1019
1020 enum bpf_cgroup_storage_type {
1021 BPF_CGROUP_STORAGE_SHARED,
1022 BPF_CGROUP_STORAGE_PERCPU,
1023 __BPF_CGROUP_STORAGE_MAX
1024 };
1025
1026 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1027
1028 /* The longest tracepoint has 12 args.
1029 * See include/trace/bpf_probe.h
1030 */
1031 #define MAX_BPF_FUNC_ARGS 12
1032
1033 /* The maximum number of arguments passed through registers
1034 * a single function may have.
1035 */
1036 #define MAX_BPF_FUNC_REG_ARGS 5
1037
1038 /* The argument is a structure. */
1039 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1040
1041 /* The argument is signed. */
1042 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1043
1044 struct btf_func_model {
1045 u8 ret_size;
1046 u8 ret_flags;
1047 u8 nr_args;
1048 u8 arg_size[MAX_BPF_FUNC_ARGS];
1049 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1050 };
1051
1052 /* Restore arguments before returning from trampoline to let original function
1053 * continue executing. This flag is used for fentry progs when there are no
1054 * fexit progs.
1055 */
1056 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1057 /* Call original function after fentry progs, but before fexit progs.
1058 * Makes sense for fentry/fexit, normal calls and indirect calls.
1059 */
1060 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1061 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1062 * programs only. Should not be used with normal calls and indirect calls.
1063 */
1064 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1065 /* Store IP address of the caller on the trampoline stack,
1066 * so it's available for trampoline's programs.
1067 */
1068 #define BPF_TRAMP_F_IP_ARG BIT(3)
1069 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1070 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1071
1072 /* Get original function from stack instead of from provided direct address.
1073 * Makes sense for trampolines with fexit or fmod_ret programs.
1074 */
1075 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1076
1077 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1078 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1079 */
1080 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1081
1082 /* Indicate that current trampoline is in a tail call context. Then, it has to
1083 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1084 */
1085 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1086
1087 /*
1088 * Indicate the trampoline should be suitable to receive indirect calls;
1089 * without this indirectly calling the generated code can result in #UD/#CP,
1090 * depending on the CFI options.
1091 *
1092 * Used by bpf_struct_ops.
1093 *
1094 * Incompatible with FENTRY usage, overloads @func_addr argument.
1095 */
1096 #define BPF_TRAMP_F_INDIRECT BIT(8)
1097
1098 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1099 * bytes on x86.
1100 */
1101 enum {
1102 #if defined(__s390x__)
1103 BPF_MAX_TRAMP_LINKS = 27,
1104 #else
1105 BPF_MAX_TRAMP_LINKS = 38,
1106 #endif
1107 };
1108
1109 struct bpf_tramp_links {
1110 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1111 int nr_links;
1112 };
1113
1114 struct bpf_tramp_run_ctx;
1115
1116 /* Different use cases for BPF trampoline:
1117 * 1. replace nop at the function entry (kprobe equivalent)
1118 * flags = BPF_TRAMP_F_RESTORE_REGS
1119 * fentry = a set of programs to run before returning from trampoline
1120 *
1121 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1122 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1123 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1124 * fentry = a set of program to run before calling original function
1125 * fexit = a set of program to run after original function
1126 *
1127 * 3. replace direct call instruction anywhere in the function body
1128 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1129 * With flags = 0
1130 * fentry = a set of programs to run before returning from trampoline
1131 * With flags = BPF_TRAMP_F_CALL_ORIG
1132 * orig_call = original callback addr or direct function addr
1133 * fentry = a set of program to run before calling original function
1134 * fexit = a set of program to run after original function
1135 */
1136 struct bpf_tramp_image;
1137 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1138 const struct btf_func_model *m, u32 flags,
1139 struct bpf_tramp_links *tlinks,
1140 void *func_addr);
1141 void *arch_alloc_bpf_trampoline(unsigned int size);
1142 void arch_free_bpf_trampoline(void *image, unsigned int size);
1143 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1144 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1145 struct bpf_tramp_links *tlinks, void *func_addr);
1146
1147 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1148 struct bpf_tramp_run_ctx *run_ctx);
1149 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1150 struct bpf_tramp_run_ctx *run_ctx);
1151 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1152 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1153 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1154 struct bpf_tramp_run_ctx *run_ctx);
1155 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1156 struct bpf_tramp_run_ctx *run_ctx);
1157 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1158 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1159
1160 struct bpf_ksym {
1161 unsigned long start;
1162 unsigned long end;
1163 char name[KSYM_NAME_LEN];
1164 struct list_head lnode;
1165 struct latch_tree_node tnode;
1166 bool prog;
1167 };
1168
1169 enum bpf_tramp_prog_type {
1170 BPF_TRAMP_FENTRY,
1171 BPF_TRAMP_FEXIT,
1172 BPF_TRAMP_MODIFY_RETURN,
1173 BPF_TRAMP_MAX,
1174 BPF_TRAMP_REPLACE, /* more than MAX */
1175 };
1176
1177 struct bpf_tramp_image {
1178 void *image;
1179 int size;
1180 struct bpf_ksym ksym;
1181 struct percpu_ref pcref;
1182 void *ip_after_call;
1183 void *ip_epilogue;
1184 union {
1185 struct rcu_head rcu;
1186 struct work_struct work;
1187 };
1188 };
1189
1190 struct bpf_trampoline {
1191 /* hlist for trampoline_table */
1192 struct hlist_node hlist;
1193 struct ftrace_ops *fops;
1194 /* serializes access to fields of this trampoline */
1195 struct mutex mutex;
1196 refcount_t refcnt;
1197 u32 flags;
1198 u64 key;
1199 struct {
1200 struct btf_func_model model;
1201 void *addr;
1202 bool ftrace_managed;
1203 } func;
1204 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1205 * program by replacing one of its functions. func.addr is the address
1206 * of the function it replaced.
1207 */
1208 struct bpf_prog *extension_prog;
1209 /* list of BPF programs using this trampoline */
1210 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1211 /* Number of attached programs. A counter per kind. */
1212 int progs_cnt[BPF_TRAMP_MAX];
1213 /* Executable image of trampoline */
1214 struct bpf_tramp_image *cur_image;
1215 };
1216
1217 struct bpf_attach_target_info {
1218 struct btf_func_model fmodel;
1219 long tgt_addr;
1220 struct module *tgt_mod;
1221 const char *tgt_name;
1222 const struct btf_type *tgt_type;
1223 };
1224
1225 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1226
1227 struct bpf_dispatcher_prog {
1228 struct bpf_prog *prog;
1229 refcount_t users;
1230 };
1231
1232 struct bpf_dispatcher {
1233 /* dispatcher mutex */
1234 struct mutex mutex;
1235 void *func;
1236 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1237 int num_progs;
1238 void *image;
1239 void *rw_image;
1240 u32 image_off;
1241 struct bpf_ksym ksym;
1242 #ifdef CONFIG_HAVE_STATIC_CALL
1243 struct static_call_key *sc_key;
1244 void *sc_tramp;
1245 #endif
1246 };
1247
1248 #ifndef __bpfcall
1249 #define __bpfcall __nocfi
1250 #endif
1251
1252 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1253 const void *ctx,
1254 const struct bpf_insn *insnsi,
1255 bpf_func_t bpf_func)
1256 {
1257 return bpf_func(ctx, insnsi);
1258 }
1259
1260 /* the implementation of the opaque uapi struct bpf_dynptr */
1261 struct bpf_dynptr_kern {
1262 void *data;
1263 /* Size represents the number of usable bytes of dynptr data.
1264 * If for example the offset is at 4 for a local dynptr whose data is
1265 * of type u64, the number of usable bytes is 4.
1266 *
1267 * The upper 8 bits are reserved. It is as follows:
1268 * Bits 0 - 23 = size
1269 * Bits 24 - 30 = dynptr type
1270 * Bit 31 = whether dynptr is read-only
1271 */
1272 u32 size;
1273 u32 offset;
1274 } __aligned(8);
1275
1276 enum bpf_dynptr_type {
1277 BPF_DYNPTR_TYPE_INVALID,
1278 /* Points to memory that is local to the bpf program */
1279 BPF_DYNPTR_TYPE_LOCAL,
1280 /* Underlying data is a ringbuf record */
1281 BPF_DYNPTR_TYPE_RINGBUF,
1282 /* Underlying data is a sk_buff */
1283 BPF_DYNPTR_TYPE_SKB,
1284 /* Underlying data is a xdp_buff */
1285 BPF_DYNPTR_TYPE_XDP,
1286 };
1287
1288 int bpf_dynptr_check_size(u32 size);
1289 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1290 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1291 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1292 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1293
1294 #ifdef CONFIG_BPF_JIT
1295 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1296 struct bpf_trampoline *tr,
1297 struct bpf_prog *tgt_prog);
1298 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1299 struct bpf_trampoline *tr,
1300 struct bpf_prog *tgt_prog);
1301 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1302 struct bpf_attach_target_info *tgt_info);
1303 void bpf_trampoline_put(struct bpf_trampoline *tr);
1304 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1305
1306 /*
1307 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1308 * indirection with a direct call to the bpf program. If the architecture does
1309 * not have STATIC_CALL, avoid a double-indirection.
