2 * POSIX message queues filesystem for Linux.
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
46 struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48 bool newns; /* Set if newly created ipc namespace */
51 #define MQUEUE_MAGIC 0x19800202
52 #define DIRENT_SIZE 20
53 #define FILENT_SIZE 80
61 struct posix_msg_tree_node {
62 struct rb_node rb_node;
63 struct list_head msg_list;
70 * Accesses to a message queue are synchronized by acquiring info->lock.
72 * There are two notable exceptions:
73 * - The actual wakeup of a sleeping task is performed using the wake_q
74 * framework. info->lock is already released when wake_up_q is called.
75 * - The exit codepaths after sleeping check ext_wait_queue->state without
76 * any locks. If it is STATE_READY, then the syscall is completed without
77 * acquiring info->lock.
80 * To achieve proper release/acquire memory barrier pairing, the state is set to
81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
84 * This prevents the following races:
86 * 1) With the simple wake_q_add(), the task could be gone already before
87 * the increase of the reference happens
90 * WRITE_ONCE(wait.state, STATE_NONE);
91 * schedule_hrtimeout()
93 * if (cmpxchg()) // success
94 * ->state = STATE_READY (reordered)
96 * if (wait.state == STATE_READY) return;
97 * sysret to user space
99 * get_task_struct() // UaF
101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102 * the smp_store_release() that does ->state = STATE_READY.
104 * 2) Without proper _release/_acquire barriers, the woken up task
105 * could read stale data
110 * WRITE_ONCE(wait.state, STATE_NONE);
111 * schedule_hrtimeout()
112 * state = STATE_READY;
114 * if (wait.state == STATE_READY) return;
115 * msg_ptr = wait.msg; // Access to stale data!
116 * receiver->msg = message; (reordered)
118 * Solution: use _release and _acquire barriers.
120 * 3) There is intentionally no barrier when setting current->state
121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122 * release memory barrier, and the wakeup is triggered when holding
123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
124 * acquire memory barrier.
127 struct ext_wait_queue { /* queue of sleeping tasks */
128 struct task_struct *task;
129 struct list_head list;
130 struct msg_msg *msg; /* ptr of loaded message */
131 int state; /* one of STATE_* values */
134 struct mqueue_inode_info {
136 struct inode vfs_inode;
137 wait_queue_head_t wait_q;
139 struct rb_root msg_tree;
140 struct rb_node *msg_tree_rightmost;
141 struct posix_msg_tree_node *node_cache;
144 struct sigevent notify;
145 struct pid *notify_owner;
146 u32 notify_self_exec_id;
147 struct user_namespace *notify_user_ns;
148 struct ucounts *ucounts; /* user who created, for accounting */
149 struct sock *notify_sock;
150 struct sk_buff *notify_cookie;
152 /* for tasks waiting for free space and messages, respectively */
153 struct ext_wait_queue e_wait_q[2];
155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
165 static struct kmem_cache *mqueue_inode_cachep;
167 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
169 return container_of(inode, struct mqueue_inode_info, vfs_inode);
173 * This routine should be called with the mq_lock held.
175 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
177 return get_ipc_ns(inode->i_sb->s_fs_info);
180 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
182 struct ipc_namespace *ns;
185 ns = __get_ns_from_inode(inode);
186 spin_unlock(&mq_lock);
190 /* Auxiliary functions to manipulate messages' list */
191 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
193 struct rb_node **p, *parent = NULL;
194 struct posix_msg_tree_node *leaf;
195 bool rightmost = true;
197 p = &info->msg_tree.rb_node;
200 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
202 if (likely(leaf->priority == msg->m_type))
204 else if (msg->m_type < leaf->priority) {
210 if (info->node_cache) {
211 leaf = info->node_cache;
212 info->node_cache = NULL;
214 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
217 INIT_LIST_HEAD(&leaf->msg_list);
219 leaf->priority = msg->m_type;
222 info->msg_tree_rightmost = &leaf->rb_node;
224 rb_link_node(&leaf->rb_node, parent, p);
225 rb_insert_color(&leaf->rb_node, &info->msg_tree);
227 info->attr.mq_curmsgs++;
228 info->qsize += msg->m_ts;
229 list_add_tail(&msg->m_list, &leaf->msg_list);
233 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
234 struct mqueue_inode_info *info)
236 struct rb_node *node = &leaf->rb_node;
238 if (info->msg_tree_rightmost == node)
239 info->msg_tree_rightmost = rb_prev(node);
241 rb_erase(node, &info->msg_tree);
242 if (info->node_cache)
245 info->node_cache = leaf;
248 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
250 struct rb_node *parent = NULL;
251 struct posix_msg_tree_node *leaf;
256 * During insert, low priorities go to the left and high to the
257 * right. On receive, we want the highest priorities first, so
258 * walk all the way to the right.
