]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob
3.12.0-rc6-00037-g3d7c8d9
[thirdparty/kernel/stable.git] /
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/internal/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17
18 #define template_aead template_u.aead
19
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25
26 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
27
28 struct cc_aead_handle {
29 cc_sram_addr_t sram_workspace_addr;
30 struct list_head aead_list;
31 };
32
33 struct cc_hmac_s {
34 u8 *padded_authkey;
35 u8 *ipad_opad; /* IPAD, OPAD*/
36 dma_addr_t padded_authkey_dma_addr;
37 dma_addr_t ipad_opad_dma_addr;
38 };
39
40 struct cc_xcbc_s {
41 u8 *xcbc_keys; /* K1,K2,K3 */
42 dma_addr_t xcbc_keys_dma_addr;
43 };
44
45 struct cc_aead_ctx {
46 struct cc_drvdata *drvdata;
47 u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
48 u8 *enckey;
49 dma_addr_t enckey_dma_addr;
50 union {
51 struct cc_hmac_s hmac;
52 struct cc_xcbc_s xcbc;
53 } auth_state;
54 unsigned int enc_keylen;
55 unsigned int auth_keylen;
56 unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
57 unsigned int hash_len;
58 enum drv_cipher_mode cipher_mode;
59 enum cc_flow_mode flow_mode;
60 enum drv_hash_mode auth_mode;
61 };
62
63 static inline bool valid_assoclen(struct aead_request *req)
64 {
65 return ((req->assoclen == 16) || (req->assoclen == 20));
66 }
67
68 static void cc_aead_exit(struct crypto_aead *tfm)
69 {
70 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
71 struct device *dev = drvdata_to_dev(ctx->drvdata);
72
73 dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
74 crypto_tfm_alg_name(&tfm->base));
75
76 /* Unmap enckey buffer */
77 if (ctx->enckey) {
78 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
79 ctx->enckey_dma_addr);
80 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
81 &ctx->enckey_dma_addr);
82 ctx->enckey_dma_addr = 0;
83 ctx->enckey = NULL;
84 }
85
86 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
87 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
88
89 if (xcbc->xcbc_keys) {
90 dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
91 xcbc->xcbc_keys,
92 xcbc->xcbc_keys_dma_addr);
93 }
94 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
95 &xcbc->xcbc_keys_dma_addr);
96 xcbc->xcbc_keys_dma_addr = 0;
97 xcbc->xcbc_keys = NULL;
98 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
99 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
100
101 if (hmac->ipad_opad) {
102 dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
103 hmac->ipad_opad,
104 hmac->ipad_opad_dma_addr);
105 dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
106 &hmac->ipad_opad_dma_addr);
107 hmac->ipad_opad_dma_addr = 0;
108 hmac->ipad_opad = NULL;
109 }
110 if (hmac->padded_authkey) {
111 dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
112 hmac->padded_authkey,
113 hmac->padded_authkey_dma_addr);
114 dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
115 &hmac->padded_authkey_dma_addr);
116 hmac->padded_authkey_dma_addr = 0;
117 hmac->padded_authkey = NULL;
118 }
119 }
120 }
121
122 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
123 {
124 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
125
126 return cc_get_default_hash_len(ctx->drvdata);
127 }
128
129 static int cc_aead_init(struct crypto_aead *tfm)
130 {
131 struct aead_alg *alg = crypto_aead_alg(tfm);
132 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
133 struct cc_crypto_alg *cc_alg =
134 container_of(alg, struct cc_crypto_alg, aead_alg);
135 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
136
137 dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
138 crypto_tfm_alg_name(&tfm->base));
139
140 /* Initialize modes in instance */
141 ctx->cipher_mode = cc_alg->cipher_mode;
142 ctx->flow_mode = cc_alg->flow_mode;
143 ctx->auth_mode = cc_alg->auth_mode;
144 ctx->drvdata = cc_alg->drvdata;
145 crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
146
147 /* Allocate key buffer, cache line aligned */
148 ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
149 &ctx->enckey_dma_addr, GFP_KERNEL);
150 if (!ctx->enckey) {
151 dev_err(dev, "Failed allocating key buffer\n");
152 goto init_failed;
153 }
154 dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
155 ctx->enckey);
156
157 /* Set default authlen value */
158
159 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
160 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
161 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
162
163 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
164 /* (and temporary for user key - up to 256b) */
165 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
166 &xcbc->xcbc_keys_dma_addr,
167 GFP_KERNEL);
168 if (!xcbc->xcbc_keys) {
169 dev_err(dev, "Failed allocating buffer for XCBC keys\n");
170 goto init_failed;
171 }
172 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
173 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
174 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
175 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
176
177 /* Allocate dma-coherent buffer for IPAD + OPAD */
178 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
179 &hmac->ipad_opad_dma_addr,
180 GFP_KERNEL);
181
182 if (!hmac->ipad_opad) {
183 dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
184 goto init_failed;
185 }
186
187 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
188 hmac->ipad_opad);
189
190 hmac->padded_authkey = dma_alloc_coherent(dev,
191 MAX_HMAC_BLOCK_SIZE,
192 pkey_dma,
193 GFP_KERNEL);
194
195 if (!hmac->padded_authkey) {
196 dev_err(dev, "failed to allocate padded_authkey\n");
197 goto init_failed;
198 }
199 } else {
200 ctx->auth_state.hmac.ipad_opad = NULL;
201 ctx->auth_state.hmac.padded_authkey = NULL;
202 }
203 ctx->hash_len = cc_get_aead_hash_len(tfm);
204
205 return 0;
206
207 init_failed:
208 cc_aead_exit(tfm);
209 return -ENOMEM;
210 }
211
212 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
213 {
214 struct aead_request *areq = (struct aead_request *)cc_req;
215 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
216 struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
217 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
218
219 /* BACKLOG notification */
220 if (err == -EINPROGRESS)
221 goto done;
222
223 cc_unmap_aead_request(dev, areq);
224
225 /* Restore ordinary iv pointer */
226 areq->iv = areq_ctx->backup_iv;
227
228 if (err)
229 goto done;
230
231 if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
232 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
233 ctx->authsize) != 0) {
234 dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
235 ctx->authsize, ctx->cipher_mode);
236 /* In case of payload authentication failure, MUST NOT
237 * revealed the decrypted message --> zero its memory.
238 */
239 sg_zero_buffer(areq->dst, sg_nents(areq->dst),
240 areq->cryptlen, areq->assoclen);
241 err = -EBADMSG;
242 }
243 /*ENCRYPT*/
244 } else if (areq_ctx->is_icv_fragmented) {
245 u32 skip = areq->cryptlen + areq_ctx->dst_offset;
246
247 cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
248 skip, (skip + ctx->authsize),
249 CC_SG_FROM_BUF);
250 }
251 done:
252 aead_request_complete(areq, err);
253 }
254
255 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
256 struct cc_aead_ctx *ctx)
257 {
258 /* Load the AES key */
259 hw_desc_init(&desc[0]);
260 /* We are using for the source/user key the same buffer
261 * as for the output keys, * because after this key loading it
262 * is not needed anymore
263 */
264 set_din_type(&desc[0], DMA_DLLI,
265 ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
266 NS_BIT);
267 set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
268 set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
269 set_key_size_aes(&desc[0], ctx->auth_keylen);
270 set_flow_mode(&desc[0], S_DIN_to_AES);
271 set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
272
273 hw_desc_init(&desc[1]);
274 set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
275 set_flow_mode(&desc[1], DIN_AES_DOUT);
276 set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
277 AES_KEYSIZE_128, NS_BIT, 0);
278
279 hw_desc_init(&desc[2]);
280 set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
281 set_flow_mode(&desc[2], DIN_AES_DOUT);
282 set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
283 + AES_KEYSIZE_128),
284 AES_KEYSIZE_128, NS_BIT, 0);
285
286 hw_desc_init(&desc[3]);
287 set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
288 set_flow_mode(&desc[3], DIN_AES_DOUT);
289 set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
290 + 2 * AES_KEYSIZE_128),
291 AES_KEYSIZE_128, NS_BIT, 0);
292
293 return 4;
294 }
295
296 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
297 {
298 unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
299 unsigned int digest_ofs = 0;
300 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
301 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
302 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
303 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
304 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
305
306 unsigned int idx = 0;
307 int i;
308
309 /* calc derived HMAC key */
310 for (i = 0; i < 2; i++) {
311 /* Load hash initial state */
312 hw_desc_init(&desc[idx]);
313 set_cipher_mode(&desc[idx], hash_mode);
314 set_din_sram(&desc[idx],
315 cc_larval_digest_addr(ctx->drvdata,
316 ctx->auth_mode),
317 digest_size);
318 set_flow_mode(&desc[idx], S_DIN_to_HASH);
319 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
320 idx++;
321
322 /* Load the hash current length*/
323 hw_desc_init(&desc[idx]);
324 set_cipher_mode(&desc[idx], hash_mode);
325 set_din_const(&desc[idx], 0, ctx->hash_len);
326 set_flow_mode(&desc[idx], S_DIN_to_HASH);
327 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
328 idx++;
329
330 /* Prepare ipad key */
331 hw_desc_init(&desc[idx]);
332 set_xor_val(&desc[idx], hmac_pad_const[i]);
333 set_cipher_mode(&desc[idx], hash_mode);
334 set_flow_mode(&desc[idx], S_DIN_to_HASH);
335 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
336 idx++;
337
338 /* Perform HASH update */
339 hw_desc_init(&desc[idx]);
340 set_din_type(&desc[idx], DMA_DLLI,
341 hmac->padded_authkey_dma_addr,
342 SHA256_BLOCK_SIZE, NS_BIT);
343 set_cipher_mode(&desc[idx], hash_mode);
344 set_xor_active(&desc[idx]);
345 set_flow_mode(&desc[idx], DIN_HASH);
346 idx++;
347
348 /* Get the digset */
349 hw_desc_init(&desc[idx]);
350 set_cipher_mode(&desc[idx], hash_mode);
351 set_dout_dlli(&desc[idx],
352 (hmac->ipad_opad_dma_addr + digest_ofs),
353 digest_size, NS_BIT, 0);
354 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
355 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
356 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
357 idx++;
358
359 digest_ofs += digest_size;
360 }
361
362 return idx;
363 }
364
365 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
366 {
367 struct device *dev = drvdata_to_dev(ctx->drvdata);
368
369 dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
370 ctx->enc_keylen, ctx->auth_keylen);
371
372 switch (ctx->auth_mode) {
373 case DRV_HASH_SHA1:
374 case DRV_HASH_SHA256:
375 break;
376 case DRV_HASH_XCBC_MAC:
377 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
378 ctx->auth_keylen != AES_KEYSIZE_192 &&
379 ctx->auth_keylen != AES_KEYSIZE_256)
380 return -ENOTSUPP;
381 break;
382 case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
383 if (ctx->auth_keylen > 0)
384 return -EINVAL;
385 break;
386 default:
387 dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
388 return -EINVAL;
389 }
390 /* Check cipher key size */
391 if (ctx->flow_mode == S_DIN_to_DES) {
392 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
393 dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