1310 */
1311 #ifdef CONFIG_HAVE_STATIC_CALL
1312
1313 #define __BPF_DISPATCHER_SC_INIT(_name) \
1314 .sc_key = &STATIC_CALL_KEY(_name), \
1315 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1316
1317 #define __BPF_DISPATCHER_SC(name) \
1318 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1319
1320 #define __BPF_DISPATCHER_CALL(name) \
1321 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1322
1323 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1324 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1325
1326 #else
1327 #define __BPF_DISPATCHER_SC_INIT(name)
1328 #define __BPF_DISPATCHER_SC(name)
1329 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1330 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1331 #endif
1332
1333 #define BPF_DISPATCHER_INIT(_name) { \
1334 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1335 .func = &_name##_func, \
1336 .progs = {}, \
1337 .num_progs = 0, \
1338 .image = NULL, \
1339 .image_off = 0, \
1340 .ksym = { \
1341 .name = #_name, \
1342 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1343 }, \
1344 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1345 }
1346
1347 #define DEFINE_BPF_DISPATCHER(name) \
1348 __BPF_DISPATCHER_SC(name); \
1349 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1350 const void *ctx, \
1351 const struct bpf_insn *insnsi, \
1352 bpf_func_t bpf_func) \
1353 { \
1354 return __BPF_DISPATCHER_CALL(name); \
1355 } \
1356 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1357 struct bpf_dispatcher bpf_dispatcher_##name = \
1358 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1359
1360 #define DECLARE_BPF_DISPATCHER(name) \
1361 unsigned int bpf_dispatcher_##name##_func( \
1362 const void *ctx, \
1363 const struct bpf_insn *insnsi, \
1364 bpf_func_t bpf_func); \
1365 extern struct bpf_dispatcher bpf_dispatcher_##name;
1366
1367 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1368 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1369 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1370 struct bpf_prog *to);
1371 /* Called only from JIT-enabled code, so there's no need for stubs. */
1372 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1373 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1374 void bpf_ksym_add(struct bpf_ksym *ksym);
1375 void bpf_ksym_del(struct bpf_ksym *ksym);
1376 int bpf_jit_charge_modmem(u32 size);
1377 void bpf_jit_uncharge_modmem(u32 size);
1378 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1379 #else
1380 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1381 struct bpf_trampoline *tr,
1382 struct bpf_prog *tgt_prog)
1383 {
1384 return -ENOTSUPP;
1385 }
1386 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1387 struct bpf_trampoline *tr,
1388 struct bpf_prog *tgt_prog)
1389 {
1390 return -ENOTSUPP;
1391 }
1392 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1393 struct bpf_attach_target_info *tgt_info)
1394 {
1395 return NULL;
1396 }
1397 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1398 #define DEFINE_BPF_DISPATCHER(name)
1399 #define DECLARE_BPF_DISPATCHER(name)
1400 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1401 #define BPF_DISPATCHER_PTR(name) NULL
1402 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1403 struct bpf_prog *from,
1404 struct bpf_prog *to) {}
1405 static inline bool is_bpf_image_address(unsigned long address)
1406 {
1407 return false;
1408 }
1409 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1410 {
1411 return false;
1412 }
1413 #endif
1414
1415 struct bpf_func_info_aux {
1416 u16 linkage;
1417 bool unreliable;
1418 bool called : 1;
1419 bool verified : 1;
1420 };
1421
1422 enum bpf_jit_poke_reason {
1423 BPF_POKE_REASON_TAIL_CALL,
1424 };
1425
1426 /* Descriptor of pokes pointing /into/ the JITed image. */
1427 struct bpf_jit_poke_descriptor {
1428 void *tailcall_target;
1429 void *tailcall_bypass;
1430 void *bypass_addr;
1431 void *aux;
1432 union {
1433 struct {
1434 struct bpf_map *map;
1435 u32 key;
1436 } tail_call;
1437 };
1438 bool tailcall_target_stable;
1439 u8 adj_off;
1440 u16 reason;
1441 u32 insn_idx;
1442 };
1443
1444 /* reg_type info for ctx arguments */
1445 struct bpf_ctx_arg_aux {
1446 u32 offset;
1447 enum bpf_reg_type reg_type;
1448 struct btf *btf;
1449 u32 btf_id;
1450 };
1451
1452 struct btf_mod_pair {
1453 struct btf *btf;
1454 struct module *module;
1455 };
1456
1457 struct bpf_kfunc_desc_tab;
1458
1459 struct bpf_prog_aux {
1460 atomic64_t refcnt;
1461 u32 used_map_cnt;
1462 u32 used_btf_cnt;
1463 u32 max_ctx_offset;
1464 u32 max_pkt_offset;
1465 u32 max_tp_access;
1466 u32 stack_depth;
1467 u32 id;
1468 u32 func_cnt; /* used by non-func prog as the number of func progs */
1469 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1470 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1471 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1472 u32 ctx_arg_info_size;
1473 u32 max_rdonly_access;
1474 u32 max_rdwr_access;
1475 struct btf *attach_btf;
1476 const struct bpf_ctx_arg_aux *ctx_arg_info;
1477 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1478 struct bpf_prog *dst_prog;
1479 struct bpf_trampoline *dst_trampoline;
1480 enum bpf_prog_type saved_dst_prog_type;
1481 enum bpf_attach_type saved_dst_attach_type;
1482 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1483 bool dev_bound; /* Program is bound to the netdev. */
1484 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1485 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1486 bool attach_tracing_prog; /* true if tracing another tracing program */
1487 bool func_proto_unreliable;
1488 bool tail_call_reachable;
1489 bool xdp_has_frags;
1490 bool exception_cb;
1491 bool exception_boundary;
1492 bool is_extended; /* true if extended by freplace program */
1493 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1494 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1495 struct bpf_arena *arena;
1496 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1497 const struct btf_type *attach_func_proto;
1498 /* function name for valid attach_btf_id */
1499 const char *attach_func_name;
1500 struct bpf_prog **func;
1501 void *jit_data; /* JIT specific data. arch dependent */
1502 struct bpf_jit_poke_descriptor *poke_tab;
1503 struct bpf_kfunc_desc_tab *kfunc_tab;
1504 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1505 u32 size_poke_tab;
1506 #ifdef CONFIG_FINEIBT
1507 struct bpf_ksym ksym_prefix;
1508 #endif
1509 struct bpf_ksym ksym;
1510 const struct bpf_prog_ops *ops;
1511 struct bpf_map **used_maps;
1512 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1513 struct btf_mod_pair *used_btfs;
1514 struct bpf_prog *prog;
1515 struct user_struct *user;
1516 u64 load_time; /* ns since boottime */
1517 u32 verified_insns;
1518 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1519 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1520 char name[BPF_OBJ_NAME_LEN];
1521 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1522 #ifdef CONFIG_SECURITY
1523 void *security;
1524 #endif
1525 struct bpf_token *token;
1526 struct bpf_prog_offload *offload;
1527 struct btf *btf;
1528 struct bpf_func_info *func_info;
1529 struct bpf_func_info_aux *func_info_aux;
1530 /* bpf_line_info loaded from userspace. linfo->insn_off
1531 * has the xlated insn offset.
1532 * Both the main and sub prog share the same linfo.
1533 * The subprog can access its first linfo by
1534 * using the linfo_idx.
1535 */
1536 struct bpf_line_info *linfo;
1537 /* jited_linfo is the jited addr of the linfo. It has a
1538 * one to one mapping to linfo:
1539 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1540 * Both the main and sub prog share the same jited_linfo.
1541 * The subprog can access its first jited_linfo by
1542 * using the linfo_idx.
1543 */
1544 void **jited_linfo;
1545 u32 func_info_cnt;
1546 u32 nr_linfo;
1547 /* subprog can use linfo_idx to access its first linfo and
1548 * jited_linfo.