260 parent = info->msg_tree_rightmost;
262 if (info->attr.mq_curmsgs) {
263 pr_warn_once("Inconsistency in POSIX message queue, "
264 "no tree element, but supposedly messages "
266 info->attr.mq_curmsgs = 0;
270 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
271 if (unlikely(list_empty(&leaf->msg_list))) {
272 pr_warn_once("Inconsistency in POSIX message queue, "
273 "empty leaf node but we haven't implemented "
274 "lazy leaf delete!\n");
275 msg_tree_erase(leaf, info);
278 msg = list_first_entry(&leaf->msg_list,
279 struct msg_msg, m_list);
280 list_del(&msg->m_list);
281 if (list_empty(&leaf->msg_list)) {
282 msg_tree_erase(leaf, info);
285 info->attr.mq_curmsgs--;
286 info->qsize -= msg->m_ts;
290 static struct inode *mqueue_get_inode(struct super_block *sb,
291 struct ipc_namespace *ipc_ns, umode_t mode,
292 struct mq_attr *attr)
297 inode = new_inode(sb);
301 inode->i_ino = get_next_ino();
302 inode->i_mode = mode;
303 inode->i_uid = current_fsuid();
304 inode->i_gid = current_fsgid();
305 simple_inode_init_ts(inode);
308 struct mqueue_inode_info *info;
309 unsigned long mq_bytes, mq_treesize;
311 inode->i_fop = &mqueue_file_operations;
312 inode->i_size = FILENT_SIZE;
313 /* mqueue specific info */
314 info = MQUEUE_I(inode);
315 spin_lock_init(&info->lock);
316 init_waitqueue_head(&info->wait_q);
317 INIT_LIST_HEAD(&info->e_wait_q[0].list);
318 INIT_LIST_HEAD(&info->e_wait_q[1].list);
319 info->notify_owner = NULL;
320 info->notify_user_ns = NULL;
322 info->ucounts = NULL; /* set when all is ok */
323 info->msg_tree = RB_ROOT;
324 info->msg_tree_rightmost = NULL;
325 info->node_cache = NULL;
326 memset(&info->attr, 0, sizeof(info->attr));
327 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
328 ipc_ns->mq_msg_default);
329 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
330 ipc_ns->mq_msgsize_default);
332 info->attr.mq_maxmsg = attr->mq_maxmsg;
333 info->attr.mq_msgsize = attr->mq_msgsize;
336 * We used to allocate a static array of pointers and account
337 * the size of that array as well as one msg_msg struct per
338 * possible message into the queue size. That's no longer
339 * accurate as the queue is now an rbtree and will grow and
340 * shrink depending on usage patterns. We can, however, still
341 * account one msg_msg struct per message, but the nodes are
342 * allocated depending on priority usage, and most programs
343 * only use one, or a handful, of priorities. However, since
344 * this is pinned memory, we need to assume worst case, so
345 * that means the min(mq_maxmsg, max_priorities) * struct
346 * posix_msg_tree_node.
350 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
352 if (capable(CAP_SYS_RESOURCE)) {
353 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
354 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
357 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
358 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
362 /* check for overflow */
363 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
365 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
366 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
367 sizeof(struct posix_msg_tree_node);
368 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
369 if (mq_bytes + mq_treesize < mq_bytes)
371 mq_bytes += mq_treesize;
372 info->ucounts = get_ucounts(current_ucounts());
377 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
378 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
379 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
380 spin_unlock(&mq_lock);
381 put_ucounts(info->ucounts);
382 info->ucounts = NULL;
383 /* mqueue_evict_inode() releases info->messages */
387 spin_unlock(&mq_lock);
389 } else if (S_ISDIR(mode)) {
391 /* Some things misbehave if size == 0 on a directory */
392 inode->i_size = 2 * DIRENT_SIZE;
393 inode->i_op = &mqueue_dir_inode_operations;
394 inode->i_fop = &simple_dir_operations;
404 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
407 struct ipc_namespace *ns = sb->s_fs_info;
409 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
410 sb->s_blocksize = PAGE_SIZE;
411 sb->s_blocksize_bits = PAGE_SHIFT;
412 sb->s_magic = MQUEUE_MAGIC;
413 sb->s_op = &mqueue_super_ops;
414 sb->s_d_flags = DCACHE_DONTCACHE;
416 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
418 return PTR_ERR(inode);
420 sb->s_root = d_make_root(inode);
426 static int mqueue_get_tree(struct fs_context *fc)
428 struct mqueue_fs_context *ctx = fc->fs_private;
431 * With a newly created ipc namespace, we don't need to do a search
432 * for an ipc namespace match, but we still need to set s_fs_info.