394 ctx->enc_keylen);
395 return -EINVAL;
396 }
397 } else { /* Default assumed to be AES ciphers */
398 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
399 ctx->enc_keylen != AES_KEYSIZE_192 &&
400 ctx->enc_keylen != AES_KEYSIZE_256) {
401 dev_err(dev, "Invalid cipher(AES) key size: %u\n",
402 ctx->enc_keylen);
403 return -EINVAL;
404 }
405 }
406
407 return 0; /* All tests of keys sizes passed */
408 }
409
410 /* This function prepers the user key so it can pass to the hmac processing
411 * (copy to intenral buffer or hash in case of key longer than block
412 */
413 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
414 unsigned int keylen)
415 {
416 dma_addr_t key_dma_addr = 0;
417 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
418 struct device *dev = drvdata_to_dev(ctx->drvdata);
419 u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
420 struct cc_crypto_req cc_req = {};
421 unsigned int blocksize;
422 unsigned int digestsize;
423 unsigned int hashmode;
424 unsigned int idx = 0;
425 int rc = 0;
426 u8 *key = NULL;
427 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
428 dma_addr_t padded_authkey_dma_addr =
429 ctx->auth_state.hmac.padded_authkey_dma_addr;
430
431 switch (ctx->auth_mode) { /* auth_key required and >0 */
432 case DRV_HASH_SHA1:
433 blocksize = SHA1_BLOCK_SIZE;
434 digestsize = SHA1_DIGEST_SIZE;
435 hashmode = DRV_HASH_HW_SHA1;
436 break;
437 case DRV_HASH_SHA256:
438 default:
439 blocksize = SHA256_BLOCK_SIZE;
440 digestsize = SHA256_DIGEST_SIZE;
441 hashmode = DRV_HASH_HW_SHA256;
442 }
443
444 if (keylen != 0) {
445
446 key = kmemdup(authkey, keylen, GFP_KERNEL);
447 if (!key)
448 return -ENOMEM;
449
450 key_dma_addr = dma_map_single(dev, (void *)key, keylen,
451 DMA_TO_DEVICE);
452 if (dma_mapping_error(dev, key_dma_addr)) {
453 dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
454 key, keylen);
455 kzfree(key);
456 return -ENOMEM;
457 }
458 if (keylen > blocksize) {
459 /* Load hash initial state */
460 hw_desc_init(&desc[idx]);
461 set_cipher_mode(&desc[idx], hashmode);
462 set_din_sram(&desc[idx], larval_addr, digestsize);
463 set_flow_mode(&desc[idx], S_DIN_to_HASH);
464 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
465 idx++;
466
467 /* Load the hash current length*/
468 hw_desc_init(&desc[idx]);
469 set_cipher_mode(&desc[idx], hashmode);
470 set_din_const(&desc[idx], 0, ctx->hash_len);
471 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
472 set_flow_mode(&desc[idx], S_DIN_to_HASH);
473 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
474 idx++;
475
476 hw_desc_init(&desc[idx]);
477 set_din_type(&desc[idx], DMA_DLLI,
478 key_dma_addr, keylen, NS_BIT);
479 set_flow_mode(&desc[idx], DIN_HASH);
480 idx++;
481
482 /* Get hashed key */
483 hw_desc_init(&desc[idx]);
484 set_cipher_mode(&desc[idx], hashmode);
485 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
486 digestsize, NS_BIT, 0);
487 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
488 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
489 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
490 set_cipher_config0(&desc[idx],
491 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
492 idx++;
493
494 hw_desc_init(&desc[idx]);
495 set_din_const(&desc[idx], 0, (blocksize - digestsize));
496 set_flow_mode(&desc[idx], BYPASS);
497 set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
498 digestsize), (blocksize - digestsize),
499 NS_BIT, 0);
500 idx++;
501 } else {
502 hw_desc_init(&desc[idx]);
503 set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
504 keylen, NS_BIT);
505 set_flow_mode(&desc[idx], BYPASS);
506 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
507 keylen, NS_BIT, 0);
508 idx++;
509
510 if ((blocksize - keylen) != 0) {
511 hw_desc_init(&desc[idx]);
512 set_din_const(&desc[idx], 0,
513 (blocksize - keylen));
514 set_flow_mode(&desc[idx], BYPASS);
515 set_dout_dlli(&desc[idx],
516 (padded_authkey_dma_addr +
517 keylen),
518 (blocksize - keylen), NS_BIT, 0);
519 idx++;
520 }
521 }
522 } else {
523 hw_desc_init(&desc[idx]);
524 set_din_const(&desc[idx], 0, (blocksize - keylen));
525 set_flow_mode(&desc[idx], BYPASS);
526 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
527 blocksize, NS_BIT, 0);
528 idx++;
529 }
530
531 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
532 if (rc)
533 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
534
535 if (key_dma_addr)
536 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
537
538 kzfree(key);
539
540 return rc;
541 }
542
543 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
544 unsigned int keylen)
545 {
546 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
547 struct cc_crypto_req cc_req = {};
548 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
549 unsigned int seq_len = 0;
550 struct device *dev = drvdata_to_dev(ctx->drvdata);
551 const u8 *enckey, *authkey;
552 int rc;
553
554 dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
555 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
556
557 /* STAT_PHASE_0: Init and sanity checks */
558
559 if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
560 struct crypto_authenc_keys keys;
561
562 rc = crypto_authenc_extractkeys(&keys, key, keylen);
563 if (rc)
564 goto badkey;
565 enckey = keys.enckey;
566 authkey = keys.authkey;
567 ctx->enc_keylen = keys.enckeylen;
568 ctx->auth_keylen = keys.authkeylen;
569
570 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
571 /* the nonce is stored in bytes at end of key */
572 rc = -EINVAL;
573 if (ctx->enc_keylen <
574 (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
575 goto badkey;
576 /* Copy nonce from last 4 bytes in CTR key to
577 * first 4 bytes in CTR IV
578 */
579 memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
580 CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
581 /* Set CTR key size */
582 ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
583 }
584 } else { /* non-authenc - has just one key */
585 enckey = key;
586 authkey = NULL;
587 ctx->enc_keylen = keylen;
588 ctx->auth_keylen = 0;
589 }
590
591 rc = validate_keys_sizes(ctx);
592 if (rc)
593 goto badkey;
594
595 /* STAT_PHASE_1: Copy key to ctx */
596
597 /* Get key material */
598 memcpy(ctx->enckey, enckey, ctx->enc_keylen);
599 if (ctx->enc_keylen == 24)
600 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
601 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
602 memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
603 ctx->auth_keylen);
604 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
605 rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
606 if (rc)
607 goto badkey;
608 }
609
610 /* STAT_PHASE_2: Create sequence */
611
612 switch (ctx->auth_mode) {
613 case DRV_HASH_SHA1:
614 case DRV_HASH_SHA256:
615 seq_len = hmac_setkey(desc, ctx);
616 break;
617 case DRV_HASH_XCBC_MAC:
618 seq_len = xcbc_setkey(desc, ctx);
619 break;
620 case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
621 break; /* No auth. key setup */
622 default:
623 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
624 rc = -ENOTSUPP;
625 goto badkey;
626 }
627
628 /* STAT_PHASE_3: Submit sequence to HW */
629
630 if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
631 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
632 if (rc) {
633 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
634 goto setkey_error;
635 }
636 }
637
638 /* Update STAT_PHASE_3 */
639 return rc;
640
641 badkey:
642 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
643
644 setkey_error:
645 return rc;
646 }
647
648 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
649 unsigned int keylen)
650 {
651 struct crypto_authenc_keys keys;
652 int err;
653
654 err = crypto_authenc_extractkeys(&keys, key, keylen);
655 if (unlikely(err))
656 return err;
657
658 err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
659 cc_aead_setkey(aead, key, keylen);
660
661 memzero_explicit(&keys, sizeof(keys));
662 return err;
663 }
664
665 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
666 unsigned int keylen)
667 {
668 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
669
670 if (keylen < 3)
671 return -EINVAL;
672
673 keylen -= 3;
674 memcpy(ctx->ctr_nonce, key + keylen, 3);
675
676 return cc_aead_setkey(tfm, key, keylen);
677 }
678
679 static int cc_aead_setauthsize(struct crypto_aead *authenc,
680 unsigned int authsize)
681 {
682 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
683 struct device *dev = drvdata_to_dev(ctx->drvdata);
684
685 /* Unsupported auth. sizes */
686 if (authsize == 0 ||
687 authsize > crypto_aead_maxauthsize(authenc)) {
688 return -ENOTSUPP;
689 }
690
691 ctx->authsize = authsize;
692 dev_dbg(dev, "authlen=%d\n", ctx->authsize);
693
694 return 0;
695 }
696
697 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
698 unsigned int authsize)
699 {
700 switch (authsize) {
701 case 8:
702 case 12:
703 case 16:
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return cc_aead_setauthsize(authenc, authsize);
710 }
711
712 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
713 unsigned int authsize)
714 {
715 switch (authsize) {
716 case 4:
717 case 6:
718 case 8:
719 case 10:
720 case 12:
721 case 14:
722 case 16:
723 break;
724 default:
725 return -EINVAL;
726 }
727
728 return cc_aead_setauthsize(authenc, authsize);
729 }
730
731 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
732 struct cc_hw_desc desc[], unsigned int *seq_size)
733 {
734 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
735 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
736 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
737 enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
738 unsigned int idx = *seq_size;
739 struct device *dev = drvdata_to_dev(ctx->drvdata);
740
741 switch (assoc_dma_type) {
742 case CC_DMA_BUF_DLLI:
743 dev_dbg(dev, "ASSOC buffer type DLLI\n");
744 hw_desc_init(&desc[idx]);
745 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
746 areq_ctx->assoclen, NS_BIT);
747 set_flow_mode(&desc[idx], flow_mode);
748 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 areq_ctx->cryptlen > 0)
750 set_din_not_last_indication(&desc[idx]);
751 break;
752 case CC_DMA_BUF_MLLI:
753 dev_dbg(dev, "ASSOC buffer type MLLI\n");
754 hw_desc_init(&desc[idx]);
755 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
756 areq_ctx->assoc.mlli_nents, NS_BIT);
757 set_flow_mode(&desc[idx], flow_mode);
758 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
759 areq_ctx->cryptlen > 0)
760 set_din_not_last_indication(&desc[idx]);
761 break;
762 case CC_DMA_BUF_NULL:
763 default:
764 dev_err(dev, "Invalid ASSOC buffer type\n");
765 }
766
767 *seq_size = (++idx);
768 }
769
770 static void cc_proc_authen_desc(struct aead_request *areq,
771 unsigned int flow_mode,
772 struct cc_hw_desc desc[],
773 unsigned int *seq_size, int direct)
774 {
775 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
776 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
777 unsigned int idx = *seq_size;
778 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
779 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
780 struct device *dev = drvdata_to_dev(ctx->drvdata);
781
782 switch (data_dma_type) {
783 case CC_DMA_BUF_DLLI:
784 {
785 struct scatterlist *cipher =
786 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
787 areq_ctx->dst_sgl : areq_ctx->src_sgl;
788
789 unsigned int offset =
790 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
791 areq_ctx->dst_offset : areq_ctx->src_offset;
792 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
793 hw_desc_init(&desc[idx]);
794 set_din_type(&desc[idx], DMA_DLLI,
795 (sg_dma_address(cipher) + offset),
796 areq_ctx->cryptlen, NS_BIT);
797 set_flow_mode(&desc[idx], flow_mode);
798 break;
799 }
800 case CC_DMA_BUF_MLLI:
801 {
802 /* DOUBLE-PASS flow (as default)
