]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob
1200192
[thirdparty/kernel/linux.git] /
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65
66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
70
71 /*
72 * To avoid confusing the compiler (and generating warnings) with code
73 * that attempts to access what would be a 0-element array (i.e. sized
74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75 * constant expression can be added.
76 */
77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
78
79 /*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
82 *
83 * css_set_lock protects task->cgroups pointer, the list of css_set
84 * objects, and the chain of tasks off each css_set.
85 *
86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87 * cgroup.h can use them for lockdep annotations.
88 */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100
101 /*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107 /*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114
115 #define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120 /*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126 static struct workqueue_struct *cgroup_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168
169 /*
170 * The default hierarchy always exists but is hidden until mounted for the
171 * first time. This is for backward compatibility.
172 */
173 static bool cgrp_dfl_visible;
174
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190
191 /*
192 * Assign a monotonically increasing serial number to csses. It guarantees
193 * cgroups with bigger numbers are newer than those with smaller numbers.
194 * Also, as csses are always appended to the parent's ->children list, it
195 * guarantees that sibling csses are always sorted in the ascending serial
196 * number order on the list. Protected by cgroup_mutex.
197 */
198 static u64 css_serial_nr_next = 1;
199
200 /*
201 * These bitmasks identify subsystems with specific features to avoid
202 * having to do iterative checks repeatedly.
203 */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 .ns.count = REFCOUNT_INIT(2),
212 .user_ns = &init_user_ns,
213 .ns.ops = &cgroupns_operations,
214 .ns.inum = PROC_CGROUP_INIT_INO,
215 .root_cset = &init_css_set,
216 };
217
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 static struct cftype cgroup_psi_files[];
221
222 /* cgroup optional features */
223 enum cgroup_opt_features {
224 #ifdef CONFIG_PSI
225 OPT_FEATURE_PRESSURE,
226 #endif
227 OPT_FEATURE_COUNT
228 };
229
230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
231 #ifdef CONFIG_PSI
232 "pressure",
233 #endif
234 };
235
236 static u16 cgroup_feature_disable_mask __read_mostly;
237
238 static int cgroup_apply_control(struct cgroup *cgrp);
239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
240 static void css_task_iter_skip(struct css_task_iter *it,
241 struct task_struct *task);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
249 bool is_add);
250
251 /**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259 bool cgroup_ssid_enabled(int ssid)
260 {
261 if (!CGROUP_HAS_SUBSYS_CONFIG)
262 return false;
263
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265 }
266
267 /**
268 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
269 * @cgrp: the cgroup of interest
270 *
271 * The default hierarchy is the v2 interface of cgroup and this function
272 * can be used to test whether a cgroup is on the default hierarchy for
273 * cases where a subsystem should behave differently depending on the
274 * interface version.
275 *
276 * List of changed behaviors:
277 *
278 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
279 * and "name" are disallowed.
280 *
281 * - When mounting an existing superblock, mount options should match.
282 *
283 * - rename(2) is disallowed.
284 *
285 * - "tasks" is removed. Everything should be at process granularity. Use
286 * "cgroup.procs" instead.
287 *
288 * - "cgroup.procs" is not sorted. pids will be unique unless they got
289 * recycled in-between reads.
290 *
291 * - "release_agent" and "notify_on_release" are removed. Replacement
292 * notification mechanism will be implemented.
293 *
294 * - "cgroup.clone_children" is removed.
295 *
296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
297 * and its descendants contain no task; otherwise, 1. The file also
298 * generates kernfs notification which can be monitored through poll and
299 * [di]notify when the value of the file changes.
300 *
301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302 * take masks of ancestors with non-empty cpus/mems, instead of being
303 * moved to an ancestor.
304 *
305 * - cpuset: a task can be moved into an empty cpuset, and again it takes
306 * masks of ancestors.
307 *
308 * - blkcg: blk-throttle becomes properly hierarchical.
309 *
310 * - debug: disallowed on the default hierarchy.
311 */
312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 return cgrp->root == &cgrp_dfl_root;
315 }
316
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 gfp_t gfp_mask)
320 {
321 int ret;
322
323 idr_preload(gfp_mask);
324 spin_lock_bh(&cgroup_idr_lock);
325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 spin_unlock_bh(&cgroup_idr_lock);
327 idr_preload_end();
328 return ret;
329 }
330
331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 void *ret;
334
335 spin_lock_bh(&cgroup_idr_lock);
336 ret = idr_replace(idr, ptr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338 return ret;
339 }
340
341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 spin_lock_bh(&cgroup_idr_lock);
344 idr_remove(idr, id);
345 spin_unlock_bh(&cgroup_idr_lock);
346 }
347
348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 return cgrp->nr_populated_csets;
351 }
352
353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 return cgrp->dom_cgrp != cgrp;
356 }
357
358 /* can @cgrp host both domain and threaded children? */
359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 /*
362 * Root isn't under domain level resource control exempting it from
363 * the no-internal-process constraint, so it can serve as a thread
364 * root and a parent of resource domains at the same time.
365 */
366 return !cgroup_parent(cgrp);
367 }
368
369 /* can @cgrp become a thread root? Should always be true for a thread root */
370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 /* mixables don't care */
373 if (cgroup_is_mixable(cgrp))
374 return true;
375
376 /* domain roots can't be nested under threaded */
377 if (cgroup_is_threaded(cgrp))
378 return false;
379
380 /* can only have either domain or threaded children */
381 if (cgrp->nr_populated_domain_children)
382 return false;
383
384 /* and no domain controllers can be enabled */
385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 return false;
387
388 return true;
389 }
390
391 /* is @cgrp root of a threaded subtree? */
392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 /* thread root should be a domain */
395 if (cgroup_is_threaded(cgrp))
396 return false;
397
398 /* a domain w/ threaded children is a thread root */
399 if (cgrp->nr_threaded_children)
400 return true;
401
402 /*
403 * A domain which has tasks and explicit threaded controllers
404 * enabled is a thread root.
405 */
406 if (cgroup_has_tasks(cgrp) &&
407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 return true;
409
410 return false;
411 }
412
413 /* a domain which isn't connected to the root w/o brekage can't be used */
414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 /* the cgroup itself can be a thread root */
417 if (cgroup_is_threaded(cgrp))
418 return false;
419
420 /* but the ancestors can't be unless mixable */
421 while ((cgrp = cgroup_parent(cgrp))) {
422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 return false;
424 if (cgroup_is_threaded(cgrp))
425 return false;
426 }
427
428 return true;
429 }
430
431 /* subsystems visibly enabled on a cgroup */
432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435 u16 root_ss_mask = cgrp->root->subsys_mask;
436
437 if (parent) {
438 u16 ss_mask = parent->subtree_control;
439
440 /* threaded cgroups can only have threaded controllers */
441 if (cgroup_is_threaded(cgrp))
442 ss_mask &= cgrp_dfl_threaded_ss_mask;
443 return ss_mask;
444 }
445
446 if (cgroup_on_dfl(cgrp))
447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 cgrp_dfl_implicit_ss_mask);
449 return root_ss_mask;
450 }
451
452 /* subsystems enabled on a cgroup */
453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 struct cgroup *parent = cgroup_parent(cgrp);
456
457 if (parent) {
458 u16 ss_mask = parent->subtree_ss_mask;
459
460 /* threaded cgroups can only have threaded controllers */
461 if (cgroup_is_threaded(cgrp))
462 ss_mask &= cgrp_dfl_threaded_ss_mask;
463 return ss_mask;
464 }
465
466 return cgrp->root->subsys_mask;
467 }
468
469 /**
470 * cgroup_css - obtain a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473 *
474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
475 * function must be called either under cgroup_mutex or rcu_read_lock() and
476 * the caller is responsible for pinning the returned css if it wants to
477 * keep accessing it outside the said locks. This function may return
478 * %NULL if @cgrp doesn't have @subsys_id enabled.
479 */
480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
482 {
483 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 return rcu_dereference_check(cgrp->subsys[ss->id],
485 lockdep_is_held(&cgroup_mutex));
486 else
487 return &cgrp->self;
488 }
489
490 /**
491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492 * @cgrp: the cgroup of interest
493 * @ss: the subsystem of interest
494 *
495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
496 * or is offline, %NULL is returned.
497 */
498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 struct cgroup_subsys_state *css;
502
503 rcu_read_lock();
504 css = cgroup_css(cgrp, ss);
505 if (css && !css_tryget_online(css))
506 css = NULL;
507 rcu_read_unlock();
508
509 return css;
510 }
511
512 /**
513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514 * @cgrp: the cgroup of interest
515 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516 *
517 * Similar to cgroup_css() but returns the effective css, which is defined
518 * as the matching css of the nearest ancestor including self which has @ss
519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
520 * function is guaranteed to return non-NULL css.
521 */
522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 struct cgroup_subsys *ss)
524 {
525 lockdep_assert_held(&cgroup_mutex);
526
527 if (!ss)
528 return &cgrp->self;
529
530 /*
531 * This function is used while updating css associations and thus
532 * can't test the csses directly. Test ss_mask.
533 */
534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 cgrp = cgroup_parent(cgrp);
536 if (!cgrp)
537 return NULL;
538 }
539
540 return cgroup_css(cgrp, ss);
541 }
542
543 /**
544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545 * @cgrp: the cgroup of interest
546 * @ss: the subsystem of interest
547 *
548 * Find and get the effective css of @cgrp for @ss. The effective css is
549 * defined as the matching css of the nearest ancestor including self which
550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
551 * the root css is returned, so this function always returns a valid css.
552 *
553 * The returned css is not guaranteed to be online, and therefore it is the
554 * callers responsibility to try get a reference for it.
555 */
556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 struct cgroup_subsys *ss)
558 {
559 struct cgroup_subsys_state *css;
560
561 if (!CGROUP_HAS_SUBSYS_CONFIG)
562 return NULL;
563
564 do {
565 css = cgroup_css(cgrp, ss);
566
567 if (css)
568 return css;
569 cgrp = cgroup_parent(cgrp);
570 } while (cgrp);
571
572 return init_css_set.subsys[ss->id];
573 }
574
575 /**
576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577 * @cgrp: the cgroup of interest
578 * @ss: the subsystem of interest
579 *
580 * Find and get the effective css of @cgrp for @ss. The effective css is
581 * defined as the matching css of the nearest ancestor including self which
582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
583 * the root css is returned, so this function always returns a valid css.
584 * The returned css must be put using css_put().
585 */
586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 struct cgroup_subsys *ss)
588 {
589 struct cgroup_subsys_state *css;
590
591 if (!CGROUP_HAS_SUBSYS_CONFIG)
592 return NULL;
593
594 rcu_read_lock();
595
596 do {
597 css = cgroup_css(cgrp, ss);
598
599 if (css && css_tryget_online(css))
600 goto out_unlock;
601 cgrp = cgroup_parent(cgrp);
602 } while (cgrp);
603
604 css = init_css_set.subsys[ss->id];
605 css_get(css);
606 out_unlock:
607 rcu_read_unlock();
608 return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611
612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 css_get(&cgrp->self);
616 }
617
618 /**
619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620 * is responsible for taking the css_set_lock.
621 * @cgrp: the cgroup in question
622 */
623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 int count = 0;
626 struct cgrp_cset_link *link;
627
628 lockdep_assert_held(&css_set_lock);
629
630 list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 count += link->cset->nr_tasks;
632
633 return count;
634 }
635
636 /**
637 * cgroup_task_count - count the number of tasks in a cgroup.
638 * @cgrp: the cgroup in question
639 */
640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 int count;
643
644 spin_lock_irq(&css_set_lock);
645 count = __cgroup_task_count(cgrp);
646 spin_unlock_irq(&css_set_lock);
647
648 return count;
649 }
650
651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 struct cgroup *cgrp = of->kn->parent->priv;
654 struct cftype *cft = of_cft(of);
655
656 /*
657 * This is open and unprotected implementation of cgroup_css().
658 * seq_css() is only called from a kernfs file operation which has
659 * an active reference on the file. Because all the subsystem
660 * files are drained before a css is disassociated with a cgroup,
661 * the matching css from the cgroup's subsys table is guaranteed to
662 * be and stay valid until the enclosing operation is complete.
663 */
664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 else
667 return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670
671 /**
672 * for_each_css - iterate all css's of a cgroup
673 * @css: the iteration cursor
674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675 * @cgrp: the target cgroup to iterate css's of
676 *
677 * Should be called under cgroup_[tree_]mutex.
678 */
679 #define for_each_css(css, ssid, cgrp) \
680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
681 if (!((css) = rcu_dereference_check( \
682 (cgrp)->subsys[(ssid)], \
683 lockdep_is_held(&cgroup_mutex)))) { } \
684 else
685
686 /**
687 * for_each_e_css - iterate all effective css's of a cgroup
688 * @css: the iteration cursor
689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690 * @cgrp: the target cgroup to iterate css's of
691 *
692 * Should be called under cgroup_[tree_]mutex.
693 */
694 #define for_each_e_css(css, ssid, cgrp) \
695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
696 if (!((css) = cgroup_e_css_by_mask(cgrp, \
697 cgroup_subsys[(ssid)]))) \
698 ; \
699 else
700
701 /**
702 * do_each_subsys_mask - filter for_each_subsys with a bitmask
703 * @ss: the iteration cursor
704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705 * @ss_mask: the bitmask
706 *
707 * The block will only run for cases where the ssid-th bit (1 << ssid) of
708 * @ss_mask is set.
709 */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
711 unsigned long __ss_mask = (ss_mask); \
712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
713 (ssid) = 0; \
714 break; \
715 } \
716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
717 (ss) = cgroup_subsys[ssid]; \
718 {
719
720 #define while_each_subsys_mask() \
721 } \
722 } \
723 } while (false)
724
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp) \
727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 cgroup_is_dead(child); })) \
730 ; \
731 else
732
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
736 if (({ lockdep_assert_held(&cgroup_mutex); \
737 (dsct) = (d_css)->cgroup; \
738 cgroup_is_dead(dsct); })) \
739 ; \
740 else
741
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
745 if (({ lockdep_assert_held(&cgroup_mutex); \
746 (dsct) = (d_css)->cgroup; \
747 cgroup_is_dead(dsct); })) \
748 ; \
749 else
750
751 /*
752 * The default css_set - used by init and its children prior to any
753 * hierarchies being mounted. It contains a pointer to the root state
754 * for each subsystem. Also used to anchor the list of css_sets. Not
755 * reference-counted, to improve performance when child cgroups
756 * haven't been created.
757 */
758 struct css_set init_css_set = {
759 .refcount = REFCOUNT_INIT(1),
760 .dom_cset = &init_css_set,
761 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
767 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
768 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
769 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
770
771 /*
772 * The following field is re-initialized when this cset gets linked
773 * in cgroup_init(). However, let's initialize the field
774 * statically too so that the default cgroup can be accessed safely
775 * early during boot.
776 */
777 .dfl_cgrp = &cgrp_dfl_root.cgrp,
778 };
779
780 static int css_set_count = 1; /* 1 for init_css_set */
781
782 static bool css_set_threaded(struct css_set *cset)
783 {
784 return cset->dom_cset != cset;
785 }
786
787 /**
788 * css_set_populated - does a css_set contain any tasks?
789 * @cset: target css_set
790 *
791 * css_set_populated() should be the same as !!cset->nr_tasks at steady
792 * state. However, css_set_populated() can be called while a task is being
793 * added to or removed from the linked list before the nr_tasks is
794 * properly updated. Hence, we can't just look at ->nr_tasks here.
795 */
796 static bool css_set_populated(struct css_set *cset)
797 {
798 lockdep_assert_held(&css_set_lock);
799
800 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
801 }
802
803 /**
804 * cgroup_update_populated - update the populated count of a cgroup
805 * @cgrp: the target cgroup
806 * @populated: inc or dec populated count
807 *
808 * One of the css_sets associated with @cgrp is either getting its first
809 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
810 * count is propagated towards root so that a given cgroup's
811 * nr_populated_children is zero iff none of its descendants contain any
812 * tasks.
813 *
814 * @cgrp's interface file "cgroup.populated" is zero if both
815 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
816 * 1 otherwise. When the sum changes from or to zero, userland is notified
817 * that the content of the interface file has changed. This can be used to
818 * detect when @cgrp and its descendants become populated or empty.
819 */
820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
821 {
822 struct cgroup *child = NULL;
823 int adj = populated ? 1 : -1;
824
825 lockdep_assert_held(&css_set_lock);
826
827 do {
828 bool was_populated = cgroup_is_populated(cgrp);
829
830 if (!child) {
831 cgrp->nr_populated_csets += adj;
832 } else {
833 if (cgroup_is_threaded(child))
834 cgrp->nr_populated_threaded_children += adj;
835 else
836 cgrp->nr_populated_domain_children += adj;
837 }
838
839 if (was_populated == cgroup_is_populated(cgrp))
840 break;
841
842 cgroup1_check_for_release(cgrp);
843 TRACE_CGROUP_PATH(notify_populated, cgrp,
844 cgroup_is_populated(cgrp));
845 cgroup_file_notify(&cgrp->events_file);
846
847 child = cgrp;
848 cgrp = cgroup_parent(cgrp);
849 } while (cgrp);
850 }
851
852 /**
853 * css_set_update_populated - update populated state of a css_set
854 * @cset: target css_set
855 * @populated: whether @cset is populated or depopulated
856 *
857 * @cset is either getting the first task or losing the last. Update the
858 * populated counters of all associated cgroups accordingly.
859 */
860 static void css_set_update_populated(struct css_set *cset, bool populated)
861 {
862 struct cgrp_cset_link *link;
863
864 lockdep_assert_held(&css_set_lock);
865
866 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
867 cgroup_update_populated(link->cgrp, populated);
868 }
869
870 /*
871 * @task is leaving, advance task iterators which are pointing to it so
872 * that they can resume at the next position. Advancing an iterator might
873 * remove it from the list, use safe walk. See css_task_iter_skip() for
874 * details.
875 */
876 static void css_set_skip_task_iters(struct css_set *cset,
877 struct task_struct *task)
878 {
879 struct css_task_iter *it, *pos;
880
881 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
882 css_task_iter_skip(it, task);
883 }
884
885 /**
886 * css_set_move_task - move a task from one css_set to another
887 * @task: task being moved
888 * @from_cset: css_set @task currently belongs to (may be NULL)
889 * @to_cset: new css_set @task is being moved to (may be NULL)
890 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
891 *
892 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
893 * css_set, @from_cset can be NULL. If @task is being disassociated
894 * instead of moved, @to_cset can be NULL.
895 *
896 * This function automatically handles populated counter updates and
897 * css_task_iter adjustments but the caller is responsible for managing
898 * @from_cset and @to_cset's reference counts.
899 */
900 static void css_set_move_task(struct task_struct *task,
901 struct css_set *from_cset, struct css_set *to_cset,
902 bool use_mg_tasks)
903 {
904 lockdep_assert_held(&css_set_lock);
905
906 if (to_cset && !css_set_populated(to_cset))
907 css_set_update_populated(to_cset, true);
908
909 if (from_cset) {
910 WARN_ON_ONCE(list_empty(&task->cg_list));
911
912 css_set_skip_task_iters(from_cset, task);
913 list_del_init(&task->cg_list);
914 if (!css_set_populated(from_cset))
915 css_set_update_populated(from_cset, false);
916 } else {
917 WARN_ON_ONCE(!list_empty(&task->cg_list));
918 }
919
920 if (to_cset) {
921 /*
922 * We are synchronized through cgroup_threadgroup_rwsem
923 * against PF_EXITING setting such that we can't race
924 * against cgroup_exit()/cgroup_free() dropping the css_set.
925 */
926 WARN_ON_ONCE(task->flags & PF_EXITING);
927
928 cgroup_move_task(task, to_cset);
929 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
930 &to_cset->tasks);
931 }
932 }
933
934 /*
935 * hash table for cgroup groups. This improves the performance to find
936 * an existing css_set. This hash doesn't (currently) take into
937 * account cgroups in empty hierarchies.
938 */
939 #define CSS_SET_HASH_BITS 7
940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
941
942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
943 {
944 unsigned long key = 0UL;
945 struct cgroup_subsys *ss;
946 int i;
947
948 for_each_subsys(ss, i)
949 key += (unsigned long)css[i];
950 key = (key >> 16) ^ key;
951
952 return key;
953 }
954
955 void put_css_set_locked(struct css_set *cset)
956 {
957 struct cgrp_cset_link *link, *tmp_link;
958 struct cgroup_subsys *ss;
959 int ssid;
960
961 lockdep_assert_held(&css_set_lock);
962
963 if (!refcount_dec_and_test(&cset->refcount))
964 return;
965
966 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
967
968 /* This css_set is dead. Unlink it and release cgroup and css refs */
969 for_each_subsys(ss, ssid) {
970 list_del(&cset->e_cset_node[ssid]);
971 css_put(cset->subsys[ssid]);
972 }
973 hash_del(&cset->hlist);
974 css_set_count--;
975
976 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
977 list_del(&link->cset_link);
978 list_del(&link->cgrp_link);
979 if (cgroup_parent(link->cgrp))
980 cgroup_put(link->cgrp);
981 kfree(link);
982 }
983
984 if (css_set_threaded(cset)) {
985 list_del(&cset->threaded_csets_node);
986 put_css_set_locked(cset->dom_cset);
987 }
988
989 kfree_rcu(cset, rcu_head);
990 }
991
992 /**
993 * compare_css_sets - helper function for find_existing_css_set().
994 * @cset: candidate css_set being tested
995 * @old_cset: existing css_set for a task
996 * @new_cgrp: cgroup that's being entered by the task
997 * @template: desired set of css pointers in css_set (pre-calculated)
998 *
999 * Returns true if "cset" matches "old_cset" except for the hierarchy
1000 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1001 */
1002 static bool compare_css_sets(struct css_set *cset,
1003 struct css_set *old_cset,
1004 struct cgroup *new_cgrp,
1005 struct cgroup_subsys_state *template[])
1006 {
1007 struct cgroup *new_dfl_cgrp;
1008 struct list_head *l1, *l2;
1009
1010 /*
1011 * On the default hierarchy, there can be csets which are
1012 * associated with the same set of cgroups but different csses.
1013 * Let's first ensure that csses match.
1014 */
1015 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1016 return false;
1017
1018
1019 /* @cset's domain should match the default cgroup's */
1020 if (cgroup_on_dfl(new_cgrp))
1021 new_dfl_cgrp = new_cgrp;
1022 else
1023 new_dfl_cgrp = old_cset->dfl_cgrp;
1024
1025 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1026 return false;
1027
1028 /*
1029 * Compare cgroup pointers in order to distinguish between
1030 * different cgroups in hierarchies. As different cgroups may
1031 * share the same effective css, this comparison is always
1032 * necessary.
1033 */
1034 l1 = &cset->cgrp_links;
1035 l2 = &old_cset->cgrp_links;
1036 while (1) {
1037 struct cgrp_cset_link *link1, *link2;
1038 struct cgroup *cgrp1, *cgrp2;
1039
1040 l1 = l1->next;
1041 l2 = l2->next;
1042 /* See if we reached the end - both lists are equal length. */
1043 if (l1 == &cset->cgrp_links) {
1044 BUG_ON(l2 != &old_cset->cgrp_links);
1045 break;
1046 } else {
1047 BUG_ON(l2 == &old_cset->cgrp_links);
1048 }
1049 /* Locate the cgroups associated with these links. */
1050 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1051 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1052 cgrp1 = link1->cgrp;
1053 cgrp2 = link2->cgrp;
1054 /* Hierarchies should be linked in the same order. */
1055 BUG_ON(cgrp1->root != cgrp2->root);
1056
1057 /*
1058 * If this hierarchy is the hierarchy of the cgroup
1059 * that's changing, then we need to check that this
1060 * css_set points to the new cgroup; if it's any other
1061 * hierarchy, then this css_set should point to the
1062 * same cgroup as the old css_set.
1063 */
1064 if (cgrp1->root == new_cgrp->root) {
1065 if (cgrp1 != new_cgrp)
1066 return false;
1067 } else {
1068 if (cgrp1 != cgrp2)
1069 return false;
1070 }
1071 }
1072 return true;
1073 }
1074
1075 /**
1076 * find_existing_css_set - init css array and find the matching css_set
1077 * @old_cset: the css_set that we're using before the cgroup transition
1078 * @cgrp: the cgroup that we're moving into
1079 * @template: out param for the new set of csses, should be clear on entry
1080 */
1081 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1082 struct cgroup *cgrp,
1083 struct cgroup_subsys_state *template[])
1084 {
1085 struct cgroup_root *root = cgrp->root;
1086 struct cgroup_subsys *ss;
1087 struct css_set *cset;
1088 unsigned long key;
1089 int i;
1090
1091 /*
1092 * Build the set of subsystem state objects that we want to see in the
1093 * new css_set. While subsystems can change globally, the entries here
1094 * won't change, so no need for locking.