435 fc->s_fs_info = ctx->ipc_ns;
436 return get_tree_nodev(fc, mqueue_fill_super);
438 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
441 static void mqueue_fs_context_free(struct fs_context *fc)
443 struct mqueue_fs_context *ctx = fc->fs_private;
445 put_ipc_ns(ctx->ipc_ns);
449 static int mqueue_init_fs_context(struct fs_context *fc)
451 struct mqueue_fs_context *ctx;
453 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
457 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
458 put_user_ns(fc->user_ns);
459 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
460 fc->fs_private = ctx;
461 fc->ops = &mqueue_fs_context_ops;
466 * mq_init_ns() is currently the only caller of mq_create_mount().
467 * So the ns parameter is always a newly created ipc namespace.
469 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
471 struct mqueue_fs_context *ctx;
472 struct fs_context *fc;
473 struct vfsmount *mnt;
475 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
479 ctx = fc->fs_private;
481 put_ipc_ns(ctx->ipc_ns);
482 ctx->ipc_ns = get_ipc_ns(ns);
483 put_user_ns(fc->user_ns);
484 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
486 mnt = fc_mount_longterm(fc);
491 static void init_once(void *foo)
493 struct mqueue_inode_info *p = foo;
495 inode_init_once(&p->vfs_inode);
498 static struct inode *mqueue_alloc_inode(struct super_block *sb)
500 struct mqueue_inode_info *ei;
502 ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
505 return &ei->vfs_inode;
508 static void mqueue_free_inode(struct inode *inode)
510 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
513 static void mqueue_evict_inode(struct inode *inode)
515 struct mqueue_inode_info *info;
516 struct ipc_namespace *ipc_ns;
517 struct msg_msg *msg, *nmsg;
522 if (S_ISDIR(inode->i_mode))
525 ipc_ns = get_ns_from_inode(inode);
526 info = MQUEUE_I(inode);
527 spin_lock(&info->lock);
528 while ((msg = msg_get(info)) != NULL)
529 list_add_tail(&msg->m_list, &tmp_msg);
530 kfree(info->node_cache);
531 spin_unlock(&info->lock);
533 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
534 list_del(&msg->m_list);
539 unsigned long mq_bytes, mq_treesize;
541 /* Total amount of bytes accounted for the mqueue */
542 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
543 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
544 sizeof(struct posix_msg_tree_node);
546 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
547 info->attr.mq_msgsize);
550 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
552 * get_ns_from_inode() ensures that the
553 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
554 * to which we now hold a reference, or it is NULL.
555 * We can't put it here under mq_lock, though.
558 ipc_ns->mq_queues_count--;
559 spin_unlock(&mq_lock);
560 put_ucounts(info->ucounts);
561 info->ucounts = NULL;
567 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
569 struct inode *dir = dentry->d_parent->d_inode;
571 struct mq_attr *attr = arg;
573 struct ipc_namespace *ipc_ns;
576 ipc_ns = __get_ns_from_inode(dir);
582 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
583 !capable(CAP_SYS_RESOURCE)) {
587 ipc_ns->mq_queues_count++;
588 spin_unlock(&mq_lock);
590 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
592 error = PTR_ERR(inode);
594 ipc_ns->mq_queues_count--;
599 dir->i_size += DIRENT_SIZE;
600 simple_inode_init_ts(dir);
602 d_make_persistent(dentry, inode);
605 spin_unlock(&mq_lock);
611 static int mqueue_create(struct mnt_idmap *idmap, struct inode *dir,
612 struct dentry *dentry, umode_t mode, bool excl)
614 return mqueue_create_attr(dentry, mode, NULL);
617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
619 dir->i_size -= DIRENT_SIZE;
620 return simple_unlink(dir, dentry);
624 * This is routine for system read from queue file.
625 * To avoid mess with doing here some sort of mq_receive we allow
626 * to read only queue size & notification info (the only values
627 * that are interesting from user point of view and aren't accessible
628 * through std routines)
630 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
631 size_t count, loff_t *off)
633 struct inode *inode = file_inode(filp);
634 struct mqueue_inode_info *info = MQUEUE_I(inode);
635 char buffer[FILENT_SIZE];
638 spin_lock(&info->lock);
639 snprintf(buffer, sizeof(buffer),
640 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
642 info->notify_owner ? info->notify.sigev_notify : 0,
643 (info->notify_owner &&
644 info->notify.sigev_notify == SIGEV_SIGNAL) ?
