]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob
1454992
[thirdparty/kernel/stable.git] /
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
50 */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 struct kvm_cpuid_entry2 __user *entries);
62
63 struct kvm_x86_ops *kvm_x86_ops;
64
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed) },
67 { "pf_guest", VCPU_STAT(pf_guest) },
68 { "tlb_flush", VCPU_STAT(tlb_flush) },
69 { "invlpg", VCPU_STAT(invlpg) },
70 { "exits", VCPU_STAT(exits) },
71 { "io_exits", VCPU_STAT(io_exits) },
72 { "mmio_exits", VCPU_STAT(mmio_exits) },
73 { "signal_exits", VCPU_STAT(signal_exits) },
74 { "irq_window", VCPU_STAT(irq_window_exits) },
75 { "nmi_window", VCPU_STAT(nmi_window_exits) },
76 { "halt_exits", VCPU_STAT(halt_exits) },
77 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
78 { "hypercalls", VCPU_STAT(hypercalls) },
79 { "request_irq", VCPU_STAT(request_irq_exits) },
80 { "irq_exits", VCPU_STAT(irq_exits) },
81 { "host_state_reload", VCPU_STAT(host_state_reload) },
82 { "efer_reload", VCPU_STAT(efer_reload) },
83 { "fpu_reload", VCPU_STAT(fpu_reload) },
84 { "insn_emulation", VCPU_STAT(insn_emulation) },
85 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
88 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90 { "mmu_flooded", VM_STAT(mmu_flooded) },
91 { "mmu_recycled", VM_STAT(mmu_recycled) },
92 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94 { "largepages", VM_STAT(lpages) },
95 { NULL }
96 };
97
98
99 unsigned long segment_base(u16 selector)
100 {
101 struct descriptor_table gdt;
102 struct desc_struct *d;
103 unsigned long table_base;
104 unsigned long v;
105
106 if (selector == 0)
107 return 0;
108
109 asm("sgdt %0" : "=m"(gdt));
110 table_base = gdt.base;
111
112 if (selector & 4) { /* from ldt */
113 u16 ldt_selector;
114
115 asm("sldt %0" : "=g"(ldt_selector));
116 table_base = segment_base(ldt_selector);
117 }
118 d = (struct desc_struct *)(table_base + (selector & ~7));
119 v = d->base0 | ((unsigned long)d->base1 << 16) |
120 ((unsigned long)d->base2 << 24);
121 #ifdef CONFIG_X86_64
122 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 #endif
125 return v;
126 }
127 EXPORT_SYMBOL_GPL(segment_base);
128
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 {
131 if (irqchip_in_kernel(vcpu->kvm))
132 return vcpu->arch.apic_base;
133 else
134 return vcpu->arch.apic_base;
135 }
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 {
140 /* TODO: reserve bits check */
141 if (irqchip_in_kernel(vcpu->kvm))
142 kvm_lapic_set_base(vcpu, data);
143 else
144 vcpu->arch.apic_base = data;
145 }
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 {
150 WARN_ON(vcpu->arch.exception.pending);
151 vcpu->arch.exception.pending = true;
152 vcpu->arch.exception.has_error_code = false;
153 vcpu->arch.exception.nr = nr;
154 }
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
158 u32 error_code)
159 {
160 ++vcpu->stat.pf_guest;
161 if (vcpu->arch.exception.pending) {
162 if (vcpu->arch.exception.nr == PF_VECTOR) {
163 printk(KERN_DEBUG "kvm: inject_page_fault:"
164 " double fault 0x%lx\n", addr);
165 vcpu->arch.exception.nr = DF_VECTOR;
166 vcpu->arch.exception.error_code = 0;
167 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
168 /* triple fault -> shutdown */
169 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
170 }
171 return;
172 }
173 vcpu->arch.cr2 = addr;
174 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 }
176
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
178 {
179 vcpu->arch.nmi_pending = 1;
180 }
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
182
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
184 {
185 WARN_ON(vcpu->arch.exception.pending);
186 vcpu->arch.exception.pending = true;
187 vcpu->arch.exception.has_error_code = true;
188 vcpu->arch.exception.nr = nr;
189 vcpu->arch.exception.error_code = error_code;
190 }
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
192
193 static void __queue_exception(struct kvm_vcpu *vcpu)
194 {
195 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196 vcpu->arch.exception.has_error_code,
197 vcpu->arch.exception.error_code);
198 }
199
200 /*
201 * Load the pae pdptrs. Return true is they are all valid.
202 */
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
204 {
205 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
207 int i;
208 int ret;
209 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210
211 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212 offset * sizeof(u64), sizeof(pdpte));
213 if (ret < 0) {
214 ret = 0;
215 goto out;
216 }
217 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
219 ret = 0;
220 goto out;
221 }
222 }
223 ret = 1;
224
225 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 out:
227
228 return ret;
229 }
230 EXPORT_SYMBOL_GPL(load_pdptrs);
231
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
233 {
234 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235 bool changed = true;
236 int r;
237
238 if (is_long_mode(vcpu) || !is_pae(vcpu))
239 return false;
240
241 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242 if (r < 0)
243 goto out;
244 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 out:
246
247 return changed;
248 }
249
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 {
252 if (cr0 & CR0_RESERVED_BITS) {
253 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254 cr0, vcpu->arch.cr0);
255 kvm_inject_gp(vcpu, 0);
256 return;
257 }
258
259 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261 kvm_inject_gp(vcpu, 0);
262 return;
263 }
264
265 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267 "and a clear PE flag\n");
268 kvm_inject_gp(vcpu, 0);
269 return;
270 }
271
272 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
273 #ifdef CONFIG_X86_64
274 if ((vcpu->arch.shadow_efer & EFER_LME)) {
275 int cs_db, cs_l;
276
277 if (!is_pae(vcpu)) {
278 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 "in long mode while PAE is disabled\n");
280 kvm_inject_gp(vcpu, 0);
281 return;
282 }
283 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
284 if (cs_l) {
285 printk(KERN_DEBUG "set_cr0: #GP, start paging "
286 "in long mode while CS.L == 1\n");
287 kvm_inject_gp(vcpu, 0);
288 return;
289
290 }
291 } else
292 #endif
293 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
295 "reserved bits\n");
296 kvm_inject_gp(vcpu, 0);
297 return;
298 }
299
300 }
301
302 kvm_x86_ops->set_cr0(vcpu, cr0);
303 vcpu->arch.cr0 = cr0;
304
305 kvm_mmu_reset_context(vcpu);
306 return;
307 }
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
309
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311 {
312 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313 KVMTRACE_1D(LMSW, vcpu,
314 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
315 handler);
316 }
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
318
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 {
321 if (cr4 & CR4_RESERVED_BITS) {
322 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323 kvm_inject_gp(vcpu, 0);
324 return;
325 }
326
327 if (is_long_mode(vcpu)) {
328 if (!(cr4 & X86_CR4_PAE)) {
329 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
330 "in long mode\n");
331 kvm_inject_gp(vcpu, 0);
332 return;
333 }
334 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337 kvm_inject_gp(vcpu, 0);
338 return;
339 }
340
341 if (cr4 & X86_CR4_VMXE) {
342 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343 kvm_inject_gp(vcpu, 0);
344 return;
345 }
346 kvm_x86_ops->set_cr4(vcpu, cr4);
347 vcpu->arch.cr4 = cr4;
348 kvm_mmu_reset_context(vcpu);
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
351
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353 {
354 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355 kvm_mmu_flush_tlb(vcpu);
356 return;
357 }
358
359 if (is_long_mode(vcpu)) {
360 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
364 }
365 } else {
366 if (is_pae(vcpu)) {
367 if (cr3 & CR3_PAE_RESERVED_BITS) {
368 printk(KERN_DEBUG
369 "set_cr3: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu, 0);
371 return;
372 }
373 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
375 "reserved bits\n");
376 kvm_inject_gp(vcpu, 0);
377 return;
378 }
379 }
380 /*
381 * We don't check reserved bits in nonpae mode, because
382 * this isn't enforced, and VMware depends on this.
383 */
384 }
385
386 /*
387 * Does the new cr3 value map to physical memory? (Note, we
388 * catch an invalid cr3 even in real-mode, because it would
389 * cause trouble later on when we turn on paging anyway.)
390 *
391 * A real CPU would silently accept an invalid cr3 and would
392 * attempt to use it - with largely undefined (and often hard
393 * to debug) behavior on the guest side.
394 */
395 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396 kvm_inject_gp(vcpu, 0);
397 else {
398 vcpu->arch.cr3 = cr3;
399 vcpu->arch.mmu.new_cr3(vcpu);
400 }
401 }
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
403
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 {
406 if (cr8 & CR8_RESERVED_BITS) {
407 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408 kvm_inject_gp(vcpu, 0);
409 return;
410 }
411 if (irqchip_in_kernel(vcpu->kvm))
412 kvm_lapic_set_tpr(vcpu, cr8);
413 else
414 vcpu->arch.cr8 = cr8;
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
417
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 {
420 if (irqchip_in_kernel(vcpu->kvm))
421 return kvm_lapic_get_cr8(vcpu);
422 else
423 return vcpu->arch.cr8;
424 }
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
426
427 /*
428 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
430 *
431 * This list is modified at module load time to reflect the
432 * capabilities of the host cpu.
433 */
434 static u32 msrs_to_save[] = {
435 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
436 MSR_K6_STAR,
437 #ifdef CONFIG_X86_64
438 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
439 #endif
440 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441 MSR_IA32_PERF_STATUS,
442 };
443
444 static unsigned num_msrs_to_save;
445
446 static u32 emulated_msrs[] = {
447 MSR_IA32_MISC_ENABLE,
448 };
449
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
451 {
452 if (efer & efer_reserved_bits) {
453 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
454 efer);
455 kvm_inject_gp(vcpu, 0);
456 return;
457 }
458
459 if (is_paging(vcpu)
460 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462 kvm_inject_gp(vcpu, 0);
463 return;
464 }
465
466 kvm_x86_ops->set_efer(vcpu, efer);
467
468 efer &= ~EFER_LMA;
469 efer |= vcpu->arch.shadow_efer & EFER_LMA;
470
471 vcpu->arch.shadow_efer = efer;
472 }
473
474 void kvm_enable_efer_bits(u64 mask)
475 {
476 efer_reserved_bits &= ~mask;
477 }
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
479
480
481 /*
482 * Writes msr value into into the appropriate "register".
483 * Returns 0 on success, non-0 otherwise.
484 * Assumes vcpu_load() was already called.
485 */
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
487 {
488 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
489 }
490
491 /*
492 * Adapt set_msr() to msr_io()'s calling convention
493 */
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
495 {
496 return kvm_set_msr(vcpu, index, *data);
497 }
498
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
500 {
501 static int version;
502 struct pvclock_wall_clock wc;
503 struct timespec now, sys, boot;
504
505 if (!wall_clock)
506 return;
507
508 version++;
509
510 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511
512 /*
513 * The guest calculates current wall clock time by adding
514 * system time (updated by kvm_write_guest_time below) to the
515 * wall clock specified here. guest system time equals host
516 * system time for us, thus we must fill in host boot time here.
517 */
518 now = current_kernel_time();
519 ktime_get_ts(&sys);
520 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
521
522 wc.sec = boot.tv_sec;
523 wc.nsec = boot.tv_nsec;
524 wc.version = version;
525
526 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
527
528 version++;
529 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
530 }
531
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
533 {
534 uint32_t quotient, remainder;
535
536 /* Don't try to replace with do_div(), this one calculates
537 * "(dividend << 32) / divisor" */
538 __asm__ ( "divl %4"
539 : "=a" (quotient), "=d" (remainder)
540 : "0" (0), "1" (dividend), "r" (divisor) );
541 return quotient;
542 }
543
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
545 {
546 uint64_t nsecs = 1000000000LL;
547 int32_t shift = 0;
548 uint64_t tps64;
549 uint32_t tps32;
550
551 tps64 = tsc_khz * 1000LL;
552 while (tps64 > nsecs*2) {
553 tps64 >>= 1;
554 shift--;
555 }
556
557 tps32 = (uint32_t)tps64;
558 while (tps32 <= (uint32_t)nsecs) {
559 tps32 <<= 1;
560 shift++;
561 }
562
563 hv_clock->tsc_shift = shift;
564 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
565
566 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568 hv_clock->tsc_to_system_mul);
569 }
570
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
572 {
573 struct timespec ts;
574 unsigned long flags;
575 struct kvm_vcpu_arch *vcpu = &v->arch;
576 void *shared_kaddr;
577
578 if ((!vcpu->time_page))
579 return;
580
581 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583 vcpu->hv_clock_tsc_khz = tsc_khz;
584 }
585
586 /* Keep irq disabled to prevent changes to the clock */
587 local_irq_save(flags);
588 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589 &vcpu->hv_clock.tsc_timestamp);
590 ktime_get_ts(&ts);
591 local_irq_restore(flags);
592
593 /* With all the info we got, fill in the values */
594
595 vcpu->hv_clock.system_time = ts.tv_nsec +
596 (NSEC_PER_SEC * (u64)ts.tv_sec);
597 /*
598 * The interface expects us to write an even number signaling that the
599 * update is finished. Since the guest won't see the intermediate
600 * state, we just increase by 2 at the end.