1549 * main prog always has linfo_idx == 0
1550 */
1551 u32 linfo_idx;
1552 struct module *mod;
1553 u32 num_exentries;
1554 struct exception_table_entry *extable;
1555 union {
1556 struct work_struct work;
1557 struct rcu_head rcu;
1558 };
1559 };
1560
1561 struct bpf_prog {
1562 u16 pages; /* Number of allocated pages */
1563 u16 jited:1, /* Is our filter JIT'ed? */
1564 jit_requested:1,/* archs need to JIT the prog */
1565 gpl_compatible:1, /* Is filter GPL compatible? */
1566 cb_access:1, /* Is control block accessed? */
1567 dst_needed:1, /* Do we need dst entry? */
1568 blinding_requested:1, /* needs constant blinding */
1569 blinded:1, /* Was blinded */
1570 is_func:1, /* program is a bpf function */
1571 kprobe_override:1, /* Do we override a kprobe? */
1572 has_callchain_buf:1, /* callchain buffer allocated? */
1573 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1574 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1575 call_get_func_ip:1, /* Do we call get_func_ip() */
1576 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1577 sleepable:1; /* BPF program is sleepable */
1578 enum bpf_prog_type type; /* Type of BPF program */
1579 enum bpf_attach_type expected_attach_type; /* For some prog types */
1580 u32 len; /* Number of filter blocks */
1581 u32 jited_len; /* Size of jited insns in bytes */
1582 u8 tag[BPF_TAG_SIZE];
1583 struct bpf_prog_stats __percpu *stats;
1584 int __percpu *active;
1585 unsigned int (*bpf_func)(const void *ctx,
1586 const struct bpf_insn *insn);
1587 struct bpf_prog_aux *aux; /* Auxiliary fields */
1588 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1589 /* Instructions for interpreter */
1590 union {
1591 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1592 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1593 };
1594 };
1595
1596 struct bpf_array_aux {
1597 /* Programs with direct jumps into programs part of this array. */
1598 struct list_head poke_progs;
1599 struct bpf_map *map;
1600 struct mutex poke_mutex;
1601 struct work_struct work;
1602 };
1603
1604 struct bpf_link {
1605 atomic64_t refcnt;
1606 u32 id;
1607 enum bpf_link_type type;
1608 const struct bpf_link_ops *ops;
1609 struct bpf_prog *prog;
1610 /* rcu is used before freeing, work can be used to schedule that
1611 * RCU-based freeing before that, so they never overlap
1612 */
1613 union {
1614 struct rcu_head rcu;
1615 struct work_struct work;
1616 };
1617 };
1618
1619 struct bpf_link_ops {
1620 void (*release)(struct bpf_link *link);
1621 /* deallocate link resources callback, called without RCU grace period
1622 * waiting
1623 */
1624 void (*dealloc)(struct bpf_link *link);
1625 /* deallocate link resources callback, called after RCU grace period;
1626 * if underlying BPF program is sleepable we go through tasks trace
1627 * RCU GP and then "classic" RCU GP
1628 */
1629 void (*dealloc_deferred)(struct bpf_link *link);
1630 int (*detach)(struct bpf_link *link);
1631 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1632 struct bpf_prog *old_prog);
1633 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1634 int (*fill_link_info)(const struct bpf_link *link,
1635 struct bpf_link_info *info);
1636 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1637 struct bpf_map *old_map);
1638 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1639 };
1640
1641 struct bpf_tramp_link {
1642 struct bpf_link link;
1643 struct hlist_node tramp_hlist;
1644 u64 cookie;
1645 };
1646
1647 struct bpf_shim_tramp_link {
1648 struct bpf_tramp_link link;
1649 struct bpf_trampoline *trampoline;
1650 };
1651
1652 struct bpf_tracing_link {
1653 struct bpf_tramp_link link;
1654 enum bpf_attach_type attach_type;
1655 struct bpf_trampoline *trampoline;
1656 struct bpf_prog *tgt_prog;
1657 };
1658
1659 struct bpf_raw_tp_link {
1660 struct bpf_link link;
1661 struct bpf_raw_event_map *btp;
1662 u64 cookie;
1663 };
1664
1665 struct bpf_link_primer {
1666 struct bpf_link *link;
1667 struct file *file;
1668 int fd;
1669 u32 id;
1670 };
1671
1672 struct bpf_mount_opts {
1673 kuid_t uid;
1674 kgid_t gid;
1675 umode_t mode;
1676
1677 /* BPF token-related delegation options */
1678 u64 delegate_cmds;
1679 u64 delegate_maps;
1680 u64 delegate_progs;
1681 u64 delegate_attachs;
1682 };
1683
1684 struct bpf_token {
1685 struct work_struct work;
1686 atomic64_t refcnt;
1687 struct user_namespace *userns;
1688 u64 allowed_cmds;
1689 u64 allowed_maps;
1690 u64 allowed_progs;
1691 u64 allowed_attachs;
1692 #ifdef CONFIG_SECURITY
1693 void *security;
1694 #endif
1695 };
1696
1697 struct bpf_struct_ops_value;
1698 struct btf_member;
1699
1700 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1701 /**
1702 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1703 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1704 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1705 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1706 * when determining whether the struct_ops progs in the
1707 * struct_ops map are valid.
1708 * @init: A callback that is invoked a single time, and before any other
1709 * callback, to initialize the structure. A nonzero return value means
1710 * the subsystem could not be initialized.
1711 * @check_member: When defined, a callback invoked by the verifier to allow
1712 * the subsystem to determine if an entry in the struct_ops map
1713 * is valid. A nonzero return value means that the map is
1714 * invalid and should be rejected by the verifier.
1715 * @init_member: A callback that is invoked for each member of the struct_ops
1716 * map to allow the subsystem to initialize the member. A nonzero
1717 * value means the member could not be initialized. This callback
1718 * is exclusive with the @type, @type_id, @value_type, and
1719 * @value_id fields.
1720 * @reg: A callback that is invoked when the struct_ops map has been
1721 * initialized and is being attached to. Zero means the struct_ops map
1722 * has been successfully registered and is live. A nonzero return value
1723 * means the struct_ops map could not be registered.
1724 * @unreg: A callback that is invoked when the struct_ops map should be
1725 * unregistered.
1726 * @update: A callback that is invoked when the live struct_ops map is being
1727 * updated to contain new values. This callback is only invoked when
1728 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1729 * it is assumed that the struct_ops map cannot be updated.
1730 * @validate: A callback that is invoked after all of the members have been
1731 * initialized. This callback should perform static checks on the
1732 * map, meaning that it should either fail or succeed
1733 * deterministically. A struct_ops map that has been validated may
1734 * not necessarily succeed in being registered if the call to @reg
1735 * fails. For example, a valid struct_ops map may be loaded, but
1736 * then fail to be registered due to there being another active
1737 * struct_ops map on the system in the subsystem already. For this
1738 * reason, if this callback is not defined, the check is skipped as
1739 * the struct_ops map will have final verification performed in
1740 * @reg.
1741 * @type: BTF type.
1742 * @value_type: Value type.
1743 * @name: The name of the struct bpf_struct_ops object.
1744 * @func_models: Func models
1745 * @type_id: BTF type id.
1746 * @value_id: BTF value id.
1747 */
1748 struct bpf_struct_ops {
1749 const struct bpf_verifier_ops *verifier_ops;
1750 int (*init)(struct btf *btf);
1751 int (*check_member)(const struct btf_type *t,
1752 const struct btf_member *member,
1753 const struct bpf_prog *prog);
1754 int (*init_member)(const struct btf_type *t,
1755 const struct btf_member *member,
1756 void *kdata, const void *udata);
1757 int (*reg)(void *kdata, struct bpf_link *link);
1758 void (*unreg)(void *kdata, struct bpf_link *link);
1759 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1760 int (*validate)(void *kdata);
1761 void *cfi_stubs;
1762 struct module *owner;
1763 const char *name;
1764 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1765 };
1766
1767 /* Every member of a struct_ops type has an instance even a member is not
1768 * an operator (function pointer). The "info" field will be assigned to
1769 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1770 * argument information required by the verifier to verify the program.
1771 *
1772 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1773 * corresponding entry for an given argument.