645 info->notify.sigev_signo : 0,
646 pid_vnr(info->notify_owner));
647 spin_unlock(&info->lock);
648 buffer[sizeof(buffer)-1] = '\0';
650 ret = simple_read_from_buffer(u_data, count, off, buffer,
655 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
659 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
661 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
663 spin_lock(&info->lock);
664 if (task_tgid(current) == info->notify_owner)
665 remove_notification(info);
667 spin_unlock(&info->lock);
671 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
673 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
676 poll_wait(filp, &info->wait_q, poll_tab);
678 spin_lock(&info->lock);
679 if (info->attr.mq_curmsgs)
680 retval = EPOLLIN | EPOLLRDNORM;
682 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
683 retval |= EPOLLOUT | EPOLLWRNORM;
684 spin_unlock(&info->lock);
689 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
690 static void wq_add(struct mqueue_inode_info *info, int sr,
691 struct ext_wait_queue *ewp)
693 struct ext_wait_queue *walk;
695 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
696 if (walk->task->prio <= current->prio) {
697 list_add_tail(&ewp->list, &walk->list);
701 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
705 * Puts current task to sleep. Caller must hold queue lock. After return
709 static int wq_sleep(struct mqueue_inode_info *info, int sr,
710 ktime_t *timeout, struct ext_wait_queue *ewp)
711 __releases(&info->lock)
716 wq_add(info, sr, ewp);
719 /* memory barrier not required, we hold info->lock */
720 __set_current_state(TASK_INTERRUPTIBLE);
722 spin_unlock(&info->lock);
723 time = schedule_hrtimeout_range_clock(timeout, 0,
724 HRTIMER_MODE_ABS, CLOCK_REALTIME);
726 if (READ_ONCE(ewp->state) == STATE_READY) {
727 /* see MQ_BARRIER for purpose/pairing */
728 smp_acquire__after_ctrl_dep();
732 spin_lock(&info->lock);
734 /* we hold info->lock, so no memory barrier required */
735 if (READ_ONCE(ewp->state) == STATE_READY) {
739 if (signal_pending(current)) {
740 retval = -ERESTARTSYS;
748 list_del(&ewp->list);
750 spin_unlock(&info->lock);
756 * Returns waiting task that should be serviced first or NULL if none exists
758 static struct ext_wait_queue *wq_get_first_waiter(
759 struct mqueue_inode_info *info, int sr)
761 struct list_head *ptr;
763 ptr = info->e_wait_q[sr].list.prev;
764 if (ptr == &info->e_wait_q[sr].list)
766 return list_entry(ptr, struct ext_wait_queue, list);
770 static inline void set_cookie(struct sk_buff *skb, char code)
772 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
776 * The next function is only to split too long sys_mq_timedsend
778 static void __do_notify(struct mqueue_inode_info *info)
781 * invoked when there is registered process and there isn't process
782 * waiting synchronously for message AND state of queue changed from
783 * empty to not empty. Here we are sure that no one is waiting
785 if (info->notify_owner &&
786 info->attr.mq_curmsgs == 1) {
787 switch (info->notify.sigev_notify) {
791 struct kernel_siginfo sig_i;
792 struct task_struct *task;
794 /* do_mq_notify() accepts sigev_signo == 0, why?? */
795 if (!info->notify.sigev_signo)
798 clear_siginfo(&sig_i);
799 sig_i.si_signo = info->notify.sigev_signo;
801 sig_i.si_code = SI_MESGQ;
802 sig_i.si_value = info->notify.sigev_value;
804 /* map current pid/uid into info->owner's namespaces */
805 sig_i.si_pid = task_tgid_nr_ns(current,
806 ns_of_pid(info->notify_owner));
807 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
810 * We can't use kill_pid_info(), this signal should
811 * bypass check_kill_permission(). It is from kernel
812 * but si_fromuser() can't know this.
813 * We do check the self_exec_id, to avoid sending
814 * signals to programs that don't expect them.