601 */
602 vcpu->hv_clock.version += 2;
603
604 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
605
606 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607 sizeof(vcpu->hv_clock));
608
609 kunmap_atomic(shared_kaddr, KM_USER0);
610
611 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
612 }
613
614 static bool msr_mtrr_valid(unsigned msr)
615 {
616 switch (msr) {
617 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618 case MSR_MTRRfix64K_00000:
619 case MSR_MTRRfix16K_80000:
620 case MSR_MTRRfix16K_A0000:
621 case MSR_MTRRfix4K_C0000:
622 case MSR_MTRRfix4K_C8000:
623 case MSR_MTRRfix4K_D0000:
624 case MSR_MTRRfix4K_D8000:
625 case MSR_MTRRfix4K_E0000:
626 case MSR_MTRRfix4K_E8000:
627 case MSR_MTRRfix4K_F0000:
628 case MSR_MTRRfix4K_F8000:
629 case MSR_MTRRdefType:
630 case MSR_IA32_CR_PAT:
631 return true;
632 case 0x2f8:
633 return true;
634 }
635 return false;
636 }
637
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
639 {
640 if (!msr_mtrr_valid(msr))
641 return 1;
642
643 vcpu->arch.mtrr[msr - 0x200] = data;
644 return 0;
645 }
646
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
648 {
649 switch (msr) {
650 case MSR_EFER:
651 set_efer(vcpu, data);
652 break;
653 case MSR_IA32_MC0_STATUS:
654 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655 __func__, data);
656 break;
657 case MSR_IA32_MCG_STATUS:
658 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659 __func__, data);
660 break;
661 case MSR_IA32_MCG_CTL:
662 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663 __func__, data);
664 break;
665 case MSR_IA32_UCODE_REV:
666 case MSR_IA32_UCODE_WRITE:
667 break;
668 case 0x200 ... 0x2ff:
669 return set_msr_mtrr(vcpu, msr, data);
670 case MSR_IA32_APICBASE:
671 kvm_set_apic_base(vcpu, data);
672 break;
673 case MSR_IA32_MISC_ENABLE:
674 vcpu->arch.ia32_misc_enable_msr = data;
675 break;
676 case MSR_KVM_WALL_CLOCK:
677 vcpu->kvm->arch.wall_clock = data;
678 kvm_write_wall_clock(vcpu->kvm, data);
679 break;
680 case MSR_KVM_SYSTEM_TIME: {
681 if (vcpu->arch.time_page) {
682 kvm_release_page_dirty(vcpu->arch.time_page);
683 vcpu->arch.time_page = NULL;
684 }
685
686 vcpu->arch.time = data;
687
688 /* we verify if the enable bit is set... */
689 if (!(data & 1))
690 break;
691
692 /* ...but clean it before doing the actual write */
693 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
694
695 down_read(&current->mm->mmap_sem);
696 vcpu->arch.time_page =
697 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698 up_read(&current->mm->mmap_sem);
699
700 if (is_error_page(vcpu->arch.time_page)) {
701 kvm_release_page_clean(vcpu->arch.time_page);
702 vcpu->arch.time_page = NULL;
703 }
704
705 kvm_write_guest_time(vcpu);
706 break;
707 }
708 default:
709 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710 return 1;
711 }
712 return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
715
716
717 /*
718 * Reads an msr value (of 'msr_index') into 'pdata'.
719 * Returns 0 on success, non-0 otherwise.
720 * Assumes vcpu_load() was already called.
721 */
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
723 {
724 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
725 }
726
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
728 {
729 if (!msr_mtrr_valid(msr))
730 return 1;
731
732 *pdata = vcpu->arch.mtrr[msr - 0x200];
733 return 0;
734 }
735
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
737 {
738 u64 data;
739
740 switch (msr) {
741 case 0xc0010010: /* SYSCFG */
742 case 0xc0010015: /* HWCR */
743 case MSR_IA32_PLATFORM_ID:
744 case MSR_IA32_P5_MC_ADDR:
745 case MSR_IA32_P5_MC_TYPE:
746 case MSR_IA32_MC0_CTL:
747 case MSR_IA32_MCG_STATUS:
748 case MSR_IA32_MCG_CAP:
749 case MSR_IA32_MCG_CTL:
750 case MSR_IA32_MC0_MISC:
751 case MSR_IA32_MC0_MISC+4:
752 case MSR_IA32_MC0_MISC+8:
753 case MSR_IA32_MC0_MISC+12:
754 case MSR_IA32_MC0_MISC+16:
755 case MSR_IA32_MC0_MISC+20:
756 case MSR_IA32_UCODE_REV:
757 case MSR_IA32_EBL_CR_POWERON:
758 data = 0;
759 break;
760 case MSR_MTRRcap:
761 data = 0x500 | KVM_NR_VAR_MTRR;
762 break;
763 case 0x200 ... 0x2ff:
764 return get_msr_mtrr(vcpu, msr, pdata);
765 case 0xcd: /* fsb frequency */
766 data = 3;
767 break;
768 case MSR_IA32_APICBASE:
769 data = kvm_get_apic_base(vcpu);
770 break;
771 case MSR_IA32_MISC_ENABLE:
772 data = vcpu->arch.ia32_misc_enable_msr;
773 break;
774 case MSR_IA32_PERF_STATUS:
775 /* TSC increment by tick */
776 data = 1000ULL;
777 /* CPU multiplier */
778 data |= (((uint64_t)4ULL) << 40);
779 break;
780 case MSR_EFER:
781 data = vcpu->arch.shadow_efer;
782 break;
783 case MSR_KVM_WALL_CLOCK:
784 data = vcpu->kvm->arch.wall_clock;
785 break;
786 case MSR_KVM_SYSTEM_TIME:
787 data = vcpu->arch.time;
788 break;
789 default:
790 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
791 return 1;
792 }
793 *pdata = data;
794 return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
797
798 /*
799 * Read or write a bunch of msrs. All parameters are kernel addresses.
800 *
801 * @return number of msrs set successfully.
802 */
803 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
804 struct kvm_msr_entry *entries,
805 int (*do_msr)(struct kvm_vcpu *vcpu,
806 unsigned index, u64 *data))
807 {
808 int i;
809
810 vcpu_load(vcpu);
811
812 down_read(&vcpu->kvm->slots_lock);
813 for (i = 0; i < msrs->nmsrs; ++i)
814 if (do_msr(vcpu, entries[i].index, &entries[i].data))
815 break;
816 up_read(&vcpu->kvm->slots_lock);
817
818 vcpu_put(vcpu);
819
820 return i;
821 }
822
823 /*
824 * Read or write a bunch of msrs. Parameters are user addresses.
825 *
826 * @return number of msrs set successfully.
827 */
828 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
829 int (*do_msr)(struct kvm_vcpu *vcpu,
830 unsigned index, u64 *data),
831 int writeback)
832 {
833 struct kvm_msrs msrs;
834 struct kvm_msr_entry *entries;
835 int r, n;
836 unsigned size;
837
838 r = -EFAULT;
839 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
840 goto out;
841
842 r = -E2BIG;
843 if (msrs.nmsrs >= MAX_IO_MSRS)
844 goto out;
845
846 r = -ENOMEM;
847 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
848 entries = vmalloc(size);
849 if (!entries)
850 goto out;
851
852 r = -EFAULT;
853 if (copy_from_user(entries, user_msrs->entries, size))
854 goto out_free;
855
856 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
857 if (r < 0)
858 goto out_free;
859
860 r = -EFAULT;
861 if (writeback && copy_to_user(user_msrs->entries, entries, size))
862 goto out_free;
863
864 r = n;
865
866 out_free:
867 vfree(entries);
868 out:
869 return r;
870 }
871
872 int kvm_dev_ioctl_check_extension(long ext)
873 {
874 int r;
875
876 switch (ext) {
877 case KVM_CAP_IRQCHIP:
878 case KVM_CAP_HLT:
879 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
880 case KVM_CAP_USER_MEMORY:
881 case KVM_CAP_SET_TSS_ADDR:
882 case KVM_CAP_EXT_CPUID:
883 case KVM_CAP_CLOCKSOURCE:
884 case KVM_CAP_PIT:
885 case KVM_CAP_NOP_IO_DELAY:
886 case KVM_CAP_MP_STATE:
887 case KVM_CAP_SYNC_MMU:
888 r = 1;
889 break;
890 case KVM_CAP_COALESCED_MMIO:
891 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
892 break;
893 case KVM_CAP_VAPIC:
894 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
895 break;
896 case KVM_CAP_NR_VCPUS:
897 r = KVM_MAX_VCPUS;
898 break;
899 case KVM_CAP_NR_MEMSLOTS:
900 r = KVM_MEMORY_SLOTS;
901 break;
902 case KVM_CAP_PV_MMU:
903 r = !tdp_enabled;
904 break;
905 default:
906 r = 0;
907 break;
908 }
909 return r;
910
911 }
912
913 long kvm_arch_dev_ioctl(struct file *filp,
914 unsigned int ioctl, unsigned long arg)
915 {
916 void __user *argp = (void __user *)arg;
917 long r;
918
919 switch (ioctl) {
920 case KVM_GET_MSR_INDEX_LIST: {
921 struct kvm_msr_list __user *user_msr_list = argp;
922 struct kvm_msr_list msr_list;
923 unsigned n;
924
925 r = -EFAULT;
926 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
927 goto out;
928 n = msr_list.nmsrs;
929 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
930 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
931 goto out;
932 r = -E2BIG;
933 if (n < num_msrs_to_save)
934 goto out;
935 r = -EFAULT;
936 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
937 num_msrs_to_save * sizeof(u32)))
938 goto out;
939 if (copy_to_user(user_msr_list->indices
940 + num_msrs_to_save * sizeof(u32),
941 &emulated_msrs,
942 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
943 goto out;
944 r = 0;
945 break;
946 }
947 case KVM_GET_SUPPORTED_CPUID: {
948 struct kvm_cpuid2 __user *cpuid_arg = argp;
949 struct kvm_cpuid2 cpuid;
950
951 r = -EFAULT;
952 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
953 goto out;
954 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
955 cpuid_arg->entries);
956 if (r)
957 goto out;
958
959 r = -EFAULT;
960 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
961 goto out;
962 r = 0;
963 break;
964 }
965 default:
966 r = -EINVAL;
967 }
968 out:
969 return r;
970 }
971
972 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
973 {
974 kvm_x86_ops->vcpu_load(vcpu, cpu);
975 kvm_write_guest_time(vcpu);
976 }
977
978 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
979 {
980 kvm_x86_ops->vcpu_put(vcpu);
981 kvm_put_guest_fpu(vcpu);
982 }
983
984 static int is_efer_nx(void)
985 {
986 u64 efer;
987
988 rdmsrl(MSR_EFER, efer);
989 return efer & EFER_NX;
990 }
991
992 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
993 {
994 int i;
995 struct kvm_cpuid_entry2 *e, *entry;
996
997 entry = NULL;
998 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
999 e = &vcpu->arch.cpuid_entries[i];
1000 if (e->function == 0x80000001) {
1001 entry = e;
1002 break;
1003 }
1004 }
1005 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1006 entry->edx &= ~(1 << 20);
1007 printk(KERN_INFO "kvm: guest NX capability removed\n");
1008 }
1009 }
1010
1011 /* when an old userspace process fills a new kernel module */
1012 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1013 struct kvm_cpuid *cpuid,
1014 struct kvm_cpuid_entry __user *entries)
1015 {
1016 int r, i;
1017 struct kvm_cpuid_entry *cpuid_entries;
1018
1019 r = -E2BIG;
1020 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1021 goto out;
1022 r = -ENOMEM;
1023 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1024 if (!cpuid_entries)
1025 goto out;
1026 r = -EFAULT;
1027 if (copy_from_user(cpuid_entries, entries,
1028 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1029 goto out_free;
1030 for (i = 0; i < cpuid->nent; i++) {
1031 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1032 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1033 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1034 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1035 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1036 vcpu->arch.cpuid_entries[i].index = 0;
1037 vcpu->arch.cpuid_entries[i].flags = 0;
1038 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1039 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1040 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1041 }
1042 vcpu->arch.cpuid_nent = cpuid->nent;
1043 cpuid_fix_nx_cap(vcpu);
1044 r = 0;
1045
1046 out_free:
1047 vfree(cpuid_entries);
1048 out:
1049 return r;
1050 }
1051
1052 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1053 struct kvm_cpuid2 *cpuid,
1054 struct kvm_cpuid_entry2 __user *entries)
1055 {
1056 int r;
1057
1058 r = -E2BIG;
1059 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1060 goto out;
1061 r = -EFAULT;
1062 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1063 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1064 goto out;
1065 vcpu->arch.cpuid_nent = cpuid->nent;
1066 return 0;
1067
1068 out:
1069 return r;
1070 }
1071
1072 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1073 struct kvm_cpuid2 *cpuid,
1074 struct kvm_cpuid_entry2 __user *entries)
1075 {
1076 int r;
1077
1078 r = -E2BIG;
1079 if (cpuid->nent < vcpu->arch.cpuid_nent)
1080 goto out;
1081 r = -EFAULT;
1082 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1083 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1084 goto out;
1085 return 0;
1086
1087 out:
1088 cpuid->nent = vcpu->arch.cpuid_nent;
1089 return r;
1090 }
1091
1092 static inline u32 bit(int bitno)
1093 {
1094 return 1 << (bitno & 31);
1095 }
1096
1097 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1098 u32 index)
1099 {
1100 entry->function = function;
1101 entry->index = index;
1102 cpuid_count(entry->function, entry->index,
1103 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1104 entry->flags = 0;
1105 }
1106
1107 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1108 u32 index, int *nent, int maxnent)
1109 {