1095 */
1096 for_each_subsys(ss, i) {
1097 if (root->subsys_mask & (1UL << i)) {
1098 /*
1099 * @ss is in this hierarchy, so we want the
1100 * effective css from @cgrp.
1101 */
1102 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1103 } else {
1104 /*
1105 * @ss is not in this hierarchy, so we don't want
1106 * to change the css.
1107 */
1108 template[i] = old_cset->subsys[i];
1109 }
1110 }
1111
1112 key = css_set_hash(template);
1113 hash_for_each_possible(css_set_table, cset, hlist, key) {
1114 if (!compare_css_sets(cset, old_cset, cgrp, template))
1115 continue;
1116
1117 /* This css_set matches what we need */
1118 return cset;
1119 }
1120
1121 /* No existing cgroup group matched */
1122 return NULL;
1123 }
1124
1125 static void free_cgrp_cset_links(struct list_head *links_to_free)
1126 {
1127 struct cgrp_cset_link *link, *tmp_link;
1128
1129 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1130 list_del(&link->cset_link);
1131 kfree(link);
1132 }
1133 }
1134
1135 /**
1136 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1137 * @count: the number of links to allocate
1138 * @tmp_links: list_head the allocated links are put on
1139 *
1140 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1141 * through ->cset_link. Returns 0 on success or -errno.
1142 */
1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1144 {
1145 struct cgrp_cset_link *link;
1146 int i;
1147
1148 INIT_LIST_HEAD(tmp_links);
1149
1150 for (i = 0; i < count; i++) {
1151 link = kzalloc(sizeof(*link), GFP_KERNEL);
1152 if (!link) {
1153 free_cgrp_cset_links(tmp_links);
1154 return -ENOMEM;
1155 }
1156 list_add(&link->cset_link, tmp_links);
1157 }
1158 return 0;
1159 }
1160
1161 /**
1162 * link_css_set - a helper function to link a css_set to a cgroup
1163 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1164 * @cset: the css_set to be linked
1165 * @cgrp: the destination cgroup
1166 */
1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1168 struct cgroup *cgrp)
1169 {
1170 struct cgrp_cset_link *link;
1171
1172 BUG_ON(list_empty(tmp_links));
1173
1174 if (cgroup_on_dfl(cgrp))
1175 cset->dfl_cgrp = cgrp;
1176
1177 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1178 link->cset = cset;
1179 link->cgrp = cgrp;
1180
1181 /*
1182 * Always add links to the tail of the lists so that the lists are
1183 * in chronological order.
1184 */
1185 list_move_tail(&link->cset_link, &cgrp->cset_links);
1186 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1187
1188 if (cgroup_parent(cgrp))
1189 cgroup_get_live(cgrp);
1190 }
1191
1192 /**
1193 * find_css_set - return a new css_set with one cgroup updated
1194 * @old_cset: the baseline css_set
1195 * @cgrp: the cgroup to be updated
1196 *
1197 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1198 * substituted into the appropriate hierarchy.
1199 */
1200 static struct css_set *find_css_set(struct css_set *old_cset,
1201 struct cgroup *cgrp)
1202 {
1203 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1204 struct css_set *cset;
1205 struct list_head tmp_links;
1206 struct cgrp_cset_link *link;
1207 struct cgroup_subsys *ss;
1208 unsigned long key;
1209 int ssid;
1210
1211 lockdep_assert_held(&cgroup_mutex);
1212
1213 /* First see if we already have a cgroup group that matches
1214 * the desired set */
1215 spin_lock_irq(&css_set_lock);
1216 cset = find_existing_css_set(old_cset, cgrp, template);
1217 if (cset)
1218 get_css_set(cset);
1219 spin_unlock_irq(&css_set_lock);
1220
1221 if (cset)
1222 return cset;
1223
1224 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1225 if (!cset)
1226 return NULL;
1227
1228 /* Allocate all the cgrp_cset_link objects that we'll need */
1229 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1230 kfree(cset);
1231 return NULL;
1232 }
1233
1234 refcount_set(&cset->refcount, 1);
1235 cset->dom_cset = cset;
1236 INIT_LIST_HEAD(&cset->tasks);
1237 INIT_LIST_HEAD(&cset->mg_tasks);
1238 INIT_LIST_HEAD(&cset->dying_tasks);
1239 INIT_LIST_HEAD(&cset->task_iters);
1240 INIT_LIST_HEAD(&cset->threaded_csets);
1241 INIT_HLIST_NODE(&cset->hlist);
1242 INIT_LIST_HEAD(&cset->cgrp_links);
1243 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1244 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1245 INIT_LIST_HEAD(&cset->mg_node);
1246
1247 /* Copy the set of subsystem state objects generated in
1248 * find_existing_css_set() */
1249 memcpy(cset->subsys, template, sizeof(cset->subsys));
1250
1251 spin_lock_irq(&css_set_lock);
1252 /* Add reference counts and links from the new css_set. */
1253 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1254 struct cgroup *c = link->cgrp;
1255
1256 if (c->root == cgrp->root)
1257 c = cgrp;
1258 link_css_set(&tmp_links, cset, c);
1259 }
1260
1261 BUG_ON(!list_empty(&tmp_links));
1262
1263 css_set_count++;
1264
1265 /* Add @cset to the hash table */
1266 key = css_set_hash(cset->subsys);
1267 hash_add(css_set_table, &cset->hlist, key);
1268
1269 for_each_subsys(ss, ssid) {
1270 struct cgroup_subsys_state *css = cset->subsys[ssid];
1271
1272 list_add_tail(&cset->e_cset_node[ssid],
1273 &css->cgroup->e_csets[ssid]);
1274 css_get(css);
1275 }
1276
1277 spin_unlock_irq(&css_set_lock);
1278
1279 /*
1280 * If @cset should be threaded, look up the matching dom_cset and
1281 * link them up. We first fully initialize @cset then look for the
1282 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1283 * to stay empty until we return.
1284 */
1285 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1286 struct css_set *dcset;
1287
1288 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1289 if (!dcset) {
1290 put_css_set(cset);
1291 return NULL;
1292 }
1293
1294 spin_lock_irq(&css_set_lock);
1295 cset->dom_cset = dcset;
1296 list_add_tail(&cset->threaded_csets_node,
1297 &dcset->threaded_csets);
1298 spin_unlock_irq(&css_set_lock);
1299 }
1300
1301 return cset;
1302 }
1303
1304 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1305 {
1306 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1307
1308 return root_cgrp->root;
1309 }
1310
1311 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1312 {
1313 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1314
1315 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1316 if (favor && !favoring) {
1317 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1318 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1319 } else if (!favor && favoring) {
1320 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1321 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1322 }
1323 }
1324
1325 static int cgroup_init_root_id(struct cgroup_root *root)
1326 {
1327 int id;
1328
1329 lockdep_assert_held(&cgroup_mutex);
1330
1331 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1332 if (id < 0)
1333 return id;
1334
1335 root->hierarchy_id = id;
1336 return 0;
1337 }
1338
1339 static void cgroup_exit_root_id(struct cgroup_root *root)
1340 {
1341 lockdep_assert_held(&cgroup_mutex);
1342
1343 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1344 }
1345
1346 void cgroup_free_root(struct cgroup_root *root)
1347 {
1348 kfree(root);
1349 }
1350
1351 static void cgroup_destroy_root(struct cgroup_root *root)
1352 {
1353 struct cgroup *cgrp = &root->cgrp;
1354 struct cgrp_cset_link *link, *tmp_link;
1355
1356 trace_cgroup_destroy_root(root);
1357
1358 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1359
1360 BUG_ON(atomic_read(&root->nr_cgrps));
1361 BUG_ON(!list_empty(&cgrp->self.children));
1362
1363 /* Rebind all subsystems back to the default hierarchy */
1364 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1365
1366 /*
1367 * Release all the links from cset_links to this hierarchy's
1368 * root cgroup
1369 */
1370 spin_lock_irq(&css_set_lock);
1371
1372 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1373 list_del(&link->cset_link);
1374 list_del(&link->cgrp_link);
1375 kfree(link);
1376 }
1377
1378 spin_unlock_irq(&css_set_lock);
1379
1380 if (!list_empty(&root->root_list)) {
1381 list_del(&root->root_list);
1382 cgroup_root_count--;
1383 }
1384
1385 cgroup_favor_dynmods(root, false);
1386 cgroup_exit_root_id(root);
1387
1388 mutex_unlock(&cgroup_mutex);
1389
1390 cgroup_rstat_exit(cgrp);
1391 kernfs_destroy_root(root->kf_root);
1392 cgroup_free_root(root);
1393 }
1394
1395 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1396 struct cgroup_root *root)
1397 {
1398 struct cgroup *res_cgroup = NULL;
1399
1400 if (cset == &init_css_set) {
1401 res_cgroup = &root->cgrp;
1402 } else if (root == &cgrp_dfl_root) {
1403 res_cgroup = cset->dfl_cgrp;
1404 } else {
1405 struct cgrp_cset_link *link;
1406
1407 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1408 struct cgroup *c = link->cgrp;
1409
1410 if (c->root == root) {
1411 res_cgroup = c;
1412 break;
1413 }
1414 }
1415 }
1416
1417 return res_cgroup;
1418 }
1419
1420 /*
1421 * look up cgroup associated with current task's cgroup namespace on the
1422 * specified hierarchy
1423 */
1424 static struct cgroup *
1425 current_cgns_cgroup_from_root(struct cgroup_root *root)
1426 {
1427 struct cgroup *res = NULL;
1428 struct css_set *cset;
1429
1430 lockdep_assert_held(&css_set_lock);
1431
1432 rcu_read_lock();
1433
1434 cset = current->nsproxy->cgroup_ns->root_cset;
1435 res = __cset_cgroup_from_root(cset, root);
1436
1437 rcu_read_unlock();
1438
1439 BUG_ON(!res);
1440 return res;
1441 }
1442
1443 /* look up cgroup associated with given css_set on the specified hierarchy */
1444 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1445 struct cgroup_root *root)
1446 {
1447 struct cgroup *res = NULL;
1448
1449 lockdep_assert_held(&cgroup_mutex);
1450 lockdep_assert_held(&css_set_lock);
1451
1452 res = __cset_cgroup_from_root(cset, root);
1453
1454 BUG_ON(!res);
1455 return res;
1456 }
1457
1458 /*
1459 * Return the cgroup for "task" from the given hierarchy. Must be
1460 * called with cgroup_mutex and css_set_lock held.
1461 */
1462 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1463 struct cgroup_root *root)
1464 {
1465 /*
1466 * No need to lock the task - since we hold css_set_lock the
1467 * task can't change groups.
1468 */
1469 return cset_cgroup_from_root(task_css_set(task), root);
1470 }
1471
1472 /*
1473 * A task must hold cgroup_mutex to modify cgroups.
1474 *
1475 * Any task can increment and decrement the count field without lock.
1476 * So in general, code holding cgroup_mutex can't rely on the count
1477 * field not changing. However, if the count goes to zero, then only
1478 * cgroup_attach_task() can increment it again. Because a count of zero
1479 * means that no tasks are currently attached, therefore there is no
1480 * way a task attached to that cgroup can fork (the other way to
1481 * increment the count). So code holding cgroup_mutex can safely
1482 * assume that if the count is zero, it will stay zero. Similarly, if
1483 * a task holds cgroup_mutex on a cgroup with zero count, it
1484 * knows that the cgroup won't be removed, as cgroup_rmdir()
1485 * needs that mutex.
1486 *
1487 * A cgroup can only be deleted if both its 'count' of using tasks
1488 * is zero, and its list of 'children' cgroups is empty. Since all
1489 * tasks in the system use _some_ cgroup, and since there is always at
1490 * least one task in the system (init, pid == 1), therefore, root cgroup
1491 * always has either children cgroups and/or using tasks. So we don't
1492 * need a special hack to ensure that root cgroup cannot be deleted.
1493 *
1494 * P.S. One more locking exception. RCU is used to guard the
1495 * update of a tasks cgroup pointer by cgroup_attach_task()
1496 */
1497
1498 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1499
1500 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1501 char *buf)
1502 {
1503 struct cgroup_subsys *ss = cft->ss;
1504
1505 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1506 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1507 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1508
1509 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1510 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1511 cft->name);
1512 } else {
1513 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1514 }
1515 return buf;
1516 }
1517
1518 /**
1519 * cgroup_file_mode - deduce file mode of a control file
1520 * @cft: the control file in question
1521 *
1522 * S_IRUGO for read, S_IWUSR for write.
1523 */
1524 static umode_t cgroup_file_mode(const struct cftype *cft)
1525 {
1526 umode_t mode = 0;
1527
1528 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1529 mode |= S_IRUGO;
1530
1531 if (cft->write_u64 || cft->write_s64 || cft->write) {
1532 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1533 mode |= S_IWUGO;
1534 else
1535 mode |= S_IWUSR;
1536 }
1537
1538 return mode;
1539 }
1540
1541 /**
1542 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1543 * @subtree_control: the new subtree_control mask to consider
1544 * @this_ss_mask: available subsystems
1545 *
1546 * On the default hierarchy, a subsystem may request other subsystems to be
1547 * enabled together through its ->depends_on mask. In such cases, more
1548 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1549 *
1550 * This function calculates which subsystems need to be enabled if
1551 * @subtree_control is to be applied while restricted to @this_ss_mask.
1552 */
1553 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1554 {
1555 u16 cur_ss_mask = subtree_control;
1556 struct cgroup_subsys *ss;
1557 int ssid;
1558
1559 lockdep_assert_held(&cgroup_mutex);
1560
1561 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1562
1563 while (true) {
1564 u16 new_ss_mask = cur_ss_mask;
1565
1566 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1567 new_ss_mask |= ss->depends_on;
1568 } while_each_subsys_mask();
1569
1570 /*
1571 * Mask out subsystems which aren't available. This can
1572 * happen only if some depended-upon subsystems were bound
1573 * to non-default hierarchies.
1574 */
1575 new_ss_mask &= this_ss_mask;
1576
1577 if (new_ss_mask == cur_ss_mask)
1578 break;
1579 cur_ss_mask = new_ss_mask;
1580 }
1581
1582 return cur_ss_mask;
1583 }
1584
1585 /**
1586 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1587 * @kn: the kernfs_node being serviced
1588 *
1589 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1590 * the method finishes if locking succeeded. Note that once this function
1591 * returns the cgroup returned by cgroup_kn_lock_live() may become
1592 * inaccessible any time. If the caller intends to continue to access the
1593 * cgroup, it should pin it before invoking this function.
1594 */
1595 void cgroup_kn_unlock(struct kernfs_node *kn)
1596 {
1597 struct cgroup *cgrp;
1598
1599 if (kernfs_type(kn) == KERNFS_DIR)
1600 cgrp = kn->priv;
1601 else
1602 cgrp = kn->parent->priv;
1603
1604 mutex_unlock(&cgroup_mutex);
1605
1606 kernfs_unbreak_active_protection(kn);
1607 cgroup_put(cgrp);
1608 }
1609
1610 /**
1611 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1612 * @kn: the kernfs_node being serviced
1613 * @drain_offline: perform offline draining on the cgroup
1614 *
1615 * This helper is to be used by a cgroup kernfs method currently servicing
1616 * @kn. It breaks the active protection, performs cgroup locking and
1617 * verifies that the associated cgroup is alive. Returns the cgroup if
1618 * alive; otherwise, %NULL. A successful return should be undone by a
1619 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1620 * cgroup is drained of offlining csses before return.
1621 *
1622 * Any cgroup kernfs method implementation which requires locking the
1623 * associated cgroup should use this helper. It avoids nesting cgroup
1624 * locking under kernfs active protection and allows all kernfs operations
1625 * including self-removal.
1626 */
1627 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1628 {
1629 struct cgroup *cgrp;
1630
1631 if (kernfs_type(kn) == KERNFS_DIR)
1632 cgrp = kn->priv;
1633 else
1634 cgrp = kn->parent->priv;
1635
1636 /*
1637 * We're gonna grab cgroup_mutex which nests outside kernfs
1638 * active_ref. cgroup liveliness check alone provides enough
1639 * protection against removal. Ensure @cgrp stays accessible and
1640 * break the active_ref protection.
1641 */
1642 if (!cgroup_tryget(cgrp))
1643 return NULL;
1644 kernfs_break_active_protection(kn);
1645
1646 if (drain_offline)
1647 cgroup_lock_and_drain_offline(cgrp);
1648 else
1649 mutex_lock(&cgroup_mutex);
1650
1651 if (!cgroup_is_dead(cgrp))
1652 return cgrp;
1653
1654 cgroup_kn_unlock(kn);
1655 return NULL;
1656 }
1657
1658 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1659 {
1660 char name[CGROUP_FILE_NAME_MAX];
1661
1662 lockdep_assert_held(&cgroup_mutex);
1663
1664 if (cft->file_offset) {
1665 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1666 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1667
1668 spin_lock_irq(&cgroup_file_kn_lock);
1669 cfile->kn = NULL;
1670 spin_unlock_irq(&cgroup_file_kn_lock);
1671
1672 del_timer_sync(&cfile->notify_timer);
1673 }
1674
1675 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1676 }
1677
1678 /**
1679 * css_clear_dir - remove subsys files in a cgroup directory
1680 * @css: target css
1681 */
1682 static void css_clear_dir(struct cgroup_subsys_state *css)
1683 {
1684 struct cgroup *cgrp = css->cgroup;
1685 struct cftype *cfts;
1686
1687 if (!(css->flags & CSS_VISIBLE))
1688 return;
1689
1690 css->flags &= ~CSS_VISIBLE;
1691
1692 if (!css->ss) {
1693 if (cgroup_on_dfl(cgrp)) {
1694 cgroup_addrm_files(css, cgrp,
1695 cgroup_base_files, false);
1696 if (cgroup_psi_enabled())
1697 cgroup_addrm_files(css, cgrp,
1698 cgroup_psi_files, false);
1699 } else {
1700 cgroup_addrm_files(css, cgrp,
1701 cgroup1_base_files, false);
1702 }
1703 } else {
1704 list_for_each_entry(cfts, &css->ss->cfts, node)
1705 cgroup_addrm_files(css, cgrp, cfts, false);
1706 }
1707 }
1708
1709 /**
1710 * css_populate_dir - create subsys files in a cgroup directory
1711 * @css: target css
1712 *
1713 * On failure, no file is added.
1714 */
1715 static int css_populate_dir(struct cgroup_subsys_state *css)
1716 {
1717 struct cgroup *cgrp = css->cgroup;
1718 struct cftype *cfts, *failed_cfts;
1719 int ret;
1720
1721 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1722 return 0;
1723
1724 if (!css->ss) {
1725 if (cgroup_on_dfl(cgrp)) {
1726 ret = cgroup_addrm_files(&cgrp->self, cgrp,
1727 cgroup_base_files, true);
1728 if (ret < 0)
1729 return ret;
1730
1731 if (cgroup_psi_enabled()) {
1732 ret = cgroup_addrm_files(&cgrp->self, cgrp,
1733 cgroup_psi_files, true);
1734 if (ret < 0)
1735 return ret;
1736 }
1737 } else {
1738 cgroup_addrm_files(css, cgrp,
1739 cgroup1_base_files, true);
1740 }
1741 } else {
1742 list_for_each_entry(cfts, &css->ss->cfts, node) {
1743 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1744 if (ret < 0) {
1745 failed_cfts = cfts;
1746 goto err;
1747 }
1748 }
1749 }
1750
1751 css->flags |= CSS_VISIBLE;
1752
1753 return 0;
1754 err:
1755 list_for_each_entry(cfts, &css->ss->cfts, node) {
1756 if (cfts == failed_cfts)
1757 break;
1758 cgroup_addrm_files(css, cgrp, cfts, false);
1759 }
1760 return ret;
1761 }
1762
1763 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1764 {
1765 struct cgroup *dcgrp = &dst_root->cgrp;
1766 struct cgroup_subsys *ss;
1767 int ssid, i, ret;
1768 u16 dfl_disable_ss_mask = 0;
1769
1770 lockdep_assert_held(&cgroup_mutex);
1771
1772 do_each_subsys_mask(ss, ssid, ss_mask) {
1773 /*
1774 * If @ss has non-root csses attached to it, can't move.
1775 * If @ss is an implicit controller, it is exempt from this
1776 * rule and can be stolen.
1777 */
1778 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1779 !ss->implicit_on_dfl)
1780 return -EBUSY;
1781
1782 /* can't move between two non-dummy roots either */
1783 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1784 return -EBUSY;
1785
1786 /*
1787 * Collect ssid's that need to be disabled from default
1788 * hierarchy.
1789 */
1790 if (ss->root == &cgrp_dfl_root)
1791 dfl_disable_ss_mask |= 1 << ssid;
1792
1793 } while_each_subsys_mask();
1794
1795 if (dfl_disable_ss_mask) {
1796 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1797
1798 /*
1799 * Controllers from default hierarchy that need to be rebound
1800 * are all disabled together in one go.
1801 */
1802 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1803 WARN_ON(cgroup_apply_control(scgrp));
1804 cgroup_finalize_control(scgrp, 0);
1805 }
1806
1807 do_each_subsys_mask(ss, ssid, ss_mask) {
1808 struct cgroup_root *src_root = ss->root;
1809 struct cgroup *scgrp = &src_root->cgrp;
1810 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1811 struct css_set *cset;
1812
1813 WARN_ON(!css || cgroup_css(dcgrp, ss));
1814
1815 if (src_root != &cgrp_dfl_root) {
1816 /* disable from the source */
1817 src_root->subsys_mask &= ~(1 << ssid);
1818 WARN_ON(cgroup_apply_control(scgrp));
1819 cgroup_finalize_control(scgrp, 0);
1820 }
1821
1822 /* rebind */
1823 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1824 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1825 ss->root = dst_root;
1826 css->cgroup = dcgrp;
1827
1828 spin_lock_irq(&css_set_lock);
1829 hash_for_each(css_set_table, i, cset, hlist)
1830 list_move_tail(&cset->e_cset_node[ss->id],
1831 &dcgrp->e_csets[ss->id]);
1832 spin_unlock_irq(&css_set_lock);
1833
1834 if (ss->css_rstat_flush) {
1835 list_del_rcu(&css->rstat_css_node);
1836 synchronize_rcu();
1837 list_add_rcu(&css->rstat_css_node,
1838 &dcgrp->rstat_css_list);
1839 }
1840
1841 /* default hierarchy doesn't enable controllers by default */
1842 dst_root->subsys_mask |= 1 << ssid;
1843 if (dst_root == &cgrp_dfl_root) {
1844 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1845 } else {
1846 dcgrp->subtree_control |= 1 << ssid;
1847 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1848 }
1849
1850 ret = cgroup_apply_control(dcgrp);
1851 if (ret)
1852 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1853 ss->name, ret);
1854
1855 if (ss->bind)
1856 ss->bind(css);
1857 } while_each_subsys_mask();
1858
1859 kernfs_activate(dcgrp->kn);
1860 return 0;
1861 }
1862
1863 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1864 struct kernfs_root *kf_root)
1865 {
1866 int len = 0;
1867 char *buf = NULL;
1868 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1869 struct cgroup *ns_cgroup;
1870
1871 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1872 if (!buf)
1873 return -ENOMEM;
1874
1875 spin_lock_irq(&css_set_lock);
1876 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1877 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1878 spin_unlock_irq(&css_set_lock);
1879
1880 if (len >= PATH_MAX)
1881 len = -ERANGE;
1882 else if (len > 0) {
1883 seq_escape(sf, buf, " \t\n\\");
1884 len = 0;
1885 }
1886 kfree(buf);
1887 return len;
1888 }
1889
1890 enum cgroup2_param {
1891 Opt_nsdelegate,
1892 Opt_favordynmods,
1893 Opt_memory_localevents,
1894 Opt_memory_recursiveprot,
1895 nr__cgroup2_params
1896 };
1897
1898 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1899 fsparam_flag("nsdelegate", Opt_nsdelegate),
1900 fsparam_flag("favordynmods", Opt_favordynmods),
1901 fsparam_flag("memory_localevents", Opt_memory_localevents),
1902 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1903 {}
1904 };
1905
1906 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1907 {
1908 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1909 struct fs_parse_result result;
1910 int opt;
1911
1912 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1913 if (opt < 0)
1914 return opt;
1915
1916 switch (opt) {
1917 case Opt_nsdelegate:
1918 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1919 return 0;
1920 case Opt_favordynmods:
1921 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1922 return 0;
1923 case Opt_memory_localevents:
1924 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1925 return 0;
1926 case Opt_memory_recursiveprot:
1927 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1928 return 0;
1929 }
1930 return -EINVAL;
1931 }
1932
1933 static void apply_cgroup_root_flags(unsigned int root_flags)
1934 {
1935 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1936 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1937 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1938 else
1939 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1940
1941 cgroup_favor_dynmods(&cgrp_dfl_root,
1942 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1943
1944 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1945 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1946 else
1947 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1948
1949 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1950 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1951 else
1952 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1953 }
1954 }
1955
1956 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1957 {
1958 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1959 seq_puts(seq, ",nsdelegate");
1960 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1961 seq_puts(seq, ",favordynmods");
1962 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1963 seq_puts(seq, ",memory_localevents");
1964 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1965 seq_puts(seq, ",memory_recursiveprot");
1966 return 0;
1967 }
1968
1969 static int cgroup_reconfigure(struct fs_context *fc)
1970 {
1971 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1972
1973 apply_cgroup_root_flags(ctx->flags);
1974 return 0;
1975 }
1976
1977 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1978 {
1979 struct cgroup_subsys *ss;
1980 int ssid;
1981
1982 INIT_LIST_HEAD(&cgrp->self.sibling);
1983 INIT_LIST_HEAD(&cgrp->self.children);
1984 INIT_LIST_HEAD(&cgrp->cset_links);
1985 INIT_LIST_HEAD(&cgrp->pidlists);
1986 mutex_init(&cgrp->pidlist_mutex);
1987 cgrp->self.cgroup = cgrp;
1988 cgrp->self.flags |= CSS_ONLINE;
1989 cgrp->dom_cgrp = cgrp;
1990 cgrp->max_descendants = INT_MAX;
1991 cgrp->max_depth = INT_MAX;
1992 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1993 prev_cputime_init(&cgrp->prev_cputime);
1994
1995 for_each_subsys(ss, ssid)
1996 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1997
1998 init_waitqueue_head(&cgrp->offline_waitq);
1999 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2000 }
2001
2002 void init_cgroup_root(struct cgroup_fs_context *ctx)
2003 {
2004 struct cgroup_root *root = ctx->root;
2005 struct cgroup *cgrp = &root->cgrp;
2006
2007 INIT_LIST_HEAD(&root->root_list);
2008 atomic_set(&root->nr_cgrps, 1);
2009 cgrp->root = root;
2010 init_cgroup_housekeeping(cgrp);
2011
2012 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2013 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2014 if (ctx->release_agent)
2015 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2016 if (ctx->name)
2017 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2018 if (ctx->cpuset_clone_children)
2019 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2020 }
2021
2022 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2023 {
2024 LIST_HEAD(tmp_links);
2025 struct cgroup *root_cgrp = &root->cgrp;
2026 struct kernfs_syscall_ops *kf_sops;
2027 struct css_set *cset;
2028 int i, ret;
2029
2030 lockdep_assert_held(&cgroup_mutex);
2031
2032 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2033 0, GFP_KERNEL);
2034 if (ret)
2035 goto out;
2036
2037 /*
2038 * We're accessing css_set_count without locking css_set_lock here,
2039 * but that's OK - it can only be increased by someone holding
2040 * cgroup_lock, and that's us. Later rebinding may disable
2041 * controllers on the default hierarchy and thus create new csets,
2042 * which can't be more than the existing ones. Allocate 2x.