816 task = pid_task(info->notify_owner, PIDTYPE_TGID);
817 if (task && task->self_exec_id ==
818 info->notify_self_exec_id) {
819 do_send_sig_info(info->notify.sigev_signo,
820 &sig_i, task, PIDTYPE_TGID);
826 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
827 netlink_sendskb(info->notify_sock, info->notify_cookie);
830 /* after notification unregisters process */
831 put_pid(info->notify_owner);
832 put_user_ns(info->notify_user_ns);
833 info->notify_owner = NULL;
834 info->notify_user_ns = NULL;
836 wake_up(&info->wait_q);
839 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
840 struct timespec64 *ts)
842 if (get_timespec64(ts, u_abs_timeout))
844 if (!timespec64_valid(ts))
849 static void remove_notification(struct mqueue_inode_info *info)
851 if (info->notify_owner != NULL &&
852 info->notify.sigev_notify == SIGEV_THREAD) {
853 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
854 netlink_sendskb(info->notify_sock, info->notify_cookie);
856 put_pid(info->notify_owner);
857 put_user_ns(info->notify_user_ns);
858 info->notify_owner = NULL;
859 info->notify_user_ns = NULL;
862 static int prepare_open(struct dentry *dentry, int oflag, int ro,
863 umode_t mode, struct filename *name,
864 struct mq_attr *attr)
866 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
867 MAY_READ | MAY_WRITE };
870 if (d_really_is_negative(dentry)) {
871 if (!(oflag & O_CREAT))
875 audit_inode_parent_hidden(name, dentry->d_parent);
876 return vfs_mkobj(dentry, mode & ~current_umask(),
877 mqueue_create_attr, attr);
879 /* it already existed */
880 audit_inode(name, dentry, 0);
881 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
883 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
885 acc = oflag2acc[oflag & O_ACCMODE];
886 return inode_permission(&nop_mnt_idmap, d_inode(dentry), acc);
889 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
890 struct mq_attr *attr)
892 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
893 struct dentry *root = mnt->mnt_root;
894 struct filename *name;
899 audit_mq_open(oflag, mode, attr);
901 name = getname(u_name);
903 return PTR_ERR(name);
905 fd = get_unused_fd_flags(O_CLOEXEC);
909 ro = mnt_want_write(mnt); /* we'll drop it in any case */
910 inode_lock(d_inode(root));
911 path.dentry = lookup_noperm(&QSTR(name->name), root);
912 if (IS_ERR(path.dentry)) {
913 error = PTR_ERR(path.dentry);
916 path.mnt = mntget(mnt);
917 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
919 struct file *file = dentry_open(&path, oflag, current_cred());
921 fd_install(fd, file);
923 error = PTR_ERR(file);
931 inode_unlock(d_inode(root));
939 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
940 struct mq_attr __user *, u_attr)
943 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
946 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
949 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
952 struct filename *name;
953 struct dentry *dentry;
954 struct inode *inode = NULL;
955 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
956 struct vfsmount *mnt = ipc_ns->mq_mnt;
958 name = getname(u_name);
960 return PTR_ERR(name);
962 audit_inode_parent_hidden(name, mnt->mnt_root);
963 err = mnt_want_write(mnt);
966 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
967 dentry = lookup_noperm(&QSTR(name->name), mnt->mnt_root);
968 if (IS_ERR(dentry)) {
969 err = PTR_ERR(dentry);
973 inode = d_inode(dentry);
978 err = vfs_unlink(&nop_mnt_idmap, d_inode(dentry->d_parent),
984 inode_unlock(d_inode(mnt->mnt_root));
993 /* Pipelined send and receive functions.
995 * If a receiver finds no waiting message, then it registers itself in the
996 * list of waiting receivers. A sender checks that list before adding the new
997 * message into the message array. If there is a waiting receiver, then it
998 * bypasses the message array and directly hands the message over to the
999 * receiver. The receiver accepts the message and returns without grabbing the
1002 * - Set pointer to message.
1003 * - Queue the receiver task for later wakeup (without the info->lock).
1004 * - Update its state to STATE_READY. Now the receiver can continue.
1005 * - Wake up the process after the lock is dropped. Should the process wake up
1006 * before this wakeup (due to a timeout or a signal) it will either see
1007 * STATE_READY and continue or acquire the lock to check the state again.
1009 * The same algorithm is used for senders.
1012 static inline void __pipelined_op(struct wake_q_head *wake_q,
1013 struct mqueue_inode_info *info,
1014 struct ext_wait_queue *this)
1016 struct task_struct *task;
1018 list_del(&this->list);
1019 task = get_task_struct(this->task);
1021 /* see MQ_BARRIER for purpose/pairing */
1022 smp_store_release(&this->state, STATE_READY);
1023 wake_q_add_safe(wake_q, task);
1026 /* pipelined_send() - send a message directly to the task waiting in
1027 * sys_mq_timedreceive() (without inserting message into a queue).
1029 static inline void pipelined_send(struct wake_q_head *wake_q,
1030 struct mqueue_inode_info *info,
1031 struct msg_msg *message,
1032 struct ext_wait_queue *receiver)
1034 receiver->msg = message;
1035 __pipelined_op(wake_q, info, receiver);
1038 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1039 * gets its message and put to the queue (we have one free place for sure). */
1040 static inline void pipelined_receive(struct wake_q_head *wake_q,
1041 struct mqueue_inode_info *info)
1043 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1047 wake_up_interruptible(&info->wait_q);
1050 if (msg_insert(sender->msg, info))
1053 __pipelined_op(wake_q, info, sender);
1056 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1057 size_t msg_len, unsigned int msg_prio,
1058 struct timespec64 *ts)
1060 struct inode *inode;
1061 struct ext_wait_queue wait;
1062 struct ext_wait_queue *receiver;
1063 struct msg_msg *msg_ptr;
1064 struct mqueue_inode_info *info;
1065 ktime_t expires, *timeout = NULL;
1066 struct posix_msg_tree_node *new_leaf = NULL;
1068 DEFINE_WAKE_Q(wake_q);
1070 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1074 expires = timespec64_to_ktime(*ts);
1078 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1080 CLASS(fd, f)(mqdes);
1084 inode = file_inode(fd_file(f));
1085 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1087 info = MQUEUE_I(inode);
1088 audit_file(fd_file(f));
1090 if (unlikely(!(fd_file(f)->f_mode & FMODE_WRITE)))
1093 if (unlikely(msg_len > info->attr.mq_msgsize))
1096 /* First try to allocate memory, before doing anything with
1097 * existing queues. */
1098 msg_ptr = load_msg(u_msg_ptr, msg_len);
1099 if (IS_ERR(msg_ptr))
1100 return PTR_ERR(msg_ptr);
1101 msg_ptr->m_ts = msg_len;
1102 msg_ptr->m_type = msg_prio;
1105 * msg_insert really wants us to have a valid, spare node struct so
1106 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1107 * fall back to that if necessary.