803 * assoc. + iv + data -compact in one table
804 * if assoclen is ZERO only IV perform
805 */
806 cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
807 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
808
809 if (areq_ctx->is_single_pass) {
810 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
811 mlli_addr = areq_ctx->dst.sram_addr;
812 mlli_nents = areq_ctx->dst.mlli_nents;
813 } else {
814 mlli_addr = areq_ctx->src.sram_addr;
815 mlli_nents = areq_ctx->src.mlli_nents;
816 }
817 }
818
819 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
820 hw_desc_init(&desc[idx]);
821 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
822 NS_BIT);
823 set_flow_mode(&desc[idx], flow_mode);
824 break;
825 }
826 case CC_DMA_BUF_NULL:
827 default:
828 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
829 }
830
831 *seq_size = (++idx);
832 }
833
834 static void cc_proc_cipher_desc(struct aead_request *areq,
835 unsigned int flow_mode,
836 struct cc_hw_desc desc[],
837 unsigned int *seq_size)
838 {
839 unsigned int idx = *seq_size;
840 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
841 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
842 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
843 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
844 struct device *dev = drvdata_to_dev(ctx->drvdata);
845
846 if (areq_ctx->cryptlen == 0)
847 return; /*null processing*/
848
849 switch (data_dma_type) {
850 case CC_DMA_BUF_DLLI:
851 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
852 hw_desc_init(&desc[idx]);
853 set_din_type(&desc[idx], DMA_DLLI,
854 (sg_dma_address(areq_ctx->src_sgl) +
855 areq_ctx->src_offset), areq_ctx->cryptlen,
856 NS_BIT);
857 set_dout_dlli(&desc[idx],
858 (sg_dma_address(areq_ctx->dst_sgl) +
859 areq_ctx->dst_offset),
860 areq_ctx->cryptlen, NS_BIT, 0);
861 set_flow_mode(&desc[idx], flow_mode);
862 break;
863 case CC_DMA_BUF_MLLI:
864 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
865 hw_desc_init(&desc[idx]);
866 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
867 areq_ctx->src.mlli_nents, NS_BIT);
868 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
869 areq_ctx->dst.mlli_nents, NS_BIT, 0);
870 set_flow_mode(&desc[idx], flow_mode);
871 break;
872 case CC_DMA_BUF_NULL:
873 default:
874 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
875 }
876
877 *seq_size = (++idx);
878 }
879
880 static void cc_proc_digest_desc(struct aead_request *req,
881 struct cc_hw_desc desc[],
882 unsigned int *seq_size)
883 {
884 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
885 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
886 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
887 unsigned int idx = *seq_size;
888 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
889 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
890 int direct = req_ctx->gen_ctx.op_type;
891
892 /* Get final ICV result */
893 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
894 hw_desc_init(&desc[idx]);
895 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
896 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
897 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
898 NS_BIT, 1);
899 set_queue_last_ind(ctx->drvdata, &desc[idx]);
900 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
901 set_aes_not_hash_mode(&desc[idx]);
902 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
903 } else {
904 set_cipher_config0(&desc[idx],
905 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
906 set_cipher_mode(&desc[idx], hash_mode);
907 }
908 } else { /*Decrypt*/
909 /* Get ICV out from hardware */
910 hw_desc_init(&desc[idx]);
911 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
912 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
913 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
914 ctx->authsize, NS_BIT, 1);
915 set_queue_last_ind(ctx->drvdata, &desc[idx]);
916 set_cipher_config0(&desc[idx],
917 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
918 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
919 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
920 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
921 set_aes_not_hash_mode(&desc[idx]);
922 } else {
923 set_cipher_mode(&desc[idx], hash_mode);
924 }
925 }
926
927 *seq_size = (++idx);
928 }
929
930 static void cc_set_cipher_desc(struct aead_request *req,
931 struct cc_hw_desc desc[],
932 unsigned int *seq_size)
933 {
934 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
935 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
936 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
937 unsigned int hw_iv_size = req_ctx->hw_iv_size;
938 unsigned int idx = *seq_size;
939 int direct = req_ctx->gen_ctx.op_type;
940
941 /* Setup cipher state */
942 hw_desc_init(&desc[idx]);
943 set_cipher_config0(&desc[idx], direct);
944 set_flow_mode(&desc[idx], ctx->flow_mode);
945 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
946 hw_iv_size, NS_BIT);
947 if (ctx->cipher_mode == DRV_CIPHER_CTR)
948 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
949 else
950 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
951 set_cipher_mode(&desc[idx], ctx->cipher_mode);
952 idx++;
953
954 /* Setup enc. key */
955 hw_desc_init(&desc[idx]);
956 set_cipher_config0(&desc[idx], direct);
957 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
958 set_flow_mode(&desc[idx], ctx->flow_mode);
959 if (ctx->flow_mode == S_DIN_to_AES) {
960 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
961 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
962 ctx->enc_keylen), NS_BIT);
963 set_key_size_aes(&desc[idx], ctx->enc_keylen);
964 } else {
965 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
966 ctx->enc_keylen, NS_BIT);
967 set_key_size_des(&desc[idx], ctx->enc_keylen);
968 }
969 set_cipher_mode(&desc[idx], ctx->cipher_mode);
970 idx++;
971
972 *seq_size = idx;
973 }
974
975 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
976 unsigned int *seq_size, unsigned int data_flow_mode)
977 {
978 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
979 int direct = req_ctx->gen_ctx.op_type;
980 unsigned int idx = *seq_size;
981
982 if (req_ctx->cryptlen == 0)
983 return; /*null processing*/
984
985 cc_set_cipher_desc(req, desc, &idx);
986 cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
987 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
988 /* We must wait for DMA to write all cipher */
989 hw_desc_init(&desc[idx]);
990 set_din_no_dma(&desc[idx], 0, 0xfffff0);
991 set_dout_no_dma(&desc[idx], 0, 0, 1);
992 idx++;
993 }
994
995 *seq_size = idx;
996 }
997
998 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
999 unsigned int *seq_size)
1000 {
1001 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1002 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1003 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1004 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1005 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1006 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1007 unsigned int idx = *seq_size;
1008
1009 /* Loading hash ipad xor key state */
1010 hw_desc_init(&desc[idx]);
1011 set_cipher_mode(&desc[idx], hash_mode);
1012 set_din_type(&desc[idx], DMA_DLLI,
1013 ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1014 NS_BIT);
1015 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1016 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1017 idx++;
1018
1019 /* Load init. digest len (64 bytes) */
1020 hw_desc_init(&desc[idx]);
1021 set_cipher_mode(&desc[idx], hash_mode);
1022 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1023 ctx->hash_len);
1024 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1025 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1026 idx++;
1027
1028 *seq_size = idx;
1029 }
1030
1031 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1032 unsigned int *seq_size)
1033 {
1034 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1035 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1036 unsigned int idx = *seq_size;
1037
1038 /* Loading MAC state */
1039 hw_desc_init(&desc[idx]);
1040 set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1041 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1042 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1043 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1044 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1045 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1046 set_aes_not_hash_mode(&desc[idx]);
1047 idx++;
1048
1049 /* Setup XCBC MAC K1 */
1050 hw_desc_init(&desc[idx]);
1051 set_din_type(&desc[idx], DMA_DLLI,
1052 ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1053 AES_KEYSIZE_128, NS_BIT);
1054 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1055 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1056 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1057 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1058 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1059 set_aes_not_hash_mode(&desc[idx]);
1060 idx++;
1061
1062 /* Setup XCBC MAC K2 */
1063 hw_desc_init(&desc[idx]);
1064 set_din_type(&desc[idx], DMA_DLLI,
1065 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1066 AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1067 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1068 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1069 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1070 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1071 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1072 set_aes_not_hash_mode(&desc[idx]);
1073 idx++;
1074
1075 /* Setup XCBC MAC K3 */
1076 hw_desc_init(&desc[idx]);
1077 set_din_type(&desc[idx], DMA_DLLI,
1078 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1079 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1080 set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1081 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1082 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1083 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1084 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1085 set_aes_not_hash_mode(&desc[idx]);
1086 idx++;
1087
1088 *seq_size = idx;
1089 }
1090
1091 static void cc_proc_header_desc(struct aead_request *req,
1092 struct cc_hw_desc desc[],
1093 unsigned int *seq_size)
1094 {
1095 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1096 unsigned int idx = *seq_size;
1097
1098 /* Hash associated data */
1099 if (areq_ctx->assoclen > 0)
1100 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1101
1102 /* Hash IV */
1103 *seq_size = idx;
1104 }
1105
1106 static void cc_proc_scheme_desc(struct aead_request *req,
1107 struct cc_hw_desc desc[],
1108 unsigned int *seq_size)
1109 {
1110 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1111 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1112 struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1113 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1114 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1115 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1116 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1117 unsigned int idx = *seq_size;
1118
1119 hw_desc_init(&desc[idx]);
1120 set_cipher_mode(&desc[idx], hash_mode);
1121 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1122 ctx->hash_len);
1123 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1124 set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1125 set_cipher_do(&desc[idx], DO_PAD);
1126 idx++;
1127
1128 /* Get final ICV result */
1129 hw_desc_init(&desc[idx]);
1130 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1131 digest_size);
1132 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1133 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1134 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1135 set_cipher_mode(&desc[idx], hash_mode);
