]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob
1309761
[thirdparty/kernel/linux.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40
41 #include "amd_iommu.h"
42 #include "../dma-iommu.h"
43 #include "../irq_remapping.h"
44
45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
46
47 #define LOOP_TIMEOUT 100000
48
49 /* IO virtual address start page frame number */
50 #define IOVA_START_PFN (1)
51 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
52
53 /* Reserved IOVA ranges */
54 #define MSI_RANGE_START (0xfee00000)
55 #define MSI_RANGE_END (0xfeefffff)
56 #define HT_RANGE_START (0xfd00000000ULL)
57 #define HT_RANGE_END (0xffffffffffULL)
58
59 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
60
61 static DEFINE_SPINLOCK(pd_bitmap_lock);
62
63 LIST_HEAD(ioapic_map);
64 LIST_HEAD(hpet_map);
65 LIST_HEAD(acpihid_map);
66
67 const struct iommu_ops amd_iommu_ops;
68
69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
70 int amd_iommu_max_glx_val = -1;
71
72 /*
73 * general struct to manage commands send to an IOMMU
74 */
75 struct iommu_cmd {
76 u32 data[4];
77 };
78
79 struct kmem_cache *amd_iommu_irq_cache;
80
81 static void detach_device(struct device *dev);
82 static int domain_enable_v2(struct protection_domain *domain, int pasids);
83
84 /****************************************************************************
85 *
86 * Helper functions
87 *
88 ****************************************************************************/
89
90 static inline int get_acpihid_device_id(struct device *dev,
91 struct acpihid_map_entry **entry)
92 {
93 struct acpi_device *adev = ACPI_COMPANION(dev);
94 struct acpihid_map_entry *p;
95
96 if (!adev)
97 return -ENODEV;
98
99 list_for_each_entry(p, &acpihid_map, list) {
100 if (acpi_dev_hid_uid_match(adev, p->hid,
101 p->uid[0] ? p->uid : NULL)) {
102 if (entry)
103 *entry = p;
104 return p->devid;
105 }
106 }
107 return -EINVAL;
108 }
109
110 static inline int get_device_sbdf_id(struct device *dev)
111 {
112 int sbdf;
113
114 if (dev_is_pci(dev))
115 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
116 else
117 sbdf = get_acpihid_device_id(dev, NULL);
118
119 return sbdf;
120 }
121
122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
123 {
124 struct dev_table_entry *dev_table;
125 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
126
127 BUG_ON(pci_seg == NULL);
128 dev_table = pci_seg->dev_table;
129 BUG_ON(dev_table == NULL);
130
131 return dev_table;
132 }
133
134 static inline u16 get_device_segment(struct device *dev)
135 {
136 u16 seg;
137
138 if (dev_is_pci(dev)) {
139 struct pci_dev *pdev = to_pci_dev(dev);
140
141 seg = pci_domain_nr(pdev->bus);
142 } else {
143 u32 devid = get_acpihid_device_id(dev, NULL);
144
145 seg = PCI_SBDF_TO_SEGID(devid);
146 }
147
148 return seg;
149 }
150
151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
153 {
154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
155
156 pci_seg->rlookup_table[devid] = iommu;
157 }
158
159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
160 {
161 struct amd_iommu_pci_seg *pci_seg;
162
163 for_each_pci_segment(pci_seg) {
164 if (pci_seg->id == seg)
165 return pci_seg->rlookup_table[devid];
166 }
167 return NULL;
168 }
169
170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
171 {
172 u16 seg = get_device_segment(dev);
173 int devid = get_device_sbdf_id(dev);
174
175 if (devid < 0)
176 return NULL;
177 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
178 }
179
180 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
181 {
182 return container_of(dom, struct protection_domain, domain);
183 }
184
185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
186 {
187 struct iommu_dev_data *dev_data;
188 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
189
190 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 if (!dev_data)
192 return NULL;
193
194 spin_lock_init(&dev_data->lock);
195 dev_data->devid = devid;
196 ratelimit_default_init(&dev_data->rs);
197
198 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
199 return dev_data;
200 }
201
202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 struct iommu_dev_data *dev_data;
205 struct llist_node *node;
206 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
207
208 if (llist_empty(&pci_seg->dev_data_list))
209 return NULL;
210
211 node = pci_seg->dev_data_list.first;
212 llist_for_each_entry(dev_data, node, dev_data_list) {
213 if (dev_data->devid == devid)
214 return dev_data;
215 }
216
217 return NULL;
218 }
219
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 struct amd_iommu *iommu;
223 struct dev_table_entry *dev_table;
224 u16 devid = pci_dev_id(pdev);
225
226 if (devid == alias)
227 return 0;
228
229 iommu = rlookup_amd_iommu(&pdev->dev);
230 if (!iommu)
231 return 0;
232
233 amd_iommu_set_rlookup_table(iommu, alias);
234 dev_table = get_dev_table(iommu);
235 memcpy(dev_table[alias].data,
236 dev_table[devid].data,
237 sizeof(dev_table[alias].data));
238
239 return 0;
240 }
241
242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
243 {
244 struct pci_dev *pdev;
245
246 if (!dev_is_pci(dev))
247 return;
248 pdev = to_pci_dev(dev);
249
250 /*
251 * The IVRS alias stored in the alias table may not be
252 * part of the PCI DMA aliases if it's bus differs
253 * from the original device.
254 */
255 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
256
257 pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259
260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
261 {
262 struct pci_dev *pdev = to_pci_dev(dev);
263 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
264 u16 ivrs_alias;
265
266 /* For ACPI HID devices, there are no aliases */
267 if (!dev_is_pci(dev))
268 return;
269
270 /*
271 * Add the IVRS alias to the pci aliases if it is on the same
272 * bus. The IVRS table may know about a quirk that we don't.
273 */
274 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
275 if (ivrs_alias != pci_dev_id(pdev) &&
276 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
277 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278
279 clone_aliases(iommu, dev);
280 }
281
282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
283 {
284 struct iommu_dev_data *dev_data;
285
286 dev_data = search_dev_data(iommu, devid);
287
288 if (dev_data == NULL) {
289 dev_data = alloc_dev_data(iommu, devid);
290 if (!dev_data)
291 return NULL;
292
293 if (translation_pre_enabled(iommu))
294 dev_data->defer_attach = true;
295 }
296
297 return dev_data;
298 }
299
300 /*
301 * Find or create an IOMMU group for a acpihid device.
302 */
303 static struct iommu_group *acpihid_device_group(struct device *dev)
304 {
305 struct acpihid_map_entry *p, *entry = NULL;
306 int devid;
307
308 devid = get_acpihid_device_id(dev, &entry);
309 if (devid < 0)
310 return ERR_PTR(devid);
311
312 list_for_each_entry(p, &acpihid_map, list) {
313 if ((devid == p->devid) && p->group)
314 entry->group = p->group;
315 }
316
317 if (!entry->group)
318 entry->group = generic_device_group(dev);
319 else
320 iommu_group_ref_get(entry->group);
321
322 return entry->group;
323 }
324
325 static bool pci_iommuv2_capable(struct pci_dev *pdev)
326 {
327 static const int caps[] = {
328 PCI_EXT_CAP_ID_PRI,
329 PCI_EXT_CAP_ID_PASID,
330 };
331 int i, pos;
332
333 if (!pci_ats_supported(pdev))
334 return false;
335
336 for (i = 0; i < 2; ++i) {
337 pos = pci_find_ext_capability(pdev, caps[i]);
338 if (pos == 0)
339 return false;
340 }
341
342 return true;
343 }
344
345 /*
346 * This function checks if the driver got a valid device from the caller to
347 * avoid dereferencing invalid pointers.
348 */
349 static bool check_device(struct device *dev)
350 {
351 struct amd_iommu_pci_seg *pci_seg;
352 struct amd_iommu *iommu;
353 int devid, sbdf;
354
355 if (!dev)
356 return false;
357
358 sbdf = get_device_sbdf_id(dev);
359 if (sbdf < 0)
360 return false;
361 devid = PCI_SBDF_TO_DEVID(sbdf);
362
363 iommu = rlookup_amd_iommu(dev);
364 if (!iommu)
365 return false;
366
367 /* Out of our scope? */
368 pci_seg = iommu->pci_seg;
369 if (devid > pci_seg->last_bdf)
370 return false;
371
372 return true;
373 }
374
375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
376 {
377 struct iommu_dev_data *dev_data;
378 int devid, sbdf;
379
380 if (dev_iommu_priv_get(dev))
381 return 0;
382
383 sbdf = get_device_sbdf_id(dev);
384 if (sbdf < 0)
385 return sbdf;
386
387 devid = PCI_SBDF_TO_DEVID(sbdf);
388 dev_data = find_dev_data(iommu, devid);
389 if (!dev_data)
390 return -ENOMEM;
391
392 dev_data->dev = dev;
393 setup_aliases(iommu, dev);
394
395 /*
396 * By default we use passthrough mode for IOMMUv2 capable device.
397 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
398 * invalid address), we ignore the capability for the device so
399 * it'll be forced to go into translation mode.
400 */
401 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
402 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
403 dev_data->iommu_v2 = iommu->is_iommu_v2;
404 }
405
406 dev_iommu_priv_set(dev, dev_data);
407
408 return 0;
409 }
410
411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
412 {
413 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
414 struct dev_table_entry *dev_table = get_dev_table(iommu);
415 int devid, sbdf;
416
417 sbdf = get_device_sbdf_id(dev);
418 if (sbdf < 0)
419 return;
420
421 devid = PCI_SBDF_TO_DEVID(sbdf);
422 pci_seg->rlookup_table[devid] = NULL;
423 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
424
425 setup_aliases(iommu, dev);
426 }
427
428 static void amd_iommu_uninit_device(struct device *dev)
429 {
430 struct iommu_dev_data *dev_data;
431
432 dev_data = dev_iommu_priv_get(dev);
433 if (!dev_data)
434 return;
435
436 if (dev_data->domain)
437 detach_device(dev);
438
439 dev_iommu_priv_set(dev, NULL);
440
441 /*
442 * We keep dev_data around for unplugged devices and reuse it when the
443 * device is re-plugged - not doing so would introduce a ton of races.
444 */
445 }
446
447 /****************************************************************************
448 *
449 * Interrupt handling functions
450 *
451 ****************************************************************************/
452
453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
454 {
455 int i;
456 struct dev_table_entry *dev_table = get_dev_table(iommu);
457
458 for (i = 0; i < 4; ++i)
459 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
460 }
461
462 static void dump_command(unsigned long phys_addr)
463 {
464 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
465 int i;
466
467 for (i = 0; i < 4; ++i)
468 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
469 }
470
471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
472 {
473 struct iommu_dev_data *dev_data = NULL;
474 int devid, vmg_tag, flags;
475 struct pci_dev *pdev;
476 u64 spa;
477
478 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
479 vmg_tag = (event[1]) & 0xFFFF;
480 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
481 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
482
483 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
484 devid & 0xff);
485 if (pdev)
486 dev_data = dev_iommu_priv_get(&pdev->dev);
487
488 if (dev_data) {
489 if (__ratelimit(&dev_data->rs)) {
490 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
491 vmg_tag, spa, flags);
492 }
493 } else {
494 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
495 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 vmg_tag, spa, flags);
497 }
498
499 if (pdev)
500 pci_dev_put(pdev);
501 }
502
503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
504 {
505 struct iommu_dev_data *dev_data = NULL;
506 int devid, flags_rmp, vmg_tag, flags;
507 struct pci_dev *pdev;
508 u64 gpa;
509
510 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
511 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
512 vmg_tag = (event[1]) & 0xFFFF;
513 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
514 gpa = ((u64)event[3] << 32) | event[2];
515
516 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
517 devid & 0xff);
518 if (pdev)
519 dev_data = dev_iommu_priv_get(&pdev->dev);
520
521 if (dev_data) {
522 if (__ratelimit(&dev_data->rs)) {
523 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
524 vmg_tag, gpa, flags_rmp, flags);
525 }
526 } else {
527 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
528 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 vmg_tag, gpa, flags_rmp, flags);
530 }
531
532 if (pdev)
533 pci_dev_put(pdev);
534 }
535
536 #define IS_IOMMU_MEM_TRANSACTION(flags) \
537 (((flags) & EVENT_FLAG_I) == 0)
538
539 #define IS_WRITE_REQUEST(flags) \
540 ((flags) & EVENT_FLAG_RW)
541
542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
543 u16 devid, u16 domain_id,
544 u64 address, int flags)
545 {
546 struct iommu_dev_data *dev_data = NULL;
547 struct pci_dev *pdev;
548
549 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
550 devid & 0xff);
551 if (pdev)
552 dev_data = dev_iommu_priv_get(&pdev->dev);
553
554 if (dev_data) {
555 /*
556 * If this is a DMA fault (for which the I(nterrupt)
557 * bit will be unset), allow report_iommu_fault() to
558 * prevent logging it.