1109 if (!info->node_cache)
1110 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1112 spin_lock(&info->lock);
1114 if (!info->node_cache && new_leaf) {
1115 /* Save our speculative allocation into the cache */
1116 INIT_LIST_HEAD(&new_leaf->msg_list);
1117 info->node_cache = new_leaf;
1123 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1124 if (fd_file(f)->f_flags & O_NONBLOCK) {
1127 wait.task = current;
1128 wait.msg = (void *) msg_ptr;
1130 /* memory barrier not required, we hold info->lock */
1131 WRITE_ONCE(wait.state, STATE_NONE);
1132 ret = wq_sleep(info, SEND, timeout, &wait);
1134 * wq_sleep must be called with info->lock held, and
1135 * returns with the lock released
1140 receiver = wq_get_first_waiter(info, RECV);
1142 pipelined_send(&wake_q, info, msg_ptr, receiver);
1144 /* adds message to the queue */
1145 ret = msg_insert(msg_ptr, info);
1150 simple_inode_init_ts(inode);
1153 spin_unlock(&info->lock);
1161 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1162 size_t msg_len, unsigned int __user *u_msg_prio,
1163 struct timespec64 *ts)
1166 struct msg_msg *msg_ptr;
1167 struct inode *inode;
1168 struct mqueue_inode_info *info;
1169 struct ext_wait_queue wait;
1170 ktime_t expires, *timeout = NULL;
1171 struct posix_msg_tree_node *new_leaf = NULL;
1174 expires = timespec64_to_ktime(*ts);
1178 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1180 CLASS(fd, f)(mqdes);
1184 inode = file_inode(fd_file(f));
1185 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1187 info = MQUEUE_I(inode);
1188 audit_file(fd_file(f));
1190 if (unlikely(!(fd_file(f)->f_mode & FMODE_READ)))
1193 /* checks if buffer is big enough */
1194 if (unlikely(msg_len < info->attr.mq_msgsize))
1198 * msg_insert really wants us to have a valid, spare node struct so
1199 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1200 * fall back to that if necessary.
1202 if (!info->node_cache)
1203 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1205 spin_lock(&info->lock);
1207 if (!info->node_cache && new_leaf) {
1208 /* Save our speculative allocation into the cache */
1209 INIT_LIST_HEAD(&new_leaf->msg_list);
1210 info->node_cache = new_leaf;
1215 if (info->attr.mq_curmsgs == 0) {
1216 if (fd_file(f)->f_flags & O_NONBLOCK) {
1217 spin_unlock(&info->lock);
1220 wait.task = current;
1222 /* memory barrier not required, we hold info->lock */
1223 WRITE_ONCE(wait.state, STATE_NONE);
1224 ret = wq_sleep(info, RECV, timeout, &wait);
1228 DEFINE_WAKE_Q(wake_q);
1230 msg_ptr = msg_get(info);
1232 simple_inode_init_ts(inode);
1234 /* There is now free space in queue. */
1235 pipelined_receive(&wake_q, info);
1236 spin_unlock(&info->lock);
1241 ret = msg_ptr->m_ts;
1243 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1244 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1252 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1253 size_t, msg_len, unsigned int, msg_prio,
1254 const struct __kernel_timespec __user *, u_abs_timeout)
1256 struct timespec64 ts, *p = NULL;
1257 if (u_abs_timeout) {
1258 int res = prepare_timeout(u_abs_timeout, &ts);
1263 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1266 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1267 size_t, msg_len, unsigned int __user *, u_msg_prio,
1268 const struct __kernel_timespec __user *, u_abs_timeout)
1270 struct timespec64 ts, *p = NULL;
1271 if (u_abs_timeout) {
1272 int res = prepare_timeout(u_abs_timeout, &ts);
1277 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1281 * Notes: the case when user wants us to deregister (with NULL as pointer)
1282 * and he isn't currently owner of notification, will be silently discarded.