1774 */
1775 struct bpf_struct_ops_arg_info {
1776 struct bpf_ctx_arg_aux *info;
1777 u32 cnt;
1778 };
1779
1780 struct bpf_struct_ops_desc {
1781 struct bpf_struct_ops *st_ops;
1782
1783 const struct btf_type *type;
1784 const struct btf_type *value_type;
1785 u32 type_id;
1786 u32 value_id;
1787
1788 /* Collection of argument information for each member */
1789 struct bpf_struct_ops_arg_info *arg_info;
1790 };
1791
1792 enum bpf_struct_ops_state {
1793 BPF_STRUCT_OPS_STATE_INIT,
1794 BPF_STRUCT_OPS_STATE_INUSE,
1795 BPF_STRUCT_OPS_STATE_TOBEFREE,
1796 BPF_STRUCT_OPS_STATE_READY,
1797 };
1798
1799 struct bpf_struct_ops_common_value {
1800 refcount_t refcnt;
1801 enum bpf_struct_ops_state state;
1802 };
1803
1804 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1805 /* This macro helps developer to register a struct_ops type and generate
1806 * type information correctly. Developers should use this macro to register
1807 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1808 */
1809 #define register_bpf_struct_ops(st_ops, type) \
1810 ({ \
1811 struct bpf_struct_ops_##type { \
1812 struct bpf_struct_ops_common_value common; \
1813 struct type data ____cacheline_aligned_in_smp; \
1814 }; \
1815 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
1816 __register_bpf_struct_ops(st_ops); \
1817 })
1818 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1819 bool bpf_struct_ops_get(const void *kdata);
1820 void bpf_struct_ops_put(const void *kdata);
1821 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1822 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1823 void *value);
1824 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1825 struct bpf_tramp_link *link,
1826 const struct btf_func_model *model,
1827 void *stub_func,
1828 void **image, u32 *image_off,
1829 bool allow_alloc);
1830 void bpf_struct_ops_image_free(void *image);
1831 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1832 {
1833 if (owner == BPF_MODULE_OWNER)
1834 return bpf_struct_ops_get(data);
1835 else
1836 return try_module_get(owner);
1837 }
1838 static inline void bpf_module_put(const void *data, struct module *owner)
1839 {
1840 if (owner == BPF_MODULE_OWNER)
1841 bpf_struct_ops_put(data);
1842 else
1843 module_put(owner);
1844 }
1845 int bpf_struct_ops_link_create(union bpf_attr *attr);
1846
1847 #ifdef CONFIG_NET
1848 /* Define it here to avoid the use of forward declaration */
1849 struct bpf_dummy_ops_state {
1850 int val;
1851 };
1852
1853 struct bpf_dummy_ops {
1854 int (*test_1)(struct bpf_dummy_ops_state *cb);
1855 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1856 char a3, unsigned long a4);
1857 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1858 };
1859
1860 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1861 union bpf_attr __user *uattr);
1862 #endif
1863 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1864 struct btf *btf,
1865 struct bpf_verifier_log *log);
1866 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1867 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1868 #else
1869 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1870 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1871 {
1872 return try_module_get(owner);
1873 }
1874 static inline void bpf_module_put(const void *data, struct module *owner)
1875 {
1876 module_put(owner);
1877 }
1878 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1879 {
1880 return -ENOTSUPP;
1881 }
1882 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1883 void *key,
1884 void *value)
1885 {
1886 return -EINVAL;
1887 }
1888 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1889 {
1890 return -EOPNOTSUPP;
1891 }
1892 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1893 {
1894 }
1895
1896 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1897 {
1898 }
1899
1900 #endif
1901
1902 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1903 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1904 int cgroup_atype);
1905 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1906 #else
1907 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1908 int cgroup_atype)
1909 {
1910 return -EOPNOTSUPP;
1911 }
1912 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1913 {
1914 }
1915 #endif
1916
1917 struct bpf_array {
1918 struct bpf_map map;
1919 u32 elem_size;
1920 u32 index_mask;
1921 struct bpf_array_aux *aux;
1922 union {
1923 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1924 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1925 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1926 };
1927 };
1928
1929 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1930 #define MAX_TAIL_CALL_CNT 33
1931
1932 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1933 * It's enum to expose it (and thus make it discoverable) through BTF.
1934 */
1935 enum {
1936 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1937 };
1938
1939 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1940 BPF_F_RDONLY_PROG | \
1941 BPF_F_WRONLY | \
1942 BPF_F_WRONLY_PROG)
1943
1944 #define BPF_MAP_CAN_READ BIT(0)
1945 #define BPF_MAP_CAN_WRITE BIT(1)
1946
1947 /* Maximum number of user-producer ring buffer samples that can be drained in
1948 * a call to bpf_user_ringbuf_drain().
1949 */
1950 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1951
1952 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1953 {
1954 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1955
1956 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1957 * not possible.
1958 */
1959 if (access_flags & BPF_F_RDONLY_PROG)
1960 return BPF_MAP_CAN_READ;
1961 else if (access_flags & BPF_F_WRONLY_PROG)
1962 return BPF_MAP_CAN_WRITE;
1963 else
1964 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1965 }
1966
1967 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1968 {
1969 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1970 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1971 }
1972
1973 struct bpf_event_entry {
1974 struct perf_event *event;
1975 struct file *perf_file;
1976 struct file *map_file;
1977 struct rcu_head rcu;
1978 };
1979
1980 static inline bool map_type_contains_progs(struct bpf_map *map)
1981 {
1982 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1983 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1984 map->map_type == BPF_MAP_TYPE_CPUMAP;
1985 }
1986
1987 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1988 int bpf_prog_calc_tag(struct bpf_prog *fp);
1989
1990 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1991 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1992
1993 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1994 unsigned long off, unsigned long len);
1995 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1996 const struct bpf_insn *src,
1997 struct bpf_insn *dst,
1998 struct bpf_prog *prog,
1999 u32 *target_size);
2000
2001 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2002 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2003
2004 /* an array of programs to be executed under rcu_lock.
2005 *
2006 * Typical usage:
2007 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2008 *
2009 * the structure returned by bpf_prog_array_alloc() should be populated
2010 * with program pointers and the last pointer must be NULL.
2011 * The user has to keep refcnt on the program and make sure the program
2012 * is removed from the array before bpf_prog_put().
2013 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2014 * since other cpus are walking the array of pointers in parallel.
2015 */
2016 struct bpf_prog_array_item {
2017 struct bpf_prog *prog;
2018 union {
2019 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2020 u64 bpf_cookie;
2021 };
2022 };
2023
2024 struct bpf_prog_array {
2025 struct rcu_head rcu;
2026 struct bpf_prog_array_item items[];
2027 };
2028
2029 struct bpf_empty_prog_array {
2030 struct bpf_prog_array hdr;
2031 struct bpf_prog *null_prog;
2032 };
2033
2034 /* to avoid allocating empty bpf_prog_array for cgroups that
2035 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2036 * It will not be modified the caller of bpf_prog_array_alloc()
2037 * (since caller requested prog_cnt == 0)
2038 * that pointer should be 'freed' by bpf_prog_array_free()
2039 */
2040 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2041
2042 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2043 void bpf_prog_array_free(struct bpf_prog_array *progs);
2044 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2045 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2046 int bpf_prog_array_length(struct bpf_prog_array *progs);
2047 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2048 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2049 __u32 __user *prog_ids, u32 cnt);
2050
2051 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2052 struct bpf_prog *old_prog);
2053 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2054 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2055 struct bpf_prog *prog);
2056 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2057 u32 *prog_ids, u32 request_cnt,
2058 u32 *prog_cnt);
2059 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2060 struct bpf_prog *exclude_prog,
2061 struct bpf_prog *include_prog,
2062 u64 bpf_cookie,
2063 struct bpf_prog_array **new_array);
2064
2065 struct bpf_run_ctx {};
2066
2067 struct bpf_cg_run_ctx {
2068 struct bpf_run_ctx run_ctx;
2069 const struct bpf_prog_array_item *prog_item;
2070 int retval;
2071 };
2072
2073 struct bpf_trace_run_ctx {
2074 struct bpf_run_ctx run_ctx;
2075 u64 bpf_cookie;
2076 bool is_uprobe;
2077 };
2078
2079 struct bpf_tramp_run_ctx {
2080 struct bpf_run_ctx run_ctx;
2081 u64 bpf_cookie;
2082 struct bpf_run_ctx *saved_run_ctx;
2083 };
2084
2085 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2086 {
2087 struct bpf_run_ctx *old_ctx = NULL;
2088
2089 #ifdef CONFIG_BPF_SYSCALL
2090 old_ctx = current->bpf_ctx;
2091 current->bpf_ctx = new_ctx;
2092 #endif
2093 return old_ctx;
2094 }
2095
2096 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2097 {
2098 #ifdef CONFIG_BPF_SYSCALL
2099 current->bpf_ctx = old_ctx;
2100 #endif
2101 }
2102
2103 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2104 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2105 /* BPF program asks to set CN on the packet. */
2106 #define BPF_RET_SET_CN (1 << 0)
2107
2108 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2109
2110 static __always_inline u32
2111 bpf_prog_run_array(const struct bpf_prog_array *array,
2112 const void *ctx, bpf_prog_run_fn run_prog)
2113 {
2114 const struct bpf_prog_array_item *item;
2115 const struct bpf_prog *prog;
2116 struct bpf_run_ctx *old_run_ctx;
2117 struct bpf_trace_run_ctx run_ctx;
2118 u32 ret = 1;
2119
2120 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2121
2122 if (unlikely(!array))
2123 return ret;
2124
2125 run_ctx.is_uprobe = false;
2126
2127 migrate_disable();
2128 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2129 item = &array->items[0];
2130 while ((prog = READ_ONCE(item->prog))) {
2131 run_ctx.bpf_cookie = item->bpf_cookie;
2132 ret &= run_prog(prog, ctx);
2133 item++;
2134 }
2135 bpf_reset_run_ctx(old_run_ctx);
2136 migrate_enable();
2137 return ret;
2138 }
2139
2140 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2141 *
2142 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2143 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2144 * in order to use the tasks_trace rcu grace period.