1136 idx++;
1137
1138 /* Loading hash opad xor key state */
1139 hw_desc_init(&desc[idx]);
1140 set_cipher_mode(&desc[idx], hash_mode);
1141 set_din_type(&desc[idx], DMA_DLLI,
1142 (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1143 digest_size, NS_BIT);
1144 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1146 idx++;
1147
1148 /* Load init. digest len (64 bytes) */
1149 hw_desc_init(&desc[idx]);
1150 set_cipher_mode(&desc[idx], hash_mode);
1151 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1152 ctx->hash_len);
1153 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1154 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1155 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1156 idx++;
1157
1158 /* Perform HASH update */
1159 hw_desc_init(&desc[idx]);
1160 set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1161 digest_size);
1162 set_flow_mode(&desc[idx], DIN_HASH);
1163 idx++;
1164
1165 *seq_size = idx;
1166 }
1167
1168 static void cc_mlli_to_sram(struct aead_request *req,
1169 struct cc_hw_desc desc[], unsigned int *seq_size)
1170 {
1171 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1172 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1173 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1174 struct device *dev = drvdata_to_dev(ctx->drvdata);
1175
1176 if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1177 req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1178 !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1179 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1180 (unsigned int)ctx->drvdata->mlli_sram_addr,
1181 req_ctx->mlli_params.mlli_len);
1182 /* Copy MLLI table host-to-sram */
1183 hw_desc_init(&desc[*seq_size]);
1184 set_din_type(&desc[*seq_size], DMA_DLLI,
1185 req_ctx->mlli_params.mlli_dma_addr,
1186 req_ctx->mlli_params.mlli_len, NS_BIT);
1187 set_dout_sram(&desc[*seq_size],
1188 ctx->drvdata->mlli_sram_addr,
1189 req_ctx->mlli_params.mlli_len);
1190 set_flow_mode(&desc[*seq_size], BYPASS);
1191 (*seq_size)++;
1192 }
1193 }
1194
1195 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1196 enum cc_flow_mode setup_flow_mode,
1197 bool is_single_pass)
1198 {
1199 enum cc_flow_mode data_flow_mode;
1200
1201 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1202 if (setup_flow_mode == S_DIN_to_AES)
1203 data_flow_mode = is_single_pass ?
1204 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1205 else
1206 data_flow_mode = is_single_pass ?
1207 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1208 } else { /* Decrypt */
1209 if (setup_flow_mode == S_DIN_to_AES)
1210 data_flow_mode = is_single_pass ?
1211 AES_and_HASH : DIN_AES_DOUT;
1212 else
1213 data_flow_mode = is_single_pass ?
1214 DES_and_HASH : DIN_DES_DOUT;
1215 }
1216
1217 return data_flow_mode;
1218 }
1219
1220 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1221 unsigned int *seq_size)
1222 {
1223 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1224 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1225 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1226 int direct = req_ctx->gen_ctx.op_type;
1227 unsigned int data_flow_mode =
1228 cc_get_data_flow(direct, ctx->flow_mode,
1229 req_ctx->is_single_pass);
1230
1231 if (req_ctx->is_single_pass) {
1232 /**
1233 * Single-pass flow
1234 */
1235 cc_set_hmac_desc(req, desc, seq_size);
1236 cc_set_cipher_desc(req, desc, seq_size);
1237 cc_proc_header_desc(req, desc, seq_size);
1238 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1239 cc_proc_scheme_desc(req, desc, seq_size);
1240 cc_proc_digest_desc(req, desc, seq_size);
1241 return;
1242 }
1243
1244 /**
1245 * Double-pass flow
1246 * Fallback for unsupported single-pass modes,
1247 * i.e. using assoc. data of non-word-multiple
1248 */
1249 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1250 /* encrypt first.. */
1251 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1252 /* authenc after..*/
1253 cc_set_hmac_desc(req, desc, seq_size);
1254 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1255 cc_proc_scheme_desc(req, desc, seq_size);
1256 cc_proc_digest_desc(req, desc, seq_size);
1257
1258 } else { /*DECRYPT*/
1259 /* authenc first..*/
1260 cc_set_hmac_desc(req, desc, seq_size);
1261 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1262 cc_proc_scheme_desc(req, desc, seq_size);
1263 /* decrypt after.. */
1264 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1265 /* read the digest result with setting the completion bit
1266 * must be after the cipher operation
1267 */
1268 cc_proc_digest_desc(req, desc, seq_size);
1269 }
1270 }
1271
1272 static void
1273 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1274 unsigned int *seq_size)
1275 {
1276 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1277 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1278 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1279 int direct = req_ctx->gen_ctx.op_type;
1280 unsigned int data_flow_mode =
1281 cc_get_data_flow(direct, ctx->flow_mode,
1282 req_ctx->is_single_pass);
1283
1284 if (req_ctx->is_single_pass) {
1285 /**
1286 * Single-pass flow
1287 */
1288 cc_set_xcbc_desc(req, desc, seq_size);
1289 cc_set_cipher_desc(req, desc, seq_size);
1290 cc_proc_header_desc(req, desc, seq_size);
1291 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1292 cc_proc_digest_desc(req, desc, seq_size);
1293 return;
1294 }
1295
1296 /**
1297 * Double-pass flow
1298 * Fallback for unsupported single-pass modes,
1299 * i.e. using assoc. data of non-word-multiple
1300 */
1301 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1302 /* encrypt first.. */
1303 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304 /* authenc after.. */
1305 cc_set_xcbc_desc(req, desc, seq_size);
1306 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1307 cc_proc_digest_desc(req, desc, seq_size);
1308 } else { /*DECRYPT*/
1309 /* authenc first.. */
1310 cc_set_xcbc_desc(req, desc, seq_size);
1311 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1312 /* decrypt after..*/
1313 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1314 /* read the digest result with setting the completion bit
1315 * must be after the cipher operation
1316 */
1317 cc_proc_digest_desc(req, desc, seq_size);
1318 }
1319 }
1320
1321 static int validate_data_size(struct cc_aead_ctx *ctx,
1322 enum drv_crypto_direction direct,
1323 struct aead_request *req)
1324 {
1325 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1326 struct device *dev = drvdata_to_dev(ctx->drvdata);
1327 unsigned int assoclen = areq_ctx->assoclen;
1328 unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1329 (req->cryptlen - ctx->authsize) : req->cryptlen;
1330
1331 if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1332 req->cryptlen < ctx->authsize)
1333 goto data_size_err;
1334
1335 areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1336
1337 switch (ctx->flow_mode) {
1338 case S_DIN_to_AES:
1339 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1340 !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1341 goto data_size_err;
1342 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1343 break;
1344 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1345 if (areq_ctx->plaintext_authenticate_only)
1346 areq_ctx->is_single_pass = false;
1347 break;
1348 }
1349
1350 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1351 areq_ctx->is_single_pass = false;
1352
1353 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1354 !IS_ALIGNED(cipherlen, sizeof(u32)))
1355 areq_ctx->is_single_pass = false;
1356
1357 break;
1358 case S_DIN_to_DES:
1359 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1360 goto data_size_err;
1361 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1362 areq_ctx->is_single_pass = false;
1363 break;
1364 default:
1365 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1366 goto data_size_err;
1367 }
1368
1369 return 0;
1370
1371 data_size_err:
1372 return -EINVAL;
1373 }
1374
1375 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1376 {
1377 unsigned int len = 0;
1378
1379 if (header_size == 0)
1380 return 0;
1381
1382 if (header_size < ((1UL << 16) - (1UL << 8))) {
1383 len = 2;
1384
1385 pa0_buff[0] = (header_size >> 8) & 0xFF;
1386 pa0_buff[1] = header_size & 0xFF;
1387 } else {
1388 len = 6;
1389
1390 pa0_buff[0] = 0xFF;
1391 pa0_buff[1] = 0xFE;
1392 pa0_buff[2] = (header_size >> 24) & 0xFF;
1393 pa0_buff[3] = (header_size >> 16) & 0xFF;
1394 pa0_buff[4] = (header_size >> 8) & 0xFF;
1395 pa0_buff[5] = header_size & 0xFF;
1396 }
1397
1398 return len;
1399 }
1400
1401 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1402 {
1403 __be32 data;
1404
1405 memset(block, 0, csize);
1406 block += csize;
1407
1408 if (csize >= 4)
1409 csize = 4;
1410 else if (msglen > (1 << (8 * csize)))
1411 return -EOVERFLOW;
1412
1413 data = cpu_to_be32(msglen);
1414 memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1415
1416 return 0;
1417 }
1418
1419 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1420 unsigned int *seq_size)
1421 {
1422 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1423 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1424 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1425 unsigned int idx = *seq_size;
1426 unsigned int cipher_flow_mode;
1427 dma_addr_t mac_result;
1428
1429 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1430 cipher_flow_mode = AES_to_HASH_and_DOUT;
1431 mac_result = req_ctx->mac_buf_dma_addr;
1432 } else { /* Encrypt */
1433 cipher_flow_mode = AES_and_HASH;
1434 mac_result = req_ctx->icv_dma_addr;
1435 }
1436
1437 /* load key */
1438 hw_desc_init(&desc[idx]);
1439 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1440 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1441 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1442 ctx->enc_keylen), NS_BIT);
1443 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1444 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1445 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446 set_flow_mode(&desc[idx], S_DIN_to_AES);
1447 idx++;
1448
1449 /* load ctr state */
1450 hw_desc_init(&desc[idx]);
1451 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1452 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1453 set_din_type(&desc[idx], DMA_DLLI,
1454 req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1455 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1456 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1457 set_flow_mode(&desc[idx], S_DIN_to_AES);
1458 idx++;
1459
1460 /* load MAC key */
1461 hw_desc_init(&desc[idx]);
1462 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1463 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1464 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1465 ctx->enc_keylen), NS_BIT);
1466 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1468 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1469 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1470 set_aes_not_hash_mode(&desc[idx]);
1471 idx++;
1472
1473 /* load MAC state */
1474 hw_desc_init(&desc[idx]);
1475 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1476 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1477 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1478 AES_BLOCK_SIZE, NS_BIT);
1479 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1480 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1481 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1482 set_aes_not_hash_mode(&desc[idx]);
1483 idx++;
1484
1485 /* process assoc data */
1486 if (req_ctx->assoclen > 0) {
1487 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1488 } else {
1489 hw_desc_init(&desc[idx]);
1490 set_din_type(&desc[idx], DMA_DLLI,