2043 */
2044 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2045 if (ret)
2046 goto cancel_ref;
2047
2048 ret = cgroup_init_root_id(root);
2049 if (ret)
2050 goto cancel_ref;
2051
2052 kf_sops = root == &cgrp_dfl_root ?
2053 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2054
2055 root->kf_root = kernfs_create_root(kf_sops,
2056 KERNFS_ROOT_CREATE_DEACTIVATED |
2057 KERNFS_ROOT_SUPPORT_EXPORTOP |
2058 KERNFS_ROOT_SUPPORT_USER_XATTR,
2059 root_cgrp);
2060 if (IS_ERR(root->kf_root)) {
2061 ret = PTR_ERR(root->kf_root);
2062 goto exit_root_id;
2063 }
2064 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2065 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2066 root_cgrp->ancestors[0] = root_cgrp;
2067
2068 ret = css_populate_dir(&root_cgrp->self);
2069 if (ret)
2070 goto destroy_root;
2071
2072 ret = cgroup_rstat_init(root_cgrp);
2073 if (ret)
2074 goto destroy_root;
2075
2076 ret = rebind_subsystems(root, ss_mask);
2077 if (ret)
2078 goto exit_stats;
2079
2080 ret = cgroup_bpf_inherit(root_cgrp);
2081 WARN_ON_ONCE(ret);
2082
2083 trace_cgroup_setup_root(root);
2084
2085 /*
2086 * There must be no failure case after here, since rebinding takes
2087 * care of subsystems' refcounts, which are explicitly dropped in
2088 * the failure exit path.
2089 */
2090 list_add(&root->root_list, &cgroup_roots);
2091 cgroup_root_count++;
2092
2093 /*
2094 * Link the root cgroup in this hierarchy into all the css_set
2095 * objects.
2096 */
2097 spin_lock_irq(&css_set_lock);
2098 hash_for_each(css_set_table, i, cset, hlist) {
2099 link_css_set(&tmp_links, cset, root_cgrp);
2100 if (css_set_populated(cset))
2101 cgroup_update_populated(root_cgrp, true);
2102 }
2103 spin_unlock_irq(&css_set_lock);
2104
2105 BUG_ON(!list_empty(&root_cgrp->self.children));
2106 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2107
2108 ret = 0;
2109 goto out;
2110
2111 exit_stats:
2112 cgroup_rstat_exit(root_cgrp);
2113 destroy_root:
2114 kernfs_destroy_root(root->kf_root);
2115 root->kf_root = NULL;
2116 exit_root_id:
2117 cgroup_exit_root_id(root);
2118 cancel_ref:
2119 percpu_ref_exit(&root_cgrp->self.refcnt);
2120 out:
2121 free_cgrp_cset_links(&tmp_links);
2122 return ret;
2123 }
2124
2125 int cgroup_do_get_tree(struct fs_context *fc)
2126 {
2127 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2128 int ret;
2129
2130 ctx->kfc.root = ctx->root->kf_root;
2131 if (fc->fs_type == &cgroup2_fs_type)
2132 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2133 else
2134 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2135 ret = kernfs_get_tree(fc);
2136
2137 /*
2138 * In non-init cgroup namespace, instead of root cgroup's dentry,
2139 * we return the dentry corresponding to the cgroupns->root_cgrp.
2140 */
2141 if (!ret && ctx->ns != &init_cgroup_ns) {
2142 struct dentry *nsdentry;
2143 struct super_block *sb = fc->root->d_sb;
2144 struct cgroup *cgrp;
2145
2146 mutex_lock(&cgroup_mutex);
2147 spin_lock_irq(&css_set_lock);
2148
2149 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2150
2151 spin_unlock_irq(&css_set_lock);
2152 mutex_unlock(&cgroup_mutex);
2153
2154 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2155 dput(fc->root);
2156 if (IS_ERR(nsdentry)) {
2157 deactivate_locked_super(sb);
2158 ret = PTR_ERR(nsdentry);
2159 nsdentry = NULL;
2160 }
2161 fc->root = nsdentry;
2162 }
2163
2164 if (!ctx->kfc.new_sb_created)
2165 cgroup_put(&ctx->root->cgrp);
2166
2167 return ret;
2168 }
2169
2170 /*
2171 * Destroy a cgroup filesystem context.
2172 */
2173 static void cgroup_fs_context_free(struct fs_context *fc)
2174 {
2175 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2176
2177 kfree(ctx->name);
2178 kfree(ctx->release_agent);
2179 put_cgroup_ns(ctx->ns);
2180 kernfs_free_fs_context(fc);
2181 kfree(ctx);
2182 }
2183
2184 static int cgroup_get_tree(struct fs_context *fc)
2185 {
2186 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2187 int ret;
2188
2189 WRITE_ONCE(cgrp_dfl_visible, true);
2190 cgroup_get_live(&cgrp_dfl_root.cgrp);
2191 ctx->root = &cgrp_dfl_root;
2192
2193 ret = cgroup_do_get_tree(fc);
2194 if (!ret)
2195 apply_cgroup_root_flags(ctx->flags);
2196 return ret;
2197 }
2198
2199 static const struct fs_context_operations cgroup_fs_context_ops = {
2200 .free = cgroup_fs_context_free,
2201 .parse_param = cgroup2_parse_param,
2202 .get_tree = cgroup_get_tree,
2203 .reconfigure = cgroup_reconfigure,
2204 };
2205
2206 static const struct fs_context_operations cgroup1_fs_context_ops = {
2207 .free = cgroup_fs_context_free,
2208 .parse_param = cgroup1_parse_param,
2209 .get_tree = cgroup1_get_tree,
2210 .reconfigure = cgroup1_reconfigure,
2211 };
2212
2213 /*
2214 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2215 * we select the namespace we're going to use.
2216 */
2217 static int cgroup_init_fs_context(struct fs_context *fc)
2218 {
2219 struct cgroup_fs_context *ctx;
2220
2221 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2222 if (!ctx)
2223 return -ENOMEM;
2224
2225 ctx->ns = current->nsproxy->cgroup_ns;
2226 get_cgroup_ns(ctx->ns);
2227 fc->fs_private = &ctx->kfc;
2228 if (fc->fs_type == &cgroup2_fs_type)
2229 fc->ops = &cgroup_fs_context_ops;
2230 else
2231 fc->ops = &cgroup1_fs_context_ops;
2232 put_user_ns(fc->user_ns);
2233 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2234 fc->global = true;
2235
2236 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2237 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2238 #endif
2239 return 0;
2240 }
2241
2242 static void cgroup_kill_sb(struct super_block *sb)
2243 {
2244 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2245 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2246
2247 /*
2248 * If @root doesn't have any children, start killing it.
2249 * This prevents new mounts by disabling percpu_ref_tryget_live().
2250 *
2251 * And don't kill the default root.
2252 */
2253 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2254 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2255 cgroup_bpf_offline(&root->cgrp);
2256 percpu_ref_kill(&root->cgrp.self.refcnt);
2257 }
2258 cgroup_put(&root->cgrp);
2259 kernfs_kill_sb(sb);
2260 }
2261
2262 struct file_system_type cgroup_fs_type = {
2263 .name = "cgroup",
2264 .init_fs_context = cgroup_init_fs_context,
2265 .parameters = cgroup1_fs_parameters,
2266 .kill_sb = cgroup_kill_sb,
2267 .fs_flags = FS_USERNS_MOUNT,
2268 };
2269
2270 static struct file_system_type cgroup2_fs_type = {
2271 .name = "cgroup2",
2272 .init_fs_context = cgroup_init_fs_context,
2273 .parameters = cgroup2_fs_parameters,
2274 .kill_sb = cgroup_kill_sb,
2275 .fs_flags = FS_USERNS_MOUNT,
2276 };
2277
2278 #ifdef CONFIG_CPUSETS
2279 static const struct fs_context_operations cpuset_fs_context_ops = {
2280 .get_tree = cgroup1_get_tree,
2281 .free = cgroup_fs_context_free,
2282 };
2283
2284 /*
2285 * This is ugly, but preserves the userspace API for existing cpuset
2286 * users. If someone tries to mount the "cpuset" filesystem, we
2287 * silently switch it to mount "cgroup" instead
2288 */
2289 static int cpuset_init_fs_context(struct fs_context *fc)
2290 {
2291 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2292 struct cgroup_fs_context *ctx;
2293 int err;
2294
2295 err = cgroup_init_fs_context(fc);
2296 if (err) {
2297 kfree(agent);
2298 return err;
2299 }
2300
2301 fc->ops = &cpuset_fs_context_ops;
2302
2303 ctx = cgroup_fc2context(fc);
2304 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2305 ctx->flags |= CGRP_ROOT_NOPREFIX;
2306 ctx->release_agent = agent;
2307
2308 get_filesystem(&cgroup_fs_type);
2309 put_filesystem(fc->fs_type);
2310 fc->fs_type = &cgroup_fs_type;
2311
2312 return 0;
2313 }
2314
2315 static struct file_system_type cpuset_fs_type = {
2316 .name = "cpuset",
2317 .init_fs_context = cpuset_init_fs_context,
2318 .fs_flags = FS_USERNS_MOUNT,
2319 };
2320 #endif
2321
2322 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2323 struct cgroup_namespace *ns)
2324 {
2325 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2326
2327 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2328 }
2329
2330 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2331 struct cgroup_namespace *ns)
2332 {
2333 int ret;
2334
2335 mutex_lock(&cgroup_mutex);
2336 spin_lock_irq(&css_set_lock);
2337
2338 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2339
2340 spin_unlock_irq(&css_set_lock);
2341 mutex_unlock(&cgroup_mutex);
2342
2343 return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2346
2347 /**
2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2349 * @task: target task
2350 * @buf: the buffer to write the path into
2351 * @buflen: the length of the buffer
2352 *
2353 * Determine @task's cgroup on the first (the one with the lowest non-zero
2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356 * cgroup controller callbacks.
2357 *
2358 * Return value is the same as kernfs_path().
2359 */
2360 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2361 {
2362 struct cgroup_root *root;
2363 struct cgroup *cgrp;
2364 int hierarchy_id = 1;
2365 int ret;
2366
2367 mutex_lock(&cgroup_mutex);
2368 spin_lock_irq(&css_set_lock);
2369
2370 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2371
2372 if (root) {
2373 cgrp = task_cgroup_from_root(task, root);
2374 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2375 } else {
2376 /* if no hierarchy exists, everyone is in "/" */
2377 ret = strscpy(buf, "/", buflen);
2378 }
2379
2380 spin_unlock_irq(&css_set_lock);
2381 mutex_unlock(&cgroup_mutex);
2382 return ret;
2383 }
2384 EXPORT_SYMBOL_GPL(task_cgroup_path);
2385
2386 /**
2387 * cgroup_attach_lock - Lock for ->attach()
2388 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2389 *
2390 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2391 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2392 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2393 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2394 * lead to deadlocks.
2395 *
2396 * Bringing up a CPU may involve creating and destroying tasks which requires
2397 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2398 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2399 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2400 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2401 * the threadgroup_rwsem to be released to create new tasks. For more details:
2402 *
2403 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2404 *
2405 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2406 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2407 * CPU hotplug is disabled on entry.
2408 */
2409 void cgroup_attach_lock(bool lock_threadgroup)
2410 {
2411 cpus_read_lock();
2412 if (lock_threadgroup)
2413 percpu_down_write(&cgroup_threadgroup_rwsem);
2414 }
2415
2416 /**
2417 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2418 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2419 */
2420 void cgroup_attach_unlock(bool lock_threadgroup)
2421 {
2422 if (lock_threadgroup)
2423 percpu_up_write(&cgroup_threadgroup_rwsem);
2424 cpus_read_unlock();
2425 }
2426
2427 /**
2428 * cgroup_migrate_add_task - add a migration target task to a migration context
2429 * @task: target task
2430 * @mgctx: target migration context
2431 *
2432 * Add @task, which is a migration target, to @mgctx->tset. This function
2433 * becomes noop if @task doesn't need to be migrated. @task's css_set
2434 * should have been added as a migration source and @task->cg_list will be
2435 * moved from the css_set's tasks list to mg_tasks one.
2436 */
2437 static void cgroup_migrate_add_task(struct task_struct *task,
2438 struct cgroup_mgctx *mgctx)
2439 {
2440 struct css_set *cset;
2441
2442 lockdep_assert_held(&css_set_lock);
2443
2444 /* @task either already exited or can't exit until the end */
2445 if (task->flags & PF_EXITING)
2446 return;
2447
2448 /* cgroup_threadgroup_rwsem protects racing against forks */
2449 WARN_ON_ONCE(list_empty(&task->cg_list));
2450
2451 cset = task_css_set(task);
2452 if (!cset->mg_src_cgrp)
2453 return;
2454
2455 mgctx->tset.nr_tasks++;
2456
2457 list_move_tail(&task->cg_list, &cset->mg_tasks);
2458 if (list_empty(&cset->mg_node))
2459 list_add_tail(&cset->mg_node,
2460 &mgctx->tset.src_csets);
2461 if (list_empty(&cset->mg_dst_cset->mg_node))
2462 list_add_tail(&cset->mg_dst_cset->mg_node,
2463 &mgctx->tset.dst_csets);
2464 }
2465
2466 /**
2467 * cgroup_taskset_first - reset taskset and return the first task
2468 * @tset: taskset of interest
2469 * @dst_cssp: output variable for the destination css
2470 *
2471 * @tset iteration is initialized and the first task is returned.
2472 */
2473 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2474 struct cgroup_subsys_state **dst_cssp)
2475 {
2476 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2477 tset->cur_task = NULL;
2478
2479 return cgroup_taskset_next(tset, dst_cssp);
2480 }
2481
2482 /**
2483 * cgroup_taskset_next - iterate to the next task in taskset
2484 * @tset: taskset of interest
2485 * @dst_cssp: output variable for the destination css
2486 *
2487 * Return the next task in @tset. Iteration must have been initialized
2488 * with cgroup_taskset_first().
2489 */
2490 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2491 struct cgroup_subsys_state **dst_cssp)
2492 {
2493 struct css_set *cset = tset->cur_cset;
2494 struct task_struct *task = tset->cur_task;
2495
2496 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2497 if (!task)
2498 task = list_first_entry(&cset->mg_tasks,
2499 struct task_struct, cg_list);
2500 else
2501 task = list_next_entry(task, cg_list);
2502
2503 if (&task->cg_list != &cset->mg_tasks) {
2504 tset->cur_cset = cset;
2505 tset->cur_task = task;
2506
2507 /*
2508 * This function may be called both before and
2509 * after cgroup_taskset_migrate(). The two cases
2510 * can be distinguished by looking at whether @cset
2511 * has its ->mg_dst_cset set.
2512 */
2513 if (cset->mg_dst_cset)
2514 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2515 else
2516 *dst_cssp = cset->subsys[tset->ssid];
2517
2518 return task;
2519 }
2520
2521 cset = list_next_entry(cset, mg_node);
2522 task = NULL;
2523 }
2524
2525 return NULL;
2526 }
2527
2528 /**
2529 * cgroup_migrate_execute - migrate a taskset
2530 * @mgctx: migration context
2531 *
2532 * Migrate tasks in @mgctx as setup by migration preparation functions.
2533 * This function fails iff one of the ->can_attach callbacks fails and
2534 * guarantees that either all or none of the tasks in @mgctx are migrated.
2535 * @mgctx is consumed regardless of success.
2536 */
2537 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2538 {
2539 struct cgroup_taskset *tset = &mgctx->tset;
2540 struct cgroup_subsys *ss;
2541 struct task_struct *task, *tmp_task;
2542 struct css_set *cset, *tmp_cset;
2543 int ssid, failed_ssid, ret;
2544
2545 /* check that we can legitimately attach to the cgroup */
2546 if (tset->nr_tasks) {
2547 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2548 if (ss->can_attach) {
2549 tset->ssid = ssid;
2550 ret = ss->can_attach(tset);
2551 if (ret) {
2552 failed_ssid = ssid;
2553 goto out_cancel_attach;
2554 }
2555 }
2556 } while_each_subsys_mask();
2557 }
2558
2559 /*
2560 * Now that we're guaranteed success, proceed to move all tasks to
2561 * the new cgroup. There are no failure cases after here, so this
2562 * is the commit point.
2563 */
2564 spin_lock_irq(&css_set_lock);
2565 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2566 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2567 struct css_set *from_cset = task_css_set(task);
2568 struct css_set *to_cset = cset->mg_dst_cset;
2569
2570 get_css_set(to_cset);
2571 to_cset->nr_tasks++;
2572 css_set_move_task(task, from_cset, to_cset, true);
2573 from_cset->nr_tasks--;
2574 /*
2575 * If the source or destination cgroup is frozen,
2576 * the task might require to change its state.
2577 */
2578 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2579 to_cset->dfl_cgrp);
2580 put_css_set_locked(from_cset);
2581
2582 }
2583 }
2584 spin_unlock_irq(&css_set_lock);
2585
2586 /*
2587 * Migration is committed, all target tasks are now on dst_csets.
2588 * Nothing is sensitive to fork() after this point. Notify
2589 * controllers that migration is complete.
2590 */
2591 tset->csets = &tset->dst_csets;
2592
2593 if (tset->nr_tasks) {
2594 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595 if (ss->attach) {
2596 tset->ssid = ssid;
2597 ss->attach(tset);
2598 }
2599 } while_each_subsys_mask();
2600 }
2601
2602 ret = 0;
2603 goto out_release_tset;
2604
2605 out_cancel_attach:
2606 if (tset->nr_tasks) {
2607 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2608 if (ssid == failed_ssid)
2609 break;
2610 if (ss->cancel_attach) {
2611 tset->ssid = ssid;
2612 ss->cancel_attach(tset);
2613 }
2614 } while_each_subsys_mask();
2615 }
2616 out_release_tset:
2617 spin_lock_irq(&css_set_lock);
2618 list_splice_init(&tset->dst_csets, &tset->src_csets);
2619 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2620 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2621 list_del_init(&cset->mg_node);
2622 }
2623 spin_unlock_irq(&css_set_lock);
2624
2625 /*
2626 * Re-initialize the cgroup_taskset structure in case it is reused
2627 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2628 * iteration.
2629 */
2630 tset->nr_tasks = 0;
2631 tset->csets = &tset->src_csets;
2632 return ret;
2633 }
2634
2635 /**
2636 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2637 * @dst_cgrp: destination cgroup to test
2638 *
2639 * On the default hierarchy, except for the mixable, (possible) thread root
2640 * and threaded cgroups, subtree_control must be zero for migration
2641 * destination cgroups with tasks so that child cgroups don't compete
2642 * against tasks.
2643 */
2644 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2645 {
2646 /* v1 doesn't have any restriction */
2647 if (!cgroup_on_dfl(dst_cgrp))
2648 return 0;
2649
2650 /* verify @dst_cgrp can host resources */
2651 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2652 return -EOPNOTSUPP;
2653
2654 /*
2655 * If @dst_cgrp is already or can become a thread root or is
2656 * threaded, it doesn't matter.
2657 */
2658 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2659 return 0;
2660
2661 /* apply no-internal-process constraint */
2662 if (dst_cgrp->subtree_control)
2663 return -EBUSY;
2664
2665 return 0;
2666 }
2667
2668 /**
2669 * cgroup_migrate_finish - cleanup after attach
2670 * @mgctx: migration context
2671 *
2672 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2673 * those functions for details.
2674 */
2675 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2676 {
2677 struct css_set *cset, *tmp_cset;
2678
2679 lockdep_assert_held(&cgroup_mutex);
2680
2681 spin_lock_irq(&css_set_lock);
2682
2683 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2684 mg_src_preload_node) {
2685 cset->mg_src_cgrp = NULL;
2686 cset->mg_dst_cgrp = NULL;
2687 cset->mg_dst_cset = NULL;
2688 list_del_init(&cset->mg_src_preload_node);
2689 put_css_set_locked(cset);
2690 }
2691
2692 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2693 mg_dst_preload_node) {
2694 cset->mg_src_cgrp = NULL;
2695 cset->mg_dst_cgrp = NULL;
2696 cset->mg_dst_cset = NULL;
2697 list_del_init(&cset->mg_dst_preload_node);
2698 put_css_set_locked(cset);
2699 }
2700
2701 spin_unlock_irq(&css_set_lock);
2702 }
2703
2704 /**
2705 * cgroup_migrate_add_src - add a migration source css_set
2706 * @src_cset: the source css_set to add
2707 * @dst_cgrp: the destination cgroup
2708 * @mgctx: migration context
2709 *
2710 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2711 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2712 * up by cgroup_migrate_finish().
2713 *
2714 * This function may be called without holding cgroup_threadgroup_rwsem
2715 * even if the target is a process. Threads may be created and destroyed
2716 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2717 * into play and the preloaded css_sets are guaranteed to cover all
2718 * migrations.
2719 */
2720 void cgroup_migrate_add_src(struct css_set *src_cset,
2721 struct cgroup *dst_cgrp,
2722 struct cgroup_mgctx *mgctx)
2723 {
2724 struct cgroup *src_cgrp;
2725
2726 lockdep_assert_held(&cgroup_mutex);
2727 lockdep_assert_held(&css_set_lock);
2728
2729 /*
2730 * If ->dead, @src_set is associated with one or more dead cgroups
2731 * and doesn't contain any migratable tasks. Ignore it early so
2732 * that the rest of migration path doesn't get confused by it.
2733 */
2734 if (src_cset->dead)
2735 return;
2736
2737 if (!list_empty(&src_cset->mg_src_preload_node))
2738 return;
2739
2740 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2741
2742 WARN_ON(src_cset->mg_src_cgrp);
2743 WARN_ON(src_cset->mg_dst_cgrp);
2744 WARN_ON(!list_empty(&src_cset->mg_tasks));
2745 WARN_ON(!list_empty(&src_cset->mg_node));
2746
2747 src_cset->mg_src_cgrp = src_cgrp;
2748 src_cset->mg_dst_cgrp = dst_cgrp;
2749 get_css_set(src_cset);
2750 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2751 }
2752
2753 /**
2754 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2755 * @mgctx: migration context
2756 *
2757 * Tasks are about to be moved and all the source css_sets have been
2758 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2759 * pins all destination css_sets, links each to its source, and append them
2760 * to @mgctx->preloaded_dst_csets.