2145 *
2146 * When a non-sleepable program is inside the array, we take the rcu read
2147 * section and disable preemption for that program alone, so it can access
2148 * rcu-protected dynamically sized maps.
2149 */
2150 static __always_inline u32
2151 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2152 const void *ctx, bpf_prog_run_fn run_prog)
2153 {
2154 const struct bpf_prog_array_item *item;
2155 const struct bpf_prog *prog;
2156 const struct bpf_prog_array *array;
2157 struct bpf_run_ctx *old_run_ctx;
2158 struct bpf_trace_run_ctx run_ctx;
2159 u32 ret = 1;
2160
2161 might_fault();
2162
2163 rcu_read_lock_trace();
2164 migrate_disable();
2165
2166 run_ctx.is_uprobe = true;
2167
2168 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2169 if (unlikely(!array))
2170 goto out;
2171 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2172 item = &array->items[0];
2173 while ((prog = READ_ONCE(item->prog))) {
2174 if (!prog->sleepable)
2175 rcu_read_lock();
2176
2177 run_ctx.bpf_cookie = item->bpf_cookie;
2178 ret &= run_prog(prog, ctx);
2179 item++;
2180
2181 if (!prog->sleepable)
2182 rcu_read_unlock();
2183 }
2184 bpf_reset_run_ctx(old_run_ctx);
2185 out:
2186 migrate_enable();
2187 rcu_read_unlock_trace();
2188 return ret;
2189 }
2190
2191 #ifdef CONFIG_BPF_SYSCALL
2192 DECLARE_PER_CPU(int, bpf_prog_active);
2193 extern struct mutex bpf_stats_enabled_mutex;
2194
2195 /*
2196 * Block execution of BPF programs attached to instrumentation (perf,
2197 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2198 * these events can happen inside a region which holds a map bucket lock
2199 * and can deadlock on it.
2200 */
2201 static inline void bpf_disable_instrumentation(void)
2202 {
2203 migrate_disable();
2204 this_cpu_inc(bpf_prog_active);
2205 }
2206
2207 static inline void bpf_enable_instrumentation(void)
2208 {
2209 this_cpu_dec(bpf_prog_active);
2210 migrate_enable();
2211 }
2212
2213 extern const struct super_operations bpf_super_ops;
2214 extern const struct file_operations bpf_map_fops;
2215 extern const struct file_operations bpf_prog_fops;
2216 extern const struct file_operations bpf_iter_fops;
2217
2218 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2219 extern const struct bpf_prog_ops _name ## _prog_ops; \
2220 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2221 #define BPF_MAP_TYPE(_id, _ops) \
2222 extern const struct bpf_map_ops _ops;
2223 #define BPF_LINK_TYPE(_id, _name)
2224 #include <linux/bpf_types.h>
2225 #undef BPF_PROG_TYPE
2226 #undef BPF_MAP_TYPE
2227 #undef BPF_LINK_TYPE
2228
2229 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2230 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2231 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2232
2233 struct bpf_prog *bpf_prog_get(u32 ufd);
2234 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2235 bool attach_drv);
2236 void bpf_prog_add(struct bpf_prog *prog, int i);
2237 void bpf_prog_sub(struct bpf_prog *prog, int i);
2238 void bpf_prog_inc(struct bpf_prog *prog);
2239 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2240 void bpf_prog_put(struct bpf_prog *prog);
2241
2242 void bpf_prog_free_id(struct bpf_prog *prog);
2243 void bpf_map_free_id(struct bpf_map *map);
2244
2245 struct btf_field *btf_record_find(const struct btf_record *rec,
2246 u32 offset, u32 field_mask);
2247 void btf_record_free(struct btf_record *rec);
2248 void bpf_map_free_record(struct bpf_map *map);
2249 struct btf_record *btf_record_dup(const struct btf_record *rec);
2250 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2251 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2252 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2253 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2254 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2255
2256 struct bpf_map *bpf_map_get(u32 ufd);
2257 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2258
2259 static inline struct bpf_map *__bpf_map_get(struct fd f)
2260 {
2261 if (fd_empty(f))
2262 return ERR_PTR(-EBADF);
2263 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2264 return ERR_PTR(-EINVAL);
2265 return fd_file(f)->private_data;
2266 }
2267
2268 void bpf_map_inc(struct bpf_map *map);
2269 void bpf_map_inc_with_uref(struct bpf_map *map);
2270 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2271 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2272 void bpf_map_put_with_uref(struct bpf_map *map);
2273 void bpf_map_put(struct bpf_map *map);
2274 void *bpf_map_area_alloc(u64 size, int numa_node);
2275 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2276 void bpf_map_area_free(void *base);
2277 bool bpf_map_write_active(const struct bpf_map *map);
2278 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2279 int generic_map_lookup_batch(struct bpf_map *map,
2280 const union bpf_attr *attr,
2281 union bpf_attr __user *uattr);
2282 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2283 const union bpf_attr *attr,
2284 union bpf_attr __user *uattr);
2285 int generic_map_delete_batch(struct bpf_map *map,
2286 const union bpf_attr *attr,
2287 union bpf_attr __user *uattr);
2288 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2289 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2290
2291 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2292 unsigned long nr_pages, struct page **page_array);
2293 #ifdef CONFIG_MEMCG
2294 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2295 int node);
2296 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2297 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2298 gfp_t flags);
2299 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2300 size_t align, gfp_t flags);
2301 #else
2302 /*
2303 * These specialized allocators have to be macros for their allocations to be
2304 * accounted separately (to have separate alloc_tag).
2305 */
2306 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2307 kmalloc_node(_size, _flags, _node)
2308 #define bpf_map_kzalloc(_map, _size, _flags) \
2309 kzalloc(_size, _flags)
2310 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2311 kvcalloc(_n, _size, _flags)
2312 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2313 __alloc_percpu_gfp(_size, _align, _flags)
2314 #endif
2315
2316 static inline int
2317 bpf_map_init_elem_count(struct bpf_map *map)
2318 {
2319 size_t size = sizeof(*map->elem_count), align = size;
2320 gfp_t flags = GFP_USER | __GFP_NOWARN;
2321
2322 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2323 if (!map->elem_count)
2324 return -ENOMEM;
2325
2326 return 0;
2327 }
2328
2329 static inline void
2330 bpf_map_free_elem_count(struct bpf_map *map)
2331 {
2332 free_percpu(map->elem_count);
2333 }
2334
2335 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2336 {
2337 this_cpu_inc(*map->elem_count);
2338 }
2339
2340 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2341 {
2342 this_cpu_dec(*map->elem_count);
2343 }
2344
2345 extern int sysctl_unprivileged_bpf_disabled;
2346
2347 bool bpf_token_capable(const struct bpf_token *token, int cap);
2348
2349 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2350 {
2351 return bpf_token_capable(token, CAP_PERFMON);
2352 }
2353
2354 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2355 {
2356 return bpf_token_capable(token, CAP_PERFMON);
2357 }
2358
2359 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2360 {
2361 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2362 }
2363
2364 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2365 {
2366 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2367 }
2368
2369 int bpf_map_new_fd(struct bpf_map *map, int flags);
2370 int bpf_prog_new_fd(struct bpf_prog *prog);
2371
2372 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2373 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2374 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2375 int bpf_link_settle(struct bpf_link_primer *primer);
2376 void bpf_link_cleanup(struct bpf_link_primer *primer);
2377 void bpf_link_inc(struct bpf_link *link);
2378 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2379 void bpf_link_put(struct bpf_link *link);
2380 int bpf_link_new_fd(struct bpf_link *link);
2381 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2382 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2383
2384 void bpf_token_inc(struct bpf_token *token);
2385 void bpf_token_put(struct bpf_token *token);
2386 int bpf_token_create(union bpf_attr *attr);
2387 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2388
2389 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2390 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2391 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2392 enum bpf_prog_type prog_type,
2393 enum bpf_attach_type attach_type);
2394
2395 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2396 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2397 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2398 umode_t mode);
2399
2400 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2401 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2402 extern int bpf_iter_ ## target(args); \
2403 int __init bpf_iter_ ## target(args) { return 0; }
2404
2405 /*
2406 * The task type of iterators.
