]> git.ipfire.org Git - ipfire-2.x.git/blob - src/patches/glibc/glibc-rh849651.patch
dhcpcd: fix delay after dhcp down.
[ipfire-2.x.git] / src / patches / glibc / glibc-rh849651.patch
1 diff -Nrup a/sysdeps/x86_64/fpu/e_expf.S b/sysdeps/x86_64/fpu/e_expf.S
2 --- a/sysdeps/x86_64/fpu/e_expf.S 1969-12-31 17:00:00.000000000 -0700
3 +++ b/sysdeps/x86_64/fpu/e_expf.S 2012-08-20 09:47:15.551971545 -0600
4 @@ -0,0 +1,339 @@
5 +/* Optimized __ieee754_expf function.
6 + Copyright (C) 2012 Free Software Foundation, Inc.
7 + Contributed by Intel Corporation.
8 + This file is part of the GNU C Library.
9 +
10 + The GNU C Library is free software; you can redistribute it and/or
11 + modify it under the terms of the GNU Lesser General Public
12 + License as published by the Free Software Foundation; either
13 + version 2.1 of the License, or (at your option) any later version.
14 +
15 + The GNU C Library is distributed in the hope that it will be useful,
16 + but WITHOUT ANY WARRANTY; without even the implied warranty of
17 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 + Lesser General Public License for more details.
19 +
20 + You should have received a copy of the GNU Lesser General Public
21 + License along with the GNU C Library; if not, see
22 + <http://www.gnu.org/licenses/>. */
23 +
24 +#include <sysdep.h>
25 +
26 +/* Short algorithm description:
27 + *
28 + * Let K = 64 (table size).
29 + * e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y))
30 + * where
31 + * x = m*log(2)/K + y, y in [0.0..log(2)/K]
32 + * m = n*K + j, m,n,j - signed integer, j in [0..K-1]
33 + * values of 2^(j/K) are tabulated as T[j].
34 + *
35 + * P(y) is a minimax polynomial approximation of expf(x)-1
36 + * on small interval [0.0..log(2)/K].
37 + *
38 + * P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as
39 + * z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y
40 + *
41 + * Special cases:
42 + * expf(NaN) = NaN
43 + * expf(+INF) = +INF
44 + * expf(-INF) = 0
45 + * expf(x) = 1 for subnormals
46 + * for finite argument, only expf(0)=1 is exact
47 + * expf(x) overflows if x>88.7228317260742190
48 + * expf(x) underflows if x<-103.972076416015620
49 + */
50 +
51 + .text
52 +ENTRY(__ieee754_expf)
53 + /* Input: single precision x in %xmm0 */
54 + cvtss2sd %xmm0, %xmm1 /* Convert x to double precision */
55 + movd %xmm0, %ecx /* Copy x */
56 + movsd L(DP_KLN2)(%rip), %xmm2 /* DP K/log(2) */
57 + movsd L(DP_P2)(%rip), %xmm3 /* DP P2 */
58 + movl %ecx, %eax /* x */
59 + mulsd %xmm1, %xmm2 /* DP x*K/log(2) */
60 + andl $0x7fffffff, %ecx /* |x| */
61 + lea L(DP_T)(%rip), %rsi /* address of table T[j] */
62 + cmpl $0x42ad496b, %ecx /* |x|<125*log(2) ? */
63 + movsd L(DP_P3)(%rip), %xmm4 /* DP P3 */
64 + addsd L(DP_RS)(%rip), %xmm2 /* DP x*K/log(2)+RS */
65 + jae L(special_paths)
66 +
67 + /* Here if |x|<125*log(2) */
68 + cmpl $0x31800000, %ecx /* |x|<2^(-28) ? */
69 + jb L(small_arg)
70 +
71 + /* Main path: here if 2^(-28)<=|x|<125*log(2) */
72 + cvtsd2ss %xmm2, %xmm2 /* SP x*K/log(2)+RS */
73 + movd %xmm2, %eax /* bits of n*K+j with trash */
74 + subss L(SP_RS)(%rip), %xmm2 /* SP t=round(x*K/log(2)) */