1491 sg_dma_address(&req_ctx->ccm_adata_sg),
1492 AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1493 set_flow_mode(&desc[idx], DIN_HASH);
1494 idx++;
1495 }
1496
1497 /* process the cipher */
1498 if (req_ctx->cryptlen)
1499 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1500
1501 /* Read temporal MAC */
1502 hw_desc_init(&desc[idx]);
1503 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1504 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1505 NS_BIT, 0);
1506 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1507 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1508 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1509 set_aes_not_hash_mode(&desc[idx]);
1510 idx++;
1511
1512 /* load AES-CTR state (for last MAC calculation)*/
1513 hw_desc_init(&desc[idx]);
1514 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1515 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1516 set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1517 AES_BLOCK_SIZE, NS_BIT);
1518 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1519 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1520 set_flow_mode(&desc[idx], S_DIN_to_AES);
1521 idx++;
1522
1523 hw_desc_init(&desc[idx]);
1524 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1525 set_dout_no_dma(&desc[idx], 0, 0, 1);
1526 idx++;
1527
1528 /* encrypt the "T" value and store MAC in mac_state */
1529 hw_desc_init(&desc[idx]);
1530 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1531 ctx->authsize, NS_BIT);
1532 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1533 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1534 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1535 idx++;
1536
1537 *seq_size = idx;
1538 return 0;
1539 }
1540
1541 static int config_ccm_adata(struct aead_request *req)
1542 {
1543 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1544 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1545 struct device *dev = drvdata_to_dev(ctx->drvdata);
1546 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1547 //unsigned int size_of_a = 0, rem_a_size = 0;
1548 unsigned int lp = req->iv[0];
1549 /* Note: The code assume that req->iv[0] already contains the value
1550 * of L' of RFC3610
1551 */
1552 unsigned int l = lp + 1; /* This is L' of RFC 3610. */
1553 unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
1554 u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1555 u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1556 u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1557 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1558 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1559 req->cryptlen :
1560 (req->cryptlen - ctx->authsize);
1561 int rc;
1562
1563 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1564 memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1565
1566 /* taken from crypto/ccm.c */
1567 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1568 if (l < 2 || l > 8) {
1569 dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1570 return -EINVAL;
1571 }
1572 memcpy(b0, req->iv, AES_BLOCK_SIZE);
1573
1574 /* format control info per RFC 3610 and
1575 * NIST Special Publication 800-38C
1576 */
1577 *b0 |= (8 * ((m - 2) / 2));
1578 if (req_ctx->assoclen > 0)
1579 *b0 |= 64; /* Enable bit 6 if Adata exists. */
1580
1581 rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
1582 if (rc) {
1583 dev_err(dev, "message len overflow detected");
1584 return rc;
1585 }
1586 /* END of "taken from crypto/ccm.c" */
1587
1588 /* l(a) - size of associated data. */
1589 req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1590
1591 memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1592 req->iv[15] = 1;
1593
1594 memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1595 ctr_count_0[15] = 0;
1596
1597 return 0;
1598 }
1599
1600 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1601 {
1602 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1603 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1604 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1605
1606 /* L' */
1607 memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1608 /* For RFC 4309, always use 4 bytes for message length
1609 * (at most 2^32-1 bytes).
1610 */
1611 areq_ctx->ctr_iv[0] = 3;
1612
1613 /* In RFC 4309 there is an 11-bytes nonce+IV part,
1614 * that we build here.
1615 */
1616 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1617 CCM_BLOCK_NONCE_SIZE);
1618 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1619 CCM_BLOCK_IV_SIZE);
1620 req->iv = areq_ctx->ctr_iv;
1621 areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE;
1622 }
1623
1624 static void cc_set_ghash_desc(struct aead_request *req,
1625 struct cc_hw_desc desc[], unsigned int *seq_size)
1626 {
1627 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1628 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1629 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1630 unsigned int idx = *seq_size;
1631
1632 /* load key to AES*/
1633 hw_desc_init(&desc[idx]);
1634 set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1635 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1636 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1637 ctx->enc_keylen, NS_BIT);
1638 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1639 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1640 set_flow_mode(&desc[idx], S_DIN_to_AES);
1641 idx++;
1642
1643 /* process one zero block to generate hkey */
1644 hw_desc_init(&desc[idx]);
1645 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1646 set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1647 NS_BIT, 0);
1648 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1649 idx++;
1650
1651 /* Memory Barrier */
1652 hw_desc_init(&desc[idx]);
1653 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1654 set_dout_no_dma(&desc[idx], 0, 0, 1);
1655 idx++;
1656
1657 /* Load GHASH subkey */
1658 hw_desc_init(&desc[idx]);
1659 set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1660 AES_BLOCK_SIZE, NS_BIT);
1661 set_dout_no_dma(&desc[idx], 0, 0, 1);
1662 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1663 set_aes_not_hash_mode(&desc[idx]);
1664 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1665 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1666 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1667 idx++;
1668
1669 /* Configure Hash Engine to work with GHASH.
1670 * Since it was not possible to extend HASH submodes to add GHASH,
1671 * The following command is necessary in order to
1672 * select GHASH (according to HW designers)
1673 */
1674 hw_desc_init(&desc[idx]);
1675 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1676 set_dout_no_dma(&desc[idx], 0, 0, 1);
1677 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1678 set_aes_not_hash_mode(&desc[idx]);
1679 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1680 set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1681 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1682 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1683 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1684 idx++;
1685
1686 /* Load GHASH initial STATE (which is 0). (for any hash there is an
1687 * initial state)
1688 */
1689 hw_desc_init(&desc[idx]);
1690 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1691 set_dout_no_dma(&desc[idx], 0, 0, 1);
1692 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1693 set_aes_not_hash_mode(&desc[idx]);
1694 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1695 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1696 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1697 idx++;
1698
1699 *seq_size = idx;
1700 }
1701
1702 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1703 unsigned int *seq_size)
1704 {
1705 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1706 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1707 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1708 unsigned int idx = *seq_size;
1709
1710 /* load key to AES*/
1711 hw_desc_init(&desc[idx]);
1712 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1713 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1714 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1715 ctx->enc_keylen, NS_BIT);
1716 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1717 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1718 set_flow_mode(&desc[idx], S_DIN_to_AES);
1719 idx++;
1720
1721 if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1722 /* load AES/CTR initial CTR value inc by 2*/
1723 hw_desc_init(&desc[idx]);
1724 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1725 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1726 set_din_type(&desc[idx], DMA_DLLI,
1727 req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1728 NS_BIT);
1729 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1730 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1731 set_flow_mode(&desc[idx], S_DIN_to_AES);
1732 idx++;
1733 }
1734
1735 *seq_size = idx;
1736 }
1737
1738 static void cc_proc_gcm_result(struct aead_request *req,
1739 struct cc_hw_desc desc[],
1740 unsigned int *seq_size)
1741 {
1742 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1743 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1744 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1745 dma_addr_t mac_result;
1746 unsigned int idx = *seq_size;
1747
1748 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1749 mac_result = req_ctx->mac_buf_dma_addr;
1750 } else { /* Encrypt */
1751 mac_result = req_ctx->icv_dma_addr;
1752 }
1753
1754 /* process(ghash) gcm_block_len */
1755 hw_desc_init(&desc[idx]);
1756 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1757 AES_BLOCK_SIZE, NS_BIT);
1758 set_flow_mode(&desc[idx], DIN_HASH);
1759 idx++;
1760
1761 /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1762 hw_desc_init(&desc[idx]);
1763 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1764 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1765 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1766 NS_BIT, 0);
1767 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1768 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1769 set_aes_not_hash_mode(&desc[idx]);
1770
1771 idx++;
1772
1773 /* load AES/CTR initial CTR value inc by 1*/
1774 hw_desc_init(&desc[idx]);
1775 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1776 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1777 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1778 AES_BLOCK_SIZE, NS_BIT);
1779 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1780 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1781 set_flow_mode(&desc[idx], S_DIN_to_AES);
1782 idx++;
1783
1784 /* Memory Barrier */
1785 hw_desc_init(&desc[idx]);
1786 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1787 set_dout_no_dma(&desc[idx], 0, 0, 1);
1788 idx++;
1789
1790 /* process GCTR on stored GHASH and store MAC in mac_state*/
1791 hw_desc_init(&desc[idx]);
1792 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1793 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1794 AES_BLOCK_SIZE, NS_BIT);
1795 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1796 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1797 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1798 idx++;
1799
1800 *seq_size = idx;
1801 }
1802
1803 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1804 unsigned int *seq_size)
1805 {
1806 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1807 unsigned int cipher_flow_mode;
1808
1809 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810 cipher_flow_mode = AES_and_HASH;
1811 } else { /* Encrypt */
1812 cipher_flow_mode = AES_to_HASH_and_DOUT;
1813 }
1814
1815 //in RFC4543 no data to encrypt. just copy data from src to dest.