1283 * It isn't explicitly defined in the POSIX.
1285 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1289 struct inode *inode;
1290 struct mqueue_inode_info *info;
1293 audit_mq_notify(mqdes, notification);
1297 if (notification != NULL) {
1298 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1299 notification->sigev_notify != SIGEV_SIGNAL &&
1300 notification->sigev_notify != SIGEV_THREAD))
1302 if (notification->sigev_notify == SIGEV_SIGNAL &&
1303 !valid_signal(notification->sigev_signo)) {
1306 if (notification->sigev_notify == SIGEV_THREAD) {
1309 /* create the notify skb */
1310 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1314 if (copy_from_user(nc->data,
1315 notification->sigev_value.sival_ptr,
1316 NOTIFY_COOKIE_LEN)) {
1321 /* TODO: add a header? */
1322 skb_put(nc, NOTIFY_COOKIE_LEN);
1323 /* and attach it to the socket */
1325 sock = netlink_getsockbyfd(notification->sigev_signo);
1328 return PTR_ERR(sock);
1331 timeo = MAX_SCHEDULE_TIMEOUT;
1332 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1340 CLASS(fd, f)(mqdes);
1346 inode = file_inode(fd_file(f));
1347 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations)) {
1351 info = MQUEUE_I(inode);
1354 spin_lock(&info->lock);
1355 if (notification == NULL) {
1356 if (info->notify_owner == task_tgid(current)) {
1357 remove_notification(info);
1358 inode_set_atime_to_ts(inode,
1359 inode_set_ctime_current(inode));
1361 } else if (info->notify_owner != NULL) {
1364 switch (notification->sigev_notify) {
1366 info->notify.sigev_notify = SIGEV_NONE;
1369 info->notify_sock = sock;
1370 info->notify_cookie = nc;
1373 info->notify.sigev_notify = SIGEV_THREAD;
1376 info->notify.sigev_signo = notification->sigev_signo;
1377 info->notify.sigev_value = notification->sigev_value;
1378 info->notify.sigev_notify = SIGEV_SIGNAL;
1379 info->notify_self_exec_id = current->self_exec_id;
1383 info->notify_owner = get_pid(task_tgid(current));
1384 info->notify_user_ns = get_user_ns(current_user_ns());
1385 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1387 spin_unlock(&info->lock);
1390 netlink_detachskb(sock, nc);
1394 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1395 const struct sigevent __user *, u_notification)
1397 struct sigevent n, *p = NULL;
1398 if (u_notification) {
1399 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1403 return do_mq_notify(mqdes, p);
1406 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1408 struct inode *inode;
1409 struct mqueue_inode_info *info;
1411 if (new && (new->mq_flags & (~O_NONBLOCK)))
1414 CLASS(fd, f)(mqdes);
1418 if (unlikely(fd_file(f)->f_op != &mqueue_file_operations))
1421 inode = file_inode(fd_file(f));
1422 info = MQUEUE_I(inode);
1424 spin_lock(&info->lock);
1428 old->mq_flags = fd_file(f)->f_flags & O_NONBLOCK;
1431 audit_mq_getsetattr(mqdes, new);
1432 spin_lock(&fd_file(f)->f_lock);
1433 if (new->mq_flags & O_NONBLOCK)
1434 fd_file(f)->f_flags |= O_NONBLOCK;
1436 fd_file(f)->f_flags &= ~O_NONBLOCK;
1437 spin_unlock(&fd_file(f)->f_lock);
1439 inode_set_atime_to_ts(inode, inode_set_ctime_current(inode));
1442 spin_unlock(&info->lock);
1446 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1447 const struct mq_attr __user *, u_mqstat,
1448 struct mq_attr __user *, u_omqstat)
1451 struct mq_attr mqstat, omqstat;
1452 struct mq_attr *new = NULL, *old = NULL;
1456 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1462 ret = do_mq_getsetattr(mqdes, new, old);
1466 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1471 #ifdef CONFIG_COMPAT
1473 struct compat_mq_attr {
1474 compat_long_t mq_flags; /* message queue flags */
1475 compat_long_t mq_maxmsg; /* maximum number of messages */
1476 compat_long_t mq_msgsize; /* maximum message size */
1477 compat_long_t mq_curmsgs; /* number of messages currently queued */
1478 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1481 static inline int get_compat_mq_attr(struct mq_attr *attr,
1482 const struct compat_mq_attr __user *uattr)
1484 struct compat_mq_attr v;
1486 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1489 memset(attr, 0, sizeof(*attr));
1490 attr->mq_flags = v.mq_flags;
1491 attr->mq_maxmsg = v.mq_maxmsg;
1492 attr->mq_msgsize = v.mq_msgsize;
1493 attr->mq_curmsgs = v.mq_curmsgs;