75 + movl %eax, %edx /* n*K+j with trash */
76 + cvtss2sd %xmm2, %xmm2 /* DP t */
77 + andl $0x3f, %eax /* bits of j */
78 + mulsd L(DP_NLN2K)(%rip), %xmm2/* DP -t*log(2)/K */
79 + andl $0xffffffc0, %edx /* bits of n */
80 +#ifdef __AVX__
81 + vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
82 + vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
83 +#else
84 + addsd %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
85 + movaps %xmm2, %xmm0 /* DP y */
86 + mulsd %xmm2, %xmm2 /* DP z=y*y */
87 +#endif
88 + mulsd %xmm2, %xmm4 /* DP P3*z */
89 + addl $0x1fc0, %edx /* bits of n + SP exponent bias */
90 + mulsd %xmm2, %xmm3 /* DP P2*z */
91 + shll $17, %edx /* SP 2^n */
92 + addsd L(DP_P1)(%rip), %xmm4 /* DP P3*z+P1 */
93 + addsd L(DP_P0)(%rip), %xmm3 /* DP P2*z+P0 */
94 + movd %edx, %xmm1 /* SP 2^n */
95 + mulsd %xmm2, %xmm4 /* DP (P3*z+P1)*z */
96 + mulsd %xmm3, %xmm0 /* DP (P2*z+P0)*y */
97 + addsd %xmm4, %xmm0 /* DP P(y) */
98 + mulsd (%rsi,%rax,8), %xmm0 /* DP P(y)*T[j] */
99 + addsd (%rsi,%rax,8), %xmm0 /* DP T[j]*(P(y)+1) */
100 + cvtsd2ss %xmm0, %xmm0 /* SP T[j]*(P(y)+1) */
101 + mulss %xmm1, %xmm0 /* SP result=2^n*(T[j]*(P(y)+1)) */
102 + ret
103 +
104 + .p2align 4
105 +L(small_arg):
106 + /* Here if 0<=|x|<2^(-28) */
107 + addss L(SP_ONE)(%rip), %xmm0 /* 1.0 + x */
108 + /* Return 1.0 with inexact raised, except for x==0 */
109 + ret
110 +
111 + .p2align 4
112 +L(special_paths):
113 + /* Here if 125*log(2)<=|x| */
114 + shrl $31, %eax /* Get sign bit of x, and depending on it: */
115 + lea L(SP_RANGE)(%rip), %rdx /* load over/underflow bound */
116 + cmpl (%rdx,%rax,4), %ecx /* |x|<under/overflow bound ? */
117 + jbe L(near_under_or_overflow)
118 +
119 + /* Here if |x|>under/overflow bound */
120 + cmpl $0x7f800000, %ecx /* |x| is finite ? */
121 + jae L(arg_inf_or_nan)
122 +
123 + /* Here if |x|>under/overflow bound, and x is finite */
124 + testq %rax, %rax /* sign of x nonzero ? */
125 + je L(res_overflow)
126 +
127 + /* Here if -inf<x<underflow bound (x<0) */
128 + movss L(SP_SMALL)(%rip), %xmm0/* load small value 2^(-100) */
129 + mulss %xmm0, %xmm0 /* Return underflowed result (zero or subnormal) */
130 + ret
131 +
132 + .p2align 4
133 +L(res_overflow):
134 + /* Here if overflow bound<x<inf (x>0) */
135 + movss L(SP_LARGE)(%rip), %xmm0/* load large value 2^100 */
136 + mulss %xmm0, %xmm0 /* Return overflowed result (Inf or max normal) */
137 + ret
138 +
139 + .p2align 4
140 +L(arg_inf_or_nan):
141 + /* Here if |x| is Inf or NAN */
142 + jne L(arg_nan) /* |x| is Inf ? */
143 +
144 + /* Here if |x| is Inf */
145 + lea L(SP_INF_0)(%rip), %rdx /* depending on sign of x: */
146 + movss (%rdx,%rax,4), %xmm0 /* return zero or Inf */
147 + ret
148 +
149 + .p2align 4
150 +L(arg_nan):
151 + /* Here if |x| is NaN */
152 + addss %xmm0, %xmm0 /* Return x+x (raise invalid) */
153 + ret
154 +
155 + .p2align 4
156 +L(near_under_or_overflow):
157 + /* Here if 125*log(2)<=|x|<under/overflow bound */
158 + cvtsd2ss %xmm2, %xmm2 /* SP x*K/log(2)+RS */
159 + movd %xmm2, %eax /* bits of n*K+j with trash */
160 + subss L(SP_RS)(%rip), %xmm2 /* SP t=round(x*K/log(2)) */