1110 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1111 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1112 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1113 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1114 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1115 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1116 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1117 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1118 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1119 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1120 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1121 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1122 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1123 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1124 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1125 bit(X86_FEATURE_PGE) |
1126 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1127 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1128 bit(X86_FEATURE_SYSCALL) |
1129 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1130 #ifdef CONFIG_X86_64
1131 bit(X86_FEATURE_LM) |
1132 #endif
1133 bit(X86_FEATURE_MMXEXT) |
1134 bit(X86_FEATURE_3DNOWEXT) |
1135 bit(X86_FEATURE_3DNOW);
1136 const u32 kvm_supported_word3_x86_features =
1137 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1138 const u32 kvm_supported_word6_x86_features =
1139 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1140
1141 /* all func 2 cpuid_count() should be called on the same cpu */
1142 get_cpu();
1143 do_cpuid_1_ent(entry, function, index);
1144 ++*nent;
1145
1146 switch (function) {
1147 case 0:
1148 entry->eax = min(entry->eax, (u32)0xb);
1149 break;
1150 case 1:
1151 entry->edx &= kvm_supported_word0_x86_features;
1152 entry->ecx &= kvm_supported_word3_x86_features;
1153 break;
1154 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1155 * may return different values. This forces us to get_cpu() before
1156 * issuing the first command, and also to emulate this annoying behavior
1157 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1158 case 2: {
1159 int t, times = entry->eax & 0xff;
1160
1161 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1162 for (t = 1; t < times && *nent < maxnent; ++t) {
1163 do_cpuid_1_ent(&entry[t], function, 0);
1164 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1165 ++*nent;
1166 }
1167 break;
1168 }
1169 /* function 4 and 0xb have additional index. */
1170 case 4: {
1171 int i, cache_type;
1172
1173 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1174 /* read more entries until cache_type is zero */
1175 for (i = 1; *nent < maxnent; ++i) {
1176 cache_type = entry[i - 1].eax & 0x1f;
1177 if (!cache_type)
1178 break;
1179 do_cpuid_1_ent(&entry[i], function, i);
1180 entry[i].flags |=
1181 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1182 ++*nent;
1183 }
1184 break;
1185 }
1186 case 0xb: {
1187 int i, level_type;
1188
1189 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1190 /* read more entries until level_type is zero */
1191 for (i = 1; *nent < maxnent; ++i) {
1192 level_type = entry[i - 1].ecx & 0xff;
1193 if (!level_type)
1194 break;
1195 do_cpuid_1_ent(&entry[i], function, i);
1196 entry[i].flags |=
1197 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1198 ++*nent;
1199 }
1200 break;
1201 }
1202 case 0x80000000:
1203 entry->eax = min(entry->eax, 0x8000001a);
1204 break;
1205 case 0x80000001:
1206 entry->edx &= kvm_supported_word1_x86_features;
1207 entry->ecx &= kvm_supported_word6_x86_features;
1208 break;
1209 }
1210 put_cpu();
1211 }
1212
1213 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1214 struct kvm_cpuid_entry2 __user *entries)
1215 {
1216 struct kvm_cpuid_entry2 *cpuid_entries;
1217 int limit, nent = 0, r = -E2BIG;
1218 u32 func;
1219
1220 if (cpuid->nent < 1)
1221 goto out;
1222 r = -ENOMEM;
1223 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1224 if (!cpuid_entries)
1225 goto out;
1226
1227 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1228 limit = cpuid_entries[0].eax;
1229 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1230 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1231 &nent, cpuid->nent);
1232 r = -E2BIG;
1233 if (nent >= cpuid->nent)
1234 goto out_free;
1235
1236 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1237 limit = cpuid_entries[nent - 1].eax;
1238 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1239 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1240 &nent, cpuid->nent);
1241 r = -EFAULT;
1242 if (copy_to_user(entries, cpuid_entries,
1243 nent * sizeof(struct kvm_cpuid_entry2)))
1244 goto out_free;
1245 cpuid->nent = nent;
1246 r = 0;
1247
1248 out_free:
1249 vfree(cpuid_entries);
1250 out:
1251 return r;
1252 }
1253
1254 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1255 struct kvm_lapic_state *s)
1256 {
1257 vcpu_load(vcpu);
1258 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1259 vcpu_put(vcpu);
1260
1261 return 0;
1262 }
1263
1264 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1265 struct kvm_lapic_state *s)
1266 {
1267 vcpu_load(vcpu);
1268 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1269 kvm_apic_post_state_restore(vcpu);
1270 vcpu_put(vcpu);
1271
1272 return 0;
1273 }
1274
1275 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1276 struct kvm_interrupt *irq)
1277 {
1278 if (irq->irq < 0 || irq->irq >= 256)
1279 return -EINVAL;
1280 if (irqchip_in_kernel(vcpu->kvm))
1281 return -ENXIO;
1282 vcpu_load(vcpu);
1283
1284 set_bit(irq->irq, vcpu->arch.irq_pending);
1285 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1286
1287 vcpu_put(vcpu);
1288
1289 return 0;
1290 }
1291
1292 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1293 struct kvm_tpr_access_ctl *tac)
1294 {
1295 if (tac->flags)
1296 return -EINVAL;
1297 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1298 return 0;
1299 }
1300
1301 long kvm_arch_vcpu_ioctl(struct file *filp,
1302 unsigned int ioctl, unsigned long arg)
1303 {
1304 struct kvm_vcpu *vcpu = filp->private_data;
1305 void __user *argp = (void __user *)arg;
1306 int r;
1307 struct kvm_lapic_state *lapic = NULL;
1308
1309 switch (ioctl) {
1310 case KVM_GET_LAPIC: {
1311 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1312
1313 r = -ENOMEM;
1314 if (!lapic)
1315 goto out;
1316 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1317 if (r)
1318 goto out;
1319 r = -EFAULT;
1320 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1321 goto out;
1322 r = 0;
1323 break;
1324 }
1325 case KVM_SET_LAPIC: {
1326 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1327 r = -ENOMEM;
1328 if (!lapic)
1329 goto out;
1330 r = -EFAULT;
1331 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1332 goto out;
1333 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1334 if (r)
1335 goto out;
1336 r = 0;
1337 break;
1338 }
1339 case KVM_INTERRUPT: {
1340 struct kvm_interrupt irq;
1341
1342 r = -EFAULT;
1343 if (copy_from_user(&irq, argp, sizeof irq))
1344 goto out;
1345 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1346 if (r)
1347 goto out;
1348 r = 0;
1349 break;
1350 }
1351 case KVM_SET_CPUID: {
1352 struct kvm_cpuid __user *cpuid_arg = argp;
1353 struct kvm_cpuid cpuid;
1354
1355 r = -EFAULT;
1356 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1357 goto out;
1358 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1359 if (r)
1360 goto out;
1361 break;
1362 }
1363 case KVM_SET_CPUID2: {
1364 struct kvm_cpuid2 __user *cpuid_arg = argp;
1365 struct kvm_cpuid2 cpuid;
1366
1367 r = -EFAULT;
1368 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1369 goto out;
1370 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1371 cpuid_arg->entries);
1372 if (r)
1373 goto out;
1374 break;
1375 }
1376 case KVM_GET_CPUID2: {
1377 struct kvm_cpuid2 __user *cpuid_arg = argp;
1378 struct kvm_cpuid2 cpuid;
1379
1380 r = -EFAULT;
1381 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1382 goto out;
1383 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1384 cpuid_arg->entries);
1385 if (r)
1386 goto out;
1387 r = -EFAULT;
1388 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1389 goto out;
1390 r = 0;
1391 break;
1392 }
1393 case KVM_GET_MSRS:
1394 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1395 break;
1396 case KVM_SET_MSRS:
1397 r = msr_io(vcpu, argp, do_set_msr, 0);
1398 break;
1399 case KVM_TPR_ACCESS_REPORTING: {
1400 struct kvm_tpr_access_ctl tac;
1401
1402 r = -EFAULT;
1403 if (copy_from_user(&tac, argp, sizeof tac))
1404 goto out;
1405 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1406 if (r)
1407 goto out;
1408 r = -EFAULT;
1409 if (copy_to_user(argp, &tac, sizeof tac))
1410 goto out;
1411 r = 0;
1412 break;
1413 };
1414 case KVM_SET_VAPIC_ADDR: {
1415 struct kvm_vapic_addr va;
1416
1417 r = -EINVAL;
1418 if (!irqchip_in_kernel(vcpu->kvm))
1419 goto out;
1420 r = -EFAULT;
1421 if (copy_from_user(&va, argp, sizeof va))
1422 goto out;
1423 r = 0;
1424 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1425 break;
1426 }
1427 default:
1428 r = -EINVAL;
1429 }
1430 out:
1431 if (lapic)
1432 kfree(lapic);
1433 return r;
1434 }
1435
1436 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1437 {
1438 int ret;
1439
1440 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1441 return -1;
1442 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1443 return ret;
1444 }
1445
1446 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1447 u32 kvm_nr_mmu_pages)
1448 {
1449 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1450 return -EINVAL;
1451
1452 down_write(&kvm->slots_lock);
1453
1454 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1455 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1456
1457 up_write(&kvm->slots_lock);
1458 return 0;
1459 }
1460
1461 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1462 {
1463 return kvm->arch.n_alloc_mmu_pages;
1464 }
1465
1466 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1467 {
1468 int i;
1469 struct kvm_mem_alias *alias;
1470
1471 for (i = 0; i < kvm->arch.naliases; ++i) {
1472 alias = &kvm->arch.aliases[i];
1473 if (gfn >= alias->base_gfn
1474 && gfn < alias->base_gfn + alias->npages)
1475 return alias->target_gfn + gfn - alias->base_gfn;
1476 }
1477 return gfn;
1478 }
1479
1480 /*
1481 * Set a new alias region. Aliases map a portion of physical memory into
1482 * another portion. This is useful for memory windows, for example the PC
1483 * VGA region.
1484 */
1485 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1486 struct kvm_memory_alias *alias)
1487 {
1488 int r, n;
1489 struct kvm_mem_alias *p;
1490
1491 r = -EINVAL;
1492 /* General sanity checks */
1493 if (alias->memory_size & (PAGE_SIZE - 1))
1494 goto out;
1495 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1496 goto out;
1497 if (alias->slot >= KVM_ALIAS_SLOTS)
1498 goto out;
1499 if (alias->guest_phys_addr + alias->memory_size
1500 < alias->guest_phys_addr)
1501 goto out;
1502 if (alias->target_phys_addr + alias->memory_size
1503 < alias->target_phys_addr)
1504 goto out;
1505
1506 down_write(&kvm->slots_lock);
1507 spin_lock(&kvm->mmu_lock);
1508
1509 p = &kvm->arch.aliases[alias->slot];
1510 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1511 p->npages = alias->memory_size >> PAGE_SHIFT;
1512 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1513
1514 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1515 if (kvm->arch.aliases[n - 1].npages)
1516 break;
1517 kvm->arch.naliases = n;
1518
1519 spin_unlock(&kvm->mmu_lock);
1520 kvm_mmu_zap_all(kvm);
1521
1522 up_write(&kvm->slots_lock);
1523
1524 return 0;
1525
1526 out:
1527 return r;
1528 }
1529
1530 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1531 {
1532 int r;
1533
1534 r = 0;
1535 switch (chip->chip_id) {
1536 case KVM_IRQCHIP_PIC_MASTER:
1537 memcpy(&chip->chip.pic,
1538 &pic_irqchip(kvm)->pics[0],
1539 sizeof(struct kvm_pic_state));
1540 break;
1541 case KVM_IRQCHIP_PIC_SLAVE:
1542 memcpy(&chip->chip.pic,
1543 &pic_irqchip(kvm)->pics[1],
1544 sizeof(struct kvm_pic_state));
1545 break;
1546 case KVM_IRQCHIP_IOAPIC:
1547 memcpy(&chip->chip.ioapic,
1548 ioapic_irqchip(kvm),
1549 sizeof(struct kvm_ioapic_state));
1550 break;
1551 default:
1552 r = -EINVAL;
1553 break;
1554 }
1555 return r;
1556 }
1557
1558 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1559 {
1560 int r;
1561
1562 r = 0;
1563 switch (chip->chip_id) {
1564 case KVM_IRQCHIP_PIC_MASTER:
1565 memcpy(&pic_irqchip(kvm)->pics[0],
1566 &chip->chip.pic,
1567 sizeof(struct kvm_pic_state));
1568 break;
1569 case KVM_IRQCHIP_PIC_SLAVE:
1570 memcpy(&pic_irqchip(kvm)->pics[1],
1571 &chip->chip.pic,
1572 sizeof(struct kvm_pic_state));
1573 break;
1574 case KVM_IRQCHIP_IOAPIC:
1575 memcpy(ioapic_irqchip(kvm),
1576 &chip->chip.ioapic,
1577 sizeof(struct kvm_ioapic_state));
1578 break;
1579 default:
1580 r = -EINVAL;
1581 break;
1582 }
1583 kvm_pic_update_irq(pic_irqchip(kvm));
1584 return r;
1585 }
1586
1587 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1588 {
1589 int r = 0;
1590
1591 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1592 return r;
1593 }
1594
1595 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1596 {
1597 int r = 0;
1598
1599 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1600 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1601 return r;
1602 }
1603
1604 /*
1605 * Get (and clear) the dirty memory log for a memory slot.