2761 *
2762 * This function must be called after cgroup_migrate_add_src() has been
2763 * called on each migration source css_set. After migration is performed
2764 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2765 * @mgctx.
2766 */
2767 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2768 {
2769 struct css_set *src_cset, *tmp_cset;
2770
2771 lockdep_assert_held(&cgroup_mutex);
2772
2773 /* look up the dst cset for each src cset and link it to src */
2774 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2775 mg_src_preload_node) {
2776 struct css_set *dst_cset;
2777 struct cgroup_subsys *ss;
2778 int ssid;
2779
2780 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2781 if (!dst_cset)
2782 return -ENOMEM;
2783
2784 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2785
2786 /*
2787 * If src cset equals dst, it's noop. Drop the src.
2788 * cgroup_migrate() will skip the cset too. Note that we
2789 * can't handle src == dst as some nodes are used by both.
2790 */
2791 if (src_cset == dst_cset) {
2792 src_cset->mg_src_cgrp = NULL;
2793 src_cset->mg_dst_cgrp = NULL;
2794 list_del_init(&src_cset->mg_src_preload_node);
2795 put_css_set(src_cset);
2796 put_css_set(dst_cset);
2797 continue;
2798 }
2799
2800 src_cset->mg_dst_cset = dst_cset;
2801
2802 if (list_empty(&dst_cset->mg_dst_preload_node))
2803 list_add_tail(&dst_cset->mg_dst_preload_node,
2804 &mgctx->preloaded_dst_csets);
2805 else
2806 put_css_set(dst_cset);
2807
2808 for_each_subsys(ss, ssid)
2809 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2810 mgctx->ss_mask |= 1 << ssid;
2811 }
2812
2813 return 0;
2814 }
2815
2816 /**
2817 * cgroup_migrate - migrate a process or task to a cgroup
2818 * @leader: the leader of the process or the task to migrate
2819 * @threadgroup: whether @leader points to the whole process or a single task
2820 * @mgctx: migration context
2821 *
2822 * Migrate a process or task denoted by @leader. If migrating a process,
2823 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2824 * responsible for invoking cgroup_migrate_add_src() and
2825 * cgroup_migrate_prepare_dst() on the targets before invoking this
2826 * function and following up with cgroup_migrate_finish().
2827 *
2828 * As long as a controller's ->can_attach() doesn't fail, this function is
2829 * guaranteed to succeed. This means that, excluding ->can_attach()
2830 * failure, when migrating multiple targets, the success or failure can be
2831 * decided for all targets by invoking group_migrate_prepare_dst() before
2832 * actually starting migrating.
2833 */
2834 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2835 struct cgroup_mgctx *mgctx)
2836 {
2837 struct task_struct *task;
2838
2839 /*
2840 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2841 * already PF_EXITING could be freed from underneath us unless we
2842 * take an rcu_read_lock.
2843 */
2844 spin_lock_irq(&css_set_lock);
2845 rcu_read_lock();
2846 task = leader;
2847 do {
2848 cgroup_migrate_add_task(task, mgctx);
2849 if (!threadgroup)
2850 break;
2851 } while_each_thread(leader, task);
2852 rcu_read_unlock();
2853 spin_unlock_irq(&css_set_lock);
2854
2855 return cgroup_migrate_execute(mgctx);
2856 }
2857
2858 /**
2859 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2860 * @dst_cgrp: the cgroup to attach to
2861 * @leader: the task or the leader of the threadgroup to be attached
2862 * @threadgroup: attach the whole threadgroup?
2863 *
2864 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2865 */
2866 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2867 bool threadgroup)
2868 {
2869 DEFINE_CGROUP_MGCTX(mgctx);
2870 struct task_struct *task;
2871 int ret = 0;
2872
2873 /* look up all src csets */
2874 spin_lock_irq(&css_set_lock);
2875 rcu_read_lock();
2876 task = leader;
2877 do {
2878 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2879 if (!threadgroup)
2880 break;
2881 } while_each_thread(leader, task);
2882 rcu_read_unlock();
2883 spin_unlock_irq(&css_set_lock);
2884
2885 /* prepare dst csets and commit */
2886 ret = cgroup_migrate_prepare_dst(&mgctx);
2887 if (!ret)
2888 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2889
2890 cgroup_migrate_finish(&mgctx);
2891
2892 if (!ret)
2893 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2894
2895 return ret;
2896 }
2897
2898 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2899 bool *threadgroup_locked)
2900 {
2901 struct task_struct *tsk;
2902 pid_t pid;
2903
2904 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2905 return ERR_PTR(-EINVAL);
2906
2907 /*
2908 * If we migrate a single thread, we don't care about threadgroup
2909 * stability. If the thread is `current`, it won't exit(2) under our
2910 * hands or change PID through exec(2). We exclude
2911 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2912 * callers by cgroup_mutex.
2913 * Therefore, we can skip the global lock.
2914 */
2915 lockdep_assert_held(&cgroup_mutex);
2916 *threadgroup_locked = pid || threadgroup;
2917 cgroup_attach_lock(*threadgroup_locked);
2918
2919 rcu_read_lock();
2920 if (pid) {
2921 tsk = find_task_by_vpid(pid);
2922 if (!tsk) {
2923 tsk = ERR_PTR(-ESRCH);
2924 goto out_unlock_threadgroup;
2925 }
2926 } else {
2927 tsk = current;
2928 }
2929
2930 if (threadgroup)
2931 tsk = tsk->group_leader;
2932
2933 /*
2934 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2935 * If userland migrates such a kthread to a non-root cgroup, it can
2936 * become trapped in a cpuset, or RT kthread may be born in a
2937 * cgroup with no rt_runtime allocated. Just say no.
2938 */
2939 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2940 tsk = ERR_PTR(-EINVAL);
2941 goto out_unlock_threadgroup;
2942 }
2943
2944 get_task_struct(tsk);
2945 goto out_unlock_rcu;
2946
2947 out_unlock_threadgroup:
2948 cgroup_attach_unlock(*threadgroup_locked);
2949 *threadgroup_locked = false;
2950 out_unlock_rcu:
2951 rcu_read_unlock();
2952 return tsk;
2953 }
2954
2955 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2956 {
2957 struct cgroup_subsys *ss;
2958 int ssid;
2959
2960 /* release reference from cgroup_procs_write_start() */
2961 put_task_struct(task);
2962
2963 cgroup_attach_unlock(threadgroup_locked);
2964
2965 for_each_subsys(ss, ssid)
2966 if (ss->post_attach)
2967 ss->post_attach();
2968 }
2969
2970 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2971 {
2972 struct cgroup_subsys *ss;
2973 bool printed = false;
2974 int ssid;
2975
2976 do_each_subsys_mask(ss, ssid, ss_mask) {
2977 if (printed)
2978 seq_putc(seq, ' ');
2979 seq_puts(seq, ss->name);
2980 printed = true;
2981 } while_each_subsys_mask();
2982 if (printed)
2983 seq_putc(seq, '\n');
2984 }
2985
2986 /* show controllers which are enabled from the parent */
2987 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2988 {
2989 struct cgroup *cgrp = seq_css(seq)->cgroup;
2990
2991 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2992 return 0;
2993 }
2994
2995 /* show controllers which are enabled for a given cgroup's children */
2996 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2997 {
2998 struct cgroup *cgrp = seq_css(seq)->cgroup;
2999
3000 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3001 return 0;
3002 }
3003
3004 /**
3005 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3006 * @cgrp: root of the subtree to update csses for
3007 *
3008 * @cgrp's control masks have changed and its subtree's css associations
3009 * need to be updated accordingly. This function looks up all css_sets
3010 * which are attached to the subtree, creates the matching updated css_sets
3011 * and migrates the tasks to the new ones.
3012 */
3013 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3014 {
3015 DEFINE_CGROUP_MGCTX(mgctx);
3016 struct cgroup_subsys_state *d_css;
3017 struct cgroup *dsct;
3018 struct css_set *src_cset;
3019 bool has_tasks;
3020 int ret;
3021
3022 lockdep_assert_held(&cgroup_mutex);
3023
3024 /* look up all csses currently attached to @cgrp's subtree */
3025 spin_lock_irq(&css_set_lock);
3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 struct cgrp_cset_link *link;
3028
3029 /*
3030 * As cgroup_update_dfl_csses() is only called by
3031 * cgroup_apply_control(). The csses associated with the
3032 * given cgrp will not be affected by changes made to
3033 * its subtree_control file. We can skip them.
3034 */
3035 if (dsct == cgrp)
3036 continue;
3037
3038 list_for_each_entry(link, &dsct->cset_links, cset_link)
3039 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3040 }
3041 spin_unlock_irq(&css_set_lock);
3042
3043 /*
3044 * We need to write-lock threadgroup_rwsem while migrating tasks.
3045 * However, if there are no source csets for @cgrp, changing its
3046 * controllers isn't gonna produce any task migrations and the
3047 * write-locking can be skipped safely.
3048 */
3049 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3050 cgroup_attach_lock(has_tasks);
3051
3052 /* NULL dst indicates self on default hierarchy */
3053 ret = cgroup_migrate_prepare_dst(&mgctx);
3054 if (ret)
3055 goto out_finish;
3056
3057 spin_lock_irq(&css_set_lock);
3058 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3059 mg_src_preload_node) {
3060 struct task_struct *task, *ntask;
3061
3062 /* all tasks in src_csets need to be migrated */
3063 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3064 cgroup_migrate_add_task(task, &mgctx);
3065 }
3066 spin_unlock_irq(&css_set_lock);
3067
3068 ret = cgroup_migrate_execute(&mgctx);
3069 out_finish:
3070 cgroup_migrate_finish(&mgctx);
3071 cgroup_attach_unlock(has_tasks);
3072 return ret;
3073 }
3074
3075 /**
3076 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3077 * @cgrp: root of the target subtree
3078 *
3079 * Because css offlining is asynchronous, userland may try to re-enable a
3080 * controller while the previous css is still around. This function grabs
3081 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3082 */
3083 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3084 __acquires(&cgroup_mutex)
3085 {
3086 struct cgroup *dsct;
3087 struct cgroup_subsys_state *d_css;
3088 struct cgroup_subsys *ss;
3089 int ssid;
3090
3091 restart:
3092 mutex_lock(&cgroup_mutex);
3093
3094 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095 for_each_subsys(ss, ssid) {
3096 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3097 DEFINE_WAIT(wait);
3098
3099 if (!css || !percpu_ref_is_dying(&css->refcnt))
3100 continue;
3101
3102 cgroup_get_live(dsct);
3103 prepare_to_wait(&dsct->offline_waitq, &wait,
3104 TASK_UNINTERRUPTIBLE);
3105
3106 mutex_unlock(&cgroup_mutex);
3107 schedule();
3108 finish_wait(&dsct->offline_waitq, &wait);
3109
3110 cgroup_put(dsct);
3111 goto restart;
3112 }
3113 }
3114 }
3115
3116 /**
3117 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3118 * @cgrp: root of the target subtree
3119 *
3120 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3121 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3122 * itself.
3123 */
3124 static void cgroup_save_control(struct cgroup *cgrp)
3125 {
3126 struct cgroup *dsct;
3127 struct cgroup_subsys_state *d_css;
3128
3129 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130 dsct->old_subtree_control = dsct->subtree_control;
3131 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3132 dsct->old_dom_cgrp = dsct->dom_cgrp;
3133 }
3134 }
3135
3136 /**
3137 * cgroup_propagate_control - refresh control masks of a subtree
3138 * @cgrp: root of the target subtree
3139 *
3140 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3141 * ->subtree_control and propagate controller availability through the
3142 * subtree so that descendants don't have unavailable controllers enabled.
3143 */
3144 static void cgroup_propagate_control(struct cgroup *cgrp)
3145 {
3146 struct cgroup *dsct;
3147 struct cgroup_subsys_state *d_css;
3148
3149 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3150 dsct->subtree_control &= cgroup_control(dsct);
3151 dsct->subtree_ss_mask =
3152 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3153 cgroup_ss_mask(dsct));
3154 }
3155 }
3156
3157 /**
3158 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3159 * @cgrp: root of the target subtree
3160 *
3161 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3162 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3163 * itself.
3164 */
3165 static void cgroup_restore_control(struct cgroup *cgrp)
3166 {
3167 struct cgroup *dsct;
3168 struct cgroup_subsys_state *d_css;
3169
3170 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3171 dsct->subtree_control = dsct->old_subtree_control;
3172 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3173 dsct->dom_cgrp = dsct->old_dom_cgrp;
3174 }
3175 }
3176
3177 static bool css_visible(struct cgroup_subsys_state *css)
3178 {
3179 struct cgroup_subsys *ss = css->ss;
3180 struct cgroup *cgrp = css->cgroup;
3181
3182 if (cgroup_control(cgrp) & (1 << ss->id))
3183 return true;
3184 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3185 return false;
3186 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3187 }
3188
3189 /**
3190 * cgroup_apply_control_enable - enable or show csses according to control
3191 * @cgrp: root of the target subtree
3192 *
3193 * Walk @cgrp's subtree and create new csses or make the existing ones
3194 * visible. A css is created invisible if it's being implicitly enabled
3195 * through dependency. An invisible css is made visible when the userland
3196 * explicitly enables it.
3197 *
3198 * Returns 0 on success, -errno on failure. On failure, csses which have
3199 * been processed already aren't cleaned up. The caller is responsible for
3200 * cleaning up with cgroup_apply_control_disable().
3201 */
3202 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3203 {
3204 struct cgroup *dsct;
3205 struct cgroup_subsys_state *d_css;
3206 struct cgroup_subsys *ss;
3207 int ssid, ret;
3208
3209 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3210 for_each_subsys(ss, ssid) {
3211 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3212
3213 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3214 continue;
3215
3216 if (!css) {
3217 css = css_create(dsct, ss);
3218 if (IS_ERR(css))
3219 return PTR_ERR(css);
3220 }
3221
3222 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3223
3224 if (css_visible(css)) {
3225 ret = css_populate_dir(css);
3226 if (ret)
3227 return ret;
3228 }
3229 }
3230 }
3231
3232 return 0;
3233 }
3234
3235 /**
3236 * cgroup_apply_control_disable - kill or hide csses according to control
3237 * @cgrp: root of the target subtree
3238 *
3239 * Walk @cgrp's subtree and kill and hide csses so that they match
3240 * cgroup_ss_mask() and cgroup_visible_mask().
3241 *
3242 * A css is hidden when the userland requests it to be disabled while other
3243 * subsystems are still depending on it. The css must not actively control
3244 * resources and be in the vanilla state if it's made visible again later.
3245 * Controllers which may be depended upon should provide ->css_reset() for
3246 * this purpose.
3247 */
3248 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3249 {
3250 struct cgroup *dsct;
3251 struct cgroup_subsys_state *d_css;
3252 struct cgroup_subsys *ss;
3253 int ssid;
3254
3255 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3256 for_each_subsys(ss, ssid) {
3257 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258
3259 if (!css)
3260 continue;
3261
3262 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3263
3264 if (css->parent &&
3265 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3266 kill_css(css);
3267 } else if (!css_visible(css)) {
3268 css_clear_dir(css);
3269 if (ss->css_reset)
3270 ss->css_reset(css);
3271 }
3272 }
3273 }
3274 }
3275
3276 /**
3277 * cgroup_apply_control - apply control mask updates to the subtree
3278 * @cgrp: root of the target subtree
3279 *
3280 * subsystems can be enabled and disabled in a subtree using the following
3281 * steps.
3282 *
3283 * 1. Call cgroup_save_control() to stash the current state.
3284 * 2. Update ->subtree_control masks in the subtree as desired.
3285 * 3. Call cgroup_apply_control() to apply the changes.
3286 * 4. Optionally perform other related operations.
3287 * 5. Call cgroup_finalize_control() to finish up.
3288 *
3289 * This function implements step 3 and propagates the mask changes
3290 * throughout @cgrp's subtree, updates csses accordingly and perform
3291 * process migrations.
3292 */
3293 static int cgroup_apply_control(struct cgroup *cgrp)
3294 {
3295 int ret;
3296
3297 cgroup_propagate_control(cgrp);
3298
3299 ret = cgroup_apply_control_enable(cgrp);
3300 if (ret)
3301 return ret;
3302
3303 /*
3304 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3305 * making the following cgroup_update_dfl_csses() properly update
3306 * css associations of all tasks in the subtree.
3307 */
3308 return cgroup_update_dfl_csses(cgrp);
3309 }
3310
3311 /**
3312 * cgroup_finalize_control - finalize control mask update
3313 * @cgrp: root of the target subtree
3314 * @ret: the result of the update
3315 *
3316 * Finalize control mask update. See cgroup_apply_control() for more info.
3317 */
3318 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3319 {
3320 if (ret) {
3321 cgroup_restore_control(cgrp);
3322 cgroup_propagate_control(cgrp);
3323 }
3324
3325 cgroup_apply_control_disable(cgrp);
3326 }
3327
3328 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3329 {
3330 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3331
3332 /* if nothing is getting enabled, nothing to worry about */
3333 if (!enable)
3334 return 0;
3335
3336 /* can @cgrp host any resources? */
3337 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3338 return -EOPNOTSUPP;
3339
3340 /* mixables don't care */
3341 if (cgroup_is_mixable(cgrp))
3342 return 0;
3343
3344 if (domain_enable) {
3345 /* can't enable domain controllers inside a thread subtree */
3346 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3347 return -EOPNOTSUPP;
3348 } else {
3349 /*
3350 * Threaded controllers can handle internal competitions
3351 * and are always allowed inside a (prospective) thread
3352 * subtree.
3353 */
3354 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3355 return 0;
3356 }
3357
3358 /*
3359 * Controllers can't be enabled for a cgroup with tasks to avoid
3360 * child cgroups competing against tasks.
3361 */
3362 if (cgroup_has_tasks(cgrp))
3363 return -EBUSY;
3364
3365 return 0;
3366 }
3367
3368 /* change the enabled child controllers for a cgroup in the default hierarchy */
3369 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3370 char *buf, size_t nbytes,
3371 loff_t off)
3372 {
3373 u16 enable = 0, disable = 0;
3374 struct cgroup *cgrp, *child;
3375 struct cgroup_subsys *ss;
3376 char *tok;
3377 int ssid, ret;
3378
3379 /*
3380 * Parse input - space separated list of subsystem names prefixed
3381 * with either + or -.
3382 */
3383 buf = strstrip(buf);
3384 while ((tok = strsep(&buf, " "))) {
3385 if (tok[0] == '\0')
3386 continue;
3387 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3388 if (!cgroup_ssid_enabled(ssid) ||
3389 strcmp(tok + 1, ss->name))
3390 continue;
3391
3392 if (*tok == '+') {
3393 enable |= 1 << ssid;
3394 disable &= ~(1 << ssid);
3395 } else if (*tok == '-') {
3396 disable |= 1 << ssid;
3397 enable &= ~(1 << ssid);
3398 } else {
3399 return -EINVAL;
3400 }
3401 break;
3402 } while_each_subsys_mask();
3403 if (ssid == CGROUP_SUBSYS_COUNT)
3404 return -EINVAL;
3405 }
3406
3407 cgrp = cgroup_kn_lock_live(of->kn, true);
3408 if (!cgrp)
3409 return -ENODEV;
3410
3411 for_each_subsys(ss, ssid) {
3412 if (enable & (1 << ssid)) {
3413 if (cgrp->subtree_control & (1 << ssid)) {
3414 enable &= ~(1 << ssid);
3415 continue;
3416 }
3417
3418 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3419 ret = -ENOENT;
3420 goto out_unlock;
3421 }
3422 } else if (disable & (1 << ssid)) {
3423 if (!(cgrp->subtree_control & (1 << ssid))) {
3424 disable &= ~(1 << ssid);
3425 continue;
3426 }
3427
3428 /* a child has it enabled? */
3429 cgroup_for_each_live_child(child, cgrp) {
3430 if (child->subtree_control & (1 << ssid)) {
3431 ret = -EBUSY;
3432 goto out_unlock;
3433 }
3434 }
3435 }
3436 }
3437
3438 if (!enable && !disable) {
3439 ret = 0;
3440 goto out_unlock;
3441 }
3442
3443 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3444 if (ret)
3445 goto out_unlock;
3446
3447 /* save and update control masks and prepare csses */
3448 cgroup_save_control(cgrp);
3449
3450 cgrp->subtree_control |= enable;
3451 cgrp->subtree_control &= ~disable;
3452
3453 ret = cgroup_apply_control(cgrp);
3454 cgroup_finalize_control(cgrp, ret);
3455 if (ret)
3456 goto out_unlock;
3457
3458 kernfs_activate(cgrp->kn);
3459 out_unlock:
3460 cgroup_kn_unlock(of->kn);
3461 return ret ?: nbytes;
3462 }
3463
3464 /**
3465 * cgroup_enable_threaded - make @cgrp threaded
3466 * @cgrp: the target cgroup
3467 *
3468 * Called when "threaded" is written to the cgroup.type interface file and
3469 * tries to make @cgrp threaded and join the parent's resource domain.
3470 * This function is never called on the root cgroup as cgroup.type doesn't
3471 * exist on it.
3472 */
3473 static int cgroup_enable_threaded(struct cgroup *cgrp)
3474 {
3475 struct cgroup *parent = cgroup_parent(cgrp);
3476 struct cgroup *dom_cgrp = parent->dom_cgrp;
3477 struct cgroup *dsct;
3478 struct cgroup_subsys_state *d_css;
3479 int ret;
3480
3481 lockdep_assert_held(&cgroup_mutex);
3482
3483 /* noop if already threaded */
3484 if (cgroup_is_threaded(cgrp))
3485 return 0;
3486
3487 /*
3488 * If @cgroup is populated or has domain controllers enabled, it
3489 * can't be switched. While the below cgroup_can_be_thread_root()
3490 * test can catch the same conditions, that's only when @parent is
3491 * not mixable, so let's check it explicitly.
3492 */
3493 if (cgroup_is_populated(cgrp) ||
3494 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3495 return -EOPNOTSUPP;
3496
3497 /* we're joining the parent's domain, ensure its validity */
3498 if (!cgroup_is_valid_domain(dom_cgrp) ||
3499 !cgroup_can_be_thread_root(dom_cgrp))
3500 return -EOPNOTSUPP;
3501
3502 /*
3503 * The following shouldn't cause actual migrations and should
3504 * always succeed.