559 */
560 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
561 /* Device not attached to domain properly */
562 if (dev_data->domain == NULL) {
563 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
564 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
565 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
566 PCI_FUNC(devid), domain_id);
567 goto out;
568 }
569
570 if (!report_iommu_fault(&dev_data->domain->domain,
571 &pdev->dev, address,
572 IS_WRITE_REQUEST(flags) ?
573 IOMMU_FAULT_WRITE :
574 IOMMU_FAULT_READ))
575 goto out;
576 }
577
578 if (__ratelimit(&dev_data->rs)) {
579 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
580 domain_id, address, flags);
581 }
582 } else {
583 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
584 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 domain_id, address, flags);
586 }
587
588 out:
589 if (pdev)
590 pci_dev_put(pdev);
591 }
592
593 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
594 {
595 struct device *dev = iommu->iommu.dev;
596 int type, devid, flags, tag;
597 volatile u32 *event = __evt;
598 int count = 0;
599 u64 address;
600 u32 pasid;
601
602 retry:
603 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
604 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
605 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
606 (event[1] & EVENT_DOMID_MASK_LO);
607 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
608 address = (u64)(((u64)event[3]) << 32) | event[2];
609
610 if (type == 0) {
611 /* Did we hit the erratum? */
612 if (++count == LOOP_TIMEOUT) {
613 pr_err("No event written to event log\n");
614 return;
615 }
616 udelay(1);
617 goto retry;
618 }
619
620 if (type == EVENT_TYPE_IO_FAULT) {
621 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
622 return;
623 }
624
625 switch (type) {
626 case EVENT_TYPE_ILL_DEV:
627 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
628 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
629 pasid, address, flags);
630 dump_dte_entry(iommu, devid);
631 break;
632 case EVENT_TYPE_DEV_TAB_ERR:
633 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
634 "address=0x%llx flags=0x%04x]\n",
635 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 address, flags);
637 break;
638 case EVENT_TYPE_PAGE_TAB_ERR:
639 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
640 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
641 pasid, address, flags);
642 break;
643 case EVENT_TYPE_ILL_CMD:
644 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
645 dump_command(address);
646 break;
647 case EVENT_TYPE_CMD_HARD_ERR:
648 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
649 address, flags);
650 break;
651 case EVENT_TYPE_IOTLB_INV_TO:
652 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
653 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
654 address);
655 break;
656 case EVENT_TYPE_INV_DEV_REQ:
657 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
658 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
659 pasid, address, flags);
660 break;
661 case EVENT_TYPE_RMP_FAULT:
662 amd_iommu_report_rmp_fault(iommu, event);
663 break;
664 case EVENT_TYPE_RMP_HW_ERR:
665 amd_iommu_report_rmp_hw_error(iommu, event);
666 break;
667 case EVENT_TYPE_INV_PPR_REQ:
668 pasid = PPR_PASID(*((u64 *)__evt));
669 tag = event[1] & 0x03FF;
670 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
671 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 pasid, address, flags, tag);
673 break;
674 default:
675 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
676 event[0], event[1], event[2], event[3]);
677 }
678
679 /*
680 * To detect the hardware errata 732 we need to clear the
681 * entry back to zero. This issue does not exist on SNP
682 * enabled system. Also this buffer is not writeable on
683 * SNP enabled system.
684 */
685 if (!amd_iommu_snp_en)
686 memset(__evt, 0, 4 * sizeof(u32));
687 }
688
689 static void iommu_poll_events(struct amd_iommu *iommu)
690 {
691 u32 head, tail;
692
693 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
694 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
695
696 while (head != tail) {
697 iommu_print_event(iommu, iommu->evt_buf + head);
698 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
699 }
700
701 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
702 }
703
704 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
705 {
706 struct amd_iommu_fault fault;
707
708 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
709 pr_err_ratelimited("Unknown PPR request received\n");
710 return;
711 }
712
713 fault.address = raw[1];
714 fault.pasid = PPR_PASID(raw[0]);
715 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
716 fault.tag = PPR_TAG(raw[0]);
717 fault.flags = PPR_FLAGS(raw[0]);
718
719 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
720 }
721
722 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
723 {
724 u32 head, tail;
725
726 if (iommu->ppr_log == NULL)
727 return;
728
729 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
730 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
731
732 while (head != tail) {
733 volatile u64 *raw;
734 u64 entry[2];
735 int i;
736
737 raw = (u64 *)(iommu->ppr_log + head);
738
739 /*
740 * Hardware bug: Interrupt may arrive before the entry is
741 * written to memory. If this happens we need to wait for the
742 * entry to arrive.
743 */
744 for (i = 0; i < LOOP_TIMEOUT; ++i) {
745 if (PPR_REQ_TYPE(raw[0]) != 0)
746 break;
747 udelay(1);
748 }
749
750 /* Avoid memcpy function-call overhead */
751 entry[0] = raw[0];
752 entry[1] = raw[1];
753
754 /*
755 * To detect the hardware errata 733 we need to clear the
756 * entry back to zero. This issue does not exist on SNP
757 * enabled system. Also this buffer is not writeable on
758 * SNP enabled system.
759 */
760 if (!amd_iommu_snp_en)
761 raw[0] = raw[1] = 0UL;
762
763 /* Update head pointer of hardware ring-buffer */
764 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
765 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
766
767 /* Handle PPR entry */
768 iommu_handle_ppr_entry(iommu, entry);
769
770 /* Refresh ring-buffer information */
771 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
773 }
774 }
775
776 #ifdef CONFIG_IRQ_REMAP
777 static int (*iommu_ga_log_notifier)(u32);
778
779 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
780 {
781 iommu_ga_log_notifier = notifier;
782
783 return 0;
784 }
785 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
786
787 static void iommu_poll_ga_log(struct amd_iommu *iommu)
788 {
789 u32 head, tail;
790
791 if (iommu->ga_log == NULL)
792 return;
793
794 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
795 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
796
797 while (head != tail) {
798 volatile u64 *raw;
799 u64 log_entry;
800
801 raw = (u64 *)(iommu->ga_log + head);
802
803 /* Avoid memcpy function-call overhead */
804 log_entry = *raw;
805
806 /* Update head pointer of hardware ring-buffer */
807 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
808 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
809
810 /* Handle GA entry */
811 switch (GA_REQ_TYPE(log_entry)) {
812 case GA_GUEST_NR:
813 if (!iommu_ga_log_notifier)
814 break;
815
816 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
817 __func__, GA_DEVID(log_entry),
818 GA_TAG(log_entry));
819
820 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
821 pr_err("GA log notifier failed.\n");
822 break;
823 default:
824 break;
825 }
826 }
827 }
828
829 static void
830 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
831 {
832 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
833 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
834 return;
835
836 dev_set_msi_domain(dev, iommu->ir_domain);
837 }
838
839 #else /* CONFIG_IRQ_REMAP */
840 static inline void
841 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
842 #endif /* !CONFIG_IRQ_REMAP */
843
844 #define AMD_IOMMU_INT_MASK \
845 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
846 MMIO_STATUS_EVT_INT_MASK | \
847 MMIO_STATUS_PPR_INT_MASK | \
848 MMIO_STATUS_GALOG_INT_MASK)
849
850 irqreturn_t amd_iommu_int_thread(int irq, void *data)
851 {
852 struct amd_iommu *iommu = (struct amd_iommu *) data;
853 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
854
855 while (status & AMD_IOMMU_INT_MASK) {
856 /* Enable interrupt sources again */
857 writel(AMD_IOMMU_INT_MASK,
858 iommu->mmio_base + MMIO_STATUS_OFFSET);
859
860 if (status & MMIO_STATUS_EVT_INT_MASK) {
861 pr_devel("Processing IOMMU Event Log\n");
862 iommu_poll_events(iommu);
863 }
864
865 if (status & MMIO_STATUS_PPR_INT_MASK) {
866 pr_devel("Processing IOMMU PPR Log\n");
867 iommu_poll_ppr_log(iommu);
868 }
869
870 #ifdef CONFIG_IRQ_REMAP
871 if (status & MMIO_STATUS_GALOG_INT_MASK) {
872 pr_devel("Processing IOMMU GA Log\n");
873 iommu_poll_ga_log(iommu);
874 }
875 #endif
876
877 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
878 pr_info_ratelimited("IOMMU event log overflow\n");
879 amd_iommu_restart_event_logging(iommu);
880 }
881
882 /*
883 * Hardware bug: ERBT1312
884 * When re-enabling interrupt (by writing 1
885 * to clear the bit), the hardware might also try to set
886 * the interrupt bit in the event status register.
887 * In this scenario, the bit will be set, and disable
888 * subsequent interrupts.
889 *
890 * Workaround: The IOMMU driver should read back the
891 * status register and check if the interrupt bits are cleared.
892 * If not, driver will need to go through the interrupt handler
893 * again and re-clear the bits
894 */
895 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
896 }
897 return IRQ_HANDLED;
898 }
899
900 irqreturn_t amd_iommu_int_handler(int irq, void *data)
901 {
902 return IRQ_WAKE_THREAD;
903 }
904
905 /****************************************************************************
906 *
907 * IOMMU command queuing functions
908 *
909 ****************************************************************************/
910
911 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
912 {
913 int i = 0;
914
915 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
916 udelay(1);
917 i += 1;
918 }
919
920 if (i == LOOP_TIMEOUT) {
921 pr_alert("Completion-Wait loop timed out\n");
922 return -EIO;
923 }
924
925 return 0;
926 }
927
928 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
929 struct iommu_cmd *cmd)
930 {
931 u8 *target;
932 u32 tail;
933
934 /* Copy command to buffer */
935 tail = iommu->cmd_buf_tail;
936 target = iommu->cmd_buf + tail;
937 memcpy(target, cmd, sizeof(*cmd));
938
939 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
940 iommu->cmd_buf_tail = tail;
941
942 /* Tell the IOMMU about it */
943 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
944 }
945
946 static void build_completion_wait(struct iommu_cmd *cmd,
947 struct amd_iommu *iommu,
948 u64 data)
949 {
950 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
951
952 memset(cmd, 0, sizeof(*cmd));
953 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
954 cmd->data[1] = upper_32_bits(paddr);
955 cmd->data[2] = lower_32_bits(data);
956 cmd->data[3] = upper_32_bits(data);
957 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
958 }
959
960 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
961 {
962 memset(cmd, 0, sizeof(*cmd));
963 cmd->data[0] = devid;
964 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
965 }
966
967 /*
968 * Builds an invalidation address which is suitable for one page or multiple
969 * pages. Sets the size bit (S) as needed is more than one page is flushed.
970 */
971 static inline u64 build_inv_address(u64 address, size_t size)
972 {
973 u64 pages, end, msb_diff;
974
975 pages = iommu_num_pages(address, size, PAGE_SIZE);
976
977 if (pages == 1)
978 return address & PAGE_MASK;
979
980 end = address + size - 1;
981
982 /*
983 * msb_diff would hold the index of the most significant bit that
984 * flipped between the start and end.
985 */
986 msb_diff = fls64(end ^ address) - 1;
987
988 /*
989 * Bits 63:52 are sign extended. If for some reason bit 51 is different
990 * between the start and the end, invalidate everything.
991 */
992 if (unlikely(msb_diff > 51)) {
993 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
994 } else {
995 /*
996 * The msb-bit must be clear on the address. Just set all the
997 * lower bits.
998 */
999 address |= (1ull << msb_diff) - 1;
1000 }
1001
1002 /* Clear bits 11:0 */
1003 address &= PAGE_MASK;
1004
1005 /* Set the size bit - we flush more than one 4kb page */
1006 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1007 }
1008
1009 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1010 size_t size, u16 domid, int pde)
1011 {
1012 u64 inv_address = build_inv_address(address, size);
1013
1014 memset(cmd, 0, sizeof(*cmd));
1015 cmd->data[1] |= domid;
1016 cmd->data[2] = lower_32_bits(inv_address);
1017 cmd->data[3] = upper_32_bits(inv_address);
1018 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1019 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1020 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1021 }
1022
1023 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1024 u64 address, size_t size)
1025 {
1026 u64 inv_address = build_inv_address(address, size);
1027
1028 memset(cmd, 0, sizeof(*cmd));
1029 cmd->data[0] = devid;
1030 cmd->data[0] |= (qdep & 0xff) << 24;
1031 cmd->data[1] = devid;
1032 cmd->data[2] = lower_32_bits(inv_address);
1033 cmd->data[3] = upper_32_bits(inv_address);
1034 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1035 }
1036
1037 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1038 u64 address, bool size)
1039 {
1040 memset(cmd, 0, sizeof(*cmd));
1041
1042 address &= ~(0xfffULL);
1043
1044 cmd->data[0] = pasid;
1045 cmd->data[1] = domid;
1046 cmd->data[2] = lower_32_bits(address);
1047 cmd->data[3] = upper_32_bits(address);
1048 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1049 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1050 if (size)
1051 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1052 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1053 }
1054
1055 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1056 int qdep, u64 address, bool size)
1057 {
1058 memset(cmd, 0, sizeof(*cmd));
1059
1060 address &= ~(0xfffULL);
1061
1062 cmd->data[0] = devid;
1063 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1064 cmd->data[0] |= (qdep & 0xff) << 24;
1065 cmd->data[1] = devid;
1066 cmd->data[1] |= (pasid & 0xff) << 16;
1067 cmd->data[2] = lower_32_bits(address);
1068 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1069 cmd->data[3] = upper_32_bits(address);
1070 if (size)
1071 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1072 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1073 }
1074
1075 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1076 int status, int tag, bool gn)
1077 {
1078 memset(cmd, 0, sizeof(*cmd));
1079
1080 cmd->data[0] = devid;
1081 if (gn) {
1082 cmd->data[1] = pasid;
1083 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1084 }
1085 cmd->data[3] = tag & 0x1ff;
1086 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1087
1088 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1089 }
1090
1091 static void build_inv_all(struct iommu_cmd *cmd)
1092 {
1093 memset(cmd, 0, sizeof(*cmd));
1094 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1095 }
1096
1097 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1098 {
1099 memset(cmd, 0, sizeof(*cmd));
1100 cmd->data[0] = devid;
1101 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1102 }
1103
1104 /*
1105 * Writes the command to the IOMMUs command buffer and informs the
1106 * hardware about the new command.