1606 */
1607 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1608 struct kvm_dirty_log *log)
1609 {
1610 int r;
1611 int n;
1612 struct kvm_memory_slot *memslot;
1613 int is_dirty = 0;
1614
1615 down_write(&kvm->slots_lock);
1616
1617 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1618 if (r)
1619 goto out;
1620
1621 /* If nothing is dirty, don't bother messing with page tables. */
1622 if (is_dirty) {
1623 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1624 kvm_flush_remote_tlbs(kvm);
1625 memslot = &kvm->memslots[log->slot];
1626 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1627 memset(memslot->dirty_bitmap, 0, n);
1628 }
1629 r = 0;
1630 out:
1631 up_write(&kvm->slots_lock);
1632 return r;
1633 }
1634
1635 long kvm_arch_vm_ioctl(struct file *filp,
1636 unsigned int ioctl, unsigned long arg)
1637 {
1638 struct kvm *kvm = filp->private_data;
1639 void __user *argp = (void __user *)arg;
1640 int r = -EINVAL;
1641 /*
1642 * This union makes it completely explicit to gcc-3.x
1643 * that these two variables' stack usage should be
1644 * combined, not added together.
1645 */
1646 union {
1647 struct kvm_pit_state ps;
1648 struct kvm_memory_alias alias;
1649 } u;
1650
1651 switch (ioctl) {
1652 case KVM_SET_TSS_ADDR:
1653 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1654 if (r < 0)
1655 goto out;
1656 break;
1657 case KVM_SET_MEMORY_REGION: {
1658 struct kvm_memory_region kvm_mem;
1659 struct kvm_userspace_memory_region kvm_userspace_mem;
1660
1661 r = -EFAULT;
1662 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1663 goto out;
1664 kvm_userspace_mem.slot = kvm_mem.slot;
1665 kvm_userspace_mem.flags = kvm_mem.flags;
1666 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1667 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1668 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1669 if (r)
1670 goto out;
1671 break;
1672 }
1673 case KVM_SET_NR_MMU_PAGES:
1674 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1675 if (r)
1676 goto out;
1677 break;
1678 case KVM_GET_NR_MMU_PAGES:
1679 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1680 break;
1681 case KVM_SET_MEMORY_ALIAS:
1682 r = -EFAULT;
1683 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1684 goto out;
1685 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1686 if (r)
1687 goto out;
1688 break;
1689 case KVM_CREATE_IRQCHIP:
1690 r = -ENOMEM;
1691 kvm->arch.vpic = kvm_create_pic(kvm);
1692 if (kvm->arch.vpic) {
1693 r = kvm_ioapic_init(kvm);
1694 if (r) {
1695 kfree(kvm->arch.vpic);
1696 kvm->arch.vpic = NULL;
1697 goto out;
1698 }
1699 } else
1700 goto out;
1701 break;
1702 case KVM_CREATE_PIT:
1703 r = -ENOMEM;
1704 kvm->arch.vpit = kvm_create_pit(kvm);
1705 if (kvm->arch.vpit)
1706 r = 0;
1707 break;
1708 case KVM_IRQ_LINE: {
1709 struct kvm_irq_level irq_event;
1710
1711 r = -EFAULT;
1712 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1713 goto out;
1714 if (irqchip_in_kernel(kvm)) {
1715 mutex_lock(&kvm->lock);
1716 if (irq_event.irq < 16)
1717 kvm_pic_set_irq(pic_irqchip(kvm),
1718 irq_event.irq,
1719 irq_event.level);
1720 kvm_ioapic_set_irq(kvm->arch.vioapic,
1721 irq_event.irq,
1722 irq_event.level);
1723 mutex_unlock(&kvm->lock);
1724 r = 0;
1725 }
1726 break;
1727 }
1728 case KVM_GET_IRQCHIP: {
1729 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1730 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1731
1732 r = -ENOMEM;
1733 if (!chip)
1734 goto out;
1735 r = -EFAULT;
1736 if (copy_from_user(chip, argp, sizeof *chip))
1737 goto get_irqchip_out;
1738 r = -ENXIO;
1739 if (!irqchip_in_kernel(kvm))
1740 goto get_irqchip_out;
1741 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1742 if (r)
1743 goto get_irqchip_out;
1744 r = -EFAULT;
1745 if (copy_to_user(argp, chip, sizeof *chip))
1746 goto get_irqchip_out;
1747 r = 0;
1748 get_irqchip_out:
1749 kfree(chip);
1750 if (r)
1751 goto out;
1752 break;
1753 }
1754 case KVM_SET_IRQCHIP: {
1755 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1756 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1757
1758 r = -ENOMEM;
1759 if (!chip)
1760 goto out;
1761 r = -EFAULT;
1762 if (copy_from_user(chip, argp, sizeof *chip))
1763 goto set_irqchip_out;
1764 r = -ENXIO;
1765 if (!irqchip_in_kernel(kvm))
1766 goto set_irqchip_out;
1767 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1768 if (r)
1769 goto set_irqchip_out;
1770 r = 0;
1771 set_irqchip_out:
1772 kfree(chip);
1773 if (r)
1774 goto out;
1775 break;
1776 }
1777 case KVM_GET_PIT: {
1778 r = -EFAULT;
1779 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1780 goto out;
1781 r = -ENXIO;
1782 if (!kvm->arch.vpit)
1783 goto out;
1784 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1785 if (r)
1786 goto out;
1787 r = -EFAULT;
1788 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1789 goto out;
1790 r = 0;
1791 break;
1792 }
1793 case KVM_SET_PIT: {
1794 r = -EFAULT;
1795 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1796 goto out;
1797 r = -ENXIO;
1798 if (!kvm->arch.vpit)
1799 goto out;
1800 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1801 if (r)
1802 goto out;
1803 r = 0;
1804 break;
1805 }
1806 default:
1807 ;
1808 }
1809 out:
1810 return r;
1811 }
1812
1813 static void kvm_init_msr_list(void)
1814 {
1815 u32 dummy[2];
1816 unsigned i, j;
1817
1818 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1819 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1820 continue;
1821 if (j < i)
1822 msrs_to_save[j] = msrs_to_save[i];
1823 j++;
1824 }
1825 num_msrs_to_save = j;
1826 }
1827
1828 /*
1829 * Only apic need an MMIO device hook, so shortcut now..
1830 */
1831 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1832 gpa_t addr, int len,
1833 int is_write)
1834 {
1835 struct kvm_io_device *dev;
1836
1837 if (vcpu->arch.apic) {
1838 dev = &vcpu->arch.apic->dev;
1839 if (dev->in_range(dev, addr, len, is_write))
1840 return dev;
1841 }
1842 return NULL;
1843 }
1844
1845
1846 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1847 gpa_t addr, int len,
1848 int is_write)
1849 {
1850 struct kvm_io_device *dev;
1851
1852 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1853 if (dev == NULL)
1854 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1855 is_write);
1856 return dev;
1857 }
1858
1859 int emulator_read_std(unsigned long addr,
1860 void *val,
1861 unsigned int bytes,
1862 struct kvm_vcpu *vcpu)
1863 {
1864 void *data = val;
1865 int r = X86EMUL_CONTINUE;
1866
1867 while (bytes) {
1868 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1869 unsigned offset = addr & (PAGE_SIZE-1);
1870 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1871 int ret;
1872
1873 if (gpa == UNMAPPED_GVA) {
1874 r = X86EMUL_PROPAGATE_FAULT;
1875 goto out;
1876 }
1877 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1878 if (ret < 0) {
1879 r = X86EMUL_UNHANDLEABLE;
1880 goto out;
1881 }
1882
1883 bytes -= tocopy;
1884 data += tocopy;
1885 addr += tocopy;
1886 }
1887 out:
1888 return r;
1889 }
1890 EXPORT_SYMBOL_GPL(emulator_read_std);
1891
1892 static int emulator_read_emulated(unsigned long addr,
1893 void *val,
1894 unsigned int bytes,
1895 struct kvm_vcpu *vcpu)
1896 {
1897 struct kvm_io_device *mmio_dev;
1898 gpa_t gpa;
1899
1900 if (vcpu->mmio_read_completed) {
1901 memcpy(val, vcpu->mmio_data, bytes);
1902 vcpu->mmio_read_completed = 0;
1903 return X86EMUL_CONTINUE;
1904 }
1905
1906 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1907
1908 /* For APIC access vmexit */
1909 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1910 goto mmio;
1911
1912 if (emulator_read_std(addr, val, bytes, vcpu)
1913 == X86EMUL_CONTINUE)
1914 return X86EMUL_CONTINUE;
1915 if (gpa == UNMAPPED_GVA)
1916 return X86EMUL_PROPAGATE_FAULT;
1917
1918 mmio:
1919 /*
1920 * Is this MMIO handled locally?
1921 */
1922 mutex_lock(&vcpu->kvm->lock);
1923 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1924 if (mmio_dev) {
1925 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1926 mutex_unlock(&vcpu->kvm->lock);
1927 return X86EMUL_CONTINUE;
1928 }
1929 mutex_unlock(&vcpu->kvm->lock);
1930
1931 vcpu->mmio_needed = 1;
1932 vcpu->mmio_phys_addr = gpa;
1933 vcpu->mmio_size = bytes;
1934 vcpu->mmio_is_write = 0;
1935
1936 return X86EMUL_UNHANDLEABLE;
1937 }
1938
1939 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1940 const void *val, int bytes)
1941 {
1942 int ret;
1943
1944 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1945 if (ret < 0)
1946 return 0;
1947 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1948 return 1;
1949 }
1950
1951 static int emulator_write_emulated_onepage(unsigned long addr,
1952 const void *val,
1953 unsigned int bytes,
1954 struct kvm_vcpu *vcpu)
1955 {
1956 struct kvm_io_device *mmio_dev;
1957 gpa_t gpa;
1958
1959 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1960
1961 if (gpa == UNMAPPED_GVA) {
1962 kvm_inject_page_fault(vcpu, addr, 2);
1963 return X86EMUL_PROPAGATE_FAULT;
1964 }
1965
1966 /* For APIC access vmexit */
1967 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1968 goto mmio;
1969
1970 if (emulator_write_phys(vcpu, gpa, val, bytes))
1971 return X86EMUL_CONTINUE;
1972
1973 mmio:
1974 /*
1975 * Is this MMIO handled locally?