3505 */
3506 cgroup_save_control(cgrp);
3507
3508 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3509 if (dsct == cgrp || cgroup_is_threaded(dsct))
3510 dsct->dom_cgrp = dom_cgrp;
3511
3512 ret = cgroup_apply_control(cgrp);
3513 if (!ret)
3514 parent->nr_threaded_children++;
3515
3516 cgroup_finalize_control(cgrp, ret);
3517 return ret;
3518 }
3519
3520 static int cgroup_type_show(struct seq_file *seq, void *v)
3521 {
3522 struct cgroup *cgrp = seq_css(seq)->cgroup;
3523
3524 if (cgroup_is_threaded(cgrp))
3525 seq_puts(seq, "threaded\n");
3526 else if (!cgroup_is_valid_domain(cgrp))
3527 seq_puts(seq, "domain invalid\n");
3528 else if (cgroup_is_thread_root(cgrp))
3529 seq_puts(seq, "domain threaded\n");
3530 else
3531 seq_puts(seq, "domain\n");
3532
3533 return 0;
3534 }
3535
3536 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3537 size_t nbytes, loff_t off)
3538 {
3539 struct cgroup *cgrp;
3540 int ret;
3541
3542 /* only switching to threaded mode is supported */
3543 if (strcmp(strstrip(buf), "threaded"))
3544 return -EINVAL;
3545
3546 /* drain dying csses before we re-apply (threaded) subtree control */
3547 cgrp = cgroup_kn_lock_live(of->kn, true);
3548 if (!cgrp)
3549 return -ENOENT;
3550
3551 /* threaded can only be enabled */
3552 ret = cgroup_enable_threaded(cgrp);
3553
3554 cgroup_kn_unlock(of->kn);
3555 return ret ?: nbytes;
3556 }
3557
3558 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3559 {
3560 struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 int descendants = READ_ONCE(cgrp->max_descendants);
3562
3563 if (descendants == INT_MAX)
3564 seq_puts(seq, "max\n");
3565 else
3566 seq_printf(seq, "%d\n", descendants);
3567
3568 return 0;
3569 }
3570
3571 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3572 char *buf, size_t nbytes, loff_t off)
3573 {
3574 struct cgroup *cgrp;
3575 int descendants;
3576 ssize_t ret;
3577
3578 buf = strstrip(buf);
3579 if (!strcmp(buf, "max")) {
3580 descendants = INT_MAX;
3581 } else {
3582 ret = kstrtoint(buf, 0, &descendants);
3583 if (ret)
3584 return ret;
3585 }
3586
3587 if (descendants < 0)
3588 return -ERANGE;
3589
3590 cgrp = cgroup_kn_lock_live(of->kn, false);
3591 if (!cgrp)
3592 return -ENOENT;
3593
3594 cgrp->max_descendants = descendants;
3595
3596 cgroup_kn_unlock(of->kn);
3597
3598 return nbytes;
3599 }
3600
3601 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3602 {
3603 struct cgroup *cgrp = seq_css(seq)->cgroup;
3604 int depth = READ_ONCE(cgrp->max_depth);
3605
3606 if (depth == INT_MAX)
3607 seq_puts(seq, "max\n");
3608 else
3609 seq_printf(seq, "%d\n", depth);
3610
3611 return 0;
3612 }
3613
3614 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3615 char *buf, size_t nbytes, loff_t off)
3616 {
3617 struct cgroup *cgrp;
3618 ssize_t ret;
3619 int depth;
3620
3621 buf = strstrip(buf);
3622 if (!strcmp(buf, "max")) {
3623 depth = INT_MAX;
3624 } else {
3625 ret = kstrtoint(buf, 0, &depth);
3626 if (ret)
3627 return ret;
3628 }
3629
3630 if (depth < 0)
3631 return -ERANGE;
3632
3633 cgrp = cgroup_kn_lock_live(of->kn, false);
3634 if (!cgrp)
3635 return -ENOENT;
3636
3637 cgrp->max_depth = depth;
3638
3639 cgroup_kn_unlock(of->kn);
3640
3641 return nbytes;
3642 }
3643
3644 static int cgroup_events_show(struct seq_file *seq, void *v)
3645 {
3646 struct cgroup *cgrp = seq_css(seq)->cgroup;
3647
3648 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3649 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3650
3651 return 0;
3652 }
3653
3654 static int cgroup_stat_show(struct seq_file *seq, void *v)
3655 {
3656 struct cgroup *cgroup = seq_css(seq)->cgroup;
3657
3658 seq_printf(seq, "nr_descendants %d\n",
3659 cgroup->nr_descendants);
3660 seq_printf(seq, "nr_dying_descendants %d\n",
3661 cgroup->nr_dying_descendants);
3662
3663 return 0;
3664 }
3665
3666 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3667 struct cgroup *cgrp, int ssid)
3668 {
3669 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3670 struct cgroup_subsys_state *css;
3671 int ret;
3672
3673 if (!ss->css_extra_stat_show)
3674 return 0;
3675
3676 css = cgroup_tryget_css(cgrp, ss);
3677 if (!css)
3678 return 0;
3679
3680 ret = ss->css_extra_stat_show(seq, css);
3681 css_put(css);
3682 return ret;
3683 }
3684
3685 static int cpu_stat_show(struct seq_file *seq, void *v)
3686 {
3687 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3688 int ret = 0;
3689
3690 cgroup_base_stat_cputime_show(seq);
3691 #ifdef CONFIG_CGROUP_SCHED
3692 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3693 #endif
3694 return ret;
3695 }
3696
3697 #ifdef CONFIG_PSI
3698 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3699 {
3700 struct cgroup *cgrp = seq_css(seq)->cgroup;
3701 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3702
3703 return psi_show(seq, psi, PSI_IO);
3704 }
3705 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3706 {
3707 struct cgroup *cgrp = seq_css(seq)->cgroup;
3708 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3709
3710 return psi_show(seq, psi, PSI_MEM);
3711 }
3712 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3713 {
3714 struct cgroup *cgrp = seq_css(seq)->cgroup;
3715 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3716
3717 return psi_show(seq, psi, PSI_CPU);
3718 }
3719
3720 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3721 size_t nbytes, enum psi_res res)
3722 {
3723 struct cgroup_file_ctx *ctx = of->priv;
3724 struct psi_trigger *new;
3725 struct cgroup *cgrp;
3726 struct psi_group *psi;
3727
3728 cgrp = cgroup_kn_lock_live(of->kn, false);
3729 if (!cgrp)
3730 return -ENODEV;
3731
3732 cgroup_get(cgrp);
3733 cgroup_kn_unlock(of->kn);
3734
3735 /* Allow only one trigger per file descriptor */
3736 if (ctx->psi.trigger) {
3737 cgroup_put(cgrp);
3738 return -EBUSY;
3739 }
3740
3741 psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3742 new = psi_trigger_create(psi, buf, res);
3743 if (IS_ERR(new)) {
3744 cgroup_put(cgrp);
3745 return PTR_ERR(new);
3746 }
3747
3748 smp_store_release(&ctx->psi.trigger, new);
3749 cgroup_put(cgrp);
3750
3751 return nbytes;
3752 }
3753
3754 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3755 char *buf, size_t nbytes,
3756 loff_t off)
3757 {
3758 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3759 }
3760
3761 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3762 char *buf, size_t nbytes,
3763 loff_t off)
3764 {
3765 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3766 }
3767
3768 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3769 char *buf, size_t nbytes,
3770 loff_t off)
3771 {
3772 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3773 }
3774
3775 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3776 poll_table *pt)
3777 {
3778 struct cgroup_file_ctx *ctx = of->priv;
3779
3780 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3781 }
3782
3783 static void cgroup_pressure_release(struct kernfs_open_file *of)
3784 {
3785 struct cgroup_file_ctx *ctx = of->priv;
3786
3787 psi_trigger_destroy(ctx->psi.trigger);
3788 }
3789
3790 bool cgroup_psi_enabled(void)
3791 {
3792 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3793 }
3794
3795 #else /* CONFIG_PSI */
3796 bool cgroup_psi_enabled(void)
3797 {
3798 return false;
3799 }
3800
3801 #endif /* CONFIG_PSI */
3802
3803 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3804 {
3805 struct cgroup *cgrp = seq_css(seq)->cgroup;
3806
3807 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3808
3809 return 0;
3810 }
3811
3812 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3813 char *buf, size_t nbytes, loff_t off)
3814 {
3815 struct cgroup *cgrp;
3816 ssize_t ret;
3817 int freeze;
3818
3819 ret = kstrtoint(strstrip(buf), 0, &freeze);
3820 if (ret)
3821 return ret;
3822
3823 if (freeze < 0 || freeze > 1)
3824 return -ERANGE;
3825
3826 cgrp = cgroup_kn_lock_live(of->kn, false);
3827 if (!cgrp)
3828 return -ENOENT;
3829
3830 cgroup_freeze(cgrp, freeze);
3831
3832 cgroup_kn_unlock(of->kn);
3833
3834 return nbytes;
3835 }
3836
3837 static void __cgroup_kill(struct cgroup *cgrp)
3838 {
3839 struct css_task_iter it;
3840 struct task_struct *task;
3841
3842 lockdep_assert_held(&cgroup_mutex);
3843
3844 spin_lock_irq(&css_set_lock);
3845 set_bit(CGRP_KILL, &cgrp->flags);
3846 spin_unlock_irq(&css_set_lock);
3847
3848 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3849 while ((task = css_task_iter_next(&it))) {
3850 /* Ignore kernel threads here. */
3851 if (task->flags & PF_KTHREAD)
3852 continue;
3853
3854 /* Skip tasks that are already dying. */
3855 if (__fatal_signal_pending(task))
3856 continue;
3857
3858 send_sig(SIGKILL, task, 0);
3859 }
3860 css_task_iter_end(&it);
3861
3862 spin_lock_irq(&css_set_lock);
3863 clear_bit(CGRP_KILL, &cgrp->flags);
3864 spin_unlock_irq(&css_set_lock);
3865 }
3866
3867 static void cgroup_kill(struct cgroup *cgrp)
3868 {
3869 struct cgroup_subsys_state *css;
3870 struct cgroup *dsct;
3871
3872 lockdep_assert_held(&cgroup_mutex);
3873
3874 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3875 __cgroup_kill(dsct);
3876 }
3877
3878 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3879 size_t nbytes, loff_t off)
3880 {
3881 ssize_t ret = 0;
3882 int kill;
3883 struct cgroup *cgrp;
3884
3885 ret = kstrtoint(strstrip(buf), 0, &kill);
3886 if (ret)
3887 return ret;
3888
3889 if (kill != 1)
3890 return -ERANGE;
3891
3892 cgrp = cgroup_kn_lock_live(of->kn, false);
3893 if (!cgrp)
3894 return -ENOENT;
3895
3896 /*
3897 * Killing is a process directed operation, i.e. the whole thread-group
3898 * is taken down so act like we do for cgroup.procs and only make this
3899 * writable in non-threaded cgroups.
3900 */
3901 if (cgroup_is_threaded(cgrp))
3902 ret = -EOPNOTSUPP;
3903 else
3904 cgroup_kill(cgrp);
3905
3906 cgroup_kn_unlock(of->kn);
3907
3908 return ret ?: nbytes;
3909 }
3910
3911 static int cgroup_file_open(struct kernfs_open_file *of)
3912 {
3913 struct cftype *cft = of_cft(of);
3914 struct cgroup_file_ctx *ctx;
3915 int ret;
3916
3917 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3918 if (!ctx)
3919 return -ENOMEM;
3920
3921 ctx->ns = current->nsproxy->cgroup_ns;
3922 get_cgroup_ns(ctx->ns);
3923 of->priv = ctx;
3924
3925 if (!cft->open)
3926 return 0;
3927
3928 ret = cft->open(of);
3929 if (ret) {
3930 put_cgroup_ns(ctx->ns);
3931 kfree(ctx);
3932 }
3933 return ret;
3934 }
3935
3936 static void cgroup_file_release(struct kernfs_open_file *of)
3937 {
3938 struct cftype *cft = of_cft(of);
3939 struct cgroup_file_ctx *ctx = of->priv;
3940
3941 if (cft->release)
3942 cft->release(of);
3943 put_cgroup_ns(ctx->ns);
3944 kfree(ctx);
3945 }
3946
3947 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3948 size_t nbytes, loff_t off)
3949 {
3950 struct cgroup_file_ctx *ctx = of->priv;
3951 struct cgroup *cgrp = of->kn->parent->priv;
3952 struct cftype *cft = of_cft(of);
3953 struct cgroup_subsys_state *css;
3954 int ret;
3955
3956 if (!nbytes)
3957 return 0;
3958
3959 /*
3960 * If namespaces are delegation boundaries, disallow writes to
3961 * files in an non-init namespace root from inside the namespace
3962 * except for the files explicitly marked delegatable -
3963 * cgroup.procs and cgroup.subtree_control.
3964 */
3965 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3966 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3967 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3968 return -EPERM;
3969
3970 if (cft->write)
3971 return cft->write(of, buf, nbytes, off);
3972
3973 /*
3974 * kernfs guarantees that a file isn't deleted with operations in
3975 * flight, which means that the matching css is and stays alive and
3976 * doesn't need to be pinned. The RCU locking is not necessary
3977 * either. It's just for the convenience of using cgroup_css().
3978 */
3979 rcu_read_lock();
3980 css = cgroup_css(cgrp, cft->ss);
3981 rcu_read_unlock();
3982
3983 if (cft->write_u64) {
3984 unsigned long long v;
3985 ret = kstrtoull(buf, 0, &v);
3986 if (!ret)
3987 ret = cft->write_u64(css, cft, v);
3988 } else if (cft->write_s64) {
3989 long long v;
3990 ret = kstrtoll(buf, 0, &v);
3991 if (!ret)
3992 ret = cft->write_s64(css, cft, v);
3993 } else {
3994 ret = -EINVAL;
3995 }
3996
3997 return ret ?: nbytes;
3998 }
3999
4000 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4001 {
4002 struct cftype *cft = of_cft(of);
4003
4004 if (cft->poll)
4005 return cft->poll(of, pt);
4006
4007 return kernfs_generic_poll(of, pt);
4008 }
4009
4010 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4011 {
4012 return seq_cft(seq)->seq_start(seq, ppos);
4013 }
4014
4015 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4016 {
4017 return seq_cft(seq)->seq_next(seq, v, ppos);
4018 }
4019
4020 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4021 {
4022 if (seq_cft(seq)->seq_stop)
4023 seq_cft(seq)->seq_stop(seq, v);
4024 }
4025
4026 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4027 {
4028 struct cftype *cft = seq_cft(m);
4029 struct cgroup_subsys_state *css = seq_css(m);
4030
4031 if (cft->seq_show)
4032 return cft->seq_show(m, arg);
4033
4034 if (cft->read_u64)
4035 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4036 else if (cft->read_s64)
4037 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4038 else
4039 return -EINVAL;
4040 return 0;
4041 }
4042
4043 static struct kernfs_ops cgroup_kf_single_ops = {
4044 .atomic_write_len = PAGE_SIZE,
4045 .open = cgroup_file_open,
4046 .release = cgroup_file_release,
4047 .write = cgroup_file_write,
4048 .poll = cgroup_file_poll,
4049 .seq_show = cgroup_seqfile_show,
4050 };
4051
4052 static struct kernfs_ops cgroup_kf_ops = {
4053 .atomic_write_len = PAGE_SIZE,
4054 .open = cgroup_file_open,
4055 .release = cgroup_file_release,
4056 .write = cgroup_file_write,
4057 .poll = cgroup_file_poll,
4058 .seq_start = cgroup_seqfile_start,
4059 .seq_next = cgroup_seqfile_next,
4060 .seq_stop = cgroup_seqfile_stop,
4061 .seq_show = cgroup_seqfile_show,
4062 };
4063
4064 /* set uid and gid of cgroup dirs and files to that of the creator */
4065 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4066 {
4067 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4068 .ia_uid = current_fsuid(),
4069 .ia_gid = current_fsgid(), };
4070
4071 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4072 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4073 return 0;
4074
4075 return kernfs_setattr(kn, &iattr);
4076 }
4077
4078 static void cgroup_file_notify_timer(struct timer_list *timer)
4079 {
4080 cgroup_file_notify(container_of(timer, struct cgroup_file,
4081 notify_timer));
4082 }
4083
4084 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4085 struct cftype *cft)
4086 {
4087 char name[CGROUP_FILE_NAME_MAX];
4088 struct kernfs_node *kn;
4089 struct lock_class_key *key = NULL;
4090 int ret;
4091
4092 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4093 key = &cft->lockdep_key;
4094 #endif
4095 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4096 cgroup_file_mode(cft),
4097 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4098 0, cft->kf_ops, cft,
4099 NULL, key);
4100 if (IS_ERR(kn))
4101 return PTR_ERR(kn);
4102
4103 ret = cgroup_kn_set_ugid(kn);
4104 if (ret) {
4105 kernfs_remove(kn);
4106 return ret;
4107 }
4108
4109 if (cft->file_offset) {
4110 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4111
4112 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4113
4114 spin_lock_irq(&cgroup_file_kn_lock);
4115 cfile->kn = kn;
4116 spin_unlock_irq(&cgroup_file_kn_lock);
4117 }
4118
4119 return 0;
4120 }
4121
4122 /**
4123 * cgroup_addrm_files - add or remove files to a cgroup directory
4124 * @css: the target css
4125 * @cgrp: the target cgroup (usually css->cgroup)
4126 * @cfts: array of cftypes to be added
4127 * @is_add: whether to add or remove
4128 *
4129 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4130 * For removals, this function never fails.
4131 */
4132 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4133 struct cgroup *cgrp, struct cftype cfts[],
4134 bool is_add)
4135 {
4136 struct cftype *cft, *cft_end = NULL;
4137 int ret = 0;
4138
4139 lockdep_assert_held(&cgroup_mutex);
4140
4141 restart:
4142 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4143 /* does cft->flags tell us to skip this file on @cgrp? */
4144 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4145 continue;
4146 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4147 continue;
4148 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4149 continue;
4150 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4151 continue;
4152 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4153 continue;
4154 if (is_add) {
4155 ret = cgroup_add_file(css, cgrp, cft);
4156 if (ret) {
4157 pr_warn("%s: failed to add %s, err=%d\n",
4158 __func__, cft->name, ret);
4159 cft_end = cft;
4160 is_add = false;
4161 goto restart;
4162 }
4163 } else {
4164 cgroup_rm_file(cgrp, cft);
4165 }
4166 }
4167 return ret;
4168 }
4169
4170 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4171 {
4172 struct cgroup_subsys *ss = cfts[0].ss;
4173 struct cgroup *root = &ss->root->cgrp;
4174 struct cgroup_subsys_state *css;
4175 int ret = 0;
4176
4177 lockdep_assert_held(&cgroup_mutex);
4178
4179 /* add/rm files for all cgroups created before */
4180 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4181 struct cgroup *cgrp = css->cgroup;
4182
4183 if (!(css->flags & CSS_VISIBLE))
4184 continue;
4185
4186 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4187 if (ret)
4188 break;
4189 }
4190
4191 if (is_add && !ret)
4192 kernfs_activate(root->kn);
4193 return ret;
4194 }
4195
4196 static void cgroup_exit_cftypes(struct cftype *cfts)
4197 {
4198 struct cftype *cft;
4199
4200 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4201 /* free copy for custom atomic_write_len, see init_cftypes() */
4202 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4203 kfree(cft->kf_ops);
4204 cft->kf_ops = NULL;
4205 cft->ss = NULL;
4206
4207 /* revert flags set by cgroup core while adding @cfts */
4208 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4209 __CFTYPE_ADDED);
4210 }
4211 }
4212
4213 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4214 {
4215 struct cftype *cft;
4216 int ret = 0;
4217
4218 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4219 struct kernfs_ops *kf_ops;
4220
4221 WARN_ON(cft->ss || cft->kf_ops);
4222
4223 if (cft->flags & __CFTYPE_ADDED) {
4224 ret = -EBUSY;
4225 break;
4226 }
4227
4228 if (cft->seq_start)
4229 kf_ops = &cgroup_kf_ops;
4230 else
4231 kf_ops = &cgroup_kf_single_ops;
4232
4233 /*
4234 * Ugh... if @cft wants a custom max_write_len, we need to
4235 * make a copy of kf_ops to set its atomic_write_len.
4236 */
4237 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4238 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4239 if (!kf_ops) {
4240 ret = -ENOMEM;
4241 break;
4242 }
4243 kf_ops->atomic_write_len = cft->max_write_len;
4244 }
4245
4246 cft->kf_ops = kf_ops;
4247 cft->ss = ss;
4248 cft->flags |= __CFTYPE_ADDED;
4249 }
4250
4251 if (ret)
4252 cgroup_exit_cftypes(cfts);
4253 return ret;
4254 }
4255
4256 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4257 {
4258 lockdep_assert_held(&cgroup_mutex);
4259
4260 list_del(&cfts->node);
4261 cgroup_apply_cftypes(cfts, false);
4262 cgroup_exit_cftypes(cfts);
4263 return 0;
4264 }
4265
4266 /**
4267 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4268 * @cfts: zero-length name terminated array of cftypes
4269 *
4270 * Unregister @cfts. Files described by @cfts are removed from all
4271 * existing cgroups and all future cgroups won't have them either. This
4272 * function can be called anytime whether @cfts' subsys is attached or not.
4273 *
4274 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4275 * registered.
4276 */
4277 int cgroup_rm_cftypes(struct cftype *cfts)
4278 {
4279 int ret;
4280
4281 if (!cfts || cfts[0].name[0] == '\0')
4282 return 0;
4283
4284 if (!(cfts[0].flags & __CFTYPE_ADDED))
4285 return -ENOENT;
4286
4287 mutex_lock(&cgroup_mutex);
4288 ret = cgroup_rm_cftypes_locked(cfts);
4289 mutex_unlock(&cgroup_mutex);
4290 return ret;
4291 }
4292
4293 /**
4294 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4295 * @ss: target cgroup subsystem
4296 * @cfts: zero-length name terminated array of cftypes
4297 *
4298 * Register @cfts to @ss. Files described by @cfts are created for all
4299 * existing cgroups to which @ss is attached and all future cgroups will
4300 * have them too. This function can be called anytime whether @ss is
4301 * attached or not.
4302 *
4303 * Returns 0 on successful registration, -errno on failure. Note that this
4304 * function currently returns 0 as long as @cfts registration is successful
4305 * even if some file creation attempts on existing cgroups fail.
4306 */
4307 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4308 {
4309 int ret;
4310
4311 if (!cgroup_ssid_enabled(ss->id))
4312 return 0;
4313
4314 if (!cfts || cfts[0].name[0] == '\0')
4315 return 0;
4316
4317 ret = cgroup_init_cftypes(ss, cfts);
4318 if (ret)
4319 return ret;
4320
4321 mutex_lock(&cgroup_mutex);
4322
4323 list_add_tail(&cfts->node, &ss->cfts);
4324 ret = cgroup_apply_cftypes(cfts, true);
4325 if (ret)
4326 cgroup_rm_cftypes_locked(cfts);
4327
4328 mutex_unlock(&cgroup_mutex);
4329 return ret;
4330 }
4331
4332 /**
4333 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4334 * @ss: target cgroup subsystem
4335 * @cfts: zero-length name terminated array of cftypes
4336 *
4337 * Similar to cgroup_add_cftypes() but the added files are only used for
4338 * the default hierarchy.
4339 */
4340 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341 {
4342 struct cftype *cft;
4343
4344 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4346 return cgroup_add_cftypes(ss, cfts);
4347 }
4348
4349 /**
4350 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4351 * @ss: target cgroup subsystem
4352 * @cfts: zero-length name terminated array of cftypes
4353 *
4354 * Similar to cgroup_add_cftypes() but the added files are only used for
4355 * the legacy hierarchies.
4356 */
4357 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4358 {
4359 struct cftype *cft;
4360
4361 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4362 cft->flags |= __CFTYPE_NOT_ON_DFL;
4363 return cgroup_add_cftypes(ss, cfts);
4364 }
4365
4366 /**
4367 * cgroup_file_notify - generate a file modified event for a cgroup_file
4368 * @cfile: target cgroup_file
4369 *
4370 * @cfile must have been obtained by setting cftype->file_offset.
4371 */
4372 void cgroup_file_notify(struct cgroup_file *cfile)
4373 {
4374 unsigned long flags;
4375
4376 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4377 if (cfile->kn) {
4378 unsigned long last = cfile->notified_at;
4379 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4380
4381 if (time_in_range(jiffies, last, next)) {
4382 timer_reduce(&cfile->notify_timer, next);
4383 } else {
4384 kernfs_notify(cfile->kn);
4385 cfile->notified_at = jiffies;
4386 }
4387 }
4388 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4389 }
4390
4391 /**
4392 * cgroup_file_show - show or hide a hidden cgroup file
4393 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4394 * @show: whether to show or hide
4395 */
4396 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4397 {
4398 struct kernfs_node *kn;
4399
4400 spin_lock_irq(&cgroup_file_kn_lock);
4401 kn = cfile->kn;
4402 kernfs_get(kn);
4403 spin_unlock_irq(&cgroup_file_kn_lock);
4404
4405 if (kn)
4406 kernfs_show(kn, show);
4407
4408 kernfs_put(kn);
4409 }
4410
4411 /**
4412 * css_next_child - find the next child of a given css
4413 * @pos: the current position (%NULL to initiate traversal)
4414 * @parent: css whose children to walk
4415 *
4416 * This function returns the next child of @parent and should be called
4417 * under either cgroup_mutex or RCU read lock. The only requirement is
4418 * that @parent and @pos are accessible. The next sibling is guaranteed to
4419 * be returned regardless of their states.
4420 *
4421 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4422 * css which finished ->css_online() is guaranteed to be visible in the
4423 * future iterations and will stay visible until the last reference is put.
4424 * A css which hasn't finished ->css_online() or already finished
4425 * ->css_offline() may show up during traversal. It's each subsystem's
4426 * responsibility to synchronize against on/offlining.
4427 */
4428 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4429 struct cgroup_subsys_state *parent)
4430 {
4431 struct cgroup_subsys_state *next;
4432
4433 cgroup_assert_mutex_or_rcu_locked();
4434
4435 /*
4436 * @pos could already have been unlinked from the sibling list.
4437 * Once a cgroup is removed, its ->sibling.next is no longer
4438 * updated when its next sibling changes. CSS_RELEASED is set when
4439 * @pos is taken off list, at which time its next pointer is valid,
4440 * and, as releases are serialized, the one pointed to by the next
4441 * pointer is guaranteed to not have started release yet. This
4442 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4443 * critical section, the one pointed to by its next pointer is
4444 * guaranteed to not have finished its RCU grace period even if we
4445 * have dropped rcu_read_lock() in-between iterations.
4446 *
4447 * If @pos has CSS_RELEASED set, its next pointer can't be
4448 * dereferenced; however, as each css is given a monotonically
4449 * increasing unique serial number and always appended to the
4450 * sibling list, the next one can be found by walking the parent's
4451 * children until the first css with higher serial number than
4452 * @pos's. While this path can be slower, it happens iff iteration
4453 * races against release and the race window is very small.