1107 */
1108 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1109 struct iommu_cmd *cmd,
1110 bool sync)
1111 {
1112 unsigned int count = 0;
1113 u32 left, next_tail;
1114
1115 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1116 again:
1117 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1118
1119 if (left <= 0x20) {
1120 /* Skip udelay() the first time around */
1121 if (count++) {
1122 if (count == LOOP_TIMEOUT) {
1123 pr_err("Command buffer timeout\n");
1124 return -EIO;
1125 }
1126
1127 udelay(1);
1128 }
1129
1130 /* Update head and recheck remaining space */
1131 iommu->cmd_buf_head = readl(iommu->mmio_base +
1132 MMIO_CMD_HEAD_OFFSET);
1133
1134 goto again;
1135 }
1136
1137 copy_cmd_to_buffer(iommu, cmd);
1138
1139 /* Do we need to make sure all commands are processed? */
1140 iommu->need_sync = sync;
1141
1142 return 0;
1143 }
1144
1145 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1146 struct iommu_cmd *cmd,
1147 bool sync)
1148 {
1149 unsigned long flags;
1150 int ret;
1151
1152 raw_spin_lock_irqsave(&iommu->lock, flags);
1153 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1154 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1155
1156 return ret;
1157 }
1158
1159 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1160 {
1161 return iommu_queue_command_sync(iommu, cmd, true);
1162 }
1163
1164 /*
1165 * This function queues a completion wait command into the command
1166 * buffer of an IOMMU
1167 */
1168 static int iommu_completion_wait(struct amd_iommu *iommu)
1169 {
1170 struct iommu_cmd cmd;
1171 unsigned long flags;
1172 int ret;
1173 u64 data;
1174
1175 if (!iommu->need_sync)
1176 return 0;
1177
1178 data = atomic64_add_return(1, &iommu->cmd_sem_val);
1179 build_completion_wait(&cmd, iommu, data);
1180
1181 raw_spin_lock_irqsave(&iommu->lock, flags);
1182
1183 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1184 if (ret)
1185 goto out_unlock;
1186
1187 ret = wait_on_sem(iommu, data);
1188
1189 out_unlock:
1190 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1191
1192 return ret;
1193 }
1194
1195 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1196 {
1197 struct iommu_cmd cmd;
1198
1199 build_inv_dte(&cmd, devid);
1200
1201 return iommu_queue_command(iommu, &cmd);
1202 }
1203
1204 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1205 {
1206 u32 devid;
1207 u16 last_bdf = iommu->pci_seg->last_bdf;
1208
1209 for (devid = 0; devid <= last_bdf; ++devid)
1210 iommu_flush_dte(iommu, devid);
1211
1212 iommu_completion_wait(iommu);
1213 }
1214
1215 /*
1216 * This function uses heavy locking and may disable irqs for some time. But
1217 * this is no issue because it is only called during resume.
1218 */
1219 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1220 {
1221 u32 dom_id;
1222 u16 last_bdf = iommu->pci_seg->last_bdf;
1223
1224 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1225 struct iommu_cmd cmd;
1226 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1227 dom_id, 1);
1228 iommu_queue_command(iommu, &cmd);
1229 }
1230
1231 iommu_completion_wait(iommu);
1232 }
1233
1234 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1235 {
1236 struct iommu_cmd cmd;
1237
1238 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1239 dom_id, 1);
1240 iommu_queue_command(iommu, &cmd);
1241
1242 iommu_completion_wait(iommu);
1243 }
1244
1245 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1246 {
1247 struct iommu_cmd cmd;
1248
1249 build_inv_all(&cmd);
1250
1251 iommu_queue_command(iommu, &cmd);
1252 iommu_completion_wait(iommu);
1253 }
1254
1255 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1256 {
1257 struct iommu_cmd cmd;
1258
1259 build_inv_irt(&cmd, devid);
1260
1261 iommu_queue_command(iommu, &cmd);
1262 }
1263
1264 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1265 {
1266 u32 devid;
1267 u16 last_bdf = iommu->pci_seg->last_bdf;
1268
1269 if (iommu->irtcachedis_enabled)
1270 return;
1271
1272 for (devid = 0; devid <= last_bdf; devid++)
1273 iommu_flush_irt(iommu, devid);
1274
1275 iommu_completion_wait(iommu);
1276 }
1277
1278 void iommu_flush_all_caches(struct amd_iommu *iommu)
1279 {
1280 if (iommu_feature(iommu, FEATURE_IA)) {
1281 amd_iommu_flush_all(iommu);
1282 } else {
1283 amd_iommu_flush_dte_all(iommu);
1284 amd_iommu_flush_irt_all(iommu);
1285 amd_iommu_flush_tlb_all(iommu);
1286 }
1287 }
1288
1289 /*
1290 * Command send function for flushing on-device TLB
1291 */
1292 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1293 u64 address, size_t size)
1294 {
1295 struct amd_iommu *iommu;
1296 struct iommu_cmd cmd;
1297 int qdep;
1298
1299 qdep = dev_data->ats.qdep;
1300 iommu = rlookup_amd_iommu(dev_data->dev);
1301 if (!iommu)
1302 return -EINVAL;
1303
1304 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1305
1306 return iommu_queue_command(iommu, &cmd);
1307 }
1308
1309 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1310 {
1311 struct amd_iommu *iommu = data;
1312
1313 return iommu_flush_dte(iommu, alias);
1314 }
1315
1316 /*
1317 * Command send function for invalidating a device table entry
1318 */
1319 static int device_flush_dte(struct iommu_dev_data *dev_data)
1320 {
1321 struct amd_iommu *iommu;
1322 struct pci_dev *pdev = NULL;
1323 struct amd_iommu_pci_seg *pci_seg;
1324 u16 alias;
1325 int ret;
1326
1327 iommu = rlookup_amd_iommu(dev_data->dev);
1328 if (!iommu)
1329 return -EINVAL;
1330
1331 if (dev_is_pci(dev_data->dev))
1332 pdev = to_pci_dev(dev_data->dev);
1333
1334 if (pdev)
1335 ret = pci_for_each_dma_alias(pdev,
1336 device_flush_dte_alias, iommu);
1337 else
1338 ret = iommu_flush_dte(iommu, dev_data->devid);
1339 if (ret)
1340 return ret;
1341
1342 pci_seg = iommu->pci_seg;
1343 alias = pci_seg->alias_table[dev_data->devid];
1344 if (alias != dev_data->devid) {
1345 ret = iommu_flush_dte(iommu, alias);
1346 if (ret)
1347 return ret;
1348 }
1349
1350 if (dev_data->ats.enabled)
1351 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1352
1353 return ret;
1354 }
1355
1356 /*
1357 * TLB invalidation function which is called from the mapping functions.
1358 * It invalidates a single PTE if the range to flush is within a single
1359 * page. Otherwise it flushes the whole TLB of the IOMMU.
1360 */
1361 static void __domain_flush_pages(struct protection_domain *domain,
1362 u64 address, size_t size, int pde)
1363 {
1364 struct iommu_dev_data *dev_data;
1365 struct iommu_cmd cmd;
1366 int ret = 0, i;
1367
1368 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1369
1370 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1371 if (!domain->dev_iommu[i])
1372 continue;
1373
1374 /*
1375 * Devices of this domain are behind this IOMMU
1376 * We need a TLB flush
1377 */
1378 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1379 }
1380
1381 list_for_each_entry(dev_data, &domain->dev_list, list) {
1382
1383 if (!dev_data->ats.enabled)
1384 continue;
1385
1386 ret |= device_flush_iotlb(dev_data, address, size);
1387 }
1388
1389 WARN_ON(ret);
1390 }
1391
1392 static void domain_flush_pages(struct protection_domain *domain,
1393 u64 address, size_t size, int pde)
1394 {
1395 if (likely(!amd_iommu_np_cache)) {
1396 __domain_flush_pages(domain, address, size, pde);
1397 return;
1398 }
1399
1400 /*
1401 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1402 * In such setups it is best to avoid flushes of ranges which are not
1403 * naturally aligned, since it would lead to flushes of unmodified
1404 * PTEs. Such flushes would require the hypervisor to do more work than
1405 * necessary. Therefore, perform repeated flushes of aligned ranges
1406 * until you cover the range. Each iteration flushes the smaller
1407 * between the natural alignment of the address that we flush and the
1408 * greatest naturally aligned region that fits in the range.
1409 */
1410 while (size != 0) {
1411 int addr_alignment = __ffs(address);
1412 int size_alignment = __fls(size);
1413 int min_alignment;
1414 size_t flush_size;
1415
1416 /*
1417 * size is always non-zero, but address might be zero, causing
1418 * addr_alignment to be negative. As the casting of the
1419 * argument in __ffs(address) to long might trim the high bits
1420 * of the address on x86-32, cast to long when doing the check.
1421 */
1422 if (likely((unsigned long)address != 0))
1423 min_alignment = min(addr_alignment, size_alignment);
1424 else
1425 min_alignment = size_alignment;
1426
1427 flush_size = 1ul << min_alignment;
1428
1429 __domain_flush_pages(domain, address, flush_size, pde);
1430 address += flush_size;
1431 size -= flush_size;
1432 }
1433 }
1434
1435 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1436 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1437 {
1438 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1439 }
1440
1441 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1442 {
1443 int i;
1444
1445 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1446 if (domain && !domain->dev_iommu[i])
1447 continue;
1448
1449 /*
1450 * Devices of this domain are behind this IOMMU
1451 * We need to wait for completion of all commands.
1452 */
1453 iommu_completion_wait(amd_iommus[i]);
1454 }
1455 }
1456
1457 /* Flush the not present cache if it exists */
1458 static void domain_flush_np_cache(struct protection_domain *domain,
1459 dma_addr_t iova, size_t size)
1460 {
1461 if (unlikely(amd_iommu_np_cache)) {
1462 unsigned long flags;
1463
1464 spin_lock_irqsave(&domain->lock, flags);
1465 domain_flush_pages(domain, iova, size, 1);
1466 amd_iommu_domain_flush_complete(domain);
1467 spin_unlock_irqrestore(&domain->lock, flags);
1468 }
1469 }
1470
1471
1472 /*
1473 * This function flushes the DTEs for all devices in domain
1474 */
1475 static void domain_flush_devices(struct protection_domain *domain)
1476 {
1477 struct iommu_dev_data *dev_data;
1478
1479 list_for_each_entry(dev_data, &domain->dev_list, list)
1480 device_flush_dte(dev_data);
1481 }
1482
1483 /****************************************************************************
1484 *
1485 * The next functions belong to the domain allocation. A domain is
1486 * allocated for every IOMMU as the default domain. If device isolation
1487 * is enabled, every device get its own domain. The most important thing
1488 * about domains is the page table mapping the DMA address space they
1489 * contain.