161 + movl %eax, %edx /* n*K+j with trash */
162 + cvtss2sd %xmm2, %xmm2 /* DP t */
163 + andl $0x3f, %eax /* bits of j */
164 + mulsd L(DP_NLN2K)(%rip), %xmm2/* DP -t*log(2)/K */
165 + andl $0xffffffc0, %edx /* bits of n */
166 +#ifdef __AVX__
167 + vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
168 + vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
169 +#else
170 + addsd %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
171 + movaps %xmm2, %xmm0 /* DP y */
172 + mulsd %xmm2, %xmm2 /* DP z=y*y */
173 +#endif
174 + mulsd %xmm2, %xmm4 /* DP P3*z */
175 + addl $0xffc0, %edx /* bits of n + DP exponent bias */
176 + mulsd %xmm2, %xmm3 /* DP P2*z */
177 + shlq $46, %rdx /* DP 2^n */
178 + addsd L(DP_P1)(%rip), %xmm4 /* DP P3*z+P1 */
179 + addsd L(DP_P0)(%rip), %xmm3 /* DP P2*z+P0 */
180 + movd %rdx, %xmm1 /* DP 2^n */
181 + mulsd %xmm2, %xmm4 /* DP (P3*z+P1)*z */
182 + mulsd %xmm3, %xmm0 /* DP (P2*z+P0)*y */
183 + addsd %xmm4, %xmm0 /* DP P(y) */
184 + mulsd (%rsi,%rax,8), %xmm0 /* DP P(y)*T[j] */
185 + addsd (%rsi,%rax,8), %xmm0 /* DP T[j]*(P(y)+1) */
186 + mulsd %xmm1, %xmm0 /* DP result=2^n*(T[j]*(P(y)+1)) */
187 + cvtsd2ss %xmm0, %xmm0 /* convert result to single precision */
188 + ret
189 +END(__ieee754_expf)
190 +
191 + .section .rodata, "a"
192 + .p2align 3
193 +L(DP_T): /* table of double precision values 2^(j/K) for j=[0..K-1] */
194 + .long 0x00000000, 0x3ff00000
195 + .long 0x3e778061, 0x3ff02c9a
196 + .long 0xd3158574, 0x3ff059b0
197 + .long 0x18759bc8, 0x3ff08745
198 + .long 0x6cf9890f, 0x3ff0b558
199 + .long 0x32d3d1a2, 0x3ff0e3ec
200 + .long 0xd0125b51, 0x3ff11301
201 + .long 0xaea92de0, 0x3ff1429a
202 + .long 0x3c7d517b, 0x3ff172b8
203 + .long 0xeb6fcb75, 0x3ff1a35b
204 + .long 0x3168b9aa, 0x3ff1d487
205 + .long 0x88628cd6, 0x3ff2063b
206 + .long 0x6e756238, 0x3ff2387a
207 + .long 0x65e27cdd, 0x3ff26b45
208 + .long 0xf51fdee1, 0x3ff29e9d
209 + .long 0xa6e4030b, 0x3ff2d285
210 + .long 0x0a31b715, 0x3ff306fe
211 + .long 0xb26416ff, 0x3ff33c08
212 + .long 0x373aa9cb, 0x3ff371a7
213 + .long 0x34e59ff7, 0x3ff3a7db
214 + .long 0x4c123422, 0x3ff3dea6
215 + .long 0x21f72e2a, 0x3ff4160a
216 + .long 0x6061892d, 0x3ff44e08
217 + .long 0xb5c13cd0, 0x3ff486a2
218 + .long 0xd5362a27, 0x3ff4bfda
219 + .long 0x769d2ca7, 0x3ff4f9b2
220 + .long 0x569d4f82, 0x3ff5342b
221 + .long 0x36b527da, 0x3ff56f47
222 + .long 0xdd485429, 0x3ff5ab07
223 + .long 0x15ad2148, 0x3ff5e76f
224 + .long 0xb03a5585, 0x3ff6247e
225 + .long 0x82552225, 0x3ff66238
226 + .long 0x667f3bcd, 0x3ff6a09e
227 + .long 0x3c651a2f, 0x3ff6dfb2
228 + .long 0xe8ec5f74, 0x3ff71f75
229 + .long 0x564267c9, 0x3ff75feb
230 + .long 0x73eb0187, 0x3ff7a114
231 + .long 0x36cf4e62, 0x3ff7e2f3
232 + .long 0x994cce13, 0x3ff82589
233 + .long 0x9b4492ed, 0x3ff868d9
234 + .long 0x422aa0db, 0x3ff8ace5
235 + .long 0x99157736, 0x3ff8f1ae
236 + .long 0xb0cdc5e5, 0x3ff93737
237 + .long 0x9fde4e50, 0x3ff97d82
238 + .long 0x82a3f090, 0x3ff9c491
239 + .long 0x7b5de565, 0x3ffa0c66
240 + .long 0xb23e255d, 0x3ffa5503
241 + .long 0x5579fdbf, 0x3ffa9e6b
242 + .long 0x995ad3ad, 0x3ffae89f
243 + .long 0xb84f15fb, 0x3ffb33a2