1816 if (req_ctx->plaintext_authenticate_only) {
1817 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1818 cc_set_ghash_desc(req, desc, seq_size);
1819 /* process(ghash) assoc data */
1820 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1821 cc_set_gctr_desc(req, desc, seq_size);
1822 cc_proc_gcm_result(req, desc, seq_size);
1823 return 0;
1824 }
1825
1826 // for gcm and rfc4106.
1827 cc_set_ghash_desc(req, desc, seq_size);
1828 /* process(ghash) assoc data */
1829 if (req_ctx->assoclen > 0)
1830 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1831 cc_set_gctr_desc(req, desc, seq_size);
1832 /* process(gctr+ghash) */
1833 if (req_ctx->cryptlen)
1834 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1835 cc_proc_gcm_result(req, desc, seq_size);
1836
1837 return 0;
1838 }
1839
1840 static int config_gcm_context(struct aead_request *req)
1841 {
1842 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1843 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1844 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1845 struct device *dev = drvdata_to_dev(ctx->drvdata);
1846
1847 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1848 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1849 req->cryptlen :
1850 (req->cryptlen - ctx->authsize);
1851 __be32 counter = cpu_to_be32(2);
1852
1853 dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1854 __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1855
1856 memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1857
1858 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1859
1860 memcpy(req->iv + 12, &counter, 4);
1861 memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1862
1863 counter = cpu_to_be32(1);
1864 memcpy(req->iv + 12, &counter, 4);
1865 memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1866
1867 if (!req_ctx->plaintext_authenticate_only) {
1868 __be64 temp64;
1869
1870 temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1871 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1872 temp64 = cpu_to_be64(cryptlen * 8);
1873 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1874 } else {
1875 /* rfc4543=> all data(AAD,IV,Plain) are considered additional
1876 * data that is nothing is encrypted.
1877 */
1878 __be64 temp64;
1879
1880 temp64 = cpu_to_be64((req_ctx->assoclen +
1881 GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8);
1882 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1883 temp64 = 0;
1884 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1885 }
1886
1887 return 0;
1888 }
1889
1890 static void cc_proc_rfc4_gcm(struct aead_request *req)
1891 {
1892 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1893 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1894 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1895
1896 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1897 ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1898 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1899 GCM_BLOCK_RFC4_IV_SIZE);
1900 req->iv = areq_ctx->ctr_iv;
1901 areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1902 }
1903
1904 static int cc_proc_aead(struct aead_request *req,
1905 enum drv_crypto_direction direct)
1906 {
1907 int rc = 0;
1908 int seq_len = 0;
1909 struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1910 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1911 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1912 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1913 struct device *dev = drvdata_to_dev(ctx->drvdata);
1914 struct cc_crypto_req cc_req = {};
1915
1916 dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1917 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1918 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1919 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1920
1921 /* STAT_PHASE_0: Init and sanity checks */
1922
1923 /* Check data length according to mode */
1924 if (validate_data_size(ctx, direct, req)) {
1925 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1926 req->cryptlen, areq_ctx->assoclen);
1927 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1928 return -EINVAL;
1929 }
1930
1931 /* Setup request structure */
1932 cc_req.user_cb = (void *)cc_aead_complete;
1933 cc_req.user_arg = (void *)req;
1934
1935 /* Setup request context */
1936 areq_ctx->gen_ctx.op_type = direct;
1937 areq_ctx->req_authsize = ctx->authsize;
1938 areq_ctx->cipher_mode = ctx->cipher_mode;
1939
1940 /* STAT_PHASE_1: Map buffers */
1941
1942 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1943 /* Build CTR IV - Copy nonce from last 4 bytes in
1944 * CTR key to first 4 bytes in CTR IV
1945 */
1946 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1947 CTR_RFC3686_NONCE_SIZE);
1948 memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1949 CTR_RFC3686_IV_SIZE);
1950 /* Initialize counter portion of counter block */
1951 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1952 CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1953
1954 /* Replace with counter iv */
1955 req->iv = areq_ctx->ctr_iv;
1956 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1957 } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1958 (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1959 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1960 if (areq_ctx->ctr_iv != req->iv) {
1961 memcpy(areq_ctx->ctr_iv, req->iv,
1962 crypto_aead_ivsize(tfm));
1963 req->iv = areq_ctx->ctr_iv;
1964 }
1965 } else {
1966 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1967 }
1968
1969 if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1970 rc = config_ccm_adata(req);
1971 if (rc) {
1972 dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1973 rc);
1974 goto exit;
1975 }
1976 } else {
1977 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1978 }
1979
1980 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1981 rc = config_gcm_context(req);
1982 if (rc) {
1983 dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1984 rc);
1985 goto exit;
1986 }
1987 }
1988
1989 rc = cc_map_aead_request(ctx->drvdata, req);
1990 if (rc) {
1991 dev_err(dev, "map_request() failed\n");
1992 goto exit;
1993 }
1994
1995 /* STAT_PHASE_2: Create sequence */
1996
1997 /* Load MLLI tables to SRAM if necessary */
1998 cc_mlli_to_sram(req, desc, &seq_len);
1999
2000 /*TODO: move seq len by reference */
2001 switch (ctx->auth_mode) {
2002 case DRV_HASH_SHA1:
2003 case DRV_HASH_SHA256:
2004 cc_hmac_authenc(req, desc, &seq_len);
2005 break;
2006 case DRV_HASH_XCBC_MAC:
2007 cc_xcbc_authenc(req, desc, &seq_len);
2008 break;
2009 case DRV_HASH_NULL:
2010 if (ctx->cipher_mode == DRV_CIPHER_CCM)
2011 cc_ccm(req, desc, &seq_len);
2012 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2013 cc_gcm(req, desc, &seq_len);
2014 break;
2015 default:
2016 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2017 cc_unmap_aead_request(dev, req);
2018 rc = -ENOTSUPP;
2019 goto exit;
2020 }
2021
2022 /* STAT_PHASE_3: Lock HW and push sequence */
2023
2024 rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2025
2026 if (rc != -EINPROGRESS && rc != -EBUSY) {
2027 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2028 cc_unmap_aead_request(dev, req);
2029 }
2030
2031 exit:
2032 return rc;
2033 }
2034
2035 static int cc_aead_encrypt(struct aead_request *req)
2036 {
2037 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2038 int rc;
2039
2040 memset(areq_ctx, 0, sizeof(*areq_ctx));
2041
2042 /* No generated IV required */
2043 areq_ctx->backup_iv = req->iv;
2044 areq_ctx->assoclen = req->assoclen;
2045 areq_ctx->is_gcm4543 = false;
2046
2047 areq_ctx->plaintext_authenticate_only = false;
2048
2049 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2050 if (rc != -EINPROGRESS && rc != -EBUSY)
2051 req->iv = areq_ctx->backup_iv;
2052
2053 return rc;
2054 }
2055
2056 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2057 {
2058 /* Very similar to cc_aead_encrypt() above. */
2059
2060 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2061 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2062 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2063 struct device *dev = drvdata_to_dev(ctx->drvdata);
2064 int rc = -EINVAL;
2065
2066 if (!valid_assoclen(req)) {
2067 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2068 goto out;
2069 }
2070
2071 memset(areq_ctx, 0, sizeof(*areq_ctx));
2072
2073 /* No generated IV required */
2074 areq_ctx->backup_iv = req->iv;
2075 areq_ctx->assoclen = req->assoclen;
2076 areq_ctx->is_gcm4543 = true;
2077
2078 cc_proc_rfc4309_ccm(req);
2079
2080 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2081 if (rc != -EINPROGRESS && rc != -EBUSY)
2082 req->iv = areq_ctx->backup_iv;
2083 out:
2084 return rc;
2085 }
2086
2087 static int cc_aead_decrypt(struct aead_request *req)
2088 {
2089 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2090 int rc;
2091
2092 memset(areq_ctx, 0, sizeof(*areq_ctx));
2093
2094 /* No generated IV required */
2095 areq_ctx->backup_iv = req->iv;
2096 areq_ctx->assoclen = req->assoclen;
2097 areq_ctx->is_gcm4543 = false;