1490 *
1491 ****************************************************************************/
1492
1493 static u16 domain_id_alloc(void)
1494 {
1495 int id;
1496
1497 spin_lock(&pd_bitmap_lock);
1498 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1499 BUG_ON(id == 0);
1500 if (id > 0 && id < MAX_DOMAIN_ID)
1501 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1502 else
1503 id = 0;
1504 spin_unlock(&pd_bitmap_lock);
1505
1506 return id;
1507 }
1508
1509 static void domain_id_free(int id)
1510 {
1511 spin_lock(&pd_bitmap_lock);
1512 if (id > 0 && id < MAX_DOMAIN_ID)
1513 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1514 spin_unlock(&pd_bitmap_lock);
1515 }
1516
1517 static void free_gcr3_tbl_level1(u64 *tbl)
1518 {
1519 u64 *ptr;
1520 int i;
1521
1522 for (i = 0; i < 512; ++i) {
1523 if (!(tbl[i] & GCR3_VALID))
1524 continue;
1525
1526 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1527
1528 free_page((unsigned long)ptr);
1529 }
1530 }
1531
1532 static void free_gcr3_tbl_level2(u64 *tbl)
1533 {
1534 u64 *ptr;
1535 int i;
1536
1537 for (i = 0; i < 512; ++i) {
1538 if (!(tbl[i] & GCR3_VALID))
1539 continue;
1540
1541 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1542
1543 free_gcr3_tbl_level1(ptr);
1544 }
1545 }
1546
1547 static void free_gcr3_table(struct protection_domain *domain)
1548 {
1549 if (domain->glx == 2)
1550 free_gcr3_tbl_level2(domain->gcr3_tbl);
1551 else if (domain->glx == 1)
1552 free_gcr3_tbl_level1(domain->gcr3_tbl);
1553 else
1554 BUG_ON(domain->glx != 0);
1555
1556 free_page((unsigned long)domain->gcr3_tbl);
1557 }
1558
1559 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1560 struct protection_domain *domain, bool ats, bool ppr)
1561 {
1562 u64 pte_root = 0;
1563 u64 flags = 0;
1564 u32 old_domid;
1565 struct dev_table_entry *dev_table = get_dev_table(iommu);
1566
1567 if (domain->iop.mode != PAGE_MODE_NONE)
1568 pte_root = iommu_virt_to_phys(domain->iop.root);
1569
1570 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1571 << DEV_ENTRY_MODE_SHIFT;
1572
1573 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1574
1575 /*
1576 * When SNP is enabled, Only set TV bit when IOMMU
1577 * page translation is in use.
1578 */
1579 if (!amd_iommu_snp_en || (domain->id != 0))
1580 pte_root |= DTE_FLAG_TV;
1581
1582 flags = dev_table[devid].data[1];
1583
1584 if (ats)
1585 flags |= DTE_FLAG_IOTLB;
1586
1587 if (ppr) {
1588 if (iommu_feature(iommu, FEATURE_EPHSUP))
1589 pte_root |= 1ULL << DEV_ENTRY_PPR;
1590 }
1591
1592 if (domain->flags & PD_IOMMUV2_MASK) {
1593 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1594 u64 glx = domain->glx;
1595 u64 tmp;
1596
1597 pte_root |= DTE_FLAG_GV;
1598 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1599
1600 /* First mask out possible old values for GCR3 table */
1601 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1602 flags &= ~tmp;
1603
1604 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1605 flags &= ~tmp;
1606
1607 /* Encode GCR3 table into DTE */
1608 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1609 pte_root |= tmp;
1610
1611 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1612 flags |= tmp;
1613
1614 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1615 flags |= tmp;
1616
1617 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1618 dev_table[devid].data[2] |=
1619 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1620 }
1621
1622 if (domain->flags & PD_GIOV_MASK)
1623 pte_root |= DTE_FLAG_GIOV;
1624 }
1625
1626 flags &= ~DEV_DOMID_MASK;
1627 flags |= domain->id;
1628
1629 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1630 dev_table[devid].data[1] = flags;
1631 dev_table[devid].data[0] = pte_root;
1632
1633 /*
1634 * A kdump kernel might be replacing a domain ID that was copied from
1635 * the previous kernel--if so, it needs to flush the translation cache
1636 * entries for the old domain ID that is being overwritten
1637 */
1638 if (old_domid) {
1639 amd_iommu_flush_tlb_domid(iommu, old_domid);
1640 }
1641 }
1642
1643 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1644 {
1645 struct dev_table_entry *dev_table = get_dev_table(iommu);
1646
1647 /* remove entry from the device table seen by the hardware */
1648 dev_table[devid].data[0] = DTE_FLAG_V;
1649
1650 if (!amd_iommu_snp_en)
1651 dev_table[devid].data[0] |= DTE_FLAG_TV;
1652
1653 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1654
1655 amd_iommu_apply_erratum_63(iommu, devid);
1656 }
1657
1658 static void do_attach(struct iommu_dev_data *dev_data,
1659 struct protection_domain *domain)
1660 {
1661 struct amd_iommu *iommu;
1662 bool ats;
1663
1664 iommu = rlookup_amd_iommu(dev_data->dev);
1665 if (!iommu)
1666 return;
1667 ats = dev_data->ats.enabled;
1668
1669 /* Update data structures */
1670 dev_data->domain = domain;
1671 list_add(&dev_data->list, &domain->dev_list);
1672
1673 /* Update NUMA Node ID */
1674 if (domain->nid == NUMA_NO_NODE)
1675 domain->nid = dev_to_node(dev_data->dev);
1676
1677 /* Do reference counting */
1678 domain->dev_iommu[iommu->index] += 1;
1679 domain->dev_cnt += 1;
1680
1681 /* Update device table */
1682 set_dte_entry(iommu, dev_data->devid, domain,
1683 ats, dev_data->iommu_v2);
1684 clone_aliases(iommu, dev_data->dev);
1685
1686 device_flush_dte(dev_data);
1687 }
1688
1689 static void do_detach(struct iommu_dev_data *dev_data)
1690 {
1691 struct protection_domain *domain = dev_data->domain;
1692 struct amd_iommu *iommu;
1693
1694 iommu = rlookup_amd_iommu(dev_data->dev);
1695 if (!iommu)
1696 return;
1697
1698 /* Update data structures */
1699 dev_data->domain = NULL;
1700 list_del(&dev_data->list);
1701 clear_dte_entry(iommu, dev_data->devid);
1702 clone_aliases(iommu, dev_data->dev);
1703
1704 /* Flush the DTE entry */
1705 device_flush_dte(dev_data);
1706
1707 /* Flush IOTLB */
1708 amd_iommu_domain_flush_tlb_pde(domain);
1709
1710 /* Wait for the flushes to finish */
1711 amd_iommu_domain_flush_complete(domain);
1712
1713 /* decrease reference counters - needs to happen after the flushes */
1714 domain->dev_iommu[iommu->index] -= 1;
1715 domain->dev_cnt -= 1;
1716 }
1717
1718 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1719 {
1720 pci_disable_ats(pdev);
1721 pci_disable_pri(pdev);
1722 pci_disable_pasid(pdev);
1723 }
1724
1725 static int pdev_pri_ats_enable(struct pci_dev *pdev)
1726 {
1727 int ret;
1728
1729 /* Only allow access to user-accessible pages */
1730 ret = pci_enable_pasid(pdev, 0);
1731 if (ret)
1732 return ret;
1733
1734 /* First reset the PRI state of the device */
1735 ret = pci_reset_pri(pdev);
1736 if (ret)
1737 goto out_err_pasid;
1738
1739 /* Enable PRI */
1740 /* FIXME: Hardcode number of outstanding requests for now */
1741 ret = pci_enable_pri(pdev, 32);
1742 if (ret)
1743 goto out_err_pasid;
1744
1745 ret = pci_enable_ats(pdev, PAGE_SHIFT);
1746 if (ret)
1747 goto out_err_pri;
1748
1749 return 0;
1750
1751 out_err_pri:
1752 pci_disable_pri(pdev);
1753
1754 out_err_pasid:
1755 pci_disable_pasid(pdev);
1756
1757 return ret;
1758 }
1759
1760 /*
1761 * If a device is not yet associated with a domain, this function makes the
1762 * device visible in the domain
1763 */
1764 static int attach_device(struct device *dev,
1765 struct protection_domain *domain)
1766 {
1767 struct iommu_dev_data *dev_data;
1768 struct pci_dev *pdev;
1769 unsigned long flags;
1770 int ret;
1771
1772 spin_lock_irqsave(&domain->lock, flags);
1773
1774 dev_data = dev_iommu_priv_get(dev);
1775
1776 spin_lock(&dev_data->lock);
1777
1778 ret = -EBUSY;
1779 if (dev_data->domain != NULL)
1780 goto out;
1781
1782 if (!dev_is_pci(dev))
1783 goto skip_ats_check;
1784
1785 pdev = to_pci_dev(dev);
1786 if (domain->flags & PD_IOMMUV2_MASK) {
1787 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1788
1789 ret = -EINVAL;
1790
1791 /*
1792 * In case of using AMD_IOMMU_V1 page table mode and the device
1793 * is enabling for PPR/ATS support (using v2 table),
1794 * we need to make sure that the domain type is identity map.
1795 */
1796 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
1797 def_domain->type != IOMMU_DOMAIN_IDENTITY) {
1798 goto out;
1799 }
1800
1801 if (dev_data->iommu_v2) {
1802 if (pdev_pri_ats_enable(pdev) != 0)
1803 goto out;
1804
1805 dev_data->ats.enabled = true;
1806 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1807 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
1808 }
1809 } else if (amd_iommu_iotlb_sup &&
1810 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1811 dev_data->ats.enabled = true;
1812 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1813 }
1814
1815 skip_ats_check:
1816 ret = 0;
1817
1818 do_attach(dev_data, domain);
1819
1820 /*
1821 * We might boot into a crash-kernel here. The crashed kernel
1822 * left the caches in the IOMMU dirty. So we have to flush
1823 * here to evict all dirty stuff.
1824 */
1825 amd_iommu_domain_flush_tlb_pde(domain);
1826
1827 amd_iommu_domain_flush_complete(domain);
1828
1829 out:
1830 spin_unlock(&dev_data->lock);
1831
1832 spin_unlock_irqrestore(&domain->lock, flags);
1833
1834 return ret;
1835 }
1836
1837 /*
1838 * Removes a device from a protection domain (with devtable_lock held)
1839 */
1840 static void detach_device(struct device *dev)
1841 {
1842 struct protection_domain *domain;
1843 struct iommu_dev_data *dev_data;
1844 unsigned long flags;
1845
1846 dev_data = dev_iommu_priv_get(dev);
1847 domain = dev_data->domain;
1848
1849 spin_lock_irqsave(&domain->lock, flags);
1850
1851 spin_lock(&dev_data->lock);
1852
1853 /*
1854 * First check if the device is still attached. It might already
1855 * be detached from its domain because the generic
1856 * iommu_detach_group code detached it and we try again here in
1857 * our alias handling.
1858 */
1859 if (WARN_ON(!dev_data->domain))
1860 goto out;
1861
1862 do_detach(dev_data);
1863
1864 if (!dev_is_pci(dev))
1865 goto out;
1866
1867 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1868 pdev_iommuv2_disable(to_pci_dev(dev));
1869 else if (dev_data->ats.enabled)
1870 pci_disable_ats(to_pci_dev(dev));
1871
1872 dev_data->ats.enabled = false;
1873
1874 out:
1875 spin_unlock(&dev_data->lock);
1876
1877 spin_unlock_irqrestore(&domain->lock, flags);
1878 }
1879
1880 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1881 {
1882 struct iommu_device *iommu_dev;
1883 struct amd_iommu *iommu;
1884 int ret;
1885
1886 if (!check_device(dev))
1887 return ERR_PTR(-ENODEV);
1888
1889 iommu = rlookup_amd_iommu(dev);
1890 if (!iommu)
1891 return ERR_PTR(-ENODEV);
1892
1893 /* Not registered yet? */
1894 if (!iommu->iommu.ops)
1895 return ERR_PTR(-ENODEV);
1896
1897 if (dev_iommu_priv_get(dev))
1898 return &iommu->iommu;
1899
1900 ret = iommu_init_device(iommu, dev);
1901 if (ret) {
1902 if (ret != -ENOTSUPP)
1903 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1904 iommu_dev = ERR_PTR(ret);
1905 iommu_ignore_device(iommu, dev);
1906 } else {
1907 amd_iommu_set_pci_msi_domain(dev, iommu);
1908 iommu_dev = &iommu->iommu;
1909 }
1910
1911 iommu_completion_wait(iommu);
1912
1913 return iommu_dev;
1914 }
1915
1916 static void amd_iommu_probe_finalize(struct device *dev)
1917 {
1918 /* Domains are initialized for this device - have a look what we ended up with */
1919 set_dma_ops(dev, NULL);
1920 iommu_setup_dma_ops(dev, 0, U64_MAX);
1921 }
1922
1923 static void amd_iommu_release_device(struct device *dev)
1924 {
1925 struct amd_iommu *iommu;
1926
1927 if (!check_device(dev))
1928 return;
1929
1930 iommu = rlookup_amd_iommu(dev);
1931 if (!iommu)
1932 return;
1933
1934 amd_iommu_uninit_device(dev);
1935 iommu_completion_wait(iommu);
1936 }
1937
1938 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1939 {
1940 if (dev_is_pci(dev))
1941 return pci_device_group(dev);
1942
1943 return acpihid_device_group(dev);
1944 }
1945
1946 /*****************************************************************************
1947 *
1948 * The next functions belong to the dma_ops mapping/unmapping code.