1976 */
1977 mutex_lock(&vcpu->kvm->lock);
1978 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1979 if (mmio_dev) {
1980 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1981 mutex_unlock(&vcpu->kvm->lock);
1982 return X86EMUL_CONTINUE;
1983 }
1984 mutex_unlock(&vcpu->kvm->lock);
1985
1986 vcpu->mmio_needed = 1;
1987 vcpu->mmio_phys_addr = gpa;
1988 vcpu->mmio_size = bytes;
1989 vcpu->mmio_is_write = 1;
1990 memcpy(vcpu->mmio_data, val, bytes);
1991
1992 return X86EMUL_CONTINUE;
1993 }
1994
1995 int emulator_write_emulated(unsigned long addr,
1996 const void *val,
1997 unsigned int bytes,
1998 struct kvm_vcpu *vcpu)
1999 {
2000 /* Crossing a page boundary? */
2001 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2002 int rc, now;
2003
2004 now = -addr & ~PAGE_MASK;
2005 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2006 if (rc != X86EMUL_CONTINUE)
2007 return rc;
2008 addr += now;
2009 val += now;
2010 bytes -= now;
2011 }
2012 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2013 }
2014 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2015
2016 static int emulator_cmpxchg_emulated(unsigned long addr,
2017 const void *old,
2018 const void *new,
2019 unsigned int bytes,
2020 struct kvm_vcpu *vcpu)
2021 {
2022 static int reported;
2023
2024 if (!reported) {
2025 reported = 1;
2026 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2027 }
2028 #ifndef CONFIG_X86_64
2029 /* guests cmpxchg8b have to be emulated atomically */
2030 if (bytes == 8) {
2031 gpa_t gpa;
2032 struct page *page;
2033 char *kaddr;
2034 u64 val;
2035
2036 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2037
2038 if (gpa == UNMAPPED_GVA ||
2039 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2040 goto emul_write;
2041
2042 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2043 goto emul_write;
2044
2045 val = *(u64 *)new;
2046
2047 down_read(&current->mm->mmap_sem);
2048 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2049 up_read(&current->mm->mmap_sem);
2050
2051 kaddr = kmap_atomic(page, KM_USER0);
2052 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2053 kunmap_atomic(kaddr, KM_USER0);
2054 kvm_release_page_dirty(page);
2055 }
2056 emul_write:
2057 #endif
2058
2059 return emulator_write_emulated(addr, new, bytes, vcpu);
2060 }
2061
2062 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2063 {
2064 return kvm_x86_ops->get_segment_base(vcpu, seg);
2065 }
2066
2067 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2068 {
2069 return X86EMUL_CONTINUE;
2070 }
2071
2072 int emulate_clts(struct kvm_vcpu *vcpu)
2073 {
2074 KVMTRACE_0D(CLTS, vcpu, handler);
2075 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2076 return X86EMUL_CONTINUE;
2077 }
2078
2079 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2080 {
2081 struct kvm_vcpu *vcpu = ctxt->vcpu;
2082
2083 switch (dr) {
2084 case 0 ... 3:
2085 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2086 return X86EMUL_CONTINUE;
2087 default:
2088 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2089 return X86EMUL_UNHANDLEABLE;
2090 }
2091 }
2092
2093 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2094 {
2095 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2096 int exception;
2097
2098 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2099 if (exception) {
2100 /* FIXME: better handling */
2101 return X86EMUL_UNHANDLEABLE;
2102 }
2103 return X86EMUL_CONTINUE;
2104 }
2105
2106 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2107 {
2108 u8 opcodes[4];
2109 unsigned long rip = vcpu->arch.rip;
2110 unsigned long rip_linear;
2111
2112 if (!printk_ratelimit())
2113 return;
2114
2115 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2116
2117 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2118
2119 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2120 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2123
2124 static struct x86_emulate_ops emulate_ops = {
2125 .read_std = emulator_read_std,
2126 .read_emulated = emulator_read_emulated,
2127 .write_emulated = emulator_write_emulated,
2128 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2129 };
2130
2131 int emulate_instruction(struct kvm_vcpu *vcpu,
2132 struct kvm_run *run,
2133 unsigned long cr2,
2134 u16 error_code,
2135 int emulation_type)
2136 {
2137 int r;
2138 struct decode_cache *c;
2139
2140 vcpu->arch.mmio_fault_cr2 = cr2;
2141 kvm_x86_ops->cache_regs(vcpu);
2142
2143 vcpu->mmio_is_write = 0;
2144 vcpu->arch.pio.string = 0;
2145
2146 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2147 int cs_db, cs_l;
2148 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2149
2150 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2151 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2152 vcpu->arch.emulate_ctxt.mode =
2153 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2154 ? X86EMUL_MODE_REAL : cs_l
2155 ? X86EMUL_MODE_PROT64 : cs_db
2156 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2157
2158 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2159
2160 /* Reject the instructions other than VMCALL/VMMCALL when
2161 * try to emulate invalid opcode */
2162 c = &vcpu->arch.emulate_ctxt.decode;
2163 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2164 (!(c->twobyte && c->b == 0x01 &&
2165 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2166 c->modrm_mod == 3 && c->modrm_rm == 1)))
2167 return EMULATE_FAIL;
2168
2169 ++vcpu->stat.insn_emulation;
2170 if (r) {
2171 ++vcpu->stat.insn_emulation_fail;
2172 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2173 return EMULATE_DONE;
2174 return EMULATE_FAIL;
2175 }
2176 }
2177
2178 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2179
2180 if (vcpu->arch.pio.string)
2181 return EMULATE_DO_MMIO;
2182
2183 if ((r || vcpu->mmio_is_write) && run) {
2184 run->exit_reason = KVM_EXIT_MMIO;
2185 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2186 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2187 run->mmio.len = vcpu->mmio_size;
2188 run->mmio.is_write = vcpu->mmio_is_write;
2189 }
2190
2191 if (r) {
2192 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2193 return EMULATE_DONE;
2194 if (!vcpu->mmio_needed) {
2195 kvm_report_emulation_failure(vcpu, "mmio");
2196 return EMULATE_FAIL;
2197 }
2198 return EMULATE_DO_MMIO;
2199 }
2200
2201 kvm_x86_ops->decache_regs(vcpu);
2202 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2203
2204 if (vcpu->mmio_is_write) {
2205 vcpu->mmio_needed = 0;
2206 return EMULATE_DO_MMIO;
2207 }
2208
2209 return EMULATE_DONE;
2210 }
2211 EXPORT_SYMBOL_GPL(emulate_instruction);
2212
2213 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2214 {
2215 int i;
2216
2217 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2218 if (vcpu->arch.pio.guest_pages[i]) {
2219 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2220 vcpu->arch.pio.guest_pages[i] = NULL;
2221 }
2222 }
2223
2224 static int pio_copy_data(struct kvm_vcpu *vcpu)
2225 {
2226 void *p = vcpu->arch.pio_data;
2227 void *q;
2228 unsigned bytes;
2229 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2230
2231 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2232 PAGE_KERNEL);
2233 if (!q) {
2234 free_pio_guest_pages(vcpu);
2235 return -ENOMEM;
2236 }
2237 q += vcpu->arch.pio.guest_page_offset;
2238 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2239 if (vcpu->arch.pio.in)
2240 memcpy(q, p, bytes);
2241 else
2242 memcpy(p, q, bytes);
2243 q -= vcpu->arch.pio.guest_page_offset;
2244 vunmap(q);
2245 free_pio_guest_pages(vcpu);
2246 return 0;
2247 }
2248
2249 int complete_pio(struct kvm_vcpu *vcpu)
2250 {
2251 struct kvm_pio_request *io = &vcpu->arch.pio;
2252 long delta;
2253 int r;
2254
2255 kvm_x86_ops->cache_regs(vcpu);
2256
2257 if (!io->string) {
2258 if (io->in)
2259 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2260 io->size);
2261 } else {
2262 if (io->in) {
2263 r = pio_copy_data(vcpu);
2264 if (r) {
2265 kvm_x86_ops->cache_regs(vcpu);
2266 return r;
2267 }
2268 }
2269
2270 delta = 1;
2271 if (io->rep) {
2272 delta *= io->cur_count;
2273 /*
2274 * The size of the register should really depend on
2275 * current address size.
2276 */
2277 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2278 }
2279 if (io->down)
2280 delta = -delta;
2281 delta *= io->size;
2282 if (io->in)
2283 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2284 else
2285 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2286 }
2287
2288 kvm_x86_ops->decache_regs(vcpu);
2289
2290 io->count -= io->cur_count;
2291 io->cur_count = 0;
2292
2293 return 0;
2294 }
2295
2296 static void kernel_pio(struct kvm_io_device *pio_dev,
2297 struct kvm_vcpu *vcpu,
2298 void *pd)
2299 {
2300 /* TODO: String I/O for in kernel device */
2301
2302 mutex_lock(&vcpu->kvm->lock);
2303 if (vcpu->arch.pio.in)
2304 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2305 vcpu->arch.pio.size,
2306 pd);
2307 else
2308 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2309 vcpu->arch.pio.size,
2310 pd);
2311 mutex_unlock(&vcpu->kvm->lock);
2312 }
2313
2314 static void pio_string_write(struct kvm_io_device *pio_dev,
2315 struct kvm_vcpu *vcpu)
2316 {
2317 struct kvm_pio_request *io = &vcpu->arch.pio;
2318 void *pd = vcpu->arch.pio_data;
2319 int i;
2320
2321 mutex_lock(&vcpu->kvm->lock);
2322 for (i = 0; i < io->cur_count; i++) {
2323 kvm_iodevice_write(pio_dev, io->port,
2324 io->size,
2325 pd);
2326 pd += io->size;
2327 }
2328 mutex_unlock(&vcpu->kvm->lock);
2329 }
2330
2331 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2332 gpa_t addr, int len,
2333 int is_write)
2334 {
2335 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2336 }
2337
2338 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2339 int size, unsigned port)
2340 {
2341 struct kvm_io_device *pio_dev;
2342
2343 vcpu->run->exit_reason = KVM_EXIT_IO;
2344 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2345 vcpu->run->io.size = vcpu->arch.pio.size = size;
2346 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2347 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2348 vcpu->run->io.port = vcpu->arch.pio.port = port;
2349 vcpu->arch.pio.in = in;
2350 vcpu->arch.pio.string = 0;
2351 vcpu->arch.pio.down = 0;
2352 vcpu->arch.pio.guest_page_offset = 0;
2353 vcpu->arch.pio.rep = 0;
2354
2355 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2356 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2357 handler);
2358 else
2359 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2360 handler);
2361
2362 kvm_x86_ops->cache_regs(vcpu);
2363 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2364
2365 kvm_x86_ops->skip_emulated_instruction(vcpu);
2366
2367 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2368 if (pio_dev) {
2369 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2370 complete_pio(vcpu);
2371 return 1;
2372 }
2373 return 0;
2374 }
2375 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2376
2377 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2378 int size, unsigned long count, int down,
2379 gva_t address, int rep, unsigned port)
2380 {
2381 unsigned now, in_page;
2382 int i, ret = 0;
2383 int nr_pages = 1;
2384 struct page *page;
2385 struct kvm_io_device *pio_dev;
2386
2387 vcpu->run->exit_reason = KVM_EXIT_IO;
2388 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2389 vcpu->run->io.size = vcpu->arch.pio.size = size;
2390 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2391 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2392 vcpu->run->io.port = vcpu->arch.pio.port = port;
2393 vcpu->arch.pio.in = in;
2394 vcpu->arch.pio.string = 1;
2395 vcpu->arch.pio.down = down;
2396 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2397 vcpu->arch.pio.rep = rep;
2398
2399 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2400 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2401 handler);
2402 else
2403 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2404 handler);
2405
2406 if (!count) {
2407 kvm_x86_ops->skip_emulated_instruction(vcpu);
2408 return 1;
2409 }
2410
2411 if (!down)
2412 in_page = PAGE_SIZE - offset_in_page(address);
2413 else
2414 in_page = offset_in_page(address) + size;
2415 now = min(count, (unsigned long)in_page / size);
2416 if (!now) {
2417 /*
2418 * String I/O straddles page boundary. Pin two guest pages
2419 * so that we satisfy atomicity constraints. Do just one
2420 * transaction to avoid complexity.
2421 */
2422 nr_pages = 2;
2423 now = 1;
2424 }
2425 if (down) {
2426 /*
2427 * String I/O in reverse. Yuck. Kill the guest, fix later.
2428 */
2429 pr_unimpl(vcpu, "guest string pio down\n");
2430 kvm_inject_gp(vcpu, 0);
2431 return 1;
2432 }
2433 vcpu->run->io.count = now;
2434 vcpu->arch.pio.cur_count = now;
2435
2436 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2437 kvm_x86_ops->skip_emulated_instruction(vcpu);
2438
2439 for (i = 0; i < nr_pages; ++i) {
2440 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2441 vcpu->arch.pio.guest_pages[i] = page;
2442 if (!page) {
2443 kvm_inject_gp(vcpu, 0);
2444 free_pio_guest_pages(vcpu);
2445 return 1;
2446 }
2447 }
2448
2449 pio_dev = vcpu_find_pio_dev(vcpu, port,
2450 vcpu->arch.pio.cur_count,
2451 !vcpu->arch.pio.in);
2452 if (!vcpu->arch.pio.in) {
2453 /* string PIO write */
2454 ret = pio_copy_data(vcpu);
2455 if (ret >= 0 && pio_dev) {
2456 pio_string_write(pio_dev, vcpu);
2457 complete_pio(vcpu);
2458 if (vcpu->arch.pio.count == 0)
2459 ret = 1;
2460 }
2461 } else if (pio_dev)
2462 pr_unimpl(vcpu, "no string pio read support yet, "
2463 "port %x size %d count %ld\n",
2464 port, size, count);
2465
2466 return ret;
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2469
2470 int kvm_arch_init(void *opaque)
2471 {
2472 int r;
2473 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2474
2475 if (kvm_x86_ops) {
2476 printk(KERN_ERR "kvm: already loaded the other module\n");
2477 r = -EEXIST;
2478 goto out;
2479 }
2480
2481 if (!ops->cpu_has_kvm_support()) {
2482 printk(KERN_ERR "kvm: no hardware support\n");
2483 r = -EOPNOTSUPP;
2484 goto out;
2485 }
2486 if (ops->disabled_by_bios()) {
2487 printk(KERN_ERR "kvm: disabled by bios\n");
2488 r = -EOPNOTSUPP;
2489 goto out;
2490 }
2491
2492 r = kvm_mmu_module_init();
2493 if (r)
2494 goto out;
2495
2496 kvm_init_msr_list();
2497
2498 kvm_x86_ops = ops;
2499 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2500 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2501 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2502 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2503 return 0;
2504
2505 out:
2506 return r;
2507 }
2508
2509 void kvm_arch_exit(void)
2510 {
2511 kvm_x86_ops = NULL;
2512 kvm_mmu_module_exit();
2513 }
2514
2515 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2516 {
2517 ++vcpu->stat.halt_exits;
2518 KVMTRACE_0D(HLT, vcpu, handler);
2519 if (irqchip_in_kernel(vcpu->kvm)) {
2520 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2521 up_read(&vcpu->kvm->slots_lock);
2522 kvm_vcpu_block(vcpu);
2523 down_read(&vcpu->kvm->slots_lock);
2524 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2525 return -EINTR;
2526 return 1;
2527 } else {
2528 vcpu->run->exit_reason = KVM_EXIT_HLT;
2529 return 0;
2530 }
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2533
2534 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2535 unsigned long a1)
2536 {
2537 if (is_long_mode(vcpu))
2538 return a0;
2539 else
2540 return a0 | ((gpa_t)a1 << 32);
2541 }
2542
2543 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2544 {
2545 unsigned long nr, a0, a1, a2, a3, ret;
2546 int r = 1;
2547
2548 kvm_x86_ops->cache_regs(vcpu);
2549
2550 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2551 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2552 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2553 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2554 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2555
2556 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2557
2558 if (!is_long_mode(vcpu)) {
2559 nr &= 0xFFFFFFFF;
2560 a0 &= 0xFFFFFFFF;
2561 a1 &= 0xFFFFFFFF;
2562 a2 &= 0xFFFFFFFF;
2563 a3 &= 0xFFFFFFFF;
2564 }
2565
2566 switch (nr) {
2567 case KVM_HC_VAPIC_POLL_IRQ:
2568 ret = 0;
2569 break;
2570 case KVM_HC_MMU_OP:
2571 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2572 break;
2573 default:
2574 ret = -KVM_ENOSYS;
2575 break;
2576 }
2577 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2578 kvm_x86_ops->decache_regs(vcpu);
2579 ++vcpu->stat.hypercalls;
2580 return r;
2581 }
2582 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2583
2584 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2585 {
2586 char instruction[3];
2587 int ret = 0;
2588
2589
2590 /*
2591 * Blow out the MMU to ensure that no other VCPU has an active mapping
2592 * to ensure that the updated hypercall appears atomically across all
2593 * VCPUs.