1497 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1498 struct compat_mq_attr __user *uattr)
1500 struct compat_mq_attr v;
1502 memset(&v, 0, sizeof(v));
1503 v.mq_flags = attr->mq_flags;
1504 v.mq_maxmsg = attr->mq_maxmsg;
1505 v.mq_msgsize = attr->mq_msgsize;
1506 v.mq_curmsgs = attr->mq_curmsgs;
1507 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1512 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1513 int, oflag, compat_mode_t, mode,
1514 struct compat_mq_attr __user *, u_attr)
1516 struct mq_attr attr, *p = NULL;
1517 if (u_attr && oflag & O_CREAT) {
1519 if (get_compat_mq_attr(&attr, u_attr))
1522 return do_mq_open(u_name, oflag, mode, p);
1525 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1526 const struct compat_sigevent __user *, u_notification)
1528 struct sigevent n, *p = NULL;
1529 if (u_notification) {
1530 if (get_compat_sigevent(&n, u_notification))
1532 if (n.sigev_notify == SIGEV_THREAD)
1533 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1536 return do_mq_notify(mqdes, p);
1539 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1540 const struct compat_mq_attr __user *, u_mqstat,
1541 struct compat_mq_attr __user *, u_omqstat)
1544 struct mq_attr mqstat, omqstat;
1545 struct mq_attr *new = NULL, *old = NULL;
1549 if (get_compat_mq_attr(new, u_mqstat))
1555 ret = do_mq_getsetattr(mqdes, new, old);
1559 if (put_compat_mq_attr(old, u_omqstat))
1565 #ifdef CONFIG_COMPAT_32BIT_TIME
1566 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1567 struct timespec64 *ts)
1569 if (get_old_timespec32(ts, p))
1571 if (!timespec64_valid(ts))
1576 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1577 const char __user *, u_msg_ptr,
1578 unsigned int, msg_len, unsigned int, msg_prio,
1579 const struct old_timespec32 __user *, u_abs_timeout)
1581 struct timespec64 ts, *p = NULL;
1582 if (u_abs_timeout) {
1583 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1588 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1591 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1592 char __user *, u_msg_ptr,
1593 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1594 const struct old_timespec32 __user *, u_abs_timeout)
1596 struct timespec64 ts, *p = NULL;
1597 if (u_abs_timeout) {
1598 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1603 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1607 static const struct inode_operations mqueue_dir_inode_operations = {
1608 .lookup = simple_lookup,
1609 .create = mqueue_create,
1610 .unlink = mqueue_unlink,
1613 static const struct file_operations mqueue_file_operations = {
1614 .flush = mqueue_flush_file,
1615 .poll = mqueue_poll_file,
1616 .read = mqueue_read_file,
1617 .llseek = default_llseek,
1620 static const struct super_operations mqueue_super_ops = {
1621 .alloc_inode = mqueue_alloc_inode,
1622 .free_inode = mqueue_free_inode,
1623 .evict_inode = mqueue_evict_inode,
1624 .statfs = simple_statfs,
1627 static const struct fs_context_operations mqueue_fs_context_ops = {
1628 .free = mqueue_fs_context_free,
1629 .get_tree = mqueue_get_tree,
1632 static struct file_system_type mqueue_fs_type = {
1634 .init_fs_context = mqueue_init_fs_context,
1635 .kill_sb = kill_anon_super,
1636 .fs_flags = FS_USERNS_MOUNT,
1639 int mq_init_ns(struct ipc_namespace *ns)
1643 ns->mq_queues_count = 0;
1644 ns->mq_queues_max = DFLT_QUEUESMAX;
1645 ns->mq_msg_max = DFLT_MSGMAX;
1646 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1647 ns->mq_msg_default = DFLT_MSG;
1648 ns->mq_msgsize_default = DFLT_MSGSIZE;
1650 m = mq_create_mount(ns);
1657 void mq_clear_sbinfo(struct ipc_namespace *ns)
1659 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1662 static int __init init_mqueue_fs(void)
1666 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1667 sizeof(struct mqueue_inode_info), 0,
1668 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1669 if (mqueue_inode_cachep == NULL)
1672 if (!setup_mq_sysctls(&init_ipc_ns)) {
1673 pr_warn("sysctl registration failed\n");
1678 error = register_filesystem(&mqueue_fs_type);
1682 spin_lock_init(&mq_lock);
1684 error = mq_init_ns(&init_ipc_ns);
1686 goto out_filesystem;
1691 unregister_filesystem(&mqueue_fs_type);
1693 retire_mq_sysctls(&init_ipc_ns);
1695 kmem_cache_destroy(mqueue_inode_cachep);
1699 device_initcall(init_mqueue_fs);