1949 *
1950 *****************************************************************************/
1951
1952 static void update_device_table(struct protection_domain *domain)
1953 {
1954 struct iommu_dev_data *dev_data;
1955
1956 list_for_each_entry(dev_data, &domain->dev_list, list) {
1957 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1958
1959 if (!iommu)
1960 continue;
1961 set_dte_entry(iommu, dev_data->devid, domain,
1962 dev_data->ats.enabled, dev_data->iommu_v2);
1963 clone_aliases(iommu, dev_data->dev);
1964 }
1965 }
1966
1967 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1968 {
1969 update_device_table(domain);
1970 domain_flush_devices(domain);
1971 }
1972
1973 void amd_iommu_domain_update(struct protection_domain *domain)
1974 {
1975 /* Update device table */
1976 amd_iommu_update_and_flush_device_table(domain);
1977
1978 /* Flush domain TLB(s) and wait for completion */
1979 amd_iommu_domain_flush_tlb_pde(domain);
1980 amd_iommu_domain_flush_complete(domain);
1981 }
1982
1983 /*****************************************************************************
1984 *
1985 * The following functions belong to the exported interface of AMD IOMMU
1986 *
1987 * This interface allows access to lower level functions of the IOMMU
1988 * like protection domain handling and assignement of devices to domains
1989 * which is not possible with the dma_ops interface.
1990 *
1991 *****************************************************************************/
1992
1993 static void cleanup_domain(struct protection_domain *domain)
1994 {
1995 struct iommu_dev_data *entry;
1996 unsigned long flags;
1997
1998 spin_lock_irqsave(&domain->lock, flags);
1999
2000 while (!list_empty(&domain->dev_list)) {
2001 entry = list_first_entry(&domain->dev_list,
2002 struct iommu_dev_data, list);
2003 BUG_ON(!entry->domain);
2004 do_detach(entry);
2005 }
2006
2007 spin_unlock_irqrestore(&domain->lock, flags);
2008 }
2009
2010 static void protection_domain_free(struct protection_domain *domain)
2011 {
2012 if (!domain)
2013 return;
2014
2015 if (domain->iop.pgtbl_cfg.tlb)
2016 free_io_pgtable_ops(&domain->iop.iop.ops);
2017
2018 if (domain->id)
2019 domain_id_free(domain->id);
2020
2021 kfree(domain);
2022 }
2023
2024 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2025 {
2026 u64 *pt_root = NULL;
2027
2028 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2029
2030 spin_lock_init(&domain->lock);
2031 domain->id = domain_id_alloc();
2032 if (!domain->id)
2033 return -ENOMEM;
2034 INIT_LIST_HEAD(&domain->dev_list);
2035
2036 if (mode != PAGE_MODE_NONE) {
2037 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2038 if (!pt_root) {
2039 domain_id_free(domain->id);
2040 return -ENOMEM;
2041 }
2042 }
2043
2044 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2045
2046 return 0;
2047 }
2048
2049 static int protection_domain_init_v2(struct protection_domain *domain)
2050 {
2051 spin_lock_init(&domain->lock);
2052 domain->id = domain_id_alloc();
2053 if (!domain->id)
2054 return -ENOMEM;
2055 INIT_LIST_HEAD(&domain->dev_list);
2056
2057 domain->flags |= PD_GIOV_MASK;
2058
2059 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2060
2061 if (domain_enable_v2(domain, 1)) {
2062 domain_id_free(domain->id);
2063 return -ENOMEM;
2064 }
2065
2066 return 0;
2067 }
2068
2069 static struct protection_domain *protection_domain_alloc(unsigned int type)
2070 {
2071 struct io_pgtable_ops *pgtbl_ops;
2072 struct protection_domain *domain;
2073 int pgtable = amd_iommu_pgtable;
2074 int mode = DEFAULT_PGTABLE_LEVEL;
2075 int ret;
2076
2077 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2078 if (!domain)
2079 return NULL;
2080
2081 /*
2082 * Force IOMMU v1 page table when iommu=pt and
2083 * when allocating domain for pass-through devices.
2084 */
2085 if (type == IOMMU_DOMAIN_IDENTITY) {
2086 pgtable = AMD_IOMMU_V1;
2087 mode = PAGE_MODE_NONE;
2088 } else if (type == IOMMU_DOMAIN_UNMANAGED) {
2089 pgtable = AMD_IOMMU_V1;
2090 }
2091
2092 switch (pgtable) {
2093 case AMD_IOMMU_V1:
2094 ret = protection_domain_init_v1(domain, mode);
2095 break;
2096 case AMD_IOMMU_V2:
2097 ret = protection_domain_init_v2(domain);
2098 break;
2099 default:
2100 ret = -EINVAL;
2101 }
2102
2103 if (ret)
2104 goto out_err;
2105
2106 /* No need to allocate io pgtable ops in passthrough mode */
2107 if (type == IOMMU_DOMAIN_IDENTITY)
2108 return domain;
2109
2110 domain->nid = NUMA_NO_NODE;
2111
2112 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2113 if (!pgtbl_ops) {
2114 domain_id_free(domain->id);
2115 goto out_err;
2116 }
2117
2118 return domain;
2119 out_err:
2120 kfree(domain);
2121 return NULL;
2122 }
2123
2124 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2125 {
2126 struct protection_domain *domain;
2127
2128 /*
2129 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2130 * default to use IOMMU_DOMAIN_DMA[_FQ].
2131 */
2132 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2133 return NULL;
2134
2135 domain = protection_domain_alloc(type);
2136 if (!domain)
2137 return NULL;
2138
2139 domain->domain.geometry.aperture_start = 0;
2140 domain->domain.geometry.aperture_end = ~0ULL;
2141 domain->domain.geometry.force_aperture = true;
2142
2143 return &domain->domain;
2144 }
2145
2146 static void amd_iommu_domain_free(struct iommu_domain *dom)
2147 {
2148 struct protection_domain *domain;
2149
2150 domain = to_pdomain(dom);
2151
2152 if (domain->dev_cnt > 0)
2153 cleanup_domain(domain);
2154
2155 BUG_ON(domain->dev_cnt != 0);
2156
2157 if (!dom)
2158 return;
2159
2160 if (domain->flags & PD_IOMMUV2_MASK)
2161 free_gcr3_table(domain);
2162
2163 protection_domain_free(domain);
2164 }
2165
2166 static int amd_iommu_attach_device(struct iommu_domain *dom,
2167 struct device *dev)
2168 {
2169 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2170 struct protection_domain *domain = to_pdomain(dom);
2171 struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2172 int ret;
2173
2174 /*
2175 * Skip attach device to domain if new domain is same as
2176 * devices current domain
2177 */
2178 if (dev_data->domain == domain)
2179 return 0;
2180
2181 dev_data->defer_attach = false;
2182
2183 if (dev_data->domain)
2184 detach_device(dev);
2185
2186 ret = attach_device(dev, domain);
2187
2188 #ifdef CONFIG_IRQ_REMAP
2189 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2190 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2191 dev_data->use_vapic = 1;
2192 else
2193 dev_data->use_vapic = 0;
2194 }
2195 #endif
2196
2197 iommu_completion_wait(iommu);
2198
2199 return ret;
2200 }
2201
2202 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2203 unsigned long iova, size_t size)
2204 {
2205 struct protection_domain *domain = to_pdomain(dom);
2206 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2207
2208 if (ops->map_pages)
2209 domain_flush_np_cache(domain, iova, size);
2210 }
2211
2212 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2213 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2214 int iommu_prot, gfp_t gfp, size_t *mapped)
2215 {
2216 struct protection_domain *domain = to_pdomain(dom);
2217 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2218 int prot = 0;
2219 int ret = -EINVAL;
2220
2221 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2222 (domain->iop.mode == PAGE_MODE_NONE))
2223 return -EINVAL;
2224
2225 if (iommu_prot & IOMMU_READ)
2226 prot |= IOMMU_PROT_IR;
2227 if (iommu_prot & IOMMU_WRITE)
2228 prot |= IOMMU_PROT_IW;
2229
2230 if (ops->map_pages) {
2231 ret = ops->map_pages(ops, iova, paddr, pgsize,
2232 pgcount, prot, gfp, mapped);
2233 }
2234
2235 return ret;
2236 }
2237
2238 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2239 struct iommu_iotlb_gather *gather,
2240 unsigned long iova, size_t size)
2241 {
2242 /*
2243 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2244 * Unless we run in a virtual machine, which can be inferred according
2245 * to whether "non-present cache" is on, it is probably best to prefer
2246 * (potentially) too extensive TLB flushing (i.e., more misses) over
2247 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2248 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2249 * the guest, and the trade-off is different: unnecessary TLB flushes
2250 * should be avoided.
2251 */
2252 if (amd_iommu_np_cache &&
2253 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2254 iommu_iotlb_sync(domain, gather);
2255
2256 iommu_iotlb_gather_add_range(gather, iova, size);
2257 }
2258
2259 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2260 size_t pgsize, size_t pgcount,
2261 struct iommu_iotlb_gather *gather)
2262 {
2263 struct protection_domain *domain = to_pdomain(dom);
2264 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2265 size_t r;
2266
2267 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2268 (domain->iop.mode == PAGE_MODE_NONE))
2269 return 0;
2270
2271 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2272
2273 if (r)
2274 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2275
2276 return r;
2277 }
2278
2279 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2280 dma_addr_t iova)
2281 {
2282 struct protection_domain *domain = to_pdomain(dom);
2283 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2284
2285 return ops->iova_to_phys(ops, iova);
2286 }
2287
2288 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2289 {
2290 switch (cap) {
2291 case IOMMU_CAP_CACHE_COHERENCY:
2292 return true;
2293 case IOMMU_CAP_NOEXEC:
2294 return false;
2295 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2296 return amdr_ivrs_remap_support;
2297 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2298 return true;
2299 default:
2300 break;
2301 }
2302
2303 return false;
2304 }
2305
2306 static void amd_iommu_get_resv_regions(struct device *dev,
2307 struct list_head *head)
2308 {
2309 struct iommu_resv_region *region;
2310 struct unity_map_entry *entry;
2311 struct amd_iommu *iommu;
2312 struct amd_iommu_pci_seg *pci_seg;
2313 int devid, sbdf;
2314
2315 sbdf = get_device_sbdf_id(dev);
2316 if (sbdf < 0)
2317 return;
2318
2319 devid = PCI_SBDF_TO_DEVID(sbdf);
2320 iommu = rlookup_amd_iommu(dev);
2321 if (!iommu)
2322 return;
2323 pci_seg = iommu->pci_seg;
2324
2325 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2326 int type, prot = 0;
2327 size_t length;
2328
2329 if (devid < entry->devid_start || devid > entry->devid_end)
2330 continue;
2331
2332 type = IOMMU_RESV_DIRECT;
2333 length = entry->address_end - entry->address_start;
2334 if (entry->prot & IOMMU_PROT_IR)
2335 prot |= IOMMU_READ;
2336 if (entry->prot & IOMMU_PROT_IW)
2337 prot |= IOMMU_WRITE;
2338 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2339 /* Exclusion range */
2340 type = IOMMU_RESV_RESERVED;
2341
2342 region = iommu_alloc_resv_region(entry->address_start,
2343 length, prot, type,
2344 GFP_KERNEL);
2345 if (!region) {
2346 dev_err(dev, "Out of memory allocating dm-regions\n");
2347 return;
2348 }
2349 list_add_tail(&region->list, head);
2350 }
2351
2352 region = iommu_alloc_resv_region(MSI_RANGE_START,
2353 MSI_RANGE_END - MSI_RANGE_START + 1,
2354 0, IOMMU_RESV_MSI, GFP_KERNEL);
2355 if (!region)
2356 return;
2357 list_add_tail(&region->list, head);
2358
2359 region = iommu_alloc_resv_region(HT_RANGE_START,
2360 HT_RANGE_END - HT_RANGE_START + 1,
2361 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2362 if (!region)
2363 return;
2364 list_add_tail(&region->list, head);
2365 }
2366
2367 bool amd_iommu_is_attach_deferred(struct device *dev)
2368 {
2369 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2370
2371 return dev_data->defer_attach;
2372 }
2373 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2374
2375 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2376 {
2377 struct protection_domain *dom = to_pdomain(domain);
2378 unsigned long flags;
2379
2380 spin_lock_irqsave(&dom->lock, flags);
2381 amd_iommu_domain_flush_tlb_pde(dom);
2382 amd_iommu_domain_flush_complete(dom);
2383 spin_unlock_irqrestore(&dom->lock, flags);
2384 }
2385
2386 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2387 struct iommu_iotlb_gather *gather)
2388 {
2389 struct protection_domain *dom = to_pdomain(domain);
2390 unsigned long flags;
2391
2392 spin_lock_irqsave(&dom->lock, flags);
2393 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2394 amd_iommu_domain_flush_complete(dom);
2395 spin_unlock_irqrestore(&dom->lock, flags);
2396 }
2397
2398 static int amd_iommu_def_domain_type(struct device *dev)
2399 {
2400 struct iommu_dev_data *dev_data;
2401
2402 dev_data = dev_iommu_priv_get(dev);
2403 if (!dev_data)
2404 return 0;
2405
2406 /*
2407 * Do not identity map IOMMUv2 capable devices when:
2408 * - memory encryption is active, because some of those devices
2409 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2410 * and require remapping.