2407 *
2408 * For BPF task iterators, they can be parameterized with various
2409 * parameters to visit only some of tasks.
2410 *
2411 * BPF_TASK_ITER_ALL (default)
2412 * Iterate over resources of every task.
2413 *
2414 * BPF_TASK_ITER_TID
2415 * Iterate over resources of a task/tid.
2416 *
2417 * BPF_TASK_ITER_TGID
2418 * Iterate over resources of every task of a process / task group.
2419 */
2420 enum bpf_iter_task_type {
2421 BPF_TASK_ITER_ALL = 0,
2422 BPF_TASK_ITER_TID,
2423 BPF_TASK_ITER_TGID,
2424 };
2425
2426 struct bpf_iter_aux_info {
2427 /* for map_elem iter */
2428 struct bpf_map *map;
2429
2430 /* for cgroup iter */
2431 struct {
2432 struct cgroup *start; /* starting cgroup */
2433 enum bpf_cgroup_iter_order order;
2434 } cgroup;
2435 struct {
2436 enum bpf_iter_task_type type;
2437 u32 pid;
2438 } task;
2439 };
2440
2441 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2442 union bpf_iter_link_info *linfo,
2443 struct bpf_iter_aux_info *aux);
2444 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2445 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2446 struct seq_file *seq);
2447 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2448 struct bpf_link_info *info);
2449 typedef const struct bpf_func_proto *
2450 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2451 const struct bpf_prog *prog);
2452
2453 enum bpf_iter_feature {
2454 BPF_ITER_RESCHED = BIT(0),
2455 };
2456
2457 #define BPF_ITER_CTX_ARG_MAX 2
2458 struct bpf_iter_reg {
2459 const char *target;
2460 bpf_iter_attach_target_t attach_target;
2461 bpf_iter_detach_target_t detach_target;
2462 bpf_iter_show_fdinfo_t show_fdinfo;
2463 bpf_iter_fill_link_info_t fill_link_info;
2464 bpf_iter_get_func_proto_t get_func_proto;
2465 u32 ctx_arg_info_size;
2466 u32 feature;
2467 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2468 const struct bpf_iter_seq_info *seq_info;
2469 };
2470
2471 struct bpf_iter_meta {
2472 __bpf_md_ptr(struct seq_file *, seq);
2473 u64 session_id;
2474 u64 seq_num;
2475 };
2476
2477 struct bpf_iter__bpf_map_elem {
2478 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2479 __bpf_md_ptr(struct bpf_map *, map);
2480 __bpf_md_ptr(void *, key);
2481 __bpf_md_ptr(void *, value);
2482 };
2483
2484 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2485 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2486 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2487 const struct bpf_func_proto *
2488 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2489 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2490 int bpf_iter_new_fd(struct bpf_link *link);
2491 bool bpf_link_is_iter(struct bpf_link *link);
2492 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2493 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2494 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2495 struct seq_file *seq);
2496 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2497 struct bpf_link_info *info);
2498
2499 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2500 struct bpf_func_state *caller,
2501 struct bpf_func_state *callee);
2502
2503 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2504 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2505 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2506 u64 flags);
2507 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2508 u64 flags);
2509
2510 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2511
2512 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2513 void *key, void *value, u64 map_flags);
2514 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2515 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2516 void *key, void *value, u64 map_flags);
2517 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2518
2519 int bpf_get_file_flag(int flags);
2520 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2521 size_t actual_size);
2522
2523 /* verify correctness of eBPF program */
2524 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2525
2526 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2527 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2528 #endif
2529
2530 struct btf *bpf_get_btf_vmlinux(void);
2531
2532 /* Map specifics */
2533 struct xdp_frame;
2534 struct sk_buff;
2535 struct bpf_dtab_netdev;
2536 struct bpf_cpu_map_entry;
2537
2538 void __dev_flush(struct list_head *flush_list);
2539 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2540 struct net_device *dev_rx);
2541 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2542 struct net_device *dev_rx);
2543 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2544 struct bpf_map *map, bool exclude_ingress);
2545 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2546 struct bpf_prog *xdp_prog);
2547 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2548 struct bpf_prog *xdp_prog, struct bpf_map *map,
2549 bool exclude_ingress);
2550
2551 void __cpu_map_flush(struct list_head *flush_list);
2552 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2553 struct net_device *dev_rx);
2554 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2555 struct sk_buff *skb);
2556
2557 /* Return map's numa specified by userspace */
2558 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2559 {
2560 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2561 attr->numa_node : NUMA_NO_NODE;
2562 }
2563
2564 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2565 int array_map_alloc_check(union bpf_attr *attr);
2566
2567 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2568 union bpf_attr __user *uattr);
2569 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2570 union bpf_attr __user *uattr);
2571 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2572 const union bpf_attr *kattr,
2573 union bpf_attr __user *uattr);
2574 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2575 const union bpf_attr *kattr,
2576 union bpf_attr __user *uattr);
2577 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2578 const union bpf_attr *kattr,
2579 union bpf_attr __user *uattr);
2580 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2581 const union bpf_attr *kattr,
2582 union bpf_attr __user *uattr);
2583 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2584 const union bpf_attr *kattr,
2585 union bpf_attr __user *uattr);
2586 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2587 const struct bpf_prog *prog,
2588 struct bpf_insn_access_aux *info);
2589
2590 static inline bool bpf_tracing_ctx_access(int off, int size,
2591 enum bpf_access_type type)
2592 {
2593 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2594 return false;
2595 if (type != BPF_READ)
2596 return false;
2597 if (off % size != 0)
2598 return false;
2599 return true;
2600 }
2601
2602 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2603 enum bpf_access_type type,
2604 const struct bpf_prog *prog,
2605 struct bpf_insn_access_aux *info)
2606 {
2607 if (!bpf_tracing_ctx_access(off, size, type))
2608 return false;
2609 return btf_ctx_access(off, size, type, prog, info);
2610 }
2611
2612 int btf_struct_access(struct bpf_verifier_log *log,
2613 const struct bpf_reg_state *reg,
2614 int off, int size, enum bpf_access_type atype,
2615 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2616 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2617 const struct btf *btf, u32 id, int off,
2618 const struct btf *need_btf, u32 need_type_id,
2619 bool strict);
2620
2621 int btf_distill_func_proto(struct bpf_verifier_log *log,
2622 struct btf *btf,
2623 const struct btf_type *func_proto,
2624 const char *func_name,
2625 struct btf_func_model *m);
2626
2627 struct bpf_reg_state;
2628 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2629 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2630 struct btf *btf, const struct btf_type *t);
2631 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2632 int comp_idx, const char *tag_key);
2633 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2634 int comp_idx, const char *tag_key, int last_id);
2635
2636 struct bpf_prog *bpf_prog_by_id(u32 id);
2637 struct bpf_link *bpf_link_by_id(u32 id);
2638
2639 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2640 const struct bpf_prog *prog);
2641 void bpf_task_storage_free(struct task_struct *task);
2642 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2643 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2644 const struct btf_func_model *
2645 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2646 const struct bpf_insn *insn);
2647 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2648 u16 btf_fd_idx, u8 **func_addr);
2649
2650 struct bpf_core_ctx {
2651 struct bpf_verifier_log *log;
2652 const struct btf *btf;
2653 };
2654
2655 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2656 const struct bpf_reg_state *reg,
2657 const char *field_name, u32 btf_id, const char *suffix);
2658
2659 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2660 const struct btf *reg_btf, u32 reg_id,
2661 const struct btf *arg_btf, u32 arg_id);
2662
2663 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2664 int relo_idx, void *insn);
2665
2666 static inline bool unprivileged_ebpf_enabled(void)
2667 {
2668 return !sysctl_unprivileged_bpf_disabled;
2669 }
2670
2671 /* Not all bpf prog type has the bpf_ctx.
2672 * For the bpf prog type that has initialized the bpf_ctx,
2673 * this function can be used to decide if a kernel function
2674 * is called by a bpf program.