4454 */
4455 if (!pos) {
4456 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4457 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4458 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4459 } else {
4460 list_for_each_entry_rcu(next, &parent->children, sibling,
4461 lockdep_is_held(&cgroup_mutex))
4462 if (next->serial_nr > pos->serial_nr)
4463 break;
4464 }
4465
4466 /*
4467 * @next, if not pointing to the head, can be dereferenced and is
4468 * the next sibling.
4469 */
4470 if (&next->sibling != &parent->children)
4471 return next;
4472 return NULL;
4473 }
4474
4475 /**
4476 * css_next_descendant_pre - find the next descendant for pre-order walk
4477 * @pos: the current position (%NULL to initiate traversal)
4478 * @root: css whose descendants to walk
4479 *
4480 * To be used by css_for_each_descendant_pre(). Find the next descendant
4481 * to visit for pre-order traversal of @root's descendants. @root is
4482 * included in the iteration and the first node to be visited.
4483 *
4484 * While this function requires cgroup_mutex or RCU read locking, it
4485 * doesn't require the whole traversal to be contained in a single critical
4486 * section. This function will return the correct next descendant as long
4487 * as both @pos and @root are accessible and @pos is a descendant of @root.
4488 *
4489 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4490 * css which finished ->css_online() is guaranteed to be visible in the
4491 * future iterations and will stay visible until the last reference is put.
4492 * A css which hasn't finished ->css_online() or already finished
4493 * ->css_offline() may show up during traversal. It's each subsystem's
4494 * responsibility to synchronize against on/offlining.
4495 */
4496 struct cgroup_subsys_state *
4497 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4498 struct cgroup_subsys_state *root)
4499 {
4500 struct cgroup_subsys_state *next;
4501
4502 cgroup_assert_mutex_or_rcu_locked();
4503
4504 /* if first iteration, visit @root */
4505 if (!pos)
4506 return root;
4507
4508 /* visit the first child if exists */
4509 next = css_next_child(NULL, pos);
4510 if (next)
4511 return next;
4512
4513 /* no child, visit my or the closest ancestor's next sibling */
4514 while (pos != root) {
4515 next = css_next_child(pos, pos->parent);
4516 if (next)
4517 return next;
4518 pos = pos->parent;
4519 }
4520
4521 return NULL;
4522 }
4523 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4524
4525 /**
4526 * css_rightmost_descendant - return the rightmost descendant of a css
4527 * @pos: css of interest
4528 *
4529 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4530 * is returned. This can be used during pre-order traversal to skip
4531 * subtree of @pos.
4532 *
4533 * While this function requires cgroup_mutex or RCU read locking, it
4534 * doesn't require the whole traversal to be contained in a single critical
4535 * section. This function will return the correct rightmost descendant as
4536 * long as @pos is accessible.
4537 */
4538 struct cgroup_subsys_state *
4539 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4540 {
4541 struct cgroup_subsys_state *last, *tmp;
4542
4543 cgroup_assert_mutex_or_rcu_locked();
4544
4545 do {
4546 last = pos;
4547 /* ->prev isn't RCU safe, walk ->next till the end */
4548 pos = NULL;
4549 css_for_each_child(tmp, last)
4550 pos = tmp;
4551 } while (pos);
4552
4553 return last;
4554 }
4555
4556 static struct cgroup_subsys_state *
4557 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4558 {
4559 struct cgroup_subsys_state *last;
4560
4561 do {
4562 last = pos;
4563 pos = css_next_child(NULL, pos);
4564 } while (pos);
4565
4566 return last;
4567 }
4568
4569 /**
4570 * css_next_descendant_post - find the next descendant for post-order walk
4571 * @pos: the current position (%NULL to initiate traversal)
4572 * @root: css whose descendants to walk
4573 *
4574 * To be used by css_for_each_descendant_post(). Find the next descendant
4575 * to visit for post-order traversal of @root's descendants. @root is
4576 * included in the iteration and the last node to be visited.
4577 *
4578 * While this function requires cgroup_mutex or RCU read locking, it
4579 * doesn't require the whole traversal to be contained in a single critical
4580 * section. This function will return the correct next descendant as long
4581 * as both @pos and @cgroup are accessible and @pos is a descendant of
4582 * @cgroup.
4583 *
4584 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4585 * css which finished ->css_online() is guaranteed to be visible in the
4586 * future iterations and will stay visible until the last reference is put.
4587 * A css which hasn't finished ->css_online() or already finished
4588 * ->css_offline() may show up during traversal. It's each subsystem's
4589 * responsibility to synchronize against on/offlining.
4590 */
4591 struct cgroup_subsys_state *
4592 css_next_descendant_post(struct cgroup_subsys_state *pos,
4593 struct cgroup_subsys_state *root)
4594 {
4595 struct cgroup_subsys_state *next;
4596
4597 cgroup_assert_mutex_or_rcu_locked();
4598
4599 /* if first iteration, visit leftmost descendant which may be @root */
4600 if (!pos)
4601 return css_leftmost_descendant(root);
4602
4603 /* if we visited @root, we're done */
4604 if (pos == root)
4605 return NULL;
4606
4607 /* if there's an unvisited sibling, visit its leftmost descendant */
4608 next = css_next_child(pos, pos->parent);
4609 if (next)
4610 return css_leftmost_descendant(next);
4611
4612 /* no sibling left, visit parent */
4613 return pos->parent;
4614 }
4615
4616 /**
4617 * css_has_online_children - does a css have online children
4618 * @css: the target css
4619 *
4620 * Returns %true if @css has any online children; otherwise, %false. This
4621 * function can be called from any context but the caller is responsible
4622 * for synchronizing against on/offlining as necessary.
4623 */
4624 bool css_has_online_children(struct cgroup_subsys_state *css)
4625 {
4626 struct cgroup_subsys_state *child;
4627 bool ret = false;
4628
4629 rcu_read_lock();
4630 css_for_each_child(child, css) {
4631 if (child->flags & CSS_ONLINE) {
4632 ret = true;
4633 break;
4634 }
4635 }
4636 rcu_read_unlock();
4637 return ret;
4638 }
4639
4640 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4641 {
4642 struct list_head *l;
4643 struct cgrp_cset_link *link;
4644 struct css_set *cset;
4645
4646 lockdep_assert_held(&css_set_lock);
4647
4648 /* find the next threaded cset */
4649 if (it->tcset_pos) {
4650 l = it->tcset_pos->next;
4651
4652 if (l != it->tcset_head) {
4653 it->tcset_pos = l;
4654 return container_of(l, struct css_set,
4655 threaded_csets_node);
4656 }
4657
4658 it->tcset_pos = NULL;
4659 }
4660
4661 /* find the next cset */
4662 l = it->cset_pos;
4663 l = l->next;
4664 if (l == it->cset_head) {
4665 it->cset_pos = NULL;
4666 return NULL;
4667 }
4668
4669 if (it->ss) {
4670 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4671 } else {
4672 link = list_entry(l, struct cgrp_cset_link, cset_link);
4673 cset = link->cset;
4674 }
4675
4676 it->cset_pos = l;
4677
4678 /* initialize threaded css_set walking */
4679 if (it->flags & CSS_TASK_ITER_THREADED) {
4680 if (it->cur_dcset)
4681 put_css_set_locked(it->cur_dcset);
4682 it->cur_dcset = cset;
4683 get_css_set(cset);
4684
4685 it->tcset_head = &cset->threaded_csets;
4686 it->tcset_pos = &cset->threaded_csets;
4687 }
4688
4689 return cset;
4690 }
4691
4692 /**
4693 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4694 * @it: the iterator to advance
4695 *
4696 * Advance @it to the next css_set to walk.
4697 */
4698 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4699 {
4700 struct css_set *cset;
4701
4702 lockdep_assert_held(&css_set_lock);
4703
4704 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4705 while ((cset = css_task_iter_next_css_set(it))) {
4706 if (!list_empty(&cset->tasks)) {
4707 it->cur_tasks_head = &cset->tasks;
4708 break;
4709 } else if (!list_empty(&cset->mg_tasks)) {
4710 it->cur_tasks_head = &cset->mg_tasks;
4711 break;
4712 } else if (!list_empty(&cset->dying_tasks)) {
4713 it->cur_tasks_head = &cset->dying_tasks;
4714 break;
4715 }
4716 }
4717 if (!cset) {
4718 it->task_pos = NULL;
4719 return;
4720 }
4721 it->task_pos = it->cur_tasks_head->next;
4722
4723 /*
4724 * We don't keep css_sets locked across iteration steps and thus
4725 * need to take steps to ensure that iteration can be resumed after
4726 * the lock is re-acquired. Iteration is performed at two levels -
4727 * css_sets and tasks in them.
4728 *
4729 * Once created, a css_set never leaves its cgroup lists, so a
4730 * pinned css_set is guaranteed to stay put and we can resume
4731 * iteration afterwards.
4732 *
4733 * Tasks may leave @cset across iteration steps. This is resolved
4734 * by registering each iterator with the css_set currently being
4735 * walked and making css_set_move_task() advance iterators whose
4736 * next task is leaving.
4737 */
4738 if (it->cur_cset) {
4739 list_del(&it->iters_node);
4740 put_css_set_locked(it->cur_cset);
4741 }
4742 get_css_set(cset);
4743 it->cur_cset = cset;
4744 list_add(&it->iters_node, &cset->task_iters);
4745 }
4746
4747 static void css_task_iter_skip(struct css_task_iter *it,
4748 struct task_struct *task)
4749 {
4750 lockdep_assert_held(&css_set_lock);
4751
4752 if (it->task_pos == &task->cg_list) {
4753 it->task_pos = it->task_pos->next;
4754 it->flags |= CSS_TASK_ITER_SKIPPED;
4755 }
4756 }
4757
4758 static void css_task_iter_advance(struct css_task_iter *it)
4759 {
4760 struct task_struct *task;
4761
4762 lockdep_assert_held(&css_set_lock);
4763 repeat:
4764 if (it->task_pos) {
4765 /*
4766 * Advance iterator to find next entry. We go through cset
4767 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4768 * the next cset.
4769 */
4770 if (it->flags & CSS_TASK_ITER_SKIPPED)
4771 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4772 else
4773 it->task_pos = it->task_pos->next;
4774
4775 if (it->task_pos == &it->cur_cset->tasks) {
4776 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4777 it->task_pos = it->cur_tasks_head->next;
4778 }
4779 if (it->task_pos == &it->cur_cset->mg_tasks) {
4780 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4781 it->task_pos = it->cur_tasks_head->next;
4782 }
4783 if (it->task_pos == &it->cur_cset->dying_tasks)
4784 css_task_iter_advance_css_set(it);
4785 } else {
4786 /* called from start, proceed to the first cset */
4787 css_task_iter_advance_css_set(it);
4788 }
4789
4790 if (!it->task_pos)
4791 return;
4792
4793 task = list_entry(it->task_pos, struct task_struct, cg_list);
4794
4795 if (it->flags & CSS_TASK_ITER_PROCS) {
4796 /* if PROCS, skip over tasks which aren't group leaders */
4797 if (!thread_group_leader(task))
4798 goto repeat;
4799
4800 /* and dying leaders w/o live member threads */
4801 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4802 !atomic_read(&task->signal->live))
4803 goto repeat;
4804 } else {
4805 /* skip all dying ones */
4806 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4807 goto repeat;
4808 }
4809 }
4810
4811 /**
4812 * css_task_iter_start - initiate task iteration
4813 * @css: the css to walk tasks of
4814 * @flags: CSS_TASK_ITER_* flags
4815 * @it: the task iterator to use
4816 *
4817 * Initiate iteration through the tasks of @css. The caller can call
4818 * css_task_iter_next() to walk through the tasks until the function
4819 * returns NULL. On completion of iteration, css_task_iter_end() must be
4820 * called.
4821 */
4822 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4823 struct css_task_iter *it)
4824 {
4825 memset(it, 0, sizeof(*it));
4826
4827 spin_lock_irq(&css_set_lock);
4828
4829 it->ss = css->ss;
4830 it->flags = flags;
4831
4832 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4833 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4834 else
4835 it->cset_pos = &css->cgroup->cset_links;
4836
4837 it->cset_head = it->cset_pos;
4838
4839 css_task_iter_advance(it);
4840
4841 spin_unlock_irq(&css_set_lock);
4842 }
4843
4844 /**
4845 * css_task_iter_next - return the next task for the iterator
4846 * @it: the task iterator being iterated
4847 *
4848 * The "next" function for task iteration. @it should have been
4849 * initialized via css_task_iter_start(). Returns NULL when the iteration
4850 * reaches the end.
4851 */
4852 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4853 {
4854 if (it->cur_task) {
4855 put_task_struct(it->cur_task);
4856 it->cur_task = NULL;
4857 }
4858
4859 spin_lock_irq(&css_set_lock);
4860
4861 /* @it may be half-advanced by skips, finish advancing */
4862 if (it->flags & CSS_TASK_ITER_SKIPPED)
4863 css_task_iter_advance(it);
4864
4865 if (it->task_pos) {
4866 it->cur_task = list_entry(it->task_pos, struct task_struct,
4867 cg_list);
4868 get_task_struct(it->cur_task);
4869 css_task_iter_advance(it);
4870 }
4871
4872 spin_unlock_irq(&css_set_lock);
4873
4874 return it->cur_task;
4875 }
4876
4877 /**
4878 * css_task_iter_end - finish task iteration
4879 * @it: the task iterator to finish
4880 *
4881 * Finish task iteration started by css_task_iter_start().
4882 */
4883 void css_task_iter_end(struct css_task_iter *it)
4884 {
4885 if (it->cur_cset) {
4886 spin_lock_irq(&css_set_lock);
4887 list_del(&it->iters_node);
4888 put_css_set_locked(it->cur_cset);
4889 spin_unlock_irq(&css_set_lock);
4890 }
4891
4892 if (it->cur_dcset)
4893 put_css_set(it->cur_dcset);
4894
4895 if (it->cur_task)
4896 put_task_struct(it->cur_task);
4897 }
4898
4899 static void cgroup_procs_release(struct kernfs_open_file *of)
4900 {
4901 struct cgroup_file_ctx *ctx = of->priv;
4902
4903 if (ctx->procs.started)
4904 css_task_iter_end(&ctx->procs.iter);
4905 }
4906
4907 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4908 {
4909 struct kernfs_open_file *of = s->private;
4910 struct cgroup_file_ctx *ctx = of->priv;
4911
4912 if (pos)
4913 (*pos)++;
4914
4915 return css_task_iter_next(&ctx->procs.iter);
4916 }
4917
4918 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4919 unsigned int iter_flags)
4920 {
4921 struct kernfs_open_file *of = s->private;
4922 struct cgroup *cgrp = seq_css(s)->cgroup;
4923 struct cgroup_file_ctx *ctx = of->priv;
4924 struct css_task_iter *it = &ctx->procs.iter;
4925
4926 /*
4927 * When a seq_file is seeked, it's always traversed sequentially
4928 * from position 0, so we can simply keep iterating on !0 *pos.
4929 */
4930 if (!ctx->procs.started) {
4931 if (WARN_ON_ONCE((*pos)))
4932 return ERR_PTR(-EINVAL);
4933 css_task_iter_start(&cgrp->self, iter_flags, it);
4934 ctx->procs.started = true;
4935 } else if (!(*pos)) {
4936 css_task_iter_end(it);
4937 css_task_iter_start(&cgrp->self, iter_flags, it);
4938 } else
4939 return it->cur_task;
4940
4941 return cgroup_procs_next(s, NULL, NULL);
4942 }
4943
4944 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4945 {
4946 struct cgroup *cgrp = seq_css(s)->cgroup;
4947
4948 /*
4949 * All processes of a threaded subtree belong to the domain cgroup
4950 * of the subtree. Only threads can be distributed across the
4951 * subtree. Reject reads on cgroup.procs in the subtree proper.
4952 * They're always empty anyway.
4953 */
4954 if (cgroup_is_threaded(cgrp))
4955 return ERR_PTR(-EOPNOTSUPP);
4956
4957 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4958 CSS_TASK_ITER_THREADED);
4959 }
4960
4961 static int cgroup_procs_show(struct seq_file *s, void *v)
4962 {
4963 seq_printf(s, "%d\n", task_pid_vnr(v));
4964 return 0;
4965 }
4966
4967 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4968 {
4969 int ret;
4970 struct inode *inode;
4971
4972 lockdep_assert_held(&cgroup_mutex);
4973
4974 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4975 if (!inode)
4976 return -ENOMEM;
4977
4978 ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4979 iput(inode);
4980 return ret;
4981 }
4982
4983 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4984 struct cgroup *dst_cgrp,
4985 struct super_block *sb,
4986 struct cgroup_namespace *ns)
4987 {
4988 struct cgroup *com_cgrp = src_cgrp;
4989 int ret;
4990
4991 lockdep_assert_held(&cgroup_mutex);
4992
4993 /* find the common ancestor */
4994 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4995 com_cgrp = cgroup_parent(com_cgrp);
4996
4997 /* %current should be authorized to migrate to the common ancestor */
4998 ret = cgroup_may_write(com_cgrp, sb);
4999 if (ret)
5000 return ret;
5001
5002 /*
5003 * If namespaces are delegation boundaries, %current must be able
5004 * to see both source and destination cgroups from its namespace.
5005 */
5006 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5007 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5008 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5009 return -ENOENT;
5010
5011 return 0;
5012 }
5013
5014 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5015 struct cgroup *dst_cgrp,
5016 struct super_block *sb, bool threadgroup,
5017 struct cgroup_namespace *ns)
5018 {
5019 int ret = 0;
5020
5021 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5022 if (ret)
5023 return ret;
5024
5025 ret = cgroup_migrate_vet_dst(dst_cgrp);
5026 if (ret)
5027 return ret;
5028
5029 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5030 ret = -EOPNOTSUPP;
5031
5032 return ret;
5033 }
5034
5035 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5036 bool threadgroup)
5037 {
5038 struct cgroup_file_ctx *ctx = of->priv;
5039 struct cgroup *src_cgrp, *dst_cgrp;
5040 struct task_struct *task;
5041 const struct cred *saved_cred;
5042 ssize_t ret;
5043 bool threadgroup_locked;
5044
5045 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5046 if (!dst_cgrp)
5047 return -ENODEV;
5048
5049 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5050 ret = PTR_ERR_OR_ZERO(task);
5051 if (ret)
5052 goto out_unlock;
5053
5054 /* find the source cgroup */
5055 spin_lock_irq(&css_set_lock);
5056 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5057 spin_unlock_irq(&css_set_lock);
5058
5059 /*
5060 * Process and thread migrations follow same delegation rule. Check
5061 * permissions using the credentials from file open to protect against
5062 * inherited fd attacks.
5063 */
5064 saved_cred = override_creds(of->file->f_cred);
5065 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5066 of->file->f_path.dentry->d_sb,
5067 threadgroup, ctx->ns);
5068 revert_creds(saved_cred);
5069 if (ret)
5070 goto out_finish;
5071
5072 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5073
5074 out_finish:
5075 cgroup_procs_write_finish(task, threadgroup_locked);
5076 out_unlock:
5077 cgroup_kn_unlock(of->kn);
5078
5079 return ret;
5080 }
5081
5082 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5083 char *buf, size_t nbytes, loff_t off)
5084 {
5085 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5086 }
5087
5088 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5089 {
5090 return __cgroup_procs_start(s, pos, 0);
5091 }
5092
5093 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
5095 {
5096 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5097 }
5098
5099 /* cgroup core interface files for the default hierarchy */
5100 static struct cftype cgroup_base_files[] = {
5101 {
5102 .name = "cgroup.type",
5103 .flags = CFTYPE_NOT_ON_ROOT,
5104 .seq_show = cgroup_type_show,
5105 .write = cgroup_type_write,
5106 },
5107 {
5108 .name = "cgroup.procs",
5109 .flags = CFTYPE_NS_DELEGATABLE,
5110 .file_offset = offsetof(struct cgroup, procs_file),
5111 .release = cgroup_procs_release,
5112 .seq_start = cgroup_procs_start,
5113 .seq_next = cgroup_procs_next,
5114 .seq_show = cgroup_procs_show,
5115 .write = cgroup_procs_write,
5116 },
5117 {
5118 .name = "cgroup.threads",
5119 .flags = CFTYPE_NS_DELEGATABLE,
5120 .release = cgroup_procs_release,
5121 .seq_start = cgroup_threads_start,
5122 .seq_next = cgroup_procs_next,
5123 .seq_show = cgroup_procs_show,
5124 .write = cgroup_threads_write,
5125 },
5126 {
5127 .name = "cgroup.controllers",
5128 .seq_show = cgroup_controllers_show,
5129 },
5130 {
5131 .name = "cgroup.subtree_control",
5132 .flags = CFTYPE_NS_DELEGATABLE,
5133 .seq_show = cgroup_subtree_control_show,
5134 .write = cgroup_subtree_control_write,
5135 },
5136 {
5137 .name = "cgroup.events",
5138 .flags = CFTYPE_NOT_ON_ROOT,
5139 .file_offset = offsetof(struct cgroup, events_file),
5140 .seq_show = cgroup_events_show,
5141 },
5142 {
5143 .name = "cgroup.max.descendants",
5144 .seq_show = cgroup_max_descendants_show,
5145 .write = cgroup_max_descendants_write,
5146 },
5147 {
5148 .name = "cgroup.max.depth",
5149 .seq_show = cgroup_max_depth_show,
5150 .write = cgroup_max_depth_write,
5151 },
5152 {
5153 .name = "cgroup.stat",
5154 .seq_show = cgroup_stat_show,
5155 },
5156 {
5157 .name = "cgroup.freeze",
5158 .flags = CFTYPE_NOT_ON_ROOT,
5159 .seq_show = cgroup_freeze_show,
5160 .write = cgroup_freeze_write,
5161 },
5162 {
5163 .name = "cgroup.kill",
5164 .flags = CFTYPE_NOT_ON_ROOT,
5165 .write = cgroup_kill_write,
5166 },
5167 {
5168 .name = "cpu.stat",
5169 .seq_show = cpu_stat_show,
5170 },
5171 { } /* terminate */
5172 };
5173
5174 static struct cftype cgroup_psi_files[] = {
5175 #ifdef CONFIG_PSI
5176 {
5177 .name = "io.pressure",
5178 .seq_show = cgroup_io_pressure_show,
5179 .write = cgroup_io_pressure_write,
5180 .poll = cgroup_pressure_poll,
5181 .release = cgroup_pressure_release,
5182 },
5183 {
5184 .name = "memory.pressure",
5185 .seq_show = cgroup_memory_pressure_show,
5186 .write = cgroup_memory_pressure_write,
5187 .poll = cgroup_pressure_poll,
5188 .release = cgroup_pressure_release,
5189 },
5190 {
5191 .name = "cpu.pressure",
5192 .seq_show = cgroup_cpu_pressure_show,
5193 .write = cgroup_cpu_pressure_write,
5194 .poll = cgroup_pressure_poll,
5195 .release = cgroup_pressure_release,
5196 },
5197 #endif /* CONFIG_PSI */
5198 { } /* terminate */
5199 };
5200
5201 /*
5202 * css destruction is four-stage process.
5203 *
5204 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5205 * Implemented in kill_css().
5206 *
5207 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5208 * and thus css_tryget_online() is guaranteed to fail, the css can be
5209 * offlined by invoking offline_css(). After offlining, the base ref is
5210 * put. Implemented in css_killed_work_fn().
5211 *
5212 * 3. When the percpu_ref reaches zero, the only possible remaining
5213 * accessors are inside RCU read sections. css_release() schedules the
5214 * RCU callback.
5215 *
5216 * 4. After the grace period, the css can be freed. Implemented in
5217 * css_free_work_fn().
5218 *
5219 * It is actually hairier because both step 2 and 4 require process context
5220 * and thus involve punting to css->destroy_work adding two additional
5221 * steps to the already complex sequence.
5222 */
5223 static void css_free_rwork_fn(struct work_struct *work)
5224 {
5225 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5226 struct cgroup_subsys_state, destroy_rwork);
5227 struct cgroup_subsys *ss = css->ss;
5228 struct cgroup *cgrp = css->cgroup;
5229
5230 percpu_ref_exit(&css->refcnt);
5231
5232 if (ss) {
5233 /* css free path */
5234 struct cgroup_subsys_state *parent = css->parent;
5235 int id = css->id;
5236
5237 ss->css_free(css);
5238 cgroup_idr_remove(&ss->css_idr, id);
5239 cgroup_put(cgrp);
5240
5241 if (parent)
5242 css_put(parent);
5243 } else {
5244 /* cgroup free path */
5245 atomic_dec(&cgrp->root->nr_cgrps);
5246 cgroup1_pidlist_destroy_all(cgrp);
5247 cancel_work_sync(&cgrp->release_agent_work);
5248 bpf_cgrp_storage_free(cgrp);
5249
5250 if (cgroup_parent(cgrp)) {
5251 /*
5252 * We get a ref to the parent, and put the ref when
5253 * this cgroup is being freed, so it's guaranteed
5254 * that the parent won't be destroyed before its
5255 * children.