2411 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2412 */
2413 if (dev_data->iommu_v2 &&
2414 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2415 !amd_iommu_snp_en) {
2416 return IOMMU_DOMAIN_IDENTITY;
2417 }
2418
2419 return 0;
2420 }
2421
2422 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2423 {
2424 /* IOMMU_PTE_FC is always set */
2425 return true;
2426 }
2427
2428 const struct iommu_ops amd_iommu_ops = {
2429 .capable = amd_iommu_capable,
2430 .domain_alloc = amd_iommu_domain_alloc,
2431 .probe_device = amd_iommu_probe_device,
2432 .release_device = amd_iommu_release_device,
2433 .probe_finalize = amd_iommu_probe_finalize,
2434 .device_group = amd_iommu_device_group,
2435 .get_resv_regions = amd_iommu_get_resv_regions,
2436 .is_attach_deferred = amd_iommu_is_attach_deferred,
2437 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2438 .def_domain_type = amd_iommu_def_domain_type,
2439 .default_domain_ops = &(const struct iommu_domain_ops) {
2440 .attach_dev = amd_iommu_attach_device,
2441 .map_pages = amd_iommu_map_pages,
2442 .unmap_pages = amd_iommu_unmap_pages,
2443 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2444 .iova_to_phys = amd_iommu_iova_to_phys,
2445 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2446 .iotlb_sync = amd_iommu_iotlb_sync,
2447 .free = amd_iommu_domain_free,
2448 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2449 }
2450 };
2451
2452 /*****************************************************************************
2453 *
2454 * The next functions do a basic initialization of IOMMU for pass through
2455 * mode
2456 *
2457 * In passthrough mode the IOMMU is initialized and enabled but not used for
2458 * DMA-API translation.
2459 *
2460 *****************************************************************************/
2461
2462 /* IOMMUv2 specific functions */
2463 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2464 {
2465 return atomic_notifier_chain_register(&ppr_notifier, nb);
2466 }
2467 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2468
2469 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2470 {
2471 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2472 }
2473 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2474
2475 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2476 {
2477 struct protection_domain *domain = to_pdomain(dom);
2478 unsigned long flags;
2479
2480 spin_lock_irqsave(&domain->lock, flags);
2481
2482 if (domain->iop.pgtbl_cfg.tlb)
2483 free_io_pgtable_ops(&domain->iop.iop.ops);
2484
2485 spin_unlock_irqrestore(&domain->lock, flags);
2486 }
2487 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2488
2489 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
2490 static int domain_enable_v2(struct protection_domain *domain, int pasids)
2491 {
2492 int levels;
2493
2494 /* Number of GCR3 table levels required */
2495 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2496 levels += 1;
2497
2498 if (levels > amd_iommu_max_glx_val)
2499 return -EINVAL;
2500
2501 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2502 if (domain->gcr3_tbl == NULL)
2503 return -ENOMEM;
2504
2505 domain->glx = levels;
2506 domain->flags |= PD_IOMMUV2_MASK;
2507
2508 amd_iommu_domain_update(domain);
2509
2510 return 0;
2511 }
2512
2513 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2514 {
2515 struct protection_domain *pdom = to_pdomain(dom);
2516 unsigned long flags;
2517 int ret;
2518
2519 spin_lock_irqsave(&pdom->lock, flags);
2520
2521 /*
2522 * Save us all sanity checks whether devices already in the
2523 * domain support IOMMUv2. Just force that the domain has no
2524 * devices attached when it is switched into IOMMUv2 mode.
2525 */
2526 ret = -EBUSY;
2527 if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
2528 goto out;
2529
2530 if (!pdom->gcr3_tbl)
2531 ret = domain_enable_v2(pdom, pasids);
2532
2533 out:
2534 spin_unlock_irqrestore(&pdom->lock, flags);
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2538
2539 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2540 u64 address, bool size)
2541 {
2542 struct iommu_dev_data *dev_data;
2543 struct iommu_cmd cmd;
2544 int i, ret;
2545
2546 if (!(domain->flags & PD_IOMMUV2_MASK))
2547 return -EINVAL;
2548
2549 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2550
2551 /*
2552 * IOMMU TLB needs to be flushed before Device TLB to
2553 * prevent device TLB refill from IOMMU TLB
2554 */
2555 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2556 if (domain->dev_iommu[i] == 0)
2557 continue;
2558
2559 ret = iommu_queue_command(amd_iommus[i], &cmd);
2560 if (ret != 0)
2561 goto out;
2562 }
2563
2564 /* Wait until IOMMU TLB flushes are complete */
2565 amd_iommu_domain_flush_complete(domain);
2566
2567 /* Now flush device TLBs */
2568 list_for_each_entry(dev_data, &domain->dev_list, list) {
2569 struct amd_iommu *iommu;
2570 int qdep;
2571
2572 /*
2573 There might be non-IOMMUv2 capable devices in an IOMMUv2
2574 * domain.
2575 */
2576 if (!dev_data->ats.enabled)
2577 continue;
2578
2579 qdep = dev_data->ats.qdep;
2580 iommu = rlookup_amd_iommu(dev_data->dev);
2581 if (!iommu)
2582 continue;
2583 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2584 qdep, address, size);
2585
2586 ret = iommu_queue_command(iommu, &cmd);
2587 if (ret != 0)
2588 goto out;
2589 }
2590
2591 /* Wait until all device TLBs are flushed */
2592 amd_iommu_domain_flush_complete(domain);
2593
2594 ret = 0;
2595
2596 out:
2597
2598 return ret;
2599 }
2600
2601 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2602 u64 address)
2603 {
2604 return __flush_pasid(domain, pasid, address, false);
2605 }
2606
2607 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2608 u64 address)
2609 {
2610 struct protection_domain *domain = to_pdomain(dom);
2611 unsigned long flags;
2612 int ret;
2613
2614 spin_lock_irqsave(&domain->lock, flags);
2615 ret = __amd_iommu_flush_page(domain, pasid, address);
2616 spin_unlock_irqrestore(&domain->lock, flags);
2617
2618 return ret;
2619 }
2620 EXPORT_SYMBOL(amd_iommu_flush_page);
2621
2622 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2623 {
2624 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2625 true);
2626 }
2627
2628 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2629 {
2630 struct protection_domain *domain = to_pdomain(dom);
2631 unsigned long flags;
2632 int ret;
2633
2634 spin_lock_irqsave(&domain->lock, flags);
2635 ret = __amd_iommu_flush_tlb(domain, pasid);
2636 spin_unlock_irqrestore(&domain->lock, flags);
2637
2638 return ret;
2639 }
2640 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2641
2642 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2643 {
2644 int index;
2645 u64 *pte;
2646
2647 while (true) {
2648
2649 index = (pasid >> (9 * level)) & 0x1ff;
2650 pte = &root[index];
2651
2652 if (level == 0)
2653 break;
2654
2655 if (!(*pte & GCR3_VALID)) {
2656 if (!alloc)
2657 return NULL;
2658
2659 root = (void *)get_zeroed_page(GFP_ATOMIC);
2660 if (root == NULL)
2661 return NULL;
2662
2663 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2664 }
2665
2666 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2667
2668 level -= 1;
2669 }
2670
2671 return pte;
2672 }
2673
2674 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2675 unsigned long cr3)
2676 {
2677 u64 *pte;
2678
2679 if (domain->iop.mode != PAGE_MODE_NONE)
2680 return -EINVAL;
2681
2682 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2683 if (pte == NULL)
2684 return -ENOMEM;
2685
2686 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2687
2688 return __amd_iommu_flush_tlb(domain, pasid);
2689 }
2690
2691 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2692 {
2693 u64 *pte;
2694
2695 if (domain->iop.mode != PAGE_MODE_NONE)
2696 return -EINVAL;
2697
2698 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2699 if (pte == NULL)
2700 return 0;
2701
2702 *pte = 0;
2703
2704 return __amd_iommu_flush_tlb(domain, pasid);
2705 }
2706
2707 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2708 unsigned long cr3)
2709 {
2710 struct protection_domain *domain = to_pdomain(dom);
2711 unsigned long flags;
2712 int ret;
2713
2714 spin_lock_irqsave(&domain->lock, flags);
2715 ret = __set_gcr3(domain, pasid, cr3);
2716 spin_unlock_irqrestore(&domain->lock, flags);
2717
2718 return ret;
2719 }
2720 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2721
2722 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2723 {
2724 struct protection_domain *domain = to_pdomain(dom);
2725 unsigned long flags;
2726 int ret;
2727
2728 spin_lock_irqsave(&domain->lock, flags);
2729 ret = __clear_gcr3(domain, pasid);
2730 spin_unlock_irqrestore(&domain->lock, flags);
2731
2732 return ret;
2733 }
2734 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2735
2736 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2737 int status, int tag)
2738 {
2739 struct iommu_dev_data *dev_data;
2740 struct amd_iommu *iommu;
2741 struct iommu_cmd cmd;
2742
2743 dev_data = dev_iommu_priv_get(&pdev->dev);
2744 iommu = rlookup_amd_iommu(&pdev->dev);
2745 if (!iommu)
2746 return -ENODEV;
2747
2748 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2749 tag, dev_data->pri_tlp);
2750
2751 return iommu_queue_command(iommu, &cmd);
2752 }
2753 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2754
2755 int amd_iommu_device_info(struct pci_dev *pdev,
2756 struct amd_iommu_device_info *info)
2757 {
2758 int max_pasids;
2759 int pos;
2760
2761 if (pdev == NULL || info == NULL)
2762 return -EINVAL;
2763
2764 if (!amd_iommu_v2_supported())
2765 return -EINVAL;
2766
2767 memset(info, 0, sizeof(*info));
2768
2769 if (pci_ats_supported(pdev))
2770 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2771
2772 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2773 if (pos)
2774 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2775
2776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2777 if (pos) {
2778 int features;
2779
2780 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2781 max_pasids = min(max_pasids, (1 << 20));
2782
2783 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2784 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2785
2786 features = pci_pasid_features(pdev);
2787 if (features & PCI_PASID_CAP_EXEC)
2788 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2789 if (features & PCI_PASID_CAP_PRIV)
2790 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2791 }
2792
2793 return 0;
2794 }
2795 EXPORT_SYMBOL(amd_iommu_device_info);
2796
2797 #ifdef CONFIG_IRQ_REMAP
2798
2799 /*****************************************************************************
2800 *
2801 * Interrupt Remapping Implementation
2802 *
2803 *****************************************************************************/
2804
2805 static struct irq_chip amd_ir_chip;
2806 static DEFINE_SPINLOCK(iommu_table_lock);
2807
2808 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2809 {
2810 int ret;
2811 u64 data;
2812 unsigned long flags;
2813 struct iommu_cmd cmd, cmd2;
2814
2815 if (iommu->irtcachedis_enabled)
2816 return;
2817
2818 build_inv_irt(&cmd, devid);
2819 data = atomic64_add_return(1, &iommu->cmd_sem_val);
2820 build_completion_wait(&cmd2, iommu, data);
2821
2822 raw_spin_lock_irqsave(&iommu->lock, flags);
2823 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2824 if (ret)
2825 goto out;
2826 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2827 if (ret)
2828 goto out;
2829 wait_on_sem(iommu, data);
2830 out:
2831 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2832 }
2833
2834 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2835 struct irq_remap_table *table)
2836 {
2837 u64 dte;
2838 struct dev_table_entry *dev_table = get_dev_table(iommu);
2839
2840 dte = dev_table[devid].data[2];
2841 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2842 dte |= iommu_virt_to_phys(table->table);
2843 dte |= DTE_IRQ_REMAP_INTCTL;
2844 dte |= DTE_INTTABLEN;
2845 dte |= DTE_IRQ_REMAP_ENABLE;
2846
2847 dev_table[devid].data[2] = dte;
2848 }
2849
2850 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2851 {
2852 struct irq_remap_table *table;
2853 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2854
2855 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2856 "%s: no iommu for devid %x:%x\n",
2857 __func__, pci_seg->id, devid))
2858 return NULL;
2859
2860 table = pci_seg->irq_lookup_table[devid];
2861 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2862 __func__, pci_seg->id, devid))
2863 return NULL;
2864
2865 return table;
2866 }
2867
2868 static struct irq_remap_table *__alloc_irq_table(void)
2869 {
2870 struct irq_remap_table *table;
2871
2872 table = kzalloc(sizeof(*table), GFP_KERNEL);
2873 if (!table)
2874 return NULL;
2875
2876 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2877 if (!table->table) {
2878 kfree(table);
2879 return NULL;
2880 }
2881 raw_spin_lock_init(&table->lock);
2882
2883 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2884 memset(table->table, 0,