244 + .long 0xf2fb5e47, 0x3ffb7f76
245 + .long 0x904bc1d2, 0x3ffbcc1e
246 + .long 0xdd85529c, 0x3ffc199b
247 + .long 0x2e57d14b, 0x3ffc67f1
248 + .long 0xdcef9069, 0x3ffcb720
249 + .long 0x4a07897c, 0x3ffd072d
250 + .long 0xdcfba487, 0x3ffd5818
251 + .long 0x03db3285, 0x3ffda9e6
252 + .long 0x337b9b5f, 0x3ffdfc97
253 + .long 0xe78b3ff6, 0x3ffe502e
254 + .long 0xa2a490da, 0x3ffea4af
255 + .long 0xee615a27, 0x3ffefa1b
256 + .long 0x5b6e4540, 0x3fff5076
257 + .long 0x819e90d8, 0x3fffa7c1
258 + .type L(DP_T), @object
259 + ASM_SIZE_DIRECTIVE(L(DP_T))
260 +
261 + .section .rodata.cst8,"aM",@progbits,8
262 + .p2align 3
263 +L(DP_KLN2): /* double precision K/log(2) */
264 + .long 0x652b82fe, 0x40571547
265 + .type L(DP_KLN2), @object
266 + ASM_SIZE_DIRECTIVE(L(DP_KLN2))
267 +
268 + .p2align 3
269 +L(DP_NLN2K): /* double precision -log(2)/K */
270 + .long 0xfefa39ef, 0xbf862e42
271 + .type L(DP_NLN2K), @object
272 + ASM_SIZE_DIRECTIVE(L(DP_NLN2K))
273 +
274 + .p2align 3
275 +L(DP_RS): /* double precision 2^23+2^22 */
276 + .long 0x00000000, 0x41680000
277 + .type L(DP_RS), @object
278 + ASM_SIZE_DIRECTIVE(L(DP_RS))
279 +
280 + .p2align 3
281 +L(DP_P3): /* double precision polynomial coefficient P3 */
282 + .long 0xeb78fa85, 0x3fa56420
283 + .type L(DP_P3), @object
284 + ASM_SIZE_DIRECTIVE(L(DP_P3))
285 +
286 + .p2align 3
287 +L(DP_P1): /* double precision polynomial coefficient P1 */
288 + .long 0x008d6118, 0x3fe00000
289 + .type L(DP_P1), @object
290 + ASM_SIZE_DIRECTIVE(L(DP_P1))
291 +
292 + .p2align 3
293 +L(DP_P2): /* double precision polynomial coefficient P2 */
294 + .long 0xda752d4f, 0x3fc55550
295 + .type L(DP_P2), @object
296 + ASM_SIZE_DIRECTIVE(L(DP_P2))
297 +
298 + .p2align 3
299 +L(DP_P0): /* double precision polynomial coefficient P0 */
300 + .long 0xffffe7c6, 0x3fefffff
301 + .type L(DP_P0), @object
302 + ASM_SIZE_DIRECTIVE(L(DP_P0))
303 +
304 + .p2align 2
305 +L(SP_RANGE): /* single precision overflow/underflow bounds */
306 + .long 0x42b17217 /* if x>this bound, then result overflows */
307 + .long 0x42cff1b4 /* if x<this bound, then result underflows */
308 + .type L(SP_RANGE), @object
309 + ASM_SIZE_DIRECTIVE(L(SP_RANGE))
310 +
311 + .p2align 2
312 +L(SP_INF_0):
313 + .long 0x7f800000 /* single precision Inf */
314 + .long 0 /* single precision zero */
315 + .type L(SP_INF_0), @object
316 + ASM_SIZE_DIRECTIVE(L(SP_INF_0))
317 +
318 + .section .rodata.cst4,"aM",@progbits,4
319 + .p2align 2
320 +L(SP_RS): /* single precision 2^23+2^22 */
321 + .long 0x4b400000
322 + .type L(SP_RS), @object
323 + ASM_SIZE_DIRECTIVE(L(SP_RS))
324 +
325 + .p2align 2
326 +L(SP_SMALL): /* single precision small value 2^(-100) */
327 + .long 0x0d800000
328 + .type L(SP_SMALL), @object
329 + ASM_SIZE_DIRECTIVE(L(SP_SMALL))
330 +
331 + .p2align 2
332 +L(SP_LARGE): /* single precision large value 2^100 */
333 + .long 0x71800000
334 + .type L(SP_LARGE), @object
335 + ASM_SIZE_DIRECTIVE(L(SP_LARGE))
336 +
337 + .p2align 2
338 +L(SP_ONE): /* single precision 1.0 */
339 + .long 0x3f800000
340 + .type L(SP_ONE), @object
341 + ASM_SIZE_DIRECTIVE(L(SP_ONE))
342 +
343 +strong_alias (__ieee754_expf, __expf_finite)