2594 */
2595 kvm_mmu_zap_all(vcpu->kvm);
2596
2597 kvm_x86_ops->cache_regs(vcpu);
2598 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2599 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2600 != X86EMUL_CONTINUE)
2601 ret = -EFAULT;
2602
2603 return ret;
2604 }
2605
2606 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2607 {
2608 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2609 }
2610
2611 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2612 {
2613 struct descriptor_table dt = { limit, base };
2614
2615 kvm_x86_ops->set_gdt(vcpu, &dt);
2616 }
2617
2618 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2619 {
2620 struct descriptor_table dt = { limit, base };
2621
2622 kvm_x86_ops->set_idt(vcpu, &dt);
2623 }
2624
2625 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2626 unsigned long *rflags)
2627 {
2628 kvm_lmsw(vcpu, msw);
2629 *rflags = kvm_x86_ops->get_rflags(vcpu);
2630 }
2631
2632 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2633 {
2634 unsigned long value;
2635
2636 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2637 switch (cr) {
2638 case 0:
2639 value = vcpu->arch.cr0;
2640 break;
2641 case 2:
2642 value = vcpu->arch.cr2;
2643 break;
2644 case 3:
2645 value = vcpu->arch.cr3;
2646 break;
2647 case 4:
2648 value = vcpu->arch.cr4;
2649 break;
2650 case 8:
2651 value = kvm_get_cr8(vcpu);
2652 break;
2653 default:
2654 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2655 return 0;
2656 }
2657 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2658 (u32)((u64)value >> 32), handler);
2659
2660 return value;
2661 }
2662
2663 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2664 unsigned long *rflags)
2665 {
2666 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2667 (u32)((u64)val >> 32), handler);
2668
2669 switch (cr) {
2670 case 0:
2671 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2672 *rflags = kvm_x86_ops->get_rflags(vcpu);
2673 break;
2674 case 2:
2675 vcpu->arch.cr2 = val;
2676 break;
2677 case 3:
2678 kvm_set_cr3(vcpu, val);
2679 break;
2680 case 4:
2681 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2682 break;
2683 case 8:
2684 kvm_set_cr8(vcpu, val & 0xfUL);
2685 break;
2686 default:
2687 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2688 }
2689 }
2690
2691 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2692 {
2693 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2694 int j, nent = vcpu->arch.cpuid_nent;
2695
2696 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2697 /* when no next entry is found, the current entry[i] is reselected */
2698 for (j = i + 1; j == i; j = (j + 1) % nent) {
2699 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2700 if (ej->function == e->function) {
2701 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2702 return j;
2703 }
2704 }
2705 return 0; /* silence gcc, even though control never reaches here */
2706 }
2707
2708 /* find an entry with matching function, matching index (if needed), and that
2709 * should be read next (if it's stateful) */
2710 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2711 u32 function, u32 index)
2712 {
2713 if (e->function != function)
2714 return 0;
2715 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2716 return 0;
2717 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2718 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2719 return 0;
2720 return 1;
2721 }
2722
2723 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2724 {
2725 int i;
2726 u32 function, index;
2727 struct kvm_cpuid_entry2 *e, *best;
2728
2729 kvm_x86_ops->cache_regs(vcpu);
2730 function = vcpu->arch.regs[VCPU_REGS_RAX];
2731 index = vcpu->arch.regs[VCPU_REGS_RCX];
2732 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2733 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2734 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2735 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2736 best = NULL;
2737 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2738 e = &vcpu->arch.cpuid_entries[i];
2739 if (is_matching_cpuid_entry(e, function, index)) {
2740 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2741 move_to_next_stateful_cpuid_entry(vcpu, i);
2742 best = e;
2743 break;
2744 }
2745 /*
2746 * Both basic or both extended?
2747 */
2748 if (((e->function ^ function) & 0x80000000) == 0)
2749 if (!best || e->function > best->function)
2750 best = e;
2751 }
2752 if (best) {
2753 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2754 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2755 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2756 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2757 }
2758 kvm_x86_ops->decache_regs(vcpu);
2759 kvm_x86_ops->skip_emulated_instruction(vcpu);
2760 KVMTRACE_5D(CPUID, vcpu, function,
2761 (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2762 (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2763 (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2764 (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2765 }
2766 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2767
2768 /*
2769 * Check if userspace requested an interrupt window, and that the
2770 * interrupt window is open.
2771 *
2772 * No need to exit to userspace if we already have an interrupt queued.
2773 */
2774 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2775 struct kvm_run *kvm_run)
2776 {
2777 return (!vcpu->arch.irq_summary &&
2778 kvm_run->request_interrupt_window &&
2779 vcpu->arch.interrupt_window_open &&
2780 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2781 }
2782
2783 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2784 struct kvm_run *kvm_run)
2785 {
2786 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2787 kvm_run->cr8 = kvm_get_cr8(vcpu);
2788 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2789 if (irqchip_in_kernel(vcpu->kvm))
2790 kvm_run->ready_for_interrupt_injection = 1;
2791 else
2792 kvm_run->ready_for_interrupt_injection =
2793 (vcpu->arch.interrupt_window_open &&
2794 vcpu->arch.irq_summary == 0);
2795 }
2796
2797 static void vapic_enter(struct kvm_vcpu *vcpu)
2798 {
2799 struct kvm_lapic *apic = vcpu->arch.apic;
2800 struct page *page;
2801
2802 if (!apic || !apic->vapic_addr)
2803 return;
2804
2805 down_read(&current->mm->mmap_sem);
2806 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2807 up_read(&current->mm->mmap_sem);
2808
2809 vcpu->arch.apic->vapic_page = page;
2810 }
2811
2812 static void vapic_exit(struct kvm_vcpu *vcpu)
2813 {
2814 struct kvm_lapic *apic = vcpu->arch.apic;
2815
2816 if (!apic || !apic->vapic_addr)
2817 return;
2818
2819 down_read(&vcpu->kvm->slots_lock);
2820 kvm_release_page_dirty(apic->vapic_page);
2821 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2822 up_read(&vcpu->kvm->slots_lock);
2823 }
2824
2825 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2826 {
2827 int r;
2828
2829 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2830 pr_debug("vcpu %d received sipi with vector # %x\n",
2831 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2832 kvm_lapic_reset(vcpu);
2833 r = kvm_x86_ops->vcpu_reset(vcpu);
2834 if (r)
2835 return r;
2836 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2837 }
2838
2839 down_read(&vcpu->kvm->slots_lock);
2840 vapic_enter(vcpu);
2841
2842 again:
2843 if (vcpu->requests)
2844 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2845 kvm_mmu_unload(vcpu);
2846
2847 r = kvm_mmu_reload(vcpu);
2848 if (unlikely(r))
2849 goto out;
2850
2851 if (vcpu->requests) {
2852 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2853 __kvm_migrate_timers(vcpu);
2854 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2855 kvm_x86_ops->tlb_flush(vcpu);
2856 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2857 &vcpu->requests)) {
2858 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2859 r = 0;
2860 goto out;
2861 }
2862 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2863 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2864 r = 0;
2865 goto out;
2866 }
2867 }
2868
2869 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2870 kvm_inject_pending_timer_irqs(vcpu);
2871
2872 preempt_disable();
2873
2874 kvm_x86_ops->prepare_guest_switch(vcpu);
2875 kvm_load_guest_fpu(vcpu);
2876
2877 local_irq_disable();
2878
2879 if (vcpu->requests || need_resched()) {
2880 local_irq_enable();
2881 preempt_enable();
2882 r = 1;
2883 goto out;
2884 }
2885
2886 if (signal_pending(current)) {
2887 local_irq_enable();
2888 preempt_enable();
2889 r = -EINTR;
2890 kvm_run->exit_reason = KVM_EXIT_INTR;
2891 ++vcpu->stat.signal_exits;
2892 goto out;
2893 }
2894
2895 if (vcpu->guest_debug.enabled)
2896 kvm_x86_ops->guest_debug_pre(vcpu);
2897
2898 vcpu->guest_mode = 1;
2899 /*
2900 * Make sure that guest_mode assignment won't happen after
2901 * testing the pending IRQ vector bitmap.
2902 */
2903 smp_wmb();
2904
2905 if (vcpu->arch.exception.pending)
2906 __queue_exception(vcpu);
2907 else if (irqchip_in_kernel(vcpu->kvm))
2908 kvm_x86_ops->inject_pending_irq(vcpu);
2909 else
2910 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2911
2912 kvm_lapic_sync_to_vapic(vcpu);
2913
2914 up_read(&vcpu->kvm->slots_lock);
2915
2916 kvm_guest_enter();
2917
2918
2919 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2920 kvm_x86_ops->run(vcpu, kvm_run);
2921
2922 vcpu->guest_mode = 0;
2923 local_irq_enable();
2924
2925 ++vcpu->stat.exits;
2926
2927 /*
2928 * We must have an instruction between local_irq_enable() and
2929 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2930 * the interrupt shadow. The stat.exits increment will do nicely.
2931 * But we need to prevent reordering, hence this barrier():
2932 */
2933 barrier();
2934
2935 kvm_guest_exit();
2936
2937 preempt_enable();
2938
2939 down_read(&vcpu->kvm->slots_lock);
2940
2941 /*
2942 * Profile KVM exit RIPs:
2943 */
2944 if (unlikely(prof_on == KVM_PROFILING)) {
2945 kvm_x86_ops->cache_regs(vcpu);
2946 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2947 }
2948
2949 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2950 vcpu->arch.exception.pending = false;
2951
2952 kvm_lapic_sync_from_vapic(vcpu);
2953
2954 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2955
2956 if (r > 0) {
2957 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2958 r = -EINTR;
2959 kvm_run->exit_reason = KVM_EXIT_INTR;
2960 ++vcpu->stat.request_irq_exits;
2961 goto out;
2962 }
2963 if (!need_resched())
2964 goto again;
2965 }
2966
2967 out:
2968 up_read(&vcpu->kvm->slots_lock);
2969 if (r > 0) {
2970 kvm_resched(vcpu);
2971 down_read(&vcpu->kvm->slots_lock);
2972 goto again;
2973 }
2974
2975 post_kvm_run_save(vcpu, kvm_run);
2976
2977 vapic_exit(vcpu);
2978
2979 return r;
2980 }
2981
2982 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2983 {
2984 int r;
2985 sigset_t sigsaved;
2986
2987 vcpu_load(vcpu);
2988
2989 if (vcpu->sigset_active)
2990 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2991
2992 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2993 kvm_vcpu_block(vcpu);
2994 r = -EAGAIN;
2995 goto out;
2996 }
2997
2998 /* re-sync apic's tpr */
2999 if (!irqchip_in_kernel(vcpu->kvm))
3000 kvm_set_cr8(vcpu, kvm_run->cr8);
3001
3002 if (vcpu->arch.pio.cur_count) {
3003 r = complete_pio(vcpu);
3004 if (r)
3005 goto out;
3006 }
3007 #if CONFIG_HAS_IOMEM
3008 if (vcpu->mmio_needed) {
3009 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3010 vcpu->mmio_read_completed = 1;
3011 vcpu->mmio_needed = 0;
3012
3013 down_read(&vcpu->kvm->slots_lock);
3014 r = emulate_instruction(vcpu, kvm_run,
3015 vcpu->arch.mmio_fault_cr2, 0,
3016 EMULTYPE_NO_DECODE);
3017 up_read(&vcpu->kvm->slots_lock);
3018 if (r == EMULATE_DO_MMIO) {
3019 /*
3020 * Read-modify-write. Back to userspace.