2098
2099 areq_ctx->plaintext_authenticate_only = false;
2100
2101 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2102 if (rc != -EINPROGRESS && rc != -EBUSY)
2103 req->iv = areq_ctx->backup_iv;
2104
2105 return rc;
2106 }
2107
2108 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2109 {
2110 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2111 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2112 struct device *dev = drvdata_to_dev(ctx->drvdata);
2113 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2114 int rc = -EINVAL;
2115
2116 if (!valid_assoclen(req)) {
2117 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2118 goto out;
2119 }
2120
2121 memset(areq_ctx, 0, sizeof(*areq_ctx));
2122
2123 /* No generated IV required */
2124 areq_ctx->backup_iv = req->iv;
2125 areq_ctx->assoclen = req->assoclen;
2126
2127 areq_ctx->is_gcm4543 = true;
2128 cc_proc_rfc4309_ccm(req);
2129
2130 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2131 if (rc != -EINPROGRESS && rc != -EBUSY)
2132 req->iv = areq_ctx->backup_iv;
2133
2134 out:
2135 return rc;
2136 }
2137
2138 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2139 unsigned int keylen)
2140 {
2141 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2142 struct device *dev = drvdata_to_dev(ctx->drvdata);
2143
2144 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2145
2146 if (keylen < 4)
2147 return -EINVAL;
2148
2149 keylen -= 4;
2150 memcpy(ctx->ctr_nonce, key + keylen, 4);
2151
2152 return cc_aead_setkey(tfm, key, keylen);
2153 }
2154
2155 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2156 unsigned int keylen)
2157 {
2158 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2159 struct device *dev = drvdata_to_dev(ctx->drvdata);
2160
2161 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2162
2163 if (keylen < 4)
2164 return -EINVAL;
2165
2166 keylen -= 4;
2167 memcpy(ctx->ctr_nonce, key + keylen, 4);
2168
2169 return cc_aead_setkey(tfm, key, keylen);
2170 }
2171
2172 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2173 unsigned int authsize)
2174 {
2175 switch (authsize) {
2176 case 4:
2177 case 8:
2178 case 12:
2179 case 13:
2180 case 14:
2181 case 15:
2182 case 16:
2183 break;
2184 default:
2185 return -EINVAL;
2186 }
2187
2188 return cc_aead_setauthsize(authenc, authsize);
2189 }
2190
2191 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2192 unsigned int authsize)
2193 {
2194 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2195 struct device *dev = drvdata_to_dev(ctx->drvdata);
2196
2197 dev_dbg(dev, "authsize %d\n", authsize);
2198
2199 switch (authsize) {
2200 case 8:
2201 case 12:
2202 case 16:
2203 break;
2204 default:
2205 return -EINVAL;
2206 }
2207
2208 return cc_aead_setauthsize(authenc, authsize);
2209 }
2210
2211 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2212 unsigned int authsize)
2213 {
2214 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2215 struct device *dev = drvdata_to_dev(ctx->drvdata);
2216
2217 dev_dbg(dev, "authsize %d\n", authsize);
2218
2219 if (authsize != 16)
2220 return -EINVAL;
2221
2222 return cc_aead_setauthsize(authenc, authsize);
2223 }
2224
2225 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2226 {
2227 /* Very similar to cc_aead_encrypt() above. */
2228
2229 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2230 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2231 struct device *dev = drvdata_to_dev(ctx->drvdata);
2232 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2233 int rc = -EINVAL;
2234
2235 if (!valid_assoclen(req)) {
2236 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2237 goto out;
2238 }
2239
2240 memset(areq_ctx, 0, sizeof(*areq_ctx));
2241
2242 /* No generated IV required */
2243 areq_ctx->backup_iv = req->iv;
2244 areq_ctx->assoclen = req->assoclen;
2245 areq_ctx->plaintext_authenticate_only = false;
2246
2247 cc_proc_rfc4_gcm(req);
2248 areq_ctx->is_gcm4543 = true;
2249
2250 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2251 if (rc != -EINPROGRESS && rc != -EBUSY)
2252 req->iv = areq_ctx->backup_iv;
2253 out:
2254 return rc;
2255 }
2256
2257 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2258 {
2259 /* Very similar to cc_aead_encrypt() above. */
2260 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2261 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2262 struct device *dev = drvdata_to_dev(ctx->drvdata);
2263 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2264 int rc = -EINVAL;
2265
2266 if (!valid_assoclen(req)) {
2267 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2268 goto out;
2269 }
2270
2271 memset(areq_ctx, 0, sizeof(*areq_ctx));
2272
2273 //plaintext is not encryped with rfc4543
2274 areq_ctx->plaintext_authenticate_only = true;
2275
2276 /* No generated IV required */
2277 areq_ctx->backup_iv = req->iv;
2278 areq_ctx->assoclen = req->assoclen;
2279
2280 cc_proc_rfc4_gcm(req);
2281 areq_ctx->is_gcm4543 = true;
2282
2283 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2284 if (rc != -EINPROGRESS && rc != -EBUSY)
2285 req->iv = areq_ctx->backup_iv;
2286 out:
2287 return rc;
2288 }
2289
2290 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2291 {
2292 /* Very similar to cc_aead_decrypt() above. */
2293
2294 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2295 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2296 struct device *dev = drvdata_to_dev(ctx->drvdata);
2297 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2298 int rc = -EINVAL;
2299
2300 if (!valid_assoclen(req)) {
2301 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2302 goto out;
2303 }
2304
2305 memset(areq_ctx, 0, sizeof(*areq_ctx));
2306
2307 /* No generated IV required */
2308 areq_ctx->backup_iv = req->iv;
2309 areq_ctx->assoclen = req->assoclen;
2310 areq_ctx->plaintext_authenticate_only = false;
2311
2312 cc_proc_rfc4_gcm(req);
2313 areq_ctx->is_gcm4543 = true;
2314
2315 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2316 if (rc != -EINPROGRESS && rc != -EBUSY)
2317 req->iv = areq_ctx->backup_iv;
2318 out:
2319 return rc;
2320 }
2321
2322 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2323 {
2324 /* Very similar to cc_aead_decrypt() above. */
2325 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2326 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2327 struct device *dev = drvdata_to_dev(ctx->drvdata);
2328 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2329 int rc = -EINVAL;
2330
2331 if (!valid_assoclen(req)) {
2332 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2333 goto out;
2334 }
2335
2336 memset(areq_ctx, 0, sizeof(*areq_ctx));
2337
2338 //plaintext is not decryped with rfc4543
2339 areq_ctx->plaintext_authenticate_only = true;
2340
2341 /* No generated IV required */
2342 areq_ctx->backup_iv = req->iv;
2343 areq_ctx->assoclen = req->assoclen;
2344
2345 cc_proc_rfc4_gcm(req);
2346 areq_ctx->is_gcm4543 = true;
2347
2348 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2349 if (rc != -EINPROGRESS && rc != -EBUSY)
2350 req->iv = areq_ctx->backup_iv;
2351 out:
2352 return rc;
2353 }
2354
2355 /* aead alg */
2356 static struct cc_alg_template aead_algs[] = {
2357 {
2358 .name = "authenc(hmac(sha1),cbc(aes))",
2359 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2360 .blocksize = AES_BLOCK_SIZE,
2361 .template_aead = {
2362 .setkey = cc_aead_setkey,
2363 .setauthsize = cc_aead_setauthsize,
2364 .encrypt = cc_aead_encrypt,
2365 .decrypt = cc_aead_decrypt,
2366 .init = cc_aead_init,
2367 .exit = cc_aead_exit,
2368 .ivsize = AES_BLOCK_SIZE,
2369 .maxauthsize = SHA1_DIGEST_SIZE,
2370 },
2371 .cipher_mode = DRV_CIPHER_CBC,
2372 .flow_mode = S_DIN_to_AES,
2373 .auth_mode = DRV_HASH_SHA1,
2374 .min_hw_rev = CC_HW_REV_630,
2375 .std_body = CC_STD_NIST,
2376 },
2377 {
2378 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2379 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2380 .blocksize = DES3_EDE_BLOCK_SIZE,
2381 .template_aead = {
2382 .setkey = cc_des3_aead_setkey,
2383 .setauthsize = cc_aead_setauthsize,
2384 .encrypt = cc_aead_encrypt,
2385 .decrypt = cc_aead_decrypt,
2386 .init = cc_aead_init,
2387 .exit = cc_aead_exit,
2388 .ivsize = DES3_EDE_BLOCK_SIZE,
2389 .maxauthsize = SHA1_DIGEST_SIZE,
2390 },
2391 .cipher_mode = DRV_CIPHER_CBC,
2392 .flow_mode = S_DIN_to_DES,
2393 .auth_mode = DRV_HASH_SHA1,
2394 .min_hw_rev = CC_HW_REV_630,
2395 .std_body = CC_STD_NIST,
2396 },
2397 {
2398 .name = "authenc(hmac(sha256),cbc(aes))",
2399 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2400 .blocksize = AES_BLOCK_SIZE,
2401 .template_aead = {
2402 .setkey = cc_aead_setkey,
2403 .setauthsize = cc_aead_setauthsize,
2404 .encrypt = cc_aead_encrypt,
2405 .decrypt = cc_aead_decrypt,
2406 .init = cc_aead_init,
2407 .exit = cc_aead_exit,
2408 .ivsize = AES_BLOCK_SIZE,
2409 .maxauthsize = SHA256_DIGEST_SIZE,
2410 },
2411 .cipher_mode = DRV_CIPHER_CBC,
2412 .flow_mode = S_DIN_to_AES,
2413 .auth_mode = DRV_HASH_SHA256,
2414 .min_hw_rev = CC_HW_REV_630,
2415 .std_body = CC_STD_NIST,
2416 },
2417 {