5256 */
5257 cgroup_put(cgroup_parent(cgrp));
5258 kernfs_put(cgrp->kn);
5259 psi_cgroup_free(cgrp);
5260 cgroup_rstat_exit(cgrp);
5261 kfree(cgrp);
5262 } else {
5263 /*
5264 * This is root cgroup's refcnt reaching zero,
5265 * which indicates that the root should be
5266 * released.
5267 */
5268 cgroup_destroy_root(cgrp->root);
5269 }
5270 }
5271 }
5272
5273 static void css_release_work_fn(struct work_struct *work)
5274 {
5275 struct cgroup_subsys_state *css =
5276 container_of(work, struct cgroup_subsys_state, destroy_work);
5277 struct cgroup_subsys *ss = css->ss;
5278 struct cgroup *cgrp = css->cgroup;
5279
5280 mutex_lock(&cgroup_mutex);
5281
5282 css->flags |= CSS_RELEASED;
5283 list_del_rcu(&css->sibling);
5284
5285 if (ss) {
5286 /* css release path */
5287 if (!list_empty(&css->rstat_css_node)) {
5288 cgroup_rstat_flush(cgrp);
5289 list_del_rcu(&css->rstat_css_node);
5290 }
5291
5292 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5293 if (ss->css_released)
5294 ss->css_released(css);
5295 } else {
5296 struct cgroup *tcgrp;
5297
5298 /* cgroup release path */
5299 TRACE_CGROUP_PATH(release, cgrp);
5300
5301 cgroup_rstat_flush(cgrp);
5302
5303 spin_lock_irq(&css_set_lock);
5304 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5305 tcgrp = cgroup_parent(tcgrp))
5306 tcgrp->nr_dying_descendants--;
5307 spin_unlock_irq(&css_set_lock);
5308
5309 /*
5310 * There are two control paths which try to determine
5311 * cgroup from dentry without going through kernfs -
5312 * cgroupstats_build() and css_tryget_online_from_dir().
5313 * Those are supported by RCU protecting clearing of
5314 * cgrp->kn->priv backpointer.
5315 */
5316 if (cgrp->kn)
5317 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5318 NULL);
5319 }
5320
5321 mutex_unlock(&cgroup_mutex);
5322
5323 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5324 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5325 }
5326
5327 static void css_release(struct percpu_ref *ref)
5328 {
5329 struct cgroup_subsys_state *css =
5330 container_of(ref, struct cgroup_subsys_state, refcnt);
5331
5332 INIT_WORK(&css->destroy_work, css_release_work_fn);
5333 queue_work(cgroup_destroy_wq, &css->destroy_work);
5334 }
5335
5336 static void init_and_link_css(struct cgroup_subsys_state *css,
5337 struct cgroup_subsys *ss, struct cgroup *cgrp)
5338 {
5339 lockdep_assert_held(&cgroup_mutex);
5340
5341 cgroup_get_live(cgrp);
5342
5343 memset(css, 0, sizeof(*css));
5344 css->cgroup = cgrp;
5345 css->ss = ss;
5346 css->id = -1;
5347 INIT_LIST_HEAD(&css->sibling);
5348 INIT_LIST_HEAD(&css->children);
5349 INIT_LIST_HEAD(&css->rstat_css_node);
5350 css->serial_nr = css_serial_nr_next++;
5351 atomic_set(&css->online_cnt, 0);
5352
5353 if (cgroup_parent(cgrp)) {
5354 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5355 css_get(css->parent);
5356 }
5357
5358 if (ss->css_rstat_flush)
5359 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5360
5361 BUG_ON(cgroup_css(cgrp, ss));
5362 }
5363
5364 /* invoke ->css_online() on a new CSS and mark it online if successful */
5365 static int online_css(struct cgroup_subsys_state *css)
5366 {
5367 struct cgroup_subsys *ss = css->ss;
5368 int ret = 0;
5369
5370 lockdep_assert_held(&cgroup_mutex);
5371
5372 if (ss->css_online)
5373 ret = ss->css_online(css);
5374 if (!ret) {
5375 css->flags |= CSS_ONLINE;
5376 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5377
5378 atomic_inc(&css->online_cnt);
5379 if (css->parent)
5380 atomic_inc(&css->parent->online_cnt);
5381 }
5382 return ret;
5383 }
5384
5385 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5386 static void offline_css(struct cgroup_subsys_state *css)
5387 {
5388 struct cgroup_subsys *ss = css->ss;
5389
5390 lockdep_assert_held(&cgroup_mutex);
5391
5392 if (!(css->flags & CSS_ONLINE))
5393 return;
5394
5395 if (ss->css_offline)
5396 ss->css_offline(css);
5397
5398 css->flags &= ~CSS_ONLINE;
5399 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5400
5401 wake_up_all(&css->cgroup->offline_waitq);
5402 }
5403
5404 /**
5405 * css_create - create a cgroup_subsys_state
5406 * @cgrp: the cgroup new css will be associated with
5407 * @ss: the subsys of new css
5408 *
5409 * Create a new css associated with @cgrp - @ss pair. On success, the new
5410 * css is online and installed in @cgrp. This function doesn't create the
5411 * interface files. Returns 0 on success, -errno on failure.
5412 */
5413 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5414 struct cgroup_subsys *ss)
5415 {
5416 struct cgroup *parent = cgroup_parent(cgrp);
5417 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5418 struct cgroup_subsys_state *css;
5419 int err;
5420
5421 lockdep_assert_held(&cgroup_mutex);
5422
5423 css = ss->css_alloc(parent_css);
5424 if (!css)
5425 css = ERR_PTR(-ENOMEM);
5426 if (IS_ERR(css))
5427 return css;
5428
5429 init_and_link_css(css, ss, cgrp);
5430
5431 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5432 if (err)
5433 goto err_free_css;
5434
5435 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5436 if (err < 0)
5437 goto err_free_css;
5438 css->id = err;
5439
5440 /* @css is ready to be brought online now, make it visible */
5441 list_add_tail_rcu(&css->sibling, &parent_css->children);
5442 cgroup_idr_replace(&ss->css_idr, css, css->id);
5443
5444 err = online_css(css);
5445 if (err)
5446 goto err_list_del;
5447
5448 return css;
5449
5450 err_list_del:
5451 list_del_rcu(&css->sibling);
5452 err_free_css:
5453 list_del_rcu(&css->rstat_css_node);
5454 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5455 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5456 return ERR_PTR(err);
5457 }
5458
5459 /*
5460 * The returned cgroup is fully initialized including its control mask, but
5461 * it isn't associated with its kernfs_node and doesn't have the control
5462 * mask applied.
5463 */
5464 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5465 umode_t mode)
5466 {
5467 struct cgroup_root *root = parent->root;
5468 struct cgroup *cgrp, *tcgrp;
5469 struct kernfs_node *kn;
5470 int level = parent->level + 1;
5471 int ret;
5472
5473 /* allocate the cgroup and its ID, 0 is reserved for the root */
5474 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5475 if (!cgrp)
5476 return ERR_PTR(-ENOMEM);
5477
5478 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5479 if (ret)
5480 goto out_free_cgrp;
5481
5482 ret = cgroup_rstat_init(cgrp);
5483 if (ret)
5484 goto out_cancel_ref;
5485
5486 /* create the directory */
5487 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5488 if (IS_ERR(kn)) {
5489 ret = PTR_ERR(kn);
5490 goto out_stat_exit;
5491 }
5492 cgrp->kn = kn;
5493
5494 init_cgroup_housekeeping(cgrp);
5495
5496 cgrp->self.parent = &parent->self;
5497 cgrp->root = root;
5498 cgrp->level = level;
5499
5500 ret = psi_cgroup_alloc(cgrp);
5501 if (ret)
5502 goto out_kernfs_remove;
5503
5504 ret = cgroup_bpf_inherit(cgrp);
5505 if (ret)
5506 goto out_psi_free;
5507
5508 /*
5509 * New cgroup inherits effective freeze counter, and
5510 * if the parent has to be frozen, the child has too.
5511 */
5512 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5513 if (cgrp->freezer.e_freeze) {
5514 /*
5515 * Set the CGRP_FREEZE flag, so when a process will be
5516 * attached to the child cgroup, it will become frozen.
5517 * At this point the new cgroup is unpopulated, so we can
5518 * consider it frozen immediately.
5519 */
5520 set_bit(CGRP_FREEZE, &cgrp->flags);
5521 set_bit(CGRP_FROZEN, &cgrp->flags);
5522 }
5523
5524 spin_lock_irq(&css_set_lock);
5525 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5526 cgrp->ancestors[tcgrp->level] = tcgrp;
5527
5528 if (tcgrp != cgrp) {
5529 tcgrp->nr_descendants++;
5530
5531 /*
5532 * If the new cgroup is frozen, all ancestor cgroups
5533 * get a new frozen descendant, but their state can't
5534 * change because of this.
5535 */
5536 if (cgrp->freezer.e_freeze)
5537 tcgrp->freezer.nr_frozen_descendants++;
5538 }
5539 }
5540 spin_unlock_irq(&css_set_lock);
5541
5542 if (notify_on_release(parent))
5543 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5544
5545 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5546 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5547
5548 cgrp->self.serial_nr = css_serial_nr_next++;
5549
5550 /* allocation complete, commit to creation */
5551 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5552 atomic_inc(&root->nr_cgrps);
5553 cgroup_get_live(parent);
5554
5555 /*
5556 * On the default hierarchy, a child doesn't automatically inherit
5557 * subtree_control from the parent. Each is configured manually.
5558 */
5559 if (!cgroup_on_dfl(cgrp))
5560 cgrp->subtree_control = cgroup_control(cgrp);
5561
5562 cgroup_propagate_control(cgrp);
5563
5564 return cgrp;
5565
5566 out_psi_free:
5567 psi_cgroup_free(cgrp);
5568 out_kernfs_remove:
5569 kernfs_remove(cgrp->kn);
5570 out_stat_exit:
5571 cgroup_rstat_exit(cgrp);
5572 out_cancel_ref:
5573 percpu_ref_exit(&cgrp->self.refcnt);
5574 out_free_cgrp:
5575 kfree(cgrp);
5576 return ERR_PTR(ret);
5577 }
5578
5579 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5580 {
5581 struct cgroup *cgroup;
5582 int ret = false;
5583 int level = 1;
5584
5585 lockdep_assert_held(&cgroup_mutex);
5586
5587 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5588 if (cgroup->nr_descendants >= cgroup->max_descendants)
5589 goto fail;
5590
5591 if (level > cgroup->max_depth)
5592 goto fail;
5593
5594 level++;
5595 }
5596
5597 ret = true;
5598 fail:
5599 return ret;
5600 }
5601
5602 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5603 {
5604 struct cgroup *parent, *cgrp;
5605 int ret;
5606
5607 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5608 if (strchr(name, '\n'))
5609 return -EINVAL;
5610
5611 parent = cgroup_kn_lock_live(parent_kn, false);
5612 if (!parent)
5613 return -ENODEV;
5614
5615 if (!cgroup_check_hierarchy_limits(parent)) {
5616 ret = -EAGAIN;
5617 goto out_unlock;
5618 }
5619
5620 cgrp = cgroup_create(parent, name, mode);
5621 if (IS_ERR(cgrp)) {
5622 ret = PTR_ERR(cgrp);
5623 goto out_unlock;
5624 }
5625
5626 /*
5627 * This extra ref will be put in cgroup_free_fn() and guarantees
5628 * that @cgrp->kn is always accessible.
5629 */
5630 kernfs_get(cgrp->kn);
5631
5632 ret = cgroup_kn_set_ugid(cgrp->kn);
5633 if (ret)
5634 goto out_destroy;
5635
5636 ret = css_populate_dir(&cgrp->self);
5637 if (ret)
5638 goto out_destroy;
5639
5640 ret = cgroup_apply_control_enable(cgrp);
5641 if (ret)
5642 goto out_destroy;
5643
5644 TRACE_CGROUP_PATH(mkdir, cgrp);
5645
5646 /* let's create and online css's */
5647 kernfs_activate(cgrp->kn);
5648
5649 ret = 0;
5650 goto out_unlock;
5651
5652 out_destroy:
5653 cgroup_destroy_locked(cgrp);
5654 out_unlock:
5655 cgroup_kn_unlock(parent_kn);
5656 return ret;
5657 }
5658
5659 /*
5660 * This is called when the refcnt of a css is confirmed to be killed.
5661 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5662 * initiate destruction and put the css ref from kill_css().
5663 */
5664 static void css_killed_work_fn(struct work_struct *work)
5665 {
5666 struct cgroup_subsys_state *css =
5667 container_of(work, struct cgroup_subsys_state, destroy_work);
5668
5669 mutex_lock(&cgroup_mutex);
5670
5671 do {
5672 offline_css(css);
5673 css_put(css);
5674 /* @css can't go away while we're holding cgroup_mutex */
5675 css = css->parent;
5676 } while (css && atomic_dec_and_test(&css->online_cnt));
5677
5678 mutex_unlock(&cgroup_mutex);
5679 }
5680
5681 /* css kill confirmation processing requires process context, bounce */
5682 static void css_killed_ref_fn(struct percpu_ref *ref)
5683 {
5684 struct cgroup_subsys_state *css =
5685 container_of(ref, struct cgroup_subsys_state, refcnt);
5686
5687 if (atomic_dec_and_test(&css->online_cnt)) {
5688 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5689 queue_work(cgroup_destroy_wq, &css->destroy_work);
5690 }
5691 }
5692
5693 /**
5694 * kill_css - destroy a css
5695 * @css: css to destroy
5696 *
5697 * This function initiates destruction of @css by removing cgroup interface
5698 * files and putting its base reference. ->css_offline() will be invoked
5699 * asynchronously once css_tryget_online() is guaranteed to fail and when
5700 * the reference count reaches zero, @css will be released.
5701 */
5702 static void kill_css(struct cgroup_subsys_state *css)
5703 {
5704 lockdep_assert_held(&cgroup_mutex);
5705
5706 if (css->flags & CSS_DYING)
5707 return;
5708
5709 css->flags |= CSS_DYING;
5710
5711 /*
5712 * This must happen before css is disassociated with its cgroup.
5713 * See seq_css() for details.
5714 */
5715 css_clear_dir(css);
5716
5717 /*
5718 * Killing would put the base ref, but we need to keep it alive
5719 * until after ->css_offline().
5720 */
5721 css_get(css);
5722
5723 /*
5724 * cgroup core guarantees that, by the time ->css_offline() is
5725 * invoked, no new css reference will be given out via
5726 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5727 * proceed to offlining css's because percpu_ref_kill() doesn't
5728 * guarantee that the ref is seen as killed on all CPUs on return.
5729 *
5730 * Use percpu_ref_kill_and_confirm() to get notifications as each
5731 * css is confirmed to be seen as killed on all CPUs.
5732 */
5733 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5734 }
5735
5736 /**
5737 * cgroup_destroy_locked - the first stage of cgroup destruction
5738 * @cgrp: cgroup to be destroyed
5739 *
5740 * css's make use of percpu refcnts whose killing latency shouldn't be
5741 * exposed to userland and are RCU protected. Also, cgroup core needs to
5742 * guarantee that css_tryget_online() won't succeed by the time
5743 * ->css_offline() is invoked. To satisfy all the requirements,
5744 * destruction is implemented in the following two steps.
5745 *
5746 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5747 * userland visible parts and start killing the percpu refcnts of
5748 * css's. Set up so that the next stage will be kicked off once all
5749 * the percpu refcnts are confirmed to be killed.
5750 *
5751 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5752 * rest of destruction. Once all cgroup references are gone, the
5753 * cgroup is RCU-freed.
5754 *
5755 * This function implements s1. After this step, @cgrp is gone as far as
5756 * the userland is concerned and a new cgroup with the same name may be
5757 * created. As cgroup doesn't care about the names internally, this
5758 * doesn't cause any problem.
5759 */
5760 static int cgroup_destroy_locked(struct cgroup *cgrp)
5761 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5762 {
5763 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5764 struct cgroup_subsys_state *css;
5765 struct cgrp_cset_link *link;
5766 int ssid;
5767
5768 lockdep_assert_held(&cgroup_mutex);
5769
5770 /*
5771 * Only migration can raise populated from zero and we're already
5772 * holding cgroup_mutex.
5773 */
5774 if (cgroup_is_populated(cgrp))
5775 return -EBUSY;
5776
5777 /*
5778 * Make sure there's no live children. We can't test emptiness of
5779 * ->self.children as dead children linger on it while being
5780 * drained; otherwise, "rmdir parent/child parent" may fail.
5781 */
5782 if (css_has_online_children(&cgrp->self))
5783 return -EBUSY;
5784
5785 /*
5786 * Mark @cgrp and the associated csets dead. The former prevents
5787 * further task migration and child creation by disabling
5788 * cgroup_lock_live_group(). The latter makes the csets ignored by
5789 * the migration path.
5790 */
5791 cgrp->self.flags &= ~CSS_ONLINE;
5792
5793 spin_lock_irq(&css_set_lock);
5794 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5795 link->cset->dead = true;
5796 spin_unlock_irq(&css_set_lock);
5797
5798 /* initiate massacre of all css's */
5799 for_each_css(css, ssid, cgrp)
5800 kill_css(css);
5801
5802 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5803 css_clear_dir(&cgrp->self);
5804 kernfs_remove(cgrp->kn);
5805
5806 if (cgroup_is_threaded(cgrp))
5807 parent->nr_threaded_children--;
5808
5809 spin_lock_irq(&css_set_lock);
5810 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5811 tcgrp->nr_descendants--;
5812 tcgrp->nr_dying_descendants++;
5813 /*
5814 * If the dying cgroup is frozen, decrease frozen descendants
5815 * counters of ancestor cgroups.
5816 */
5817 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5818 tcgrp->freezer.nr_frozen_descendants--;
5819 }
5820 spin_unlock_irq(&css_set_lock);
5821
5822 cgroup1_check_for_release(parent);
5823
5824 cgroup_bpf_offline(cgrp);
5825
5826 /* put the base reference */
5827 percpu_ref_kill(&cgrp->self.refcnt);
5828
5829 return 0;
5830 };
5831
5832 int cgroup_rmdir(struct kernfs_node *kn)
5833 {
5834 struct cgroup *cgrp;
5835 int ret = 0;
5836
5837 cgrp = cgroup_kn_lock_live(kn, false);
5838 if (!cgrp)
5839 return 0;
5840
5841 ret = cgroup_destroy_locked(cgrp);
5842 if (!ret)
5843 TRACE_CGROUP_PATH(rmdir, cgrp);
5844
5845 cgroup_kn_unlock(kn);
5846 return ret;
5847 }
5848
5849 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5850 .show_options = cgroup_show_options,
5851 .mkdir = cgroup_mkdir,
5852 .rmdir = cgroup_rmdir,
5853 .show_path = cgroup_show_path,
5854 };
5855
5856 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5857 {
5858 struct cgroup_subsys_state *css;
5859
5860 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5861
5862 mutex_lock(&cgroup_mutex);
5863
5864 idr_init(&ss->css_idr);
5865 INIT_LIST_HEAD(&ss->cfts);
5866
5867 /* Create the root cgroup state for this subsystem */
5868 ss->root = &cgrp_dfl_root;
5869 css = ss->css_alloc(NULL);
5870 /* We don't handle early failures gracefully */
5871 BUG_ON(IS_ERR(css));
5872 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5873
5874 /*
5875 * Root csses are never destroyed and we can't initialize
5876 * percpu_ref during early init. Disable refcnting.
5877 */
5878 css->flags |= CSS_NO_REF;
5879
5880 if (early) {
5881 /* allocation can't be done safely during early init */
5882 css->id = 1;
5883 } else {
5884 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5885 BUG_ON(css->id < 0);
5886 }
5887
5888 /* Update the init_css_set to contain a subsys
5889 * pointer to this state - since the subsystem is
5890 * newly registered, all tasks and hence the
5891 * init_css_set is in the subsystem's root cgroup. */
5892 init_css_set.subsys[ss->id] = css;
5893
5894 have_fork_callback |= (bool)ss->fork << ss->id;
5895 have_exit_callback |= (bool)ss->exit << ss->id;
5896 have_release_callback |= (bool)ss->release << ss->id;
5897 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5898
5899 /* At system boot, before all subsystems have been
5900 * registered, no tasks have been forked, so we don't
5901 * need to invoke fork callbacks here. */
5902 BUG_ON(!list_empty(&init_task.tasks));
5903
5904 BUG_ON(online_css(css));
5905
5906 mutex_unlock(&cgroup_mutex);
5907 }
5908
5909 /**
5910 * cgroup_init_early - cgroup initialization at system boot
5911 *
5912 * Initialize cgroups at system boot, and initialize any
5913 * subsystems that request early init.
5914 */
5915 int __init cgroup_init_early(void)
5916 {
5917 static struct cgroup_fs_context __initdata ctx;
5918 struct cgroup_subsys *ss;
5919 int i;
5920
5921 ctx.root = &cgrp_dfl_root;
5922 init_cgroup_root(&ctx);
5923 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5924
5925 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5926
5927 for_each_subsys(ss, i) {
5928 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5929 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5930 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5931 ss->id, ss->name);
5932 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5933 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5934
5935 ss->id = i;
5936 ss->name = cgroup_subsys_name[i];
5937 if (!ss->legacy_name)
5938 ss->legacy_name = cgroup_subsys_name[i];
5939
5940 if (ss->early_init)
5941 cgroup_init_subsys(ss, true);
5942 }
5943 return 0;
5944 }
5945
5946 /**
5947 * cgroup_init - cgroup initialization
5948 *
5949 * Register cgroup filesystem and /proc file, and initialize
5950 * any subsystems that didn't request early init.
5951 */
5952 int __init cgroup_init(void)
5953 {
5954 struct cgroup_subsys *ss;
5955 int ssid;
5956
5957 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5958 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5959 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
5960 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5961
5962 cgroup_rstat_boot();
5963
5964 get_user_ns(init_cgroup_ns.user_ns);
5965
5966 mutex_lock(&cgroup_mutex);
5967
5968 /*
5969 * Add init_css_set to the hash table so that dfl_root can link to
5970 * it during init.
5971 */
5972 hash_add(css_set_table, &init_css_set.hlist,
5973 css_set_hash(init_css_set.subsys));
5974
5975 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5976
5977 mutex_unlock(&cgroup_mutex);
5978
5979 for_each_subsys(ss, ssid) {
5980 if (ss->early_init) {
5981 struct cgroup_subsys_state *css =
5982 init_css_set.subsys[ss->id];
5983
5984 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5985 GFP_KERNEL);
5986 BUG_ON(css->id < 0);
5987 } else {
5988 cgroup_init_subsys(ss, false);
5989 }
5990
5991 list_add_tail(&init_css_set.e_cset_node[ssid],
5992 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5993
5994 /*
5995 * Setting dfl_root subsys_mask needs to consider the
5996 * disabled flag and cftype registration needs kmalloc,
5997 * both of which aren't available during early_init.
5998 */
5999 if (!cgroup_ssid_enabled(ssid))
6000 continue;
6001
6002 if (cgroup1_ssid_disabled(ssid))
6003 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6004 ss->name);
6005
6006 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6007
6008 /* implicit controllers must be threaded too */
6009 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6010
6011 if (ss->implicit_on_dfl)
6012 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6013 else if (!ss->dfl_cftypes)
6014 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6015
6016 if (ss->threaded)
6017 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6018
6019 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6020 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6021 } else {
6022 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6023 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6024 }
6025
6026 if (ss->bind)
6027 ss->bind(init_css_set.subsys[ssid]);
6028
6029 mutex_lock(&cgroup_mutex);
6030 css_populate_dir(init_css_set.subsys[ssid]);
6031 mutex_unlock(&cgroup_mutex);
6032 }
6033
6034 /* init_css_set.subsys[] has been updated, re-hash */
6035 hash_del(&init_css_set.hlist);
6036 hash_add(css_set_table, &init_css_set.hlist,
6037 css_set_hash(init_css_set.subsys));
6038
6039 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6040 WARN_ON(register_filesystem(&cgroup_fs_type));
6041 WARN_ON(register_filesystem(&cgroup2_fs_type));
6042 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6043 #ifdef CONFIG_CPUSETS
6044 WARN_ON(register_filesystem(&cpuset_fs_type));
6045 #endif
6046
6047 return 0;
6048 }
6049
6050 static int __init cgroup_wq_init(void)
6051 {
6052 /*
6053 * There isn't much point in executing destruction path in
6054 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6055 * Use 1 for @max_active.
6056 *
6057 * We would prefer to do this in cgroup_init() above, but that
6058 * is called before init_workqueues(): so leave this until after.