3021 */
3022 r = 0;
3023 goto out;
3024 }
3025 }
3026 #endif
3027 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3028 kvm_x86_ops->cache_regs(vcpu);
3029 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3030 kvm_x86_ops->decache_regs(vcpu);
3031 }
3032
3033 r = __vcpu_run(vcpu, kvm_run);
3034
3035 out:
3036 if (vcpu->sigset_active)
3037 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3038
3039 vcpu_put(vcpu);
3040 return r;
3041 }
3042
3043 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3044 {
3045 vcpu_load(vcpu);
3046
3047 kvm_x86_ops->cache_regs(vcpu);
3048
3049 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3050 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3051 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3052 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3053 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3054 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3055 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3056 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3057 #ifdef CONFIG_X86_64
3058 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3059 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3060 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3061 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3062 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3063 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3064 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3065 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3066 #endif
3067
3068 regs->rip = vcpu->arch.rip;
3069 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3070
3071 /*
3072 * Don't leak debug flags in case they were set for guest debugging
3073 */
3074 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3075 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3076
3077 vcpu_put(vcpu);
3078
3079 return 0;
3080 }
3081
3082 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3083 {
3084 vcpu_load(vcpu);
3085
3086 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3087 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3088 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3089 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3090 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3091 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3092 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3093 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3094 #ifdef CONFIG_X86_64
3095 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3096 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3097 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3098 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3099 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3100 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3101 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3102 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3103 #endif
3104
3105 vcpu->arch.rip = regs->rip;
3106 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3107
3108 kvm_x86_ops->decache_regs(vcpu);
3109
3110 vcpu->arch.exception.pending = false;
3111
3112 vcpu_put(vcpu);
3113
3114 return 0;
3115 }
3116
3117 void kvm_get_segment(struct kvm_vcpu *vcpu,
3118 struct kvm_segment *var, int seg)
3119 {
3120 kvm_x86_ops->get_segment(vcpu, var, seg);
3121 }
3122
3123 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3124 {
3125 struct kvm_segment cs;
3126
3127 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3128 *db = cs.db;
3129 *l = cs.l;
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3132
3133 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3134 struct kvm_sregs *sregs)
3135 {
3136 struct descriptor_table dt;
3137 int pending_vec;
3138
3139 vcpu_load(vcpu);
3140
3141 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3142 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3143 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3144 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3145 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3146 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3147
3148 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3149 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3150
3151 kvm_x86_ops->get_idt(vcpu, &dt);
3152 sregs->idt.limit = dt.limit;
3153 sregs->idt.base = dt.base;
3154 kvm_x86_ops->get_gdt(vcpu, &dt);
3155 sregs->gdt.limit = dt.limit;
3156 sregs->gdt.base = dt.base;
3157
3158 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3159 sregs->cr0 = vcpu->arch.cr0;
3160 sregs->cr2 = vcpu->arch.cr2;
3161 sregs->cr3 = vcpu->arch.cr3;
3162 sregs->cr4 = vcpu->arch.cr4;
3163 sregs->cr8 = kvm_get_cr8(vcpu);
3164 sregs->efer = vcpu->arch.shadow_efer;
3165 sregs->apic_base = kvm_get_apic_base(vcpu);
3166
3167 if (irqchip_in_kernel(vcpu->kvm)) {
3168 memset(sregs->interrupt_bitmap, 0,
3169 sizeof sregs->interrupt_bitmap);
3170 pending_vec = kvm_x86_ops->get_irq(vcpu);
3171 if (pending_vec >= 0)
3172 set_bit(pending_vec,
3173 (unsigned long *)sregs->interrupt_bitmap);
3174 } else
3175 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3176 sizeof sregs->interrupt_bitmap);
3177
3178 vcpu_put(vcpu);
3179
3180 return 0;
3181 }
3182
3183 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3184 struct kvm_mp_state *mp_state)
3185 {
3186 vcpu_load(vcpu);
3187 mp_state->mp_state = vcpu->arch.mp_state;
3188 vcpu_put(vcpu);
3189 return 0;
3190 }
3191
3192 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3193 struct kvm_mp_state *mp_state)
3194 {
3195 vcpu_load(vcpu);
3196 vcpu->arch.mp_state = mp_state->mp_state;
3197 vcpu_put(vcpu);
3198 return 0;
3199 }
3200
3201 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3202 struct kvm_segment *var, int seg)
3203 {
3204 kvm_x86_ops->set_segment(vcpu, var, seg);
3205 }
3206
3207 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3208 struct kvm_segment *kvm_desct)
3209 {
3210 kvm_desct->base = seg_desc->base0;
3211 kvm_desct->base |= seg_desc->base1 << 16;
3212 kvm_desct->base |= seg_desc->base2 << 24;
3213 kvm_desct->limit = seg_desc->limit0;
3214 kvm_desct->limit |= seg_desc->limit << 16;
3215 if (seg_desc->g) {
3216 kvm_desct->limit <<= 12;
3217 kvm_desct->limit |= 0xfff;
3218 }
3219 kvm_desct->selector = selector;
3220 kvm_desct->type = seg_desc->type;
3221 kvm_desct->present = seg_desc->p;
3222 kvm_desct->dpl = seg_desc->dpl;
3223 kvm_desct->db = seg_desc->d;
3224 kvm_desct->s = seg_desc->s;
3225 kvm_desct->l = seg_desc->l;
3226 kvm_desct->g = seg_desc->g;
3227 kvm_desct->avl = seg_desc->avl;
3228 if (!selector)
3229 kvm_desct->unusable = 1;
3230 else
3231 kvm_desct->unusable = 0;
3232 kvm_desct->padding = 0;
3233 }
3234
3235 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3236 u16 selector,
3237 struct descriptor_table *dtable)
3238 {
3239 if (selector & 1 << 2) {
3240 struct kvm_segment kvm_seg;
3241
3242 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3243
3244 if (kvm_seg.unusable)
3245 dtable->limit = 0;
3246 else
3247 dtable->limit = kvm_seg.limit;
3248 dtable->base = kvm_seg.base;
3249 }
3250 else
3251 kvm_x86_ops->get_gdt(vcpu, dtable);
3252 }
3253
3254 /* allowed just for 8 bytes segments */
3255 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3256 struct desc_struct *seg_desc)
3257 {
3258 gpa_t gpa;
3259 struct descriptor_table dtable;
3260 u16 index = selector >> 3;
3261
3262 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3263
3264 if (dtable.limit < index * 8 + 7) {
3265 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3266 return 1;
3267 }
3268 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3269 gpa += index * 8;
3270 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3271 }
3272
3273 /* allowed just for 8 bytes segments */
3274 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3275 struct desc_struct *seg_desc)
3276 {
3277 gpa_t gpa;
3278 struct descriptor_table dtable;
3279 u16 index = selector >> 3;
3280
3281 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3282
3283 if (dtable.limit < index * 8 + 7)
3284 return 1;
3285 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3286 gpa += index * 8;
3287 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3288 }
3289
3290 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3291 struct desc_struct *seg_desc)
3292 {
3293 u32 base_addr;
3294
3295 base_addr = seg_desc->base0;
3296 base_addr |= (seg_desc->base1 << 16);
3297 base_addr |= (seg_desc->base2 << 24);
3298
3299 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3300 }
3301
3302 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3303 {
3304 struct kvm_segment kvm_seg;
3305
3306 kvm_get_segment(vcpu, &kvm_seg, seg);
3307 return kvm_seg.selector;
3308 }
3309
3310 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3311 u16 selector,
3312 struct kvm_segment *kvm_seg)
3313 {
3314 struct desc_struct seg_desc;
3315
3316 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3317 return 1;
3318 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3319 return 0;
3320 }
3321
3322 int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3323 {
3324 struct kvm_segment segvar = {
3325 .base = selector << 4,
3326 .limit = 0xffff,
3327 .selector = selector,
3328 .type = 3,
3329 .present = 1,
3330 .dpl = 3,
3331 .db = 0,
3332 .s = 1,
3333 .l = 0,
3334 .g = 0,
3335 .avl = 0,
3336 .unusable = 0,
3337 };
3338 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3339 return 0;
3340 }
3341
3342 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3343 int type_bits, int seg)
3344 {
3345 struct kvm_segment kvm_seg;
3346
3347 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3348 return kvm_load_realmode_segment(vcpu, selector, seg);
3349 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3350 return 1;
3351 kvm_seg.type |= type_bits;
3352
3353 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3354 seg != VCPU_SREG_LDTR)
3355 if (!kvm_seg.s)
3356 kvm_seg.unusable = 1;
3357
3358 kvm_set_segment(vcpu, &kvm_seg, seg);
3359 return 0;
3360 }
3361
3362 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3363 struct tss_segment_32 *tss)
3364 {
3365 tss->cr3 = vcpu->arch.cr3;
3366 tss->eip = vcpu->arch.rip;
3367 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3368 tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3369 tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3370 tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3371 tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3372 tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3373 tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3374 tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3375 tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3376
3377 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3378 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3379 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3380 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3381 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3382 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3383 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3384 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3385 }
3386
3387 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3388 struct tss_segment_32 *tss)
3389 {
3390 kvm_set_cr3(vcpu, tss->cr3);
3391
3392 vcpu->arch.rip = tss->eip;
3393 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3394
3395 vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3396 vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3397 vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3398 vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3399 vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3400 vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3401 vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3402 vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3403
3404 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3405 return 1;
3406
3407 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3408 return 1;
3409
3410 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3411 return 1;
3412
3413 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3414 return 1;
3415
3416 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3417 return 1;
3418
3419 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3420 return 1;
3421
3422 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3423 return 1;
3424 return 0;
3425 }
3426
3427 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3428 struct tss_segment_16 *tss)
3429 {
3430 tss->ip = vcpu->arch.rip;
3431 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3432 tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3433 tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3434 tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3435 tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3436 tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3437 tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3438 tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3439 tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3440
3441 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3442 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3443 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3444 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3445 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3446 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3447 }
3448
3449 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3450 struct tss_segment_16 *tss)
3451 {
3452 vcpu->arch.rip = tss->ip;
3453 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3454 vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3455 vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3456 vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3457 vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3458 vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3459 vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3460 vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3461 vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3462
3463 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3464 return 1;
3465
3466 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3467 return 1;
3468
3469 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3470 return 1;
3471
3472 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3473 return 1;
3474
3475 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3476 return 1;
3477 return 0;
3478 }
3479
3480 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3481 u32 old_tss_base,
3482 struct desc_struct *nseg_desc)
3483 {
3484 struct tss_segment_16 tss_segment_16;
3485 int ret = 0;
3486
3487 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3488 sizeof tss_segment_16))
3489 goto out;
3490
3491 save_state_to_tss16(vcpu, &tss_segment_16);
3492
3493 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3494 sizeof tss_segment_16))
3495 goto out;
3496
3497 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3498 &tss_segment_16, sizeof tss_segment_16))
3499 goto out;
3500
3501 if (load_state_from_tss16(vcpu, &tss_segment_16))
3502 goto out;
3503
3504 ret = 1;
3505 out:
3506 return ret;
3507 }
3508
3509 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3510 u32 old_tss_base,
3511 struct desc_struct *nseg_desc)
3512 {
3513 struct tss_segment_32 tss_segment_32;
3514 int ret = 0;
3515
3516 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3517 sizeof tss_segment_32))
3518 goto out;
3519
3520 save_state_to_tss32(vcpu, &tss_segment_32);
3521
3522 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3523 sizeof tss_segment_32))
3524 goto out;
3525
3526 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3527 &tss_segment_32, sizeof tss_segment_32))
3528 goto out;
3529
3530 if (load_state_from_tss32(vcpu, &tss_segment_32))
3531 goto out;
3532
3533 ret = 1;
3534 out:
3535 return ret;
3536 }
3537
3538 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3539 {
3540 struct kvm_segment tr_seg;
3541 struct desc_struct cseg_desc;
3542 struct desc_struct nseg_desc;
3543 int ret = 0;
3544 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3545 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3546
3547 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3548
3549 /* FIXME: Handle errors. Failure to read either TSS or their
3550 * descriptors should generate a pagefault.