2675 */
2676 static inline bool has_current_bpf_ctx(void)
2677 {
2678 return !!current->bpf_ctx;
2679 }
2680
2681 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2682
2683 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2684 enum bpf_dynptr_type type, u32 offset, u32 size);
2685 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2686 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2687
2688 #else /* !CONFIG_BPF_SYSCALL */
2689 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2690 {
2691 return ERR_PTR(-EOPNOTSUPP);
2692 }
2693
2694 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2695 enum bpf_prog_type type,
2696 bool attach_drv)
2697 {
2698 return ERR_PTR(-EOPNOTSUPP);
2699 }
2700
2701 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2702 {
2703 }
2704
2705 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2706 {
2707 }
2708
2709 static inline void bpf_prog_put(struct bpf_prog *prog)
2710 {
2711 }
2712
2713 static inline void bpf_prog_inc(struct bpf_prog *prog)
2714 {
2715 }
2716
2717 static inline struct bpf_prog *__must_check
2718 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2719 {
2720 return ERR_PTR(-EOPNOTSUPP);
2721 }
2722
2723 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2724 const struct bpf_link_ops *ops,
2725 struct bpf_prog *prog)
2726 {
2727 }
2728
2729 static inline int bpf_link_prime(struct bpf_link *link,
2730 struct bpf_link_primer *primer)
2731 {
2732 return -EOPNOTSUPP;
2733 }
2734
2735 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2736 {
2737 return -EOPNOTSUPP;
2738 }
2739
2740 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2741 {
2742 }
2743
2744 static inline void bpf_link_inc(struct bpf_link *link)
2745 {
2746 }
2747
2748 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2749 {
2750 return NULL;
2751 }
2752
2753 static inline void bpf_link_put(struct bpf_link *link)
2754 {
2755 }
2756
2757 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2758 {
2759 return -EOPNOTSUPP;
2760 }
2761
2762 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2763 {
2764 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2765 }
2766
2767 static inline void bpf_token_inc(struct bpf_token *token)
2768 {
2769 }
2770
2771 static inline void bpf_token_put(struct bpf_token *token)
2772 {
2773 }
2774
2775 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2776 {
2777 return ERR_PTR(-EOPNOTSUPP);
2778 }
2779
2780 static inline void __dev_flush(struct list_head *flush_list)
2781 {
2782 }
2783
2784 struct xdp_frame;
2785 struct bpf_dtab_netdev;
2786 struct bpf_cpu_map_entry;
2787
2788 static inline
2789 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2790 struct net_device *dev_rx)
2791 {
2792 return 0;
2793 }
2794
2795 static inline
2796 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2797 struct net_device *dev_rx)
2798 {
2799 return 0;
2800 }
2801
2802 static inline
2803 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2804 struct bpf_map *map, bool exclude_ingress)
2805 {
2806 return 0;
2807 }
2808
2809 struct sk_buff;
2810
2811 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2812 struct sk_buff *skb,
2813 struct bpf_prog *xdp_prog)
2814 {
2815 return 0;
2816 }
2817
2818 static inline
2819 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2820 struct bpf_prog *xdp_prog, struct bpf_map *map,
2821 bool exclude_ingress)
2822 {
2823 return 0;
2824 }
2825
2826 static inline void __cpu_map_flush(struct list_head *flush_list)
2827 {
2828 }
2829
2830 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2831 struct xdp_frame *xdpf,
2832 struct net_device *dev_rx)
2833 {
2834 return 0;
2835 }
2836
2837 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2838 struct sk_buff *skb)
2839 {
2840 return -EOPNOTSUPP;
2841 }
2842
2843 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2844 enum bpf_prog_type type)
2845 {
2846 return ERR_PTR(-EOPNOTSUPP);
2847 }
2848
2849 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2850 const union bpf_attr *kattr,
2851 union bpf_attr __user *uattr)
2852 {
2853 return -ENOTSUPP;
2854 }
2855
2856 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2857 const union bpf_attr *kattr,
2858 union bpf_attr __user *uattr)
2859 {
2860 return -ENOTSUPP;
2861 }
2862
2863 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2864 const union bpf_attr *kattr,
2865 union bpf_attr __user *uattr)
2866 {
2867 return -ENOTSUPP;
2868 }
2869
2870 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2871 const union bpf_attr *kattr,
2872 union bpf_attr __user *uattr)
2873 {
2874 return -ENOTSUPP;
2875 }
2876
2877 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2878 const union bpf_attr *kattr,
2879 union bpf_attr __user *uattr)
2880 {
2881 return -ENOTSUPP;
2882 }
2883
2884 static inline void bpf_map_put(struct bpf_map *map)
2885 {
2886 }
2887
2888 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2889 {
2890 return ERR_PTR(-ENOTSUPP);
2891 }
2892
2893 static inline int btf_struct_access(struct bpf_verifier_log *log,
2894 const struct bpf_reg_state *reg,
2895 int off, int size, enum bpf_access_type atype,
2896 u32 *next_btf_id, enum bpf_type_flag *flag,
2897 const char **field_name)
2898 {
2899 return -EACCES;
2900 }
2901
2902 static inline const struct bpf_func_proto *
2903 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2904 {
2905 return NULL;
2906 }
2907
2908 static inline void bpf_task_storage_free(struct task_struct *task)
2909 {
2910 }
2911
2912 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2913 {
2914 return false;
2915 }
2916
2917 static inline const struct btf_func_model *
2918 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2919 const struct bpf_insn *insn)
2920 {
2921 return NULL;
2922 }
2923
2924 static inline int
2925 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2926 u16 btf_fd_idx, u8 **func_addr)
2927 {
2928 return -ENOTSUPP;
2929 }
2930
2931 static inline bool unprivileged_ebpf_enabled(void)
2932 {
2933 return false;
2934 }
2935
2936 static inline bool has_current_bpf_ctx(void)
2937 {
2938 return false;
2939 }
2940
2941 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2942 {
2943 }
2944
2945 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2946 {
2947 }
2948
2949 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2950 enum bpf_dynptr_type type, u32 offset, u32 size)
2951 {
2952 }
2953
2954 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2955 {
2956 }
2957
2958 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2959 {
2960 }
2961 #endif /* CONFIG_BPF_SYSCALL */
2962
2963 static __always_inline int
2964 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2965 {
2966 int ret = -EFAULT;
2967
2968 if (IS_ENABLED(CONFIG_BPF_EVENTS))
2969 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2970 if (unlikely(ret < 0))
2971 memset(dst, 0, size);
2972 return ret;
2973 }
2974
2975 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
2976
2977 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2978 enum bpf_prog_type type)
2979 {
2980 return bpf_prog_get_type_dev(ufd, type, false);
2981 }
2982
2983 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2984 struct bpf_map **used_maps, u32 len);
2985
2986 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2987
2988 int bpf_prog_offload_compile(struct bpf_prog *prog);
2989 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2990 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2991 struct bpf_prog *prog);
2992
2993 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2994
2995 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2996 int bpf_map_offload_update_elem(struct bpf_map *map,
2997 void *key, void *value, u64 flags);
2998 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2999 int bpf_map_offload_get_next_key(struct bpf_map *map,
3000 void *key, void *next_key);
3001
3002 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3003
3004 struct bpf_offload_dev *
3005 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3006 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3007 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3008 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3009 struct net_device *netdev);
3010 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3011 struct net_device *netdev);
3012 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3013
3014 void unpriv_ebpf_notify(int new_state);
3015
3016 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3017 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3018 struct bpf_prog_aux *prog_aux);
3019 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3020 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3021 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3022 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3023
3024 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3025 {
3026 return aux->dev_bound;
3027 }
3028
3029 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3030 {
3031 return aux->offload_requested;
3032 }
3033
3034 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3035
3036 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3037 {
3038 return unlikely(map->ops == &bpf_map_offload_ops);
3039 }
3040
3041 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3042 void bpf_map_offload_map_free(struct bpf_map *map);
3043 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3044 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3045 const union bpf_attr *kattr,
3046 union bpf_attr __user *uattr);
3047
3048 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3049 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3050 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3051 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3052 union bpf_attr __user *uattr);
3053 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3054
3055 void sock_map_unhash(struct sock *sk);
3056 void sock_map_destroy(struct sock *sk);
3057 void sock_map_close(struct sock *sk, long timeout);
3058 #else
3059 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3060 struct bpf_prog_aux *prog_aux)
3061 {
3062 return -EOPNOTSUPP;
3063 }
3064
3065 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3066 u32 func_id)
3067 {
3068 return NULL;
3069 }
3070
3071 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3072 union bpf_attr *attr)
3073 {
3074 return -EOPNOTSUPP;
3075 }
3076
3077 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3078 struct bpf_prog *old_prog)
3079 {
3080 return -EOPNOTSUPP;
3081 }
3082
3083 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3084 {
3085 }
3086
3087 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3088 {
3089 return false;
3090 }
3091
3092 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3093 {
3094 return false;
3095 }
3096
3097 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3098 {
3099 return false;
3100 }
3101
3102 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3103 {
3104 return false;
3105 }
3106
3107 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3108 {
3109 return ERR_PTR(-EOPNOTSUPP);
3110 }
3111
3112 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3113 {
3114 }
3115
3116 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3117 {
3118 return 0;
3119 }
3120
3121 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3122 const union bpf_attr *kattr,
3123 union bpf_attr __user *uattr)
3124 {
3125 return -ENOTSUPP;
3126 }
3127
3128 #ifdef CONFIG_BPF_SYSCALL
3129 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3130 struct bpf_prog *prog)
3131 {
3132 return -EINVAL;
3133 }
3134