2885 MAX_IRQS_PER_TABLE * sizeof(u32));
2886 else
2887 memset(table->table, 0,
2888 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2889 return table;
2890 }
2891
2892 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2893 struct irq_remap_table *table)
2894 {
2895 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2896
2897 pci_seg->irq_lookup_table[devid] = table;
2898 set_dte_irq_entry(iommu, devid, table);
2899 iommu_flush_dte(iommu, devid);
2900 }
2901
2902 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2903 void *data)
2904 {
2905 struct irq_remap_table *table = data;
2906 struct amd_iommu_pci_seg *pci_seg;
2907 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2908
2909 if (!iommu)
2910 return -EINVAL;
2911
2912 pci_seg = iommu->pci_seg;
2913 pci_seg->irq_lookup_table[alias] = table;
2914 set_dte_irq_entry(iommu, alias, table);
2915 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2916
2917 return 0;
2918 }
2919
2920 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2921 u16 devid, struct pci_dev *pdev)
2922 {
2923 struct irq_remap_table *table = NULL;
2924 struct irq_remap_table *new_table = NULL;
2925 struct amd_iommu_pci_seg *pci_seg;
2926 unsigned long flags;
2927 u16 alias;
2928
2929 spin_lock_irqsave(&iommu_table_lock, flags);
2930
2931 pci_seg = iommu->pci_seg;
2932 table = pci_seg->irq_lookup_table[devid];
2933 if (table)
2934 goto out_unlock;
2935
2936 alias = pci_seg->alias_table[devid];
2937 table = pci_seg->irq_lookup_table[alias];
2938 if (table) {
2939 set_remap_table_entry(iommu, devid, table);
2940 goto out_wait;
2941 }
2942 spin_unlock_irqrestore(&iommu_table_lock, flags);
2943
2944 /* Nothing there yet, allocate new irq remapping table */
2945 new_table = __alloc_irq_table();
2946 if (!new_table)
2947 return NULL;
2948
2949 spin_lock_irqsave(&iommu_table_lock, flags);
2950
2951 table = pci_seg->irq_lookup_table[devid];
2952 if (table)
2953 goto out_unlock;
2954
2955 table = pci_seg->irq_lookup_table[alias];
2956 if (table) {
2957 set_remap_table_entry(iommu, devid, table);
2958 goto out_wait;
2959 }
2960
2961 table = new_table;
2962 new_table = NULL;
2963
2964 if (pdev)
2965 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2966 table);
2967 else
2968 set_remap_table_entry(iommu, devid, table);
2969
2970 if (devid != alias)
2971 set_remap_table_entry(iommu, alias, table);
2972
2973 out_wait:
2974 iommu_completion_wait(iommu);
2975
2976 out_unlock:
2977 spin_unlock_irqrestore(&iommu_table_lock, flags);
2978
2979 if (new_table) {
2980 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2981 kfree(new_table);
2982 }
2983 return table;
2984 }
2985
2986 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2987 bool align, struct pci_dev *pdev)
2988 {
2989 struct irq_remap_table *table;
2990 int index, c, alignment = 1;
2991 unsigned long flags;
2992
2993 table = alloc_irq_table(iommu, devid, pdev);
2994 if (!table)
2995 return -ENODEV;
2996
2997 if (align)
2998 alignment = roundup_pow_of_two(count);
2999
3000 raw_spin_lock_irqsave(&table->lock, flags);
3001
3002 /* Scan table for free entries */
3003 for (index = ALIGN(table->min_index, alignment), c = 0;
3004 index < MAX_IRQS_PER_TABLE;) {
3005 if (!iommu->irte_ops->is_allocated(table, index)) {
3006 c += 1;
3007 } else {
3008 c = 0;
3009 index = ALIGN(index + 1, alignment);
3010 continue;
3011 }
3012
3013 if (c == count) {
3014 for (; c != 0; --c)
3015 iommu->irte_ops->set_allocated(table, index - c + 1);
3016
3017 index -= count - 1;
3018 goto out;
3019 }
3020
3021 index++;
3022 }
3023
3024 index = -ENOSPC;
3025
3026 out:
3027 raw_spin_unlock_irqrestore(&table->lock, flags);
3028
3029 return index;
3030 }
3031
3032 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3033 struct irte_ga *irte)
3034 {
3035 bool ret;
3036 struct irq_remap_table *table;
3037 unsigned long flags;
3038 struct irte_ga *entry;
3039
3040 table = get_irq_table(iommu, devid);
3041 if (!table)
3042 return -ENOMEM;
3043
3044 raw_spin_lock_irqsave(&table->lock, flags);
3045
3046 entry = (struct irte_ga *)table->table;
3047 entry = &entry[index];
3048
3049 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3050 entry->lo.val, entry->hi.val,
3051 irte->lo.val, irte->hi.val);
3052 /*
3053 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3054 * and it cannot be updated by the hardware or other processors
3055 * behind us, so the return value of cmpxchg16 should be the
3056 * same as the old value.
3057 */
3058 WARN_ON(!ret);
3059
3060 raw_spin_unlock_irqrestore(&table->lock, flags);
3061
3062 iommu_flush_irt_and_complete(iommu, devid);
3063
3064 return 0;
3065 }
3066
3067 static int modify_irte(struct amd_iommu *iommu,
3068 u16 devid, int index, union irte *irte)
3069 {
3070 struct irq_remap_table *table;
3071 unsigned long flags;
3072
3073 table = get_irq_table(iommu, devid);
3074 if (!table)
3075 return -ENOMEM;
3076
3077 raw_spin_lock_irqsave(&table->lock, flags);
3078 table->table[index] = irte->val;
3079 raw_spin_unlock_irqrestore(&table->lock, flags);
3080
3081 iommu_flush_irt_and_complete(iommu, devid);
3082
3083 return 0;
3084 }
3085
3086 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3087 {
3088 struct irq_remap_table *table;
3089 unsigned long flags;
3090
3091 table = get_irq_table(iommu, devid);
3092 if (!table)
3093 return;
3094
3095 raw_spin_lock_irqsave(&table->lock, flags);
3096 iommu->irte_ops->clear_allocated(table, index);
3097 raw_spin_unlock_irqrestore(&table->lock, flags);
3098
3099 iommu_flush_irt_and_complete(iommu, devid);
3100 }
3101
3102 static void irte_prepare(void *entry,
3103 u32 delivery_mode, bool dest_mode,
3104 u8 vector, u32 dest_apicid, int devid)
3105 {
3106 union irte *irte = (union irte *) entry;
3107
3108 irte->val = 0;
3109 irte->fields.vector = vector;
3110 irte->fields.int_type = delivery_mode;
3111 irte->fields.destination = dest_apicid;
3112 irte->fields.dm = dest_mode;
3113 irte->fields.valid = 1;
3114 }
3115
3116 static void irte_ga_prepare(void *entry,
3117 u32 delivery_mode, bool dest_mode,
3118 u8 vector, u32 dest_apicid, int devid)
3119 {
3120 struct irte_ga *irte = (struct irte_ga *) entry;
3121
3122 irte->lo.val = 0;
3123 irte->hi.val = 0;
3124 irte->lo.fields_remap.int_type = delivery_mode;
3125 irte->lo.fields_remap.dm = dest_mode;
3126 irte->hi.fields.vector = vector;
3127 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3128 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3129 irte->lo.fields_remap.valid = 1;
3130 }
3131
3132 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3133 {
3134 union irte *irte = (union irte *) entry;
3135
3136 irte->fields.valid = 1;
3137 modify_irte(iommu, devid, index, irte);
3138 }
3139
3140 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3141 {
3142 struct irte_ga *irte = (struct irte_ga *) entry;
3143
3144 irte->lo.fields_remap.valid = 1;
3145 modify_irte_ga(iommu, devid, index, irte);
3146 }
3147
3148 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3149 {
3150 union irte *irte = (union irte *) entry;
3151
3152 irte->fields.valid = 0;
3153 modify_irte(iommu, devid, index, irte);
3154 }
3155
3156 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3157 {
3158 struct irte_ga *irte = (struct irte_ga *) entry;
3159
3160 irte->lo.fields_remap.valid = 0;
3161 modify_irte_ga(iommu, devid, index, irte);
3162 }
3163
3164 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3165 u8 vector, u32 dest_apicid)
3166 {
3167 union irte *irte = (union irte *) entry;
3168
3169 irte->fields.vector = vector;
3170 irte->fields.destination = dest_apicid;
3171 modify_irte(iommu, devid, index, irte);
3172 }
3173
3174 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3175 u8 vector, u32 dest_apicid)
3176 {
3177 struct irte_ga *irte = (struct irte_ga *) entry;
3178
3179 if (!irte->lo.fields_remap.guest_mode) {
3180 irte->hi.fields.vector = vector;
3181 irte->lo.fields_remap.destination =
3182 APICID_TO_IRTE_DEST_LO(dest_apicid);
3183 irte->hi.fields.destination =
3184 APICID_TO_IRTE_DEST_HI(dest_apicid);
3185 modify_irte_ga(iommu, devid, index, irte);
3186 }
3187 }
3188
3189 #define IRTE_ALLOCATED (~1U)
3190 static void irte_set_allocated(struct irq_remap_table *table, int index)
3191 {
3192 table->table[index] = IRTE_ALLOCATED;
3193 }
3194
3195 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3196 {
3197 struct irte_ga *ptr = (struct irte_ga *)table->table;
3198 struct irte_ga *irte = &ptr[index];
3199
3200 memset(&irte->lo.val, 0, sizeof(u64));
3201 memset(&irte->hi.val, 0, sizeof(u64));
3202 irte->hi.fields.vector = 0xff;
3203 }
3204
3205 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3206 {
3207 union irte *ptr = (union irte *)table->table;
3208 union irte *irte = &ptr[index];
3209
3210 return irte->val != 0;
3211 }
3212
3213 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3214 {
3215 struct irte_ga *ptr = (struct irte_ga *)table->table;
3216 struct irte_ga *irte = &ptr[index];
3217
3218 return irte->hi.fields.vector != 0;
3219 }
3220
3221 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3222 {
3223 table->table[index] = 0;
3224 }
3225
3226 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3227 {
3228 struct irte_ga *ptr = (struct irte_ga *)table->table;
3229 struct irte_ga *irte = &ptr[index];
3230
3231 memset(&irte->lo.val, 0, sizeof(u64));
3232 memset(&irte->hi.val, 0, sizeof(u64));
3233 }
3234
3235 static int get_devid(struct irq_alloc_info *info)
3236 {
3237 switch (info->type) {
3238 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3239 return get_ioapic_devid(info->devid);
3240 case X86_IRQ_ALLOC_TYPE_HPET:
3241 return get_hpet_devid(info->devid);
3242 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3243 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3244 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3245 default:
3246 WARN_ON_ONCE(1);
3247 return -1;
3248 }
3249 }
3250
3251 struct irq_remap_ops amd_iommu_irq_ops = {
3252 .prepare = amd_iommu_prepare,
3253 .enable = amd_iommu_enable,
3254 .disable = amd_iommu_disable,
3255 .reenable = amd_iommu_reenable,
3256 .enable_faulting = amd_iommu_enable_faulting,
3257 };
3258
3259 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3260 {
3261 msg->data = index;
3262 msg->address_lo = 0;
3263 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3264 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3265 }
3266
3267 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3268 struct irq_cfg *irq_cfg,
3269 struct irq_alloc_info *info,
3270 int devid, int index, int sub_handle)
3271 {
3272 struct irq_2_irte *irte_info = &data->irq_2_irte;
3273 struct amd_iommu *iommu = data->iommu;
3274
3275 if (!iommu)
3276 return;
3277
3278 data->irq_2_irte.devid = devid;
3279 data->irq_2_irte.index = index + sub_handle;
3280 iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3281 apic->dest_mode_logical, irq_cfg->vector,
3282 irq_cfg->dest_apicid, devid);
3283
3284 switch (info->type) {
3285 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3286 case X86_IRQ_ALLOC_TYPE_HPET:
3287 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3288 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3289 fill_msi_msg(&data->msi_entry, irte_info->index);
3290 break;
3291
3292 default:
3293 BUG_ON(1);
3294 break;
3295 }
3296 }
3297
3298 struct amd_irte_ops irte_32_ops = {
3299 .prepare = irte_prepare,
3300 .activate = irte_activate,
3301 .deactivate = irte_deactivate,
3302 .set_affinity = irte_set_affinity,
3303 .set_allocated = irte_set_allocated,
3304 .is_allocated = irte_is_allocated,
3305 .clear_allocated = irte_clear_allocated,
3306 };
3307
3308 struct amd_irte_ops irte_128_ops = {
3309 .prepare = irte_ga_prepare,
3310 .activate = irte_ga_activate,
3311 .deactivate = irte_ga_deactivate,
3312 .set_affinity = irte_ga_set_affinity,
3313 .set_allocated = irte_ga_set_allocated,
3314 .is_allocated = irte_ga_is_allocated,
3315 .clear_allocated = irte_ga_clear_allocated,
3316 };
3317
3318 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3319 unsigned int nr_irqs, void *arg)
3320 {
3321 struct irq_alloc_info *info = arg;
3322 struct irq_data *irq_data;
3323 struct amd_ir_data *data = NULL;
3324 struct amd_iommu *iommu;
3325 struct irq_cfg *cfg;
3326 int i, ret, devid, seg, sbdf;
3327 int index;
3328
3329 if (!info)
3330 return -EINVAL;
3331 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3332 return -EINVAL;
3333
3334 sbdf = get_devid(info);
3335 if (sbdf < 0)
3336 return -EINVAL;
3337
3338 seg = PCI_SBDF_TO_SEGID(sbdf);
3339 devid = PCI_SBDF_TO_DEVID(sbdf);
3340 iommu = __rlookup_amd_iommu(seg, devid);
3341 if (!iommu)
3342 return -EINVAL;
3343
3344 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3345 if (ret < 0)
3346 return ret;
3347
3348 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3349 struct irq_remap_table *table;
3350
3351 table = alloc_irq_table(iommu, devid, NULL);
3352 if (table) {
3353 if (!table->min_index) {
3354 /*
3355 * Keep the first 32 indexes free for IOAPIC
3356 * interrupts.