3551 */
3552 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3553 goto out;
3554
3555 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3556 goto out;
3557
3558 if (reason != TASK_SWITCH_IRET) {
3559 int cpl;
3560
3561 cpl = kvm_x86_ops->get_cpl(vcpu);
3562 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3563 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3564 return 1;
3565 }
3566 }
3567
3568 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3569 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3570 return 1;
3571 }
3572
3573 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3574 cseg_desc.type &= ~(1 << 1); //clear the B flag
3575 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3576 }
3577
3578 if (reason == TASK_SWITCH_IRET) {
3579 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3580 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3581 }
3582
3583 kvm_x86_ops->skip_emulated_instruction(vcpu);
3584 kvm_x86_ops->cache_regs(vcpu);
3585
3586 if (nseg_desc.type & 8)
3587 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3588 &nseg_desc);
3589 else
3590 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3591 &nseg_desc);
3592
3593 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3594 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3595 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3596 }
3597
3598 if (reason != TASK_SWITCH_IRET) {
3599 nseg_desc.type |= (1 << 1);
3600 save_guest_segment_descriptor(vcpu, tss_selector,
3601 &nseg_desc);
3602 }
3603
3604 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3605 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3606 tr_seg.type = 11;
3607 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3608 out:
3609 kvm_x86_ops->decache_regs(vcpu);
3610 return ret;
3611 }
3612 EXPORT_SYMBOL_GPL(kvm_task_switch);
3613
3614 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3615 struct kvm_sregs *sregs)
3616 {
3617 int mmu_reset_needed = 0;
3618 int i, pending_vec, max_bits;
3619 struct descriptor_table dt;
3620
3621 vcpu_load(vcpu);
3622
3623 dt.limit = sregs->idt.limit;
3624 dt.base = sregs->idt.base;
3625 kvm_x86_ops->set_idt(vcpu, &dt);
3626 dt.limit = sregs->gdt.limit;
3627 dt.base = sregs->gdt.base;
3628 kvm_x86_ops->set_gdt(vcpu, &dt);
3629
3630 vcpu->arch.cr2 = sregs->cr2;
3631 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3632 vcpu->arch.cr3 = sregs->cr3;
3633
3634 kvm_set_cr8(vcpu, sregs->cr8);
3635
3636 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3637 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3638 kvm_set_apic_base(vcpu, sregs->apic_base);
3639
3640 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3641
3642 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3643 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3644 vcpu->arch.cr0 = sregs->cr0;
3645
3646 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3647 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3648 if (!is_long_mode(vcpu) && is_pae(vcpu))
3649 load_pdptrs(vcpu, vcpu->arch.cr3);
3650
3651 if (mmu_reset_needed)
3652 kvm_mmu_reset_context(vcpu);
3653
3654 if (!irqchip_in_kernel(vcpu->kvm)) {
3655 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3656 sizeof vcpu->arch.irq_pending);
3657 vcpu->arch.irq_summary = 0;
3658 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3659 if (vcpu->arch.irq_pending[i])
3660 __set_bit(i, &vcpu->arch.irq_summary);
3661 } else {
3662 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3663 pending_vec = find_first_bit(
3664 (const unsigned long *)sregs->interrupt_bitmap,
3665 max_bits);
3666 /* Only pending external irq is handled here */
3667 if (pending_vec < max_bits) {
3668 kvm_x86_ops->set_irq(vcpu, pending_vec);
3669 pr_debug("Set back pending irq %d\n",
3670 pending_vec);
3671 }
3672 }
3673
3674 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3675 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3676 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3677 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3678 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3679 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3680
3681 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3682 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3683
3684 vcpu_put(vcpu);
3685
3686 return 0;
3687 }
3688
3689 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3690 struct kvm_debug_guest *dbg)
3691 {
3692 int r;
3693
3694 vcpu_load(vcpu);
3695
3696 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3697
3698 vcpu_put(vcpu);
3699
3700 return r;
3701 }
3702
3703 /*
3704 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3705 * we have asm/x86/processor.h
3706 */
3707 struct fxsave {
3708 u16 cwd;
3709 u16 swd;
3710 u16 twd;
3711 u16 fop;
3712 u64 rip;
3713 u64 rdp;
3714 u32 mxcsr;
3715 u32 mxcsr_mask;
3716 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3717 #ifdef CONFIG_X86_64
3718 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3719 #else
3720 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3721 #endif
3722 };
3723
3724 /*
3725 * Translate a guest virtual address to a guest physical address.
3726 */
3727 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3728 struct kvm_translation *tr)
3729 {
3730 unsigned long vaddr = tr->linear_address;
3731 gpa_t gpa;
3732
3733 vcpu_load(vcpu);
3734 down_read(&vcpu->kvm->slots_lock);
3735 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3736 up_read(&vcpu->kvm->slots_lock);
3737 tr->physical_address = gpa;
3738 tr->valid = gpa != UNMAPPED_GVA;
3739 tr->writeable = 1;
3740 tr->usermode = 0;
3741 vcpu_put(vcpu);
3742
3743 return 0;
3744 }
3745
3746 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3747 {
3748 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3749
3750 vcpu_load(vcpu);
3751
3752 memcpy(fpu->fpr, fxsave->st_space, 128);
3753 fpu->fcw = fxsave->cwd;
3754 fpu->fsw = fxsave->swd;
3755 fpu->ftwx = fxsave->twd;
3756 fpu->last_opcode = fxsave->fop;
3757 fpu->last_ip = fxsave->rip;
3758 fpu->last_dp = fxsave->rdp;
3759 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3760
3761 vcpu_put(vcpu);
3762
3763 return 0;
3764 }
3765
3766 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3767 {
3768 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3769
3770 vcpu_load(vcpu);
3771
3772 memcpy(fxsave->st_space, fpu->fpr, 128);
3773 fxsave->cwd = fpu->fcw;
3774 fxsave->swd = fpu->fsw;
3775 fxsave->twd = fpu->ftwx;
3776 fxsave->fop = fpu->last_opcode;
3777 fxsave->rip = fpu->last_ip;
3778 fxsave->rdp = fpu->last_dp;
3779 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3780
3781 vcpu_put(vcpu);
3782
3783 return 0;
3784 }
3785
3786 void fx_init(struct kvm_vcpu *vcpu)
3787 {
3788 unsigned after_mxcsr_mask;
3789
3790 /*
3791 * Touch the fpu the first time in non atomic context as if
3792 * this is the first fpu instruction the exception handler
3793 * will fire before the instruction returns and it'll have to
3794 * allocate ram with GFP_KERNEL.
3795 */
3796 if (!used_math())
3797 kvm_fx_save(&vcpu->arch.host_fx_image);
3798
3799 /* Initialize guest FPU by resetting ours and saving into guest's */
3800 preempt_disable();
3801 kvm_fx_save(&vcpu->arch.host_fx_image);
3802 kvm_fx_finit();
3803 kvm_fx_save(&vcpu->arch.guest_fx_image);
3804 kvm_fx_restore(&vcpu->arch.host_fx_image);
3805 preempt_enable();
3806
3807 vcpu->arch.cr0 |= X86_CR0_ET;
3808 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3809 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3810 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3811 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3812 }
3813 EXPORT_SYMBOL_GPL(fx_init);
3814
3815 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3816 {
3817 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3818 return;
3819
3820 vcpu->guest_fpu_loaded = 1;
3821 kvm_fx_save(&vcpu->arch.host_fx_image);
3822 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3823 }
3824 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3825
3826 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3827 {
3828 if (!vcpu->guest_fpu_loaded)
3829 return;
3830
3831 vcpu->guest_fpu_loaded = 0;
3832 kvm_fx_save(&vcpu->arch.guest_fx_image);
3833 kvm_fx_restore(&vcpu->arch.host_fx_image);
3834 ++vcpu->stat.fpu_reload;
3835 }
3836 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3837
3838 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3839 {
3840 kvm_x86_ops->vcpu_free(vcpu);
3841 }
3842
3843 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3844 unsigned int id)
3845 {
3846 return kvm_x86_ops->vcpu_create(kvm, id);
3847 }
3848
3849 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3850 {
3851 int r;
3852
3853 /* We do fxsave: this must be aligned. */
3854 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3855
3856 vcpu_load(vcpu);
3857 r = kvm_arch_vcpu_reset(vcpu);
3858 if (r == 0)
3859 r = kvm_mmu_setup(vcpu);
3860 vcpu_put(vcpu);
3861 if (r < 0)
3862 goto free_vcpu;
3863
3864 return 0;
3865 free_vcpu:
3866 kvm_x86_ops->vcpu_free(vcpu);
3867 return r;
3868 }
3869
3870 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3871 {
3872 vcpu_load(vcpu);
3873 kvm_mmu_unload(vcpu);
3874 vcpu_put(vcpu);
3875
3876 kvm_x86_ops->vcpu_free(vcpu);
3877 }
3878
3879 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3880 {
3881 return kvm_x86_ops->vcpu_reset(vcpu);
3882 }
3883
3884 void kvm_arch_hardware_enable(void *garbage)
3885 {
3886 kvm_x86_ops->hardware_enable(garbage);
3887 }
3888
3889 void kvm_arch_hardware_disable(void *garbage)
3890 {
3891 kvm_x86_ops->hardware_disable(garbage);
3892 }
3893
3894 int kvm_arch_hardware_setup(void)
3895 {
3896 return kvm_x86_ops->hardware_setup();
3897 }
3898
3899 void kvm_arch_hardware_unsetup(void)
3900 {
3901 kvm_x86_ops->hardware_unsetup();
3902 }
3903
3904 void kvm_arch_check_processor_compat(void *rtn)
3905 {
3906 kvm_x86_ops->check_processor_compatibility(rtn);
3907 }
3908
3909 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3910 {
3911 struct page *page;
3912 struct kvm *kvm;
3913 int r;
3914
3915 BUG_ON(vcpu->kvm == NULL);
3916 kvm = vcpu->kvm;
3917
3918 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3919 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3920 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3921 else
3922 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3923
3924 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3925 if (!page) {
3926 r = -ENOMEM;
3927 goto fail;
3928 }
3929 vcpu->arch.pio_data = page_address(page);
3930
3931 r = kvm_mmu_create(vcpu);
3932 if (r < 0)
3933 goto fail_free_pio_data;
3934
3935 if (irqchip_in_kernel(kvm)) {
3936 r = kvm_create_lapic(vcpu);
3937 if (r < 0)
3938 goto fail_mmu_destroy;
3939 }
3940
3941 return 0;
3942
3943 fail_mmu_destroy:
3944 kvm_mmu_destroy(vcpu);
3945 fail_free_pio_data:
3946 free_page((unsigned long)vcpu->arch.pio_data);
3947 fail:
3948 return r;
3949 }
3950
3951 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3952 {
3953 kvm_free_lapic(vcpu);
3954 down_read(&vcpu->kvm->slots_lock);
3955 kvm_mmu_destroy(vcpu);
3956 up_read(&vcpu->kvm->slots_lock);
3957 free_page((unsigned long)vcpu->arch.pio_data);
3958 }
3959
3960 struct kvm *kvm_arch_create_vm(void)
3961 {
3962 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3963
3964 if (!kvm)
3965 return ERR_PTR(-ENOMEM);
3966
3967 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3968
3969 return kvm;
3970 }
3971
3972 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3973 {
3974 vcpu_load(vcpu);
3975 kvm_mmu_unload(vcpu);
3976 vcpu_put(vcpu);
3977 }
3978
3979 static void kvm_free_vcpus(struct kvm *kvm)
3980 {
3981 unsigned int i;
3982
3983 /*
3984 * Unpin any mmu pages first.
3985 */
3986 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3987 if (kvm->vcpus[i])
3988 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3989 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3990 if (kvm->vcpus[i]) {
3991 kvm_arch_vcpu_free(kvm->vcpus[i]);
3992 kvm->vcpus[i] = NULL;
3993 }
3994 }
3995
3996 }
3997
3998 void kvm_arch_destroy_vm(struct kvm *kvm)
3999 {
4000 kvm_free_pit(kvm);
4001 kfree(kvm->arch.vpic);
4002 kfree(kvm->arch.vioapic);
4003 kvm_free_vcpus(kvm);
4004 kvm_free_physmem(kvm);
4005 if (kvm->arch.apic_access_page)
4006 put_page(kvm->arch.apic_access_page);
4007 if (kvm->arch.ept_identity_pagetable)
4008 put_page(kvm->arch.ept_identity_pagetable);
4009 kfree(kvm);
4010 }
4011
4012 int kvm_arch_set_memory_region(struct kvm *kvm,
4013 struct kvm_userspace_memory_region *mem,
4014 struct kvm_memory_slot old,
4015 int user_alloc)
4016 {
4017 int npages = mem->memory_size >> PAGE_SHIFT;
4018 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4019
4020 /*To keep backward compatibility with older userspace,
4021 *x86 needs to hanlde !user_alloc case.
4022 */
4023 if (!user_alloc) {
4024 if (npages && !old.rmap) {
4025 unsigned long userspace_addr;
4026
4027 down_write(&current->mm->mmap_sem);
4028 userspace_addr = do_mmap(NULL, 0,
4029 npages * PAGE_SIZE,
4030 PROT_READ | PROT_WRITE,
4031 MAP_PRIVATE | MAP_ANONYMOUS,
4032 0);
4033 up_write(&current->mm->mmap_sem);
4034
4035 if (IS_ERR((void *)userspace_addr))
4036 return PTR_ERR((void *)userspace_addr);
4037
4038 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4039 spin_lock(&kvm->mmu_lock);
4040 memslot->userspace_addr = userspace_addr;
4041 spin_unlock(&kvm->mmu_lock);
4042 } else {
4043 if (!old.user_alloc && old.rmap) {
4044 int ret;
4045
4046 down_write(&current->mm->mmap_sem);
4047 ret = do_munmap(current->mm, old.userspace_addr,
4048 old.npages * PAGE_SIZE);
4049 up_write(&current->mm->mmap_sem);
4050 if (ret < 0)
4051 printk(KERN_WARNING
4052 "kvm_vm_ioctl_set_memory_region: "
4053 "failed to munmap memory\n");
4054 }
4055 }
4056 }
4057
4058 if (!kvm->arch.n_requested_mmu_pages) {
4059 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4060 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4061 }
4062
4063 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4064 kvm_flush_remote_tlbs(kvm);
4065
4066 return 0;
4067 }
4068
4069 void kvm_arch_flush_shadow(struct kvm *kvm)
4070 {
4071 kvm_mmu_zap_all(kvm);
4072 }
4073
4074 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4075 {
4076 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4077 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4078 }
4079
4080 static void vcpu_kick_intr(void *info)
4081 {
4082 #ifdef DEBUG
4083 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4084 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4085 #endif
4086 }
4087
4088 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4089 {
4090 int ipi_pcpu = vcpu->cpu;
4091 int cpu = get_cpu();
4092
4093 if (waitqueue_active(&vcpu->wq)) {
4094 wake_up_interruptible(&vcpu->wq);
4095 ++vcpu->stat.halt_wakeup;
4096 }
4097 /*
4098 * We may be called synchronously with irqs disabled in guest mode,
4099 * So need not to call smp_call_function_single() in that case.
4100 */
4101 if (vcpu->guest_mode && vcpu->cpu != cpu)
4102 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4103 put_cpu();
4104 }