2418 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2419 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2420 .blocksize = DES3_EDE_BLOCK_SIZE,
2421 .template_aead = {
2422 .setkey = cc_des3_aead_setkey,
2423 .setauthsize = cc_aead_setauthsize,
2424 .encrypt = cc_aead_encrypt,
2425 .decrypt = cc_aead_decrypt,
2426 .init = cc_aead_init,
2427 .exit = cc_aead_exit,
2428 .ivsize = DES3_EDE_BLOCK_SIZE,
2429 .maxauthsize = SHA256_DIGEST_SIZE,
2430 },
2431 .cipher_mode = DRV_CIPHER_CBC,
2432 .flow_mode = S_DIN_to_DES,
2433 .auth_mode = DRV_HASH_SHA256,
2434 .min_hw_rev = CC_HW_REV_630,
2435 .std_body = CC_STD_NIST,
2436 },
2437 {
2438 .name = "authenc(xcbc(aes),cbc(aes))",
2439 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2440 .blocksize = AES_BLOCK_SIZE,
2441 .template_aead = {
2442 .setkey = cc_aead_setkey,
2443 .setauthsize = cc_aead_setauthsize,
2444 .encrypt = cc_aead_encrypt,
2445 .decrypt = cc_aead_decrypt,
2446 .init = cc_aead_init,
2447 .exit = cc_aead_exit,
2448 .ivsize = AES_BLOCK_SIZE,
2449 .maxauthsize = AES_BLOCK_SIZE,
2450 },
2451 .cipher_mode = DRV_CIPHER_CBC,
2452 .flow_mode = S_DIN_to_AES,
2453 .auth_mode = DRV_HASH_XCBC_MAC,
2454 .min_hw_rev = CC_HW_REV_630,
2455 .std_body = CC_STD_NIST,
2456 },
2457 {
2458 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2459 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2460 .blocksize = 1,
2461 .template_aead = {
2462 .setkey = cc_aead_setkey,
2463 .setauthsize = cc_aead_setauthsize,
2464 .encrypt = cc_aead_encrypt,
2465 .decrypt = cc_aead_decrypt,
2466 .init = cc_aead_init,
2467 .exit = cc_aead_exit,
2468 .ivsize = CTR_RFC3686_IV_SIZE,
2469 .maxauthsize = SHA1_DIGEST_SIZE,
2470 },
2471 .cipher_mode = DRV_CIPHER_CTR,
2472 .flow_mode = S_DIN_to_AES,
2473 .auth_mode = DRV_HASH_SHA1,
2474 .min_hw_rev = CC_HW_REV_630,
2475 .std_body = CC_STD_NIST,
2476 },
2477 {
2478 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2479 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2480 .blocksize = 1,
2481 .template_aead = {
2482 .setkey = cc_aead_setkey,
2483 .setauthsize = cc_aead_setauthsize,
2484 .encrypt = cc_aead_encrypt,
2485 .decrypt = cc_aead_decrypt,
2486 .init = cc_aead_init,
2487 .exit = cc_aead_exit,
2488 .ivsize = CTR_RFC3686_IV_SIZE,
2489 .maxauthsize = SHA256_DIGEST_SIZE,
2490 },
2491 .cipher_mode = DRV_CIPHER_CTR,
2492 .flow_mode = S_DIN_to_AES,
2493 .auth_mode = DRV_HASH_SHA256,
2494 .min_hw_rev = CC_HW_REV_630,
2495 .std_body = CC_STD_NIST,
2496 },
2497 {
2498 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2499 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2500 .blocksize = 1,
2501 .template_aead = {
2502 .setkey = cc_aead_setkey,
2503 .setauthsize = cc_aead_setauthsize,
2504 .encrypt = cc_aead_encrypt,
2505 .decrypt = cc_aead_decrypt,
2506 .init = cc_aead_init,
2507 .exit = cc_aead_exit,
2508 .ivsize = CTR_RFC3686_IV_SIZE,
2509 .maxauthsize = AES_BLOCK_SIZE,
2510 },
2511 .cipher_mode = DRV_CIPHER_CTR,
2512 .flow_mode = S_DIN_to_AES,
2513 .auth_mode = DRV_HASH_XCBC_MAC,
2514 .min_hw_rev = CC_HW_REV_630,
2515 .std_body = CC_STD_NIST,
2516 },
2517 {
2518 .name = "ccm(aes)",
2519 .driver_name = "ccm-aes-ccree",
2520 .blocksize = 1,
2521 .template_aead = {
2522 .setkey = cc_aead_setkey,
2523 .setauthsize = cc_ccm_setauthsize,
2524 .encrypt = cc_aead_encrypt,
2525 .decrypt = cc_aead_decrypt,
2526 .init = cc_aead_init,
2527 .exit = cc_aead_exit,
2528 .ivsize = AES_BLOCK_SIZE,
2529 .maxauthsize = AES_BLOCK_SIZE,
2530 },
2531 .cipher_mode = DRV_CIPHER_CCM,
2532 .flow_mode = S_DIN_to_AES,
2533 .auth_mode = DRV_HASH_NULL,
2534 .min_hw_rev = CC_HW_REV_630,
2535 .std_body = CC_STD_NIST,
2536 },
2537 {
2538 .name = "rfc4309(ccm(aes))",
2539 .driver_name = "rfc4309-ccm-aes-ccree",
2540 .blocksize = 1,
2541 .template_aead = {
2542 .setkey = cc_rfc4309_ccm_setkey,
2543 .setauthsize = cc_rfc4309_ccm_setauthsize,
2544 .encrypt = cc_rfc4309_ccm_encrypt,
2545 .decrypt = cc_rfc4309_ccm_decrypt,
2546 .init = cc_aead_init,
2547 .exit = cc_aead_exit,
2548 .ivsize = CCM_BLOCK_IV_SIZE,
2549 .maxauthsize = AES_BLOCK_SIZE,
2550 },
2551 .cipher_mode = DRV_CIPHER_CCM,
2552 .flow_mode = S_DIN_to_AES,
2553 .auth_mode = DRV_HASH_NULL,
2554 .min_hw_rev = CC_HW_REV_630,
2555 .std_body = CC_STD_NIST,
2556 },
2557 {
2558 .name = "gcm(aes)",
2559 .driver_name = "gcm-aes-ccree",
2560 .blocksize = 1,
2561 .template_aead = {
2562 .setkey = cc_aead_setkey,
2563 .setauthsize = cc_gcm_setauthsize,
2564 .encrypt = cc_aead_encrypt,
2565 .decrypt = cc_aead_decrypt,
2566 .init = cc_aead_init,
2567 .exit = cc_aead_exit,
2568 .ivsize = 12,
2569 .maxauthsize = AES_BLOCK_SIZE,
2570 },
2571 .cipher_mode = DRV_CIPHER_GCTR,
2572 .flow_mode = S_DIN_to_AES,
2573 .auth_mode = DRV_HASH_NULL,
2574 .min_hw_rev = CC_HW_REV_630,
2575 .std_body = CC_STD_NIST,
2576 },
2577 {
2578 .name = "rfc4106(gcm(aes))",
2579 .driver_name = "rfc4106-gcm-aes-ccree",
2580 .blocksize = 1,
2581 .template_aead = {
2582 .setkey = cc_rfc4106_gcm_setkey,
2583 .setauthsize = cc_rfc4106_gcm_setauthsize,
2584 .encrypt = cc_rfc4106_gcm_encrypt,
2585 .decrypt = cc_rfc4106_gcm_decrypt,
2586 .init = cc_aead_init,
2587 .exit = cc_aead_exit,
2588 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2589 .maxauthsize = AES_BLOCK_SIZE,
2590 },
2591 .cipher_mode = DRV_CIPHER_GCTR,
2592 .flow_mode = S_DIN_to_AES,
2593 .auth_mode = DRV_HASH_NULL,
2594 .min_hw_rev = CC_HW_REV_630,
2595 .std_body = CC_STD_NIST,
2596 },
2597 {
2598 .name = "rfc4543(gcm(aes))",
2599 .driver_name = "rfc4543-gcm-aes-ccree",
2600 .blocksize = 1,
2601 .template_aead = {
2602 .setkey = cc_rfc4543_gcm_setkey,
2603 .setauthsize = cc_rfc4543_gcm_setauthsize,
2604 .encrypt = cc_rfc4543_gcm_encrypt,
2605 .decrypt = cc_rfc4543_gcm_decrypt,
2606 .init = cc_aead_init,
2607 .exit = cc_aead_exit,
2608 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2609 .maxauthsize = AES_BLOCK_SIZE,
2610 },
2611 .cipher_mode = DRV_CIPHER_GCTR,
2612 .flow_mode = S_DIN_to_AES,
2613 .auth_mode = DRV_HASH_NULL,
2614 .min_hw_rev = CC_HW_REV_630,
2615 .std_body = CC_STD_NIST,
2616 },
2617 };
2618
2619 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2620 struct device *dev)
2621 {
2622 struct cc_crypto_alg *t_alg;
2623 struct aead_alg *alg;
2624
2625 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2626 if (!t_alg)
2627 return ERR_PTR(-ENOMEM);
2628
2629 alg = &tmpl->template_aead;
2630
2631 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2632 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2633 tmpl->driver_name);
2634 alg->base.cra_module = THIS_MODULE;
2635 alg->base.cra_priority = CC_CRA_PRIO;
2636
2637 alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2638 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2639 alg->init = cc_aead_init;
2640 alg->exit = cc_aead_exit;
2641
2642 t_alg->aead_alg = *alg;
2643
2644 t_alg->cipher_mode = tmpl->cipher_mode;
2645 t_alg->flow_mode = tmpl->flow_mode;
2646 t_alg->auth_mode = tmpl->auth_mode;
2647
2648 return t_alg;
2649 }
2650
2651 int cc_aead_free(struct cc_drvdata *drvdata)
2652 {
2653 struct cc_crypto_alg *t_alg, *n;
2654 struct cc_aead_handle *aead_handle =
2655 (struct cc_aead_handle *)drvdata->aead_handle;
2656
2657 if (aead_handle) {
2658 /* Remove registered algs */
2659 list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2660 entry) {
2661 crypto_unregister_aead(&t_alg->aead_alg);
2662 list_del(&t_alg->entry);
2663 kfree(t_alg);
2664 }
2665 kfree(aead_handle);
2666 drvdata->aead_handle = NULL;
2667 }
2668
2669 return 0;
2670 }
2671
2672 int cc_aead_alloc(struct cc_drvdata *drvdata)
2673 {
2674 struct cc_aead_handle *aead_handle;
2675 struct cc_crypto_alg *t_alg;
2676 int rc = -ENOMEM;
2677 int alg;
2678 struct device *dev = drvdata_to_dev(drvdata);
2679
2680 aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2681 if (!aead_handle) {
2682 rc = -ENOMEM;
2683 goto fail0;
2684 }
2685
2686 INIT_LIST_HEAD(&aead_handle->aead_list);
2687 drvdata->aead_handle = aead_handle;
2688
2689 aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2690 MAX_HMAC_DIGEST_SIZE);
2691
2692 if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2693 dev_err(dev, "SRAM pool exhausted\n");
2694 rc = -ENOMEM;
2695 goto fail1;
2696 }
2697
2698 /* Linux crypto */
2699 for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2700 if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2701 !(drvdata->std_bodies & aead_algs[alg].std_body))
2702 continue;
2703
2704 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2705 if (IS_ERR(t_alg)) {
2706 rc = PTR_ERR(t_alg);
2707 dev_err(dev, "%s alg allocation failed\n",
2708 aead_algs[alg].driver_name);
2709 goto fail1;
2710 }
2711 t_alg->drvdata = drvdata;
2712 rc = crypto_register_aead(&t_alg->aead_alg);
2713 if (rc) {
2714 dev_err(dev, "%s alg registration failed\n",
2715 t_alg->aead_alg.base.cra_driver_name);
2716 goto fail2;
2717 } else {
2718 list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2719 dev_dbg(dev, "Registered %s\n",
2720 t_alg->aead_alg.base.cra_driver_name);
2721 }
2722 }
2723
2724 return 0;
2725
2726 fail2:
2727 kfree(t_alg);
2728 fail1:
2729 cc_aead_free(drvdata);
2730 fail0:
2731 return rc;
2732 }