3135 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3136 enum bpf_prog_type ptype)
3137 {
3138 return -EOPNOTSUPP;
3139 }
3140
3141 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3142 u64 flags)
3143 {
3144 return -EOPNOTSUPP;
3145 }
3146
3147 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3148 union bpf_attr __user *uattr)
3149 {
3150 return -EINVAL;
3151 }
3152
3153 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3154 {
3155 return -EOPNOTSUPP;
3156 }
3157 #endif /* CONFIG_BPF_SYSCALL */
3158 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3159
3160 static __always_inline void
3161 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3162 {
3163 const struct bpf_prog_array_item *item;
3164 struct bpf_prog *prog;
3165
3166 if (unlikely(!array))
3167 return;
3168
3169 item = &array->items[0];
3170 while ((prog = READ_ONCE(item->prog))) {
3171 bpf_prog_inc_misses_counter(prog);
3172 item++;
3173 }
3174 }
3175
3176 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3177 void bpf_sk_reuseport_detach(struct sock *sk);
3178 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3179 void *value);
3180 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3181 void *value, u64 map_flags);
3182 #else
3183 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3184 {
3185 }
3186
3187 #ifdef CONFIG_BPF_SYSCALL
3188 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3189 void *key, void *value)
3190 {
3191 return -EOPNOTSUPP;
3192 }
3193
3194 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3195 void *key, void *value,
3196 u64 map_flags)
3197 {
3198 return -EOPNOTSUPP;
3199 }
3200 #endif /* CONFIG_BPF_SYSCALL */
3201 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3202
3203 /* verifier prototypes for helper functions called from eBPF programs */
3204 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3205 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3206 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3207 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3208 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3209 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3210 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3211
3212 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3213 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3214 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3215 extern const struct bpf_func_proto bpf_tail_call_proto;
3216 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3217 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3218 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3219 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3220 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3221 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3222 extern const struct bpf_func_proto bpf_get_stackid_proto;
3223 extern const struct bpf_func_proto bpf_get_stack_proto;
3224 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3225 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3226 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3227 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3228 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3229 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3230 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3231 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3232 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3233 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3234 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3235 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3236 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3237 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3238 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3239 extern const struct bpf_func_proto bpf_spin_lock_proto;
3240 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3241 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3242 extern const struct bpf_func_proto bpf_strtol_proto;
3243 extern const struct bpf_func_proto bpf_strtoul_proto;
3244 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3245 extern const struct bpf_func_proto bpf_jiffies64_proto;
3246 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3247 extern const struct bpf_func_proto bpf_event_output_data_proto;
3248 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3249 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3250 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3251 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3252 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3253 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3254 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3255 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3256 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3257 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3258 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3259 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3260 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3261 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3262 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3263 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3264 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3265 extern const struct bpf_func_proto bpf_snprintf_proto;
3266 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3267 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3268 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3269 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3270 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3271 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3272 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3273 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3274 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3275 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3276 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3277 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3278 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3279 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3280 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3281 extern const struct bpf_func_proto bpf_find_vma_proto;
3282 extern const struct bpf_func_proto bpf_loop_proto;
3283 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3284 extern const struct bpf_func_proto bpf_set_retval_proto;
3285 extern const struct bpf_func_proto bpf_get_retval_proto;
3286 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3287 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3288 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3289
3290 const struct bpf_func_proto *tracing_prog_func_proto(
3291 enum bpf_func_id func_id, const struct bpf_prog *prog);
3292
3293 /* Shared helpers among cBPF and eBPF. */
3294 void bpf_user_rnd_init_once(void);
3295 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3296 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3297
3298 #if defined(CONFIG_NET)
3299 bool bpf_sock_common_is_valid_access(int off, int size,
3300 enum bpf_access_type type,
3301 struct bpf_insn_access_aux *info);
3302 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3303 struct bpf_insn_access_aux *info);
3304 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3305 const struct bpf_insn *si,
3306 struct bpf_insn *insn_buf,
3307 struct bpf_prog *prog,
3308 u32 *target_size);
3309 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3310 struct bpf_dynptr *ptr);
3311 #else
3312 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3313 enum bpf_access_type type,
3314 struct bpf_insn_access_aux *info)
3315 {
3316 return false;
3317 }
3318 static inline bool bpf_sock_is_valid_access(int off, int size,
3319 enum bpf_access_type type,
3320 struct bpf_insn_access_aux *info)
3321 {
3322 return false;
3323 }
3324 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3325 const struct bpf_insn *si,
3326 struct bpf_insn *insn_buf,
3327 struct bpf_prog *prog,
3328 u32 *target_size)
3329 {
3330 return 0;
3331 }
3332 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3333 struct bpf_dynptr *ptr)
3334 {
3335 return -EOPNOTSUPP;
3336 }
3337 #endif
3338
3339 #ifdef CONFIG_INET
3340 struct sk_reuseport_kern {
3341 struct sk_buff *skb;
3342 struct sock *sk;
3343 struct sock *selected_sk;
3344 struct sock *migrating_sk;
3345 void *data_end;
3346 u32 hash;
3347 u32 reuseport_id;
3348 bool bind_inany;
3349 };
3350 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3351 struct bpf_insn_access_aux *info);
3352
3353 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3354 const struct bpf_insn *si,
3355 struct bpf_insn *insn_buf,
3356 struct bpf_prog *prog,
3357 u32 *target_size);
3358
3359 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3360 struct bpf_insn_access_aux *info);
3361
3362 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3363 const struct bpf_insn *si,
3364 struct bpf_insn *insn_buf,
3365 struct bpf_prog *prog,
3366 u32 *target_size);
3367 #else
3368 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3369 enum bpf_access_type type,
3370 struct bpf_insn_access_aux *info)
3371 {
3372 return false;
3373 }
3374
3375 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3376 const struct bpf_insn *si,
3377 struct bpf_insn *insn_buf,
3378 struct bpf_prog *prog,
3379 u32 *target_size)
3380 {
3381 return 0;
3382 }
3383 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3384 enum bpf_access_type type,
3385 struct bpf_insn_access_aux *info)
3386 {
3387 return false;
3388 }
3389
3390 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3391 const struct bpf_insn *si,
3392 struct bpf_insn *insn_buf,
3393 struct bpf_prog *prog,
3394 u32 *target_size)
3395 {
3396 return 0;
3397 }
3398 #endif /* CONFIG_INET */
3399
3400 enum bpf_text_poke_type {
3401 BPF_MOD_CALL,
3402 BPF_MOD_JUMP,
3403 };
3404
3405 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3406 void *addr1, void *addr2);
3407
3408 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3409 struct bpf_prog *new, struct bpf_prog *old);
3410
3411 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3412 int bpf_arch_text_invalidate(void *dst, size_t len);
3413
3414 struct btf_id_set;
3415 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3416
3417 #define MAX_BPRINTF_VARARGS 12
3418 #define MAX_BPRINTF_BUF 1024
3419
3420 struct bpf_bprintf_data {
3421 u32 *bin_args;
3422 char *buf;
3423 bool get_bin_args;
3424 bool get_buf;
3425 };
3426
3427 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3428 u32 num_args, struct bpf_bprintf_data *data);
3429 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3430
3431 #ifdef CONFIG_BPF_LSM
3432 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3433 void bpf_cgroup_atype_put(int cgroup_atype);
3434 #else
3435 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3436 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3437 #endif /* CONFIG_BPF_LSM */
3438
3439 struct key;
3440
3441 #ifdef CONFIG_KEYS
3442 struct bpf_key {
3443 struct key *key;
3444 bool has_ref;
3445 };
3446 #endif /* CONFIG_KEYS */
3447
3448 static inline bool type_is_alloc(u32 type)
3449 {
3450 return type & MEM_ALLOC;
3451 }
3452
3453 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3454 {
3455 if (memcg_bpf_enabled())
3456 return flags | __GFP_ACCOUNT;
3457 return flags;
3458 }
3459
3460 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3461 {
3462 return prog->aux->func_idx != 0;
3463 }
3464
3465 #endif /* _LINUX_BPF_H */