6059 */
6060 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6061 BUG_ON(!cgroup_destroy_wq);
6062 return 0;
6063 }
6064 core_initcall(cgroup_wq_init);
6065
6066 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6067 {
6068 struct kernfs_node *kn;
6069
6070 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6071 if (!kn)
6072 return;
6073 kernfs_path(kn, buf, buflen);
6074 kernfs_put(kn);
6075 }
6076
6077 /*
6078 * cgroup_get_from_id : get the cgroup associated with cgroup id
6079 * @id: cgroup id
6080 * On success return the cgrp or ERR_PTR on failure
6081 * Only cgroups within current task's cgroup NS are valid.
6082 */
6083 struct cgroup *cgroup_get_from_id(u64 id)
6084 {
6085 struct kernfs_node *kn;
6086 struct cgroup *cgrp, *root_cgrp;
6087
6088 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6089 if (!kn)
6090 return ERR_PTR(-ENOENT);
6091
6092 if (kernfs_type(kn) != KERNFS_DIR) {
6093 kernfs_put(kn);
6094 return ERR_PTR(-ENOENT);
6095 }
6096
6097 rcu_read_lock();
6098
6099 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6100 if (cgrp && !cgroup_tryget(cgrp))
6101 cgrp = NULL;
6102
6103 rcu_read_unlock();
6104 kernfs_put(kn);
6105
6106 if (!cgrp)
6107 return ERR_PTR(-ENOENT);
6108
6109 spin_lock_irq(&css_set_lock);
6110 root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6111 spin_unlock_irq(&css_set_lock);
6112 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6113 cgroup_put(cgrp);
6114 return ERR_PTR(-ENOENT);
6115 }
6116
6117 return cgrp;
6118 }
6119 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6120
6121 /*
6122 * proc_cgroup_show()
6123 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6124 * - Used for /proc/<pid>/cgroup.
6125 */
6126 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6127 struct pid *pid, struct task_struct *tsk)
6128 {
6129 char *buf;
6130 int retval;
6131 struct cgroup_root *root;
6132
6133 retval = -ENOMEM;
6134 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6135 if (!buf)
6136 goto out;
6137
6138 mutex_lock(&cgroup_mutex);
6139 spin_lock_irq(&css_set_lock);
6140
6141 for_each_root(root) {
6142 struct cgroup_subsys *ss;
6143 struct cgroup *cgrp;
6144 int ssid, count = 0;
6145
6146 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6147 continue;
6148
6149 seq_printf(m, "%d:", root->hierarchy_id);
6150 if (root != &cgrp_dfl_root)
6151 for_each_subsys(ss, ssid)
6152 if (root->subsys_mask & (1 << ssid))
6153 seq_printf(m, "%s%s", count++ ? "," : "",
6154 ss->legacy_name);
6155 if (strlen(root->name))
6156 seq_printf(m, "%sname=%s", count ? "," : "",
6157 root->name);
6158 seq_putc(m, ':');
6159
6160 cgrp = task_cgroup_from_root(tsk, root);
6161
6162 /*
6163 * On traditional hierarchies, all zombie tasks show up as
6164 * belonging to the root cgroup. On the default hierarchy,
6165 * while a zombie doesn't show up in "cgroup.procs" and
6166 * thus can't be migrated, its /proc/PID/cgroup keeps
6167 * reporting the cgroup it belonged to before exiting. If
6168 * the cgroup is removed before the zombie is reaped,
6169 * " (deleted)" is appended to the cgroup path.
6170 */
6171 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6172 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6173 current->nsproxy->cgroup_ns);
6174 if (retval >= PATH_MAX)
6175 retval = -ENAMETOOLONG;
6176 if (retval < 0)
6177 goto out_unlock;
6178
6179 seq_puts(m, buf);
6180 } else {
6181 seq_puts(m, "/");
6182 }
6183
6184 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6185 seq_puts(m, " (deleted)\n");
6186 else
6187 seq_putc(m, '\n');
6188 }
6189
6190 retval = 0;
6191 out_unlock:
6192 spin_unlock_irq(&css_set_lock);
6193 mutex_unlock(&cgroup_mutex);
6194 kfree(buf);
6195 out:
6196 return retval;
6197 }
6198
6199 /**
6200 * cgroup_fork - initialize cgroup related fields during copy_process()
6201 * @child: pointer to task_struct of forking parent process.
6202 *
6203 * A task is associated with the init_css_set until cgroup_post_fork()
6204 * attaches it to the target css_set.
6205 */
6206 void cgroup_fork(struct task_struct *child)
6207 {
6208 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6209 INIT_LIST_HEAD(&child->cg_list);
6210 }
6211
6212 static struct cgroup *cgroup_get_from_file(struct file *f)
6213 {
6214 struct cgroup_subsys_state *css;
6215 struct cgroup *cgrp;
6216
6217 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6218 if (IS_ERR(css))
6219 return ERR_CAST(css);
6220
6221 cgrp = css->cgroup;
6222 return cgrp;
6223 }
6224
6225 /**
6226 * cgroup_css_set_fork - find or create a css_set for a child process
6227 * @kargs: the arguments passed to create the child process
6228 *
6229 * This functions finds or creates a new css_set which the child
6230 * process will be attached to in cgroup_post_fork(). By default,
6231 * the child process will be given the same css_set as its parent.
6232 *
6233 * If CLONE_INTO_CGROUP is specified this function will try to find an
6234 * existing css_set which includes the requested cgroup and if not create
6235 * a new css_set that the child will be attached to later. If this function
6236 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6237 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6238 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6239 * to the target cgroup.
6240 */
6241 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6242 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6243 {
6244 int ret;
6245 struct cgroup *dst_cgrp = NULL;
6246 struct css_set *cset;
6247 struct super_block *sb;
6248 struct file *f;
6249
6250 if (kargs->flags & CLONE_INTO_CGROUP)
6251 mutex_lock(&cgroup_mutex);
6252
6253 cgroup_threadgroup_change_begin(current);
6254
6255 spin_lock_irq(&css_set_lock);
6256 cset = task_css_set(current);
6257 get_css_set(cset);
6258 spin_unlock_irq(&css_set_lock);
6259
6260 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6261 kargs->cset = cset;
6262 return 0;
6263 }
6264
6265 f = fget_raw(kargs->cgroup);
6266 if (!f) {
6267 ret = -EBADF;
6268 goto err;
6269 }
6270 sb = f->f_path.dentry->d_sb;
6271
6272 dst_cgrp = cgroup_get_from_file(f);
6273 if (IS_ERR(dst_cgrp)) {
6274 ret = PTR_ERR(dst_cgrp);
6275 dst_cgrp = NULL;
6276 goto err;
6277 }
6278
6279 if (cgroup_is_dead(dst_cgrp)) {
6280 ret = -ENODEV;
6281 goto err;
6282 }
6283
6284 /*
6285 * Verify that we the target cgroup is writable for us. This is
6286 * usually done by the vfs layer but since we're not going through
6287 * the vfs layer here we need to do it "manually".
6288 */
6289 ret = cgroup_may_write(dst_cgrp, sb);
6290 if (ret)
6291 goto err;
6292
6293 /*
6294 * Spawning a task directly into a cgroup works by passing a file
6295 * descriptor to the target cgroup directory. This can even be an O_PATH
6296 * file descriptor. But it can never be a cgroup.procs file descriptor.
6297 * This was done on purpose so spawning into a cgroup could be
6298 * conceptualized as an atomic
6299 *
6300 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6301 * write(fd, <child-pid>, ...);
6302 *
6303 * sequence, i.e. it's a shorthand for the caller opening and writing
6304 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6305 * to always use the caller's credentials.
6306 */
6307 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6308 !(kargs->flags & CLONE_THREAD),
6309 current->nsproxy->cgroup_ns);
6310 if (ret)
6311 goto err;
6312
6313 kargs->cset = find_css_set(cset, dst_cgrp);
6314 if (!kargs->cset) {
6315 ret = -ENOMEM;
6316 goto err;
6317 }
6318
6319 put_css_set(cset);
6320 fput(f);
6321 kargs->cgrp = dst_cgrp;
6322 return ret;
6323
6324 err:
6325 cgroup_threadgroup_change_end(current);
6326 mutex_unlock(&cgroup_mutex);
6327 if (f)
6328 fput(f);
6329 if (dst_cgrp)
6330 cgroup_put(dst_cgrp);
6331 put_css_set(cset);
6332 if (kargs->cset)
6333 put_css_set(kargs->cset);
6334 return ret;
6335 }
6336
6337 /**
6338 * cgroup_css_set_put_fork - drop references we took during fork
6339 * @kargs: the arguments passed to create the child process
6340 *
6341 * Drop references to the prepared css_set and target cgroup if
6342 * CLONE_INTO_CGROUP was requested.
6343 */
6344 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6345 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6346 {
6347 cgroup_threadgroup_change_end(current);
6348
6349 if (kargs->flags & CLONE_INTO_CGROUP) {
6350 struct cgroup *cgrp = kargs->cgrp;
6351 struct css_set *cset = kargs->cset;
6352
6353 mutex_unlock(&cgroup_mutex);
6354
6355 if (cset) {
6356 put_css_set(cset);
6357 kargs->cset = NULL;
6358 }
6359
6360 if (cgrp) {
6361 cgroup_put(cgrp);
6362 kargs->cgrp = NULL;
6363 }
6364 }
6365 }
6366
6367 /**
6368 * cgroup_can_fork - called on a new task before the process is exposed
6369 * @child: the child process
6370 * @kargs: the arguments passed to create the child process
6371 *
6372 * This prepares a new css_set for the child process which the child will
6373 * be attached to in cgroup_post_fork().
6374 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6375 * callback returns an error, the fork aborts with that error code. This
6376 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6377 */
6378 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6379 {
6380 struct cgroup_subsys *ss;
6381 int i, j, ret;
6382
6383 ret = cgroup_css_set_fork(kargs);
6384 if (ret)
6385 return ret;
6386
6387 do_each_subsys_mask(ss, i, have_canfork_callback) {
6388 ret = ss->can_fork(child, kargs->cset);
6389 if (ret)
6390 goto out_revert;
6391 } while_each_subsys_mask();
6392
6393 return 0;
6394
6395 out_revert:
6396 for_each_subsys(ss, j) {
6397 if (j >= i)
6398 break;
6399 if (ss->cancel_fork)
6400 ss->cancel_fork(child, kargs->cset);
6401 }
6402
6403 cgroup_css_set_put_fork(kargs);
6404
6405 return ret;
6406 }
6407
6408 /**
6409 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6410 * @child: the child process
6411 * @kargs: the arguments passed to create the child process
6412 *
6413 * This calls the cancel_fork() callbacks if a fork failed *after*
6414 * cgroup_can_fork() succeeded and cleans up references we took to
6415 * prepare a new css_set for the child process in cgroup_can_fork().
6416 */
6417 void cgroup_cancel_fork(struct task_struct *child,
6418 struct kernel_clone_args *kargs)
6419 {
6420 struct cgroup_subsys *ss;
6421 int i;
6422
6423 for_each_subsys(ss, i)
6424 if (ss->cancel_fork)
6425 ss->cancel_fork(child, kargs->cset);
6426
6427 cgroup_css_set_put_fork(kargs);
6428 }
6429
6430 /**
6431 * cgroup_post_fork - finalize cgroup setup for the child process
6432 * @child: the child process
6433 * @kargs: the arguments passed to create the child process
6434 *
6435 * Attach the child process to its css_set calling the subsystem fork()
6436 * callbacks.
6437 */
6438 void cgroup_post_fork(struct task_struct *child,
6439 struct kernel_clone_args *kargs)
6440 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6441 {
6442 unsigned long cgrp_flags = 0;
6443 bool kill = false;
6444 struct cgroup_subsys *ss;
6445 struct css_set *cset;
6446 int i;
6447
6448 cset = kargs->cset;
6449 kargs->cset = NULL;
6450
6451 spin_lock_irq(&css_set_lock);
6452
6453 /* init tasks are special, only link regular threads */
6454 if (likely(child->pid)) {
6455 if (kargs->cgrp)
6456 cgrp_flags = kargs->cgrp->flags;
6457 else
6458 cgrp_flags = cset->dfl_cgrp->flags;
6459
6460 WARN_ON_ONCE(!list_empty(&child->cg_list));
6461 cset->nr_tasks++;
6462 css_set_move_task(child, NULL, cset, false);
6463 } else {
6464 put_css_set(cset);
6465 cset = NULL;
6466 }
6467
6468 if (!(child->flags & PF_KTHREAD)) {
6469 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6470 /*
6471 * If the cgroup has to be frozen, the new task has
6472 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6473 * get the task into the frozen state.
6474 */
6475 spin_lock(&child->sighand->siglock);
6476 WARN_ON_ONCE(child->frozen);
6477 child->jobctl |= JOBCTL_TRAP_FREEZE;
6478 spin_unlock(&child->sighand->siglock);
6479
6480 /*
6481 * Calling cgroup_update_frozen() isn't required here,
6482 * because it will be called anyway a bit later from
6483 * do_freezer_trap(). So we avoid cgroup's transient
6484 * switch from the frozen state and back.
6485 */
6486 }
6487
6488 /*
6489 * If the cgroup is to be killed notice it now and take the
6490 * child down right after we finished preparing it for
6491 * userspace.
6492 */
6493 kill = test_bit(CGRP_KILL, &cgrp_flags);
6494 }
6495
6496 spin_unlock_irq(&css_set_lock);
6497
6498 /*
6499 * Call ss->fork(). This must happen after @child is linked on
6500 * css_set; otherwise, @child might change state between ->fork()
6501 * and addition to css_set.
6502 */
6503 do_each_subsys_mask(ss, i, have_fork_callback) {
6504 ss->fork(child);
6505 } while_each_subsys_mask();
6506
6507 /* Make the new cset the root_cset of the new cgroup namespace. */
6508 if (kargs->flags & CLONE_NEWCGROUP) {
6509 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6510
6511 get_css_set(cset);
6512 child->nsproxy->cgroup_ns->root_cset = cset;
6513 put_css_set(rcset);
6514 }
6515
6516 /* Cgroup has to be killed so take down child immediately. */
6517 if (unlikely(kill))
6518 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6519
6520 cgroup_css_set_put_fork(kargs);
6521 }
6522
6523 /**
6524 * cgroup_exit - detach cgroup from exiting task
6525 * @tsk: pointer to task_struct of exiting process
6526 *
6527 * Description: Detach cgroup from @tsk.
6528 *
6529 */
6530 void cgroup_exit(struct task_struct *tsk)
6531 {
6532 struct cgroup_subsys *ss;
6533 struct css_set *cset;
6534 int i;
6535
6536 spin_lock_irq(&css_set_lock);
6537
6538 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6539 cset = task_css_set(tsk);
6540 css_set_move_task(tsk, cset, NULL, false);
6541 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6542 cset->nr_tasks--;
6543
6544 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6545 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6546 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6547 cgroup_update_frozen(task_dfl_cgroup(tsk));
6548
6549 spin_unlock_irq(&css_set_lock);
6550
6551 /* see cgroup_post_fork() for details */
6552 do_each_subsys_mask(ss, i, have_exit_callback) {
6553 ss->exit(tsk);
6554 } while_each_subsys_mask();
6555 }
6556
6557 void cgroup_release(struct task_struct *task)
6558 {
6559 struct cgroup_subsys *ss;
6560 int ssid;
6561
6562 do_each_subsys_mask(ss, ssid, have_release_callback) {
6563 ss->release(task);
6564 } while_each_subsys_mask();
6565
6566 spin_lock_irq(&css_set_lock);
6567 css_set_skip_task_iters(task_css_set(task), task);
6568 list_del_init(&task->cg_list);
6569 spin_unlock_irq(&css_set_lock);
6570 }
6571
6572 void cgroup_free(struct task_struct *task)
6573 {
6574 struct css_set *cset = task_css_set(task);
6575 put_css_set(cset);
6576 }
6577
6578 static int __init cgroup_disable(char *str)
6579 {
6580 struct cgroup_subsys *ss;
6581 char *token;
6582 int i;
6583
6584 while ((token = strsep(&str, ",")) != NULL) {
6585 if (!*token)
6586 continue;
6587
6588 for_each_subsys(ss, i) {
6589 if (strcmp(token, ss->name) &&
6590 strcmp(token, ss->legacy_name))
6591 continue;
6592
6593 static_branch_disable(cgroup_subsys_enabled_key[i]);
6594 pr_info("Disabling %s control group subsystem\n",
6595 ss->name);
6596 }
6597
6598 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6599 if (strcmp(token, cgroup_opt_feature_names[i]))
6600 continue;
6601 cgroup_feature_disable_mask |= 1 << i;
6602 pr_info("Disabling %s control group feature\n",
6603 cgroup_opt_feature_names[i]);
6604 break;
6605 }
6606 }
6607 return 1;
6608 }
6609 __setup("cgroup_disable=", cgroup_disable);
6610
6611 void __init __weak enable_debug_cgroup(void) { }
6612
6613 static int __init enable_cgroup_debug(char *str)
6614 {
6615 cgroup_debug = true;
6616 enable_debug_cgroup();
6617 return 1;
6618 }
6619 __setup("cgroup_debug", enable_cgroup_debug);
6620
6621 /**
6622 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6623 * @dentry: directory dentry of interest
6624 * @ss: subsystem of interest
6625 *
6626 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6627 * to get the corresponding css and return it. If such css doesn't exist
6628 * or can't be pinned, an ERR_PTR value is returned.
6629 */
6630 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6631 struct cgroup_subsys *ss)
6632 {
6633 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6634 struct file_system_type *s_type = dentry->d_sb->s_type;
6635 struct cgroup_subsys_state *css = NULL;
6636 struct cgroup *cgrp;
6637
6638 /* is @dentry a cgroup dir? */
6639 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6640 !kn || kernfs_type(kn) != KERNFS_DIR)
6641 return ERR_PTR(-EBADF);
6642
6643 rcu_read_lock();
6644
6645 /*
6646 * This path doesn't originate from kernfs and @kn could already
6647 * have been or be removed at any point. @kn->priv is RCU
6648 * protected for this access. See css_release_work_fn() for details.
6649 */
6650 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6651 if (cgrp)
6652 css = cgroup_css(cgrp, ss);
6653
6654 if (!css || !css_tryget_online(css))
6655 css = ERR_PTR(-ENOENT);
6656
6657 rcu_read_unlock();
6658 return css;
6659 }
6660
6661 /**
6662 * css_from_id - lookup css by id
6663 * @id: the cgroup id
6664 * @ss: cgroup subsys to be looked into
6665 *
6666 * Returns the css if there's valid one with @id, otherwise returns NULL.
6667 * Should be called under rcu_read_lock().
6668 */
6669 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6670 {
6671 WARN_ON_ONCE(!rcu_read_lock_held());
6672 return idr_find(&ss->css_idr, id);
6673 }
6674
6675 /**
6676 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6677 * @path: path on the default hierarchy
6678 *
6679 * Find the cgroup at @path on the default hierarchy, increment its
6680 * reference count and return it. Returns pointer to the found cgroup on
6681 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6682 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6683 */
6684 struct cgroup *cgroup_get_from_path(const char *path)
6685 {
6686 struct kernfs_node *kn;
6687 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6688 struct cgroup *root_cgrp;
6689
6690 spin_lock_irq(&css_set_lock);
6691 root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6692 kn = kernfs_walk_and_get(root_cgrp->kn, path);
6693 spin_unlock_irq(&css_set_lock);
6694 if (!kn)
6695 goto out;
6696
6697 if (kernfs_type(kn) != KERNFS_DIR) {
6698 cgrp = ERR_PTR(-ENOTDIR);
6699 goto out_kernfs;
6700 }
6701
6702 rcu_read_lock();
6703
6704 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6705 if (!cgrp || !cgroup_tryget(cgrp))
6706 cgrp = ERR_PTR(-ENOENT);
6707
6708 rcu_read_unlock();
6709
6710 out_kernfs:
6711 kernfs_put(kn);
6712 out:
6713 return cgrp;
6714 }
6715 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6716
6717 /**
6718 * cgroup_get_from_fd - get a cgroup pointer from a fd
6719 * @fd: fd obtained by open(cgroup2_dir)
6720 *
6721 * Find the cgroup from a fd which should be obtained
6722 * by opening a cgroup directory. Returns a pointer to the
6723 * cgroup on success. ERR_PTR is returned if the cgroup
6724 * cannot be found.
6725 */
6726 struct cgroup *cgroup_get_from_fd(int fd)
6727 {
6728 struct cgroup *cgrp;
6729 struct file *f;
6730
6731 f = fget_raw(fd);
6732 if (!f)
6733 return ERR_PTR(-EBADF);
6734
6735 cgrp = cgroup_get_from_file(f);
6736 fput(f);
6737 return cgrp;
6738 }
6739 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6740
6741 static u64 power_of_ten(int power)
6742 {
6743 u64 v = 1;
6744 while (power--)
6745 v *= 10;
6746 return v;
6747 }
6748
6749 /**
6750 * cgroup_parse_float - parse a floating number
6751 * @input: input string
6752 * @dec_shift: number of decimal digits to shift
6753 * @v: output
6754 *
6755 * Parse a decimal floating point number in @input and store the result in
6756 * @v with decimal point right shifted @dec_shift times. For example, if
6757 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6758 * Returns 0 on success, -errno otherwise.
6759 *
6760 * There's nothing cgroup specific about this function except that it's
6761 * currently the only user.
6762 */
6763 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6764 {
6765 s64 whole, frac = 0;
6766 int fstart = 0, fend = 0, flen;
6767
6768 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6769 return -EINVAL;
6770 if (frac < 0)
6771 return -EINVAL;
6772
6773 flen = fend > fstart ? fend - fstart : 0;
6774 if (flen < dec_shift)
6775 frac *= power_of_ten(dec_shift - flen);
6776 else
6777 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6778
6779 *v = whole * power_of_ten(dec_shift) + frac;
6780 return 0;
6781 }
6782
6783 /*
6784 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6785 * definition in cgroup-defs.h.
6786 */
6787 #ifdef CONFIG_SOCK_CGROUP_DATA
6788
6789 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6790 {
6791 struct cgroup *cgroup;
6792
6793 rcu_read_lock();
6794 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6795 if (in_interrupt()) {
6796 cgroup = &cgrp_dfl_root.cgrp;
6797 cgroup_get(cgroup);
6798 goto out;
6799 }
6800
6801 while (true) {
6802 struct css_set *cset;
6803
6804 cset = task_css_set(current);
6805 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6806 cgroup = cset->dfl_cgrp;
6807 break;
6808 }
6809 cpu_relax();
6810 }
6811 out:
6812 skcd->cgroup = cgroup;
6813 cgroup_bpf_get(cgroup);
6814 rcu_read_unlock();
6815 }
6816
6817 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6818 {
6819 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6820
6821 /*
6822 * We might be cloning a socket which is left in an empty
6823 * cgroup and the cgroup might have already been rmdir'd.
6824 * Don't use cgroup_get_live().
6825 */
6826 cgroup_get(cgrp);
6827 cgroup_bpf_get(cgrp);
6828 }
6829
6830 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6831 {
6832 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6833
6834 cgroup_bpf_put(cgrp);
6835 cgroup_put(cgrp);
6836 }
6837
6838 #endif /* CONFIG_SOCK_CGROUP_DATA */
6839
6840 #ifdef CONFIG_SYSFS
6841 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6842 ssize_t size, const char *prefix)
6843 {
6844 struct cftype *cft;
6845 ssize_t ret = 0;
6846
6847 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6848 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6849 continue;
6850
6851 if (prefix)
6852 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6853
6854 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6855
6856 if (WARN_ON(ret >= size))
6857 break;
6858 }
6859
6860 return ret;
6861 }
6862
6863 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6864 char *buf)
6865 {
6866 struct cgroup_subsys *ss;
6867 int ssid;
6868 ssize_t ret = 0;
6869
6870 ret = show_delegatable_files(cgroup_base_files, buf + ret,
6871 PAGE_SIZE - ret, NULL);
6872 if (cgroup_psi_enabled())
6873 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
6874 PAGE_SIZE - ret, NULL);
6875
6876 for_each_subsys(ss, ssid)
6877 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6878 PAGE_SIZE - ret,
6879 cgroup_subsys_name[ssid]);
6880
6881 return ret;
6882 }
6883 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6884
6885 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6886 char *buf)
6887 {
6888 return snprintf(buf, PAGE_SIZE,
6889 "nsdelegate\n"
6890 "favordynmods\n"
6891 "memory_localevents\n"
6892 "memory_recursiveprot\n");
6893 }
6894 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6895
6896 static struct attribute *cgroup_sysfs_attrs[] = {
6897 &cgroup_delegate_attr.attr,
6898 &cgroup_features_attr.attr,
6899 NULL,
6900 };
6901
6902 static const struct attribute_group cgroup_sysfs_attr_group = {
6903 .attrs = cgroup_sysfs_attrs,
6904 .name = "cgroup",
6905 };
6906
6907 static int __init cgroup_sysfs_init(void)
6908 {
6909 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6910 }
6911 subsys_initcall(cgroup_sysfs_init);
6912
6913 #endif /* CONFIG_SYSFS */