3357 */
3358 table->min_index = 32;
3359 for (i = 0; i < 32; ++i)
3360 iommu->irte_ops->set_allocated(table, i);
3361 }
3362 WARN_ON(table->min_index != 32);
3363 index = info->ioapic.pin;
3364 } else {
3365 index = -ENOMEM;
3366 }
3367 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3368 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3369 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3370
3371 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3372 msi_desc_to_pci_dev(info->desc));
3373 } else {
3374 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3375 }
3376
3377 if (index < 0) {
3378 pr_warn("Failed to allocate IRTE\n");
3379 ret = index;
3380 goto out_free_parent;
3381 }
3382
3383 for (i = 0; i < nr_irqs; i++) {
3384 irq_data = irq_domain_get_irq_data(domain, virq + i);
3385 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3386 if (!cfg) {
3387 ret = -EINVAL;
3388 goto out_free_data;
3389 }
3390
3391 ret = -ENOMEM;
3392 data = kzalloc(sizeof(*data), GFP_KERNEL);
3393 if (!data)
3394 goto out_free_data;
3395
3396 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3397 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3398 else
3399 data->entry = kzalloc(sizeof(struct irte_ga),
3400 GFP_KERNEL);
3401 if (!data->entry) {
3402 kfree(data);
3403 goto out_free_data;
3404 }
3405
3406 data->iommu = iommu;
3407 irq_data->hwirq = (devid << 16) + i;
3408 irq_data->chip_data = data;
3409 irq_data->chip = &amd_ir_chip;
3410 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3411 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3412 }
3413
3414 return 0;
3415
3416 out_free_data:
3417 for (i--; i >= 0; i--) {
3418 irq_data = irq_domain_get_irq_data(domain, virq + i);
3419 if (irq_data)
3420 kfree(irq_data->chip_data);
3421 }
3422 for (i = 0; i < nr_irqs; i++)
3423 free_irte(iommu, devid, index + i);
3424 out_free_parent:
3425 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3426 return ret;
3427 }
3428
3429 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3430 unsigned int nr_irqs)
3431 {
3432 struct irq_2_irte *irte_info;
3433 struct irq_data *irq_data;
3434 struct amd_ir_data *data;
3435 int i;
3436
3437 for (i = 0; i < nr_irqs; i++) {
3438 irq_data = irq_domain_get_irq_data(domain, virq + i);
3439 if (irq_data && irq_data->chip_data) {
3440 data = irq_data->chip_data;
3441 irte_info = &data->irq_2_irte;
3442 free_irte(data->iommu, irte_info->devid, irte_info->index);
3443 kfree(data->entry);
3444 kfree(data);
3445 }
3446 }
3447 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3448 }
3449
3450 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3451 struct amd_ir_data *ir_data,
3452 struct irq_2_irte *irte_info,
3453 struct irq_cfg *cfg);
3454
3455 static int irq_remapping_activate(struct irq_domain *domain,
3456 struct irq_data *irq_data, bool reserve)
3457 {
3458 struct amd_ir_data *data = irq_data->chip_data;
3459 struct irq_2_irte *irte_info = &data->irq_2_irte;
3460 struct amd_iommu *iommu = data->iommu;
3461 struct irq_cfg *cfg = irqd_cfg(irq_data);
3462
3463 if (!iommu)
3464 return 0;
3465
3466 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3467 irte_info->index);
3468 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3469 return 0;
3470 }
3471
3472 static void irq_remapping_deactivate(struct irq_domain *domain,
3473 struct irq_data *irq_data)
3474 {
3475 struct amd_ir_data *data = irq_data->chip_data;
3476 struct irq_2_irte *irte_info = &data->irq_2_irte;
3477 struct amd_iommu *iommu = data->iommu;
3478
3479 if (iommu)
3480 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3481 irte_info->index);
3482 }
3483
3484 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3485 enum irq_domain_bus_token bus_token)
3486 {
3487 struct amd_iommu *iommu;
3488 int devid = -1;
3489
3490 if (!amd_iommu_irq_remap)
3491 return 0;
3492
3493 if (x86_fwspec_is_ioapic(fwspec))
3494 devid = get_ioapic_devid(fwspec->param[0]);
3495 else if (x86_fwspec_is_hpet(fwspec))
3496 devid = get_hpet_devid(fwspec->param[0]);
3497
3498 if (devid < 0)
3499 return 0;
3500 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3501
3502 return iommu && iommu->ir_domain == d;
3503 }
3504
3505 static const struct irq_domain_ops amd_ir_domain_ops = {
3506 .select = irq_remapping_select,
3507 .alloc = irq_remapping_alloc,
3508 .free = irq_remapping_free,
3509 .activate = irq_remapping_activate,
3510 .deactivate = irq_remapping_deactivate,
3511 };
3512
3513 int amd_iommu_activate_guest_mode(void *data)
3514 {
3515 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3516 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3517 u64 valid;
3518
3519 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3520 !entry || entry->lo.fields_vapic.guest_mode)
3521 return 0;
3522
3523 valid = entry->lo.fields_vapic.valid;
3524
3525 entry->lo.val = 0;
3526 entry->hi.val = 0;
3527
3528 entry->lo.fields_vapic.valid = valid;
3529 entry->lo.fields_vapic.guest_mode = 1;
3530 entry->lo.fields_vapic.ga_log_intr = 1;
3531 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3532 entry->hi.fields.vector = ir_data->ga_vector;
3533 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3534
3535 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3536 ir_data->irq_2_irte.index, entry);
3537 }
3538 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3539
3540 int amd_iommu_deactivate_guest_mode(void *data)
3541 {
3542 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3543 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3544 struct irq_cfg *cfg = ir_data->cfg;
3545 u64 valid;
3546
3547 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3548 !entry || !entry->lo.fields_vapic.guest_mode)
3549 return 0;
3550
3551 valid = entry->lo.fields_remap.valid;
3552
3553 entry->lo.val = 0;
3554 entry->hi.val = 0;
3555
3556 entry->lo.fields_remap.valid = valid;
3557 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3558 entry->lo.fields_remap.int_type = apic->delivery_mode;
3559 entry->hi.fields.vector = cfg->vector;
3560 entry->lo.fields_remap.destination =
3561 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3562 entry->hi.fields.destination =
3563 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3564
3565 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3566 ir_data->irq_2_irte.index, entry);
3567 }
3568 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3569
3570 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3571 {
3572 int ret;
3573 struct amd_iommu_pi_data *pi_data = vcpu_info;
3574 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3575 struct amd_ir_data *ir_data = data->chip_data;
3576 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3577 struct iommu_dev_data *dev_data;
3578
3579 if (ir_data->iommu == NULL)
3580 return -EINVAL;
3581
3582 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3583
3584 /* Note:
3585 * This device has never been set up for guest mode.
3586 * we should not modify the IRTE
3587 */
3588 if (!dev_data || !dev_data->use_vapic)
3589 return 0;
3590
3591 ir_data->cfg = irqd_cfg(data);
3592 pi_data->ir_data = ir_data;
3593
3594 /* Note:
3595 * SVM tries to set up for VAPIC mode, but we are in
3596 * legacy mode. So, we force legacy mode instead.
3597 */
3598 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3599 pr_debug("%s: Fall back to using intr legacy remap\n",
3600 __func__);
3601 pi_data->is_guest_mode = false;
3602 }
3603
3604 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3605 if (pi_data->is_guest_mode) {
3606 ir_data->ga_root_ptr = (pi_data->base >> 12);
3607 ir_data->ga_vector = vcpu_pi_info->vector;
3608 ir_data->ga_tag = pi_data->ga_tag;
3609 ret = amd_iommu_activate_guest_mode(ir_data);
3610 if (!ret)
3611 ir_data->cached_ga_tag = pi_data->ga_tag;
3612 } else {
3613 ret = amd_iommu_deactivate_guest_mode(ir_data);
3614
3615 /*
3616 * This communicates the ga_tag back to the caller
3617 * so that it can do all the necessary clean up.
3618 */
3619 if (!ret)
3620 ir_data->cached_ga_tag = 0;
3621 }
3622
3623 return ret;
3624 }
3625
3626
3627 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3628 struct amd_ir_data *ir_data,
3629 struct irq_2_irte *irte_info,
3630 struct irq_cfg *cfg)
3631 {
3632
3633 /*
3634 * Atomically updates the IRTE with the new destination, vector
3635 * and flushes the interrupt entry cache.
3636 */
3637 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3638 irte_info->index, cfg->vector,
3639 cfg->dest_apicid);
3640 }
3641
3642 static int amd_ir_set_affinity(struct irq_data *data,
3643 const struct cpumask *mask, bool force)
3644 {
3645 struct amd_ir_data *ir_data = data->chip_data;
3646 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3647 struct irq_cfg *cfg = irqd_cfg(data);
3648 struct irq_data *parent = data->parent_data;
3649 struct amd_iommu *iommu = ir_data->iommu;
3650 int ret;
3651
3652 if (!iommu)
3653 return -ENODEV;
3654
3655 ret = parent->chip->irq_set_affinity(parent, mask, force);
3656 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3657 return ret;
3658
3659 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3660 /*
3661 * After this point, all the interrupts will start arriving
3662 * at the new destination. So, time to cleanup the previous
3663 * vector allocation.
3664 */
3665 send_cleanup_vector(cfg);
3666
3667 return IRQ_SET_MASK_OK_DONE;
3668 }
3669
3670 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3671 {
3672 struct amd_ir_data *ir_data = irq_data->chip_data;
3673
3674 *msg = ir_data->msi_entry;
3675 }
3676
3677 static struct irq_chip amd_ir_chip = {
3678 .name = "AMD-IR",
3679 .irq_ack = apic_ack_irq,
3680 .irq_set_affinity = amd_ir_set_affinity,
3681 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3682 .irq_compose_msi_msg = ir_compose_msi_msg,
3683 };
3684
3685 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3686 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3687 MSI_FLAG_MULTI_PCI_MSI |
3688 MSI_FLAG_PCI_IMS,
3689 .prefix = "IR-",
3690 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3691 };
3692
3693 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3694 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3695 MSI_FLAG_MULTI_PCI_MSI,
3696 .prefix = "vIR-",
3697 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3698 };
3699
3700 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3701 {
3702 struct fwnode_handle *fn;
3703
3704 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3705 if (!fn)
3706 return -ENOMEM;
3707 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3708 fn, &amd_ir_domain_ops, iommu);
3709 if (!iommu->ir_domain) {
3710 irq_domain_free_fwnode(fn);
3711 return -ENOMEM;
3712 }
3713
3714 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3715 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3716 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3717
3718 if (amd_iommu_np_cache)
3719 iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3720 else
3721 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3722
3723 return 0;
3724 }
3725
3726 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3727 {
3728 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3729 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3730
3731 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3732 !entry || !entry->lo.fields_vapic.guest_mode)
3733 return 0;
3734
3735 if (!ir_data->iommu)
3736 return -ENODEV;
3737
3738 if (cpu >= 0) {
3739 entry->lo.fields_vapic.destination =
3740 APICID_TO_IRTE_DEST_LO(cpu);
3741 entry->hi.fields.destination =
3742 APICID_TO_IRTE_DEST_HI(cpu);
3743 }
3744 entry->lo.fields_vapic.is_run = is_run;
3745
3746 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3747 ir_data->irq_2_irte.index, entry);
3748 }
3749 EXPORT_SYMBOL(amd_iommu_update_ga);
